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Abstract. We introduce the notion of the scalar fuzzy McShane and Henstock integrals for fuzzy number
valued functions and we discuss their relationship and we give a fuzzy scalar version of a Gordon theorem
[24].

1. Introduction

The McShane integral as it was described in [22, 24, 43] is a Riemann-type integral using ”gauge-limit”.
It is equivalent to the Lebesgue integral for real functions. The Dunford, Pettis and Bochner integrals
are generalisations of the Lebesgue integral to Banach space-valued functions. The McShane integral of
a vector-valued functions and its relationship to the Bochner integral, Pettis integral were discussed in
[19, 22, 23, 32, 43]. An interesting convergence theorem for the McShane integral was proved by D. H.
Fremlin and J. Mendoza in [22]. In general, McShane integrability lies strictly between Bochner and Pettis
integrability, but McShane and Pettis integrability are equivalent for functions taking values in separable
Banach spaces; see, [20, 22, 24].

There is a great deal of literature on Bochner and Pettis integration for the space set-valued functions
(see El Amri and Hess [3] or Hess an Ziat [26] for further references) of several types that have shown to be
a useful tool in many branches of mathematics such as mathematical economy, control theory, differential
inclusions, convex analysis and optimisation.

At the end of last century Ziat ([46, 47]) and El Amri and Hess [3] presented several criteria for a
set-valued functions having as its values convex weakly compact subsets of a Banach space, to be Pettis
integrable. In [15] Di Piazza and Musial studied the natural generalization of Pettis integral of a set-valued
functions obtained by replacing the Lebesgue integrability of the support functions by their Kurzweil-
Henstock integrability (they call such an integral Kurzweil-Henstock-Pettis). There it is proved that the
Kurzweil-Henstock-Pettis integral is in some way a translation of the Pettis one. The same Authors in [16]
deal with the Henstock and McShane integrals of set-valued functions. Such integrals are generalisations,
by means the notion of the Hausdorff distance, of the definitions of Henstock and McShane integrals for
vector valued functions. There it is also presented a characterisation of Henstock integrable set-valued

2020 Mathematics Subject Classification. Primary 28B05, 46G10, 26E50; Secondary 28E10, 03E72
Keywords. Real McShane integral,KH-integral, Generalised fuzzy number, Fuzzy scalar McShane integral, Fuzzy scalar Henstock

integral
Received: 03 May 2021; Revised: 22 September 2022; Accepted: 01 October 2022
Communicated by Dragan S. Djordjević
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functions with convex compact values, similar to that in [15]: each Henstock integrable set-valued function
is the sum one of its Henstock integrable selections and of a McShane integrable set-valued function. There
is also proved that if the multifunctions are compact convex valued and the target Banach space is separable,
then the Pettis and the McShane integrals coincide, as in case of functions taking their values in a separable
Banach space ([22]).

Park in [33] introduced the Pettis integral for fuzzy mappings in separable Banach spaces. In [18] Di Piazza
and Marraffa continued the study of the Pettis integral for fuzzy mappings in Banach spaces not necessary
separable. The important result of this paper is the following decomposition theorem:
Γ : [0, 1] −→ F (X) (where F (X)) is the generalized fuzzy number space associated to the Banach space
X) is a Pettis integrable fuzzy mapping if and only if Γ can be represented as Γ(t) = G(t) + f (t), where
G : [0, 1] −→ F (X) is a Pettis integrable fuzzy mapping whose support functions are nonnegative and f is a
Pettis integrable fuzzy mapping generated by a Pettis integrable selection of Γ. For decomposition results
see also [6], [7], [8], [17].

In the present work, we introduce the notion of the fuzzy scalar McShane and Henstock integrals for fuzzy-
number-valued functions and discuss their relationship. More precisely, we seek to determine when the
fuzzy scalar Henstock and the fuzzy scalar McShane integrals are equivalent. Given this goal, the following
result due to Gordon (Theorem 9.13 [24]) dealing with the real-valued McShane and Henstock integrals
will guide our investigation: the two integrals are equal for bounded functions. This result will play a vital
role in our proof of main result (Theorem 4.1).

2. Preliminaries

Let X be a real Banach space, whose norm is denoted by ∥.∥ and whose closed unit ball is denoted by BX

and let X∗ be the topological dual of X. The closed unit ball of X∗ is denoted by BX∗ . By w, we denote the
weak topology of X, and w∗ the weak topology of X∗. cwk(X) is the family of all nonempty weakly compact
convex subsets of X endowed with the Hausdorff distance

dH(A,B) := max{sup
x∈A

inf
y∈B
∥x − y∥, sup

y∈B
inf
x∈A
∥x − y∥}

and the operations

A + B = {x + y : x ∈ A, y ∈ B}, kA = {kx : x ∈ A},

for A and B in cwk(X). The space cwk(X) endowed with the Hausdorff distance is a complete metric
space. For every A ∈ cwk(X) the support function of A is denoted by δ∗(.,A) and defined by δ∗(x∗,A) =
sup{⟨x∗, y⟩ : y ∈ A}, for each x∗ ∈ X∗. Clearly the map x∗ → δ∗(x∗,A) is sublinear on X∗ and −δ∗(−x∗,A) =
inf{⟨x∗, y⟩ : y ∈ A}, for each x∗ ∈ X∗. The distance functional is a mapping d : X × P(X) → R+ such that
d(x,A) := inf{∥x − a∥, a ∈ A}=supx∗∈BX∗

[⟨x∗, x⟩ − δ∗(x∗,A)].

According to Hormander’s formula ([1, 11], for A and B non empty members of cwk(X) we have the equality

dH(A,B) = sup
x∗∈BX∗

|δ∗(x∗,A) − δ∗(x∗,B)| = sup
x∈X
|d(x,A) − d(x,B)|.

Moreover for A ∈ cwk(X) we define
∥A∥ = dH(A, {0}) = sup

x∈A
∥x∥.

On cwk(X) we will consider the following convergence given in [5]: a sequence (Cn) in cwk(X) scalarly
converges (Shortly S-converges) to C ∈ cwk(X) if the following condition is satisfied:
∀x∗ ∈ X∗, limn→∞ δ∗(x∗,Cn) = δ∗(x∗,C). A sequence (Cn) in cwk(X) converges in the Hausdorff topology to
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C ∈ cwk(X) if the following condition is satisfied: limn→∞ dH(Cn,C) = 0.

Throughout this paper [0, 1] is the unit interval of the real line equipped with the usual topology and the
Lebesgue measure λ. The family of Lebesgue measurable subsets of [0, 1] is denoted by L. We say that a
subsetH of Lebesgue-integrable functions defined on [0, 1] is uniformly integrable ([32]) if

lim
a→∞

sup
h∈H

∫
{t∈[0,1]:|h(t)|≥a}

|h| dλ = 0.

It is well known ([32]) that H is uniformly integrable if and only if it is bounded for the L1-norm (i.e.

suph∈H

∫ 1

0 |h| dλ is finite) and equi-continuous, i.e.

lim
λ(A)→0

sup
h∈H

∫
A
|h| dλ = 0.

A function f : [0, 1]→ X is said to be scalarly measurable (resp. scalarly integrable, alias Dunford integrable) if
for every x∗ ∈ X∗, the real-valued function ⟨x∗, f ⟩ is measurable (resp. Lebesgue integrable). If f : [0, 1]→ X
is a scalarly integrable function, then for each E ∈ L, there is x∗∗E ∈ X∗∗ such that

⟨x∗, x∗∗E ⟩ =
∫

E
⟨x∗, f ⟩ dλ.

In the case that x∗∗E ∈ X for all E ∈ L, then f is called Pettis integrable, or simply P-integrable and we set
(P)
∫

E f dλ instead of x∗∗E to denote the Pettis integral of f over E. If f : [0, 1] → X is a Pettis integrable
function, then the set {⟨x∗, f ⟩ : x∗ ∈ BX∗ } is relatively weakly compact in L1 for the weak topology of L1
([13], Theorem II. 3.8) (see also [30]); equivalently it is uniformly integrable ([13], Theorem III. 2.15). For an
extensive study of Banach space-valued Pettis integral, the reader is referred to Musiał ([30]).

A partial McShane partition is a finite collection {(Ii, ti) : 1 ≤ i ≤ k}, where I1, ..., Ik are non-overlapping
subintervals of [0, 1] and ti is a point of [0, 1] for each 1 ≤ i ≤ k. If the union of all the elements Ii of the
partition equals [0, 1], then it is a McShane partition of [0, 1]. A gauge on [0, 1] is a function δ : [0, 1]→]0,+∞[.
For a given a gauge δ on [0, 1], we say that a McShane partition {(Ii, ti) : 1 ≤ i ≤ k} is subordinate to δ if
Ii ⊂]ti − δ(ti), ti + δ(ti)[ for every 1 ≤ i ≤ k. Let f : [0, 1]→ X be a function. We set

σ( f ,P) :=
k∑

i=1

λ(Ii) f (ti),

for each McShane partition P := {(Ii, ti) : 1 ≤ i ≤ k}. A sequence (Pn) of McShane partitions of [0,1] is said to
be adapted to a sequence of gauges (δn) on [0, 1] if Pn is subordinate to δn for each n ≥ 1

• A function f : [0, 1] → X is McShane integrable on [0, 1], with McShane integral ϖ ∈ X, if for every ε > 0
there is a gauge δ on [0, 1] such that

∥σ( f ,P) − ϖ∥ < ε,

for every McShane partition P of [0, 1] subordinate to δ. We set ϖ := (M)
∫ 1

0 f dλ.

Remark 2.1. Recall that the partitions employed in this definition can be replaced with measurable partitions of [0, 1]
(that is, a finite collection {(Ei, ti) : 1 ≤ i ≤ k}, where E1, ...,Ek is a finite disjoint cover of [0,1] by measurable sets and
points t1, ..., tk ∈ [0, 1]) ([24], [28], [36]. See also [22], [21], [9], [8], [7]) for a more general setting.

It is known [22] that if a function f : [0, 1]→ X is McShane integrable on [0, 1], then it is Pettis integrable on
[0, 1] and the corresponding integrals are equals, but the converse does not hold in general (see [14, 22, 37].
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Nevertheless, for some classes of Banach spaces these two notions coincides: this happens for separable
spaces ([20, 22, 23], super-reflexive spaces, c0(I) (for any non-empty set I) [19], L1

R
(ν) (for any probability

measure ν) [37] and subspaces of a Hilbert generated Banach space [14]. More recently, R. Deville and J.
Rodriguez [14] have proved the coincidence of the McShane and Pettis integrals for functions taking values
in a subspace of a Hilbert generated Banach space, thus generalizing all previously mentioned results on such
coincidence.

In particular, a real-valued function is Lebesgue integrable on [0, 1] if and only if it is McShane integrable
on [0, 1] and the corresponding integrals are equal in both cases (see [24]).

A partial Henstock partition (resp. Henstock partition of [0, 1]) is a partial McShane partition (resp. McShane
partition of [0, 1]) {(Ii, ti) : 1 ≤ i ≤ k} such that ti is a point of Ii for each 1 ≤ i ≤ k.

• A function f : [0, 1] → X is Henstock integrable, with Henstock integral ϖ ∈ X, if for every ε > 0 there is a
gauge δ on [0, 1] such that

∥σ( f ,P) − ϖ∥ < ε,

for every Henstock partition P of [0, 1] subordinate to δ. We set ϖ := (H)
∫ 1

0 f dλ.

In case when X is the real line, f is called Kurzweil-Henstock integrable, or simplyKH-integrable.

Remark 2.2. It is interesting to observe the following sequential formulation of the preceding definitions.

A function f : [0, 1]→ X is McShane integrable (resp. Henstock integrable), with integral ϖ, if and only if there is a
sequence of gauges (δn) on [0, 1] such that

lim
n→∞

sup
P∈ΠM(δn)

∥σ( f ,P) − ϖ∥ = 0

(resp. lim
n→∞

sup
P∈ΠH (δn)

∥σ( f ,P) − ϖ∥ = 0),

whereΠM(δn) (resp. (ΠH (δn)) denotes the collection of all McShane (resp. Henstock) partitions of [0, 1] subordinate
to δn.

Equivalently

lim
n→∞
∥σ( f ,Pn) − ϖ∥ = 0

for every sequence Pn of McShane (resp. Henstock) partitions of [0, 1] adapted to (δn)

The following results concerning the Lebesgue, Kurzweil-Henstock and McShane integral for real-valued
function play a vital role in our paper in which we present a fuzzy scalar version of Theorem 2.4 (Theorem
9.13 [24]).

Theorem 2.3. (Theorem 10.11 [24]).
Let f : [0, 1] −→ R be a real-valued function. Then f is McShane integrable if and only if it is Lebesgue integrable.
We have then

(M)
∫ 1

0
f dλ =

∫ 1

0
f dλ.

Theorem 2.4. (Theorem 9.13 [24]).
Let f : [0, 1] −→ R be a bounded real-valued function. Then f is McShane integrable if and only if it isKH-integrable.
We have then

(M)
∫

I
f dλ = (KH)

∫
I

f dλ,

for every closed subinterval I ⊂ [0, 1].
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Lemma 2.5 (Saks Henstock ). (Lemma 9.11, [24]). Let f : [0, 1]→ R be aKH-integrable function on [0, 1] and
ε > 0. Let δ be a gauge of [0, 1] such that

|σ( f ,P) − (KH)
∫ 1

0
f dλ| ≤ ε,

for every Henstock partition P of [0, 1] subordinate to δ. Then

|

m∑
i=1

[λ(Ii) f (ti) − (KH)
∫

Ii

f dλ]| ≤ ε,

for every partial Henstock partition {(Ii, ti) : i = 1, ...,m} of [0, 1] subordinate to δ.

We recall now some definitions concerning set-valued functions.

A function f : [0, 1] −→ X is called selection of a set-valued function F : [0, 1] −→ cwk(X) if, for every
t ∈ [0, 1], on has f (t) ∈ F(t). By S0(F) (resp. SP(F)) we denote the family of all measurable (resp. Pettis
integrable) selections.
A set-valued functions F : [0, 1] −→ cwk(X) is said to be scalarly measurable (resp. scalarly integrable) if for
every x∗ ∈ X∗, the real valued function δ∗(x∗,F) is measurable (resp. Lebesgue integrable)(see [25]).

Definition 2.6. (Definition 3.1, [3]). A set-valued function F : [0, 1] −→ cwk(X) is said to be Pettis integrable on
[0, 1] if F is scalarly integrable on [0, 1] and for each E ∈ L there exists a set WE ∈ cwk(X) such that for each x∗ ∈ X∗,
we have

δ∗(x∗,WE) =
∫

E
δ∗(x∗,F) dλ.

Then we set WE = (P)
∫

E F dλ, for each E ∈ L.

Given F : [0, 1] −→ cwk(X) and a partition P = {(Ii, ti) : 1 ≤ i ≤ k} in [0, 1] we set

σ(F,P) :=
k∑

i=1

λ(Ii)F(ti)

Definition 2.7. ([16]). A set-valued function F : [0, 1] −→ cwk(X) is said to be McShane (resp. Henstock) integrable
on [0, 1] if there exists a nonempty set W ∈ cwk(X) with the following property: for every ε > 0 there is a gauge δ on
[0, 1] such that for each McShane (resp. Henstock) partition P of [0, 1], we have

dH(σ(F,P),W) < ε.

Notation: W = (M)
∫ 1

0 F dλ (resp. W = (H)
∫ 1

0 F dλ).

Remark 2.8. A set-valued function F : [0, 1] −→ cwk(X) McShane integrable (resp. Henstock integrable) on [0, 1],
with integral W ∈ cwk(X), if and only if there is a sequence of gauges (δn) on [0, 1] such that

lim
n→∞

sup
P∈ΠM(δn)

dH(σ(F,P),W) = 0

(resp. lim
n→∞

sup
P∈ΠH (δn)

dH(σ(F,P),W) = 0),

whereΠM(δn) (resp. (ΠH (δn)) denotes the collection of all McShane (resp. Henstock) partitions of [0, 1] subordinate
to δn.

Equivalently
lim
n→∞

dH(σ(F,Pn),W) = 0

for every sequence Pn of McShane (resp. Henstock) partitions of [0, 1] adapted to (δn).
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3. Fuzzy McShane and Fuzzy Henstock integrals

Let u : X → [0, 1]. We set Lr[u] := {x ∈ X : u(x) ≥ r}, for r ∈]0, 1] the r-level set of u and supp[u] := cl{x ∈ X :
u(x) > 0} = cl(∪r∈]0,1]Lr[u]); u is called a generalized fuzzy number, as in [44, 45], (fuzzy number as in [27])
on X if, for each r ∈]0, 1], Lr[u] ∈ cwk(X).
Let F (X) denote the generalized fuzzy number space. We define θ : X→ [0, 1] as follows:

θ(x) = 1{0}(x) =
{

1 i f x = 0
0 i f x , 0

Then θ ∈ F (X) and θ is called the null element of F (X).
In the sequel we will use the following representation theorem (see [27]).

Theorem 3.1. If u ∈ F (X), then
(1) Lr[u] ∈ cwk(X), supp[u] ∈ cwk(X), for all r ∈]0, 1].
(2) Lr2 [u] ⊂ Lr1 [u], for 0 < r1 ≤ r2 ≤ 1.
(3) If rk is a nondecreasing sequence converging to r > 0, then

Lr[u] =
⋂
k≥1

Lrk [u].

Conversely, if {Ar : r ∈]0, 1]} is a family of subsets of X satisfying (1), (2) and (3), then there exists a unique u ∈ F (X)
such that Lr[u] = Ar for every r ∈]0, 1].

A linear structure in F (X) is defined by the operations:

(u + v)(x) = sup
y+z=x

min{u(y), v(z)}

(ku)(x) =
{

u( x
k ) i f k , 0

1{0}(x) i f k = 0

where u, v ∈ F (X) and k ∈ R (see [33, 34]).

Remark 3.2. We can define the above two operations as follows (see [29]: p. 585):

(u + v)(x) = sup{r ∈]0, 1] : x ∈ Lr[u] + Lr[v]} and

(ku)(x) = sup{r ∈]0, 1] : x ∈ kLr[u]}.

In the next theorem we list basic properties of the generalized fuzzy numbers will be needed in this paper.
There are borrowed from [27, 44, 45].

Theorem 3.3. Let u ∈ F (X). Then
(1) u is normal fuzzy set, i.e, there exists x0 ∈ X, such that u(x0) = 1.
(2) u is a convex fuzzy set (or quasiconcave), i.e, u(tx + (1 − t)y) ≥ min{u(x),u(y)} for any x, y ∈ X, t ∈ [0, 1].
(3) u is upper semi-continuous, i.e, for each r ∈]0, 1], the r-level set Lr[u] is closed subset of X.
(4) supp[u] := cl{x ∈ X : u(x) > 0} is compact.
(5) Lr[u + v] = Lr[u] + Lr[v], for every u, v ∈ F (X) and r ∈]0, 1].
(6)Lr[ku] = kLr[u], for every u ∈ F (X), k ∈ R and r ∈]0, 1].
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A fuzzy-number valued function Γ : [0, 1] −→ F (X) is said to be measurable if for each r ∈]0, 1], the set-
valued Lr[Γ] is measurable. From now Γ : [0, 1] −→ F (X) is a measurable fuzzy-number valued function.

Define d∞ : F (X) × F (X) −→ R+ by the equality:

d∞(u, v) = sup
r∈]0,1]

dH(Lr[u],Lr[v]).

We start with the definition of fuzzy Pettis, Henstock and McShane integrals.

Definition 3.4. (Definition 3.2, [33]). A measurable fuzzy-number-valued function Γ : [0, 1] −→ F (X) is said to
be fuzzy Pettis integrable on [0, 1] if and only if for each E ∈ L, there exists a generalized fuzzy number uE ∈ F (X)
such that for any r ∈]0, 1] and for any x∗ ∈ X∗ we have

δ∗(x∗,Lr[uE]) =
∫

E
δ∗(x∗,Lr[Γ]) dλ.

In this case uE := (FP)
∫

E Γ dλ is called the fuzzy Pettis integral of Γ over E.

For the properties of fuzzy Pettis integral, the reader is referred to [18, 33].

A fuzzy-number-valued function Γ : [0, 1] −→ F (X) is said to be scalarly (resp. scalarly Henstock-Kurzweil)
integrable on [0, 1] if for all r ∈]0, 1] the set-valued function Lr[Γ] : [0, 1] −→ cwk(X) is scalarly (resp. scalarly
Henstock-Kurzweil) integrable.

Definition 3.5. A fuzzy-number-valued function Γ : [0, 1] −→ F (X) is said to be weakly fuzzy McShane (resp.
Henstock) integrable on [0, 1] if and only if for any r ∈]0, 1] the set-valued function Lr[Γ] : [0, 1] −→ cwk(X) is
McShane (resp. Henstock) integrable and there exists a generalized fuzzy number u ∈ F (X) such that for any r ∈]0, 1]
and for any x∗ ∈ X∗ we have

δ∗(x∗,Lr[u]) =
∫ 1

0
δ∗(x∗,Lr[Γ]) dλ.

or

δ∗(x∗,Lr[u]) = (KH)
∫ 1

0
δ∗(x∗,Lr[Γ]) dλ,

respectively. In this case u := (WFM)
∫

E Γ dλ (resp. u := (WFH)
∫

E Γ dλ) is called the weak fuzzy McShane
(weak fuzzy Henstock) integral of Γ over [0, 1]. (see [6, 31].

Given Γ : [0, 1] −→ F (X) a fuzzy-number-valued function and a partition P = {(Ii, ti) : 1 ≤ i ≤ k} in [0, 1] we
set

σ(Γ,P) :=
k∑

i=1

λ(Ii)Γ(ti)

Definition 3.6. A fuzzy-number-valued function Γ : [0, 1] −→ F (X) is said to be fuzzy McShane (resp. Henstock)
integrable on [0, 1] if there exists a fuzzy number u ∈ F (X) such that for every ε > 0 if there is a gauge δ on [0, 1]
such that for every McShane (resp. Henstock) partition of [0, 1] subordinate to δ, we have

d∞(σ(Γ,P),u) < ε.

Notation: u = (FM)
∫ 1

0 Γ dλ (resp. u = (FH)
∫ 1

0 Γ dλ). (See [6, 12, 31].
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Remark 3.7. For sake of comparison with the fuzzy scalar McShane (resp. Henstock) integrability, it is interesting
to observe the following sequential formulation of the preceding definition.

A fuzzy-number-valued function Γ : [0, 1] −→ F (X) is fuzzy McShane (resp. Henstock) integrable on [0, 1] with
integral u ∈ F (X) if there exists a sequence (δn) of gauges on [0, 1] such that,

lim
n→+∞

sup
P∈ΠM(δn)

d∞(σ(Γ,P),u) = 0,

resp. lim
n→+∞

sup
P∈ΠH (δn)

d∞(σ(Γ,P),u) = 0,

where ΠM(δn) (resp. ΠH (δn)) denotes the collection of all McShane (resp. Henstock) partitions of [0, 1] subordinate
to δn.
Equivalently, for each sequence (Pn) of McShane (resp. Henstock) partitions of [0, 1] adapted to (δn), we have

lim
n→+∞

d∞(σ(Γ,Pn),u) = 0.

Now we define our new notion of fuzzy McShane and Henstock integrability namely fuzzy scalar McShane
(resp. Henstock) integrability:

Definition 3.8. A fuzzy-number-valued function Γ : [0, 1] −→ F (X) is said to be fuzzy scalar McShane integrable
(FSM-integrable for short) on [0, 1] if there exists a fuzzy number u ∈ F (X)) such that, there is a sequence (δn) of
gauges on [0, 1] such that, for all r ∈]0, 1] and for each sequence (Pn) of McShane partitions adapted to (δn), we have

lim
n→+∞

δ∗(x∗,Lr[σ(Γ,Pn)]) = δ∗(x∗,Lr[u]) for all x∗ ∈ X∗.

Notation: u = (SFM)
∫ 1

0 Γ dλ.

Definition 3.9. A fuzzy-number-valued function Γ : [0, 1] −→ F (X) is said to be fuzzy scalar Henstock integrable
(FSH-integrable for short) on [0, 1] if there exists a fuzzy number u ∈ F (X)) such that, there is a sequence (δn) of
gauges on [0, 1] such that, for all r ∈]0, 1] and for each sequence (Pn) of Henstock partitions adapted to (δn), we have

lim
n→+∞

δ∗(x∗,Lr[σ(Γ,Pn)]) = δ∗(x∗,Lr[u]) for all x∗ ∈ X∗.

Notation: u = (SFH)
∫ 1

0 Γ dλ.

Proposition 3.10. If a fuzzy-number-valued function Γ : [0, 1] −→ F (X) is FSM-integrable on [0, 1], then it is
FSH-integrable on [0, 1]. We have then

(SFM)
∫ 1

0
Γ dλ = (SFH)

∫ 1

0
Γ dλ.

Proposition 3.11. If a fuzzy-number-valued function Γ : [0, 1] −→ F (X) is FSM-integrable (resp. FSH-
integrable) integrable on [0, 1], then it isWFM-integrable (resp. WFH-integrable) on [0, 1]. We have then

(SFM)
∫ 1

0
Γ dλ = (WFM)

∫ 1

0
Γ dλ

or

(SFH)
∫ 1

0
Γ dλ = (WFH)

∫ 1

0
Γ dλ.

respectively.
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Proof. As consequence of Definition 3.2, Remark 2.3, Hormander’s equality, and ([11]: Proposition III.35).

Proposition 3.12. If a fuzzy-number-valued function Γ : [0, 1] −→ F (X) is fuzzy McShane (resp. Henstock)
integrable on [0, 1], then it isFSM-integrable (resp. FSH-integrable) on [0, 1] and the two integrals are respectively
equal.

Proof. As consequence of Remark 3.7 and Hormander’s equality.
The next theorem provides the linearity properties of the fuzzy scalar McShane integral.

Theorem 3.13. Let Γ, G: [0, 1]→ F (X) be two fuzzy number valued functions.

(1) If Γ and G are FSM-integrable on [0, 1], then Γ + G is FSM-integrable on [0, 1] and

(FSM)
∫ 1

0
(Γ + G) dλ = (FSM)

∫ 1

0
Γ dλ + (FSM)

∫ 1

0
G dλ.

(2) If Γ is SFM-integrable on [0, 1] and if α is a real nonnegative number, then αΓ is FSM-integrable on [0, 1] and

(FSM)
∫ 1

0
αΓ dλ = α(FSM)

∫ 1

0
Γ dλ.

(3) If Γ is FSM-integrable on [0, 1] and if Γ = G λ-a.e., then the function G is FSM-integrable on [0, 1] and

(FSM)
∫ 1

0
G dλ = (FSM)

∫ 1

0
Γ dλ.

Remark 3.14. Proceeding analogously, Theorem 3.13 remains valid in the context of FSH-integrals.

Proposition 3.15. A fuzzy-number-valued function Γ : [0, 1] −→ F (X) is FSH-integrable on [0, 1], with fuzzy
scalar Henstock integral u, if and only if there is a sequence (δn) of gauges on [0, 1] such that

lim
n→+∞

sup
P∈ΠH (δn)

|δ∗(x∗,Lr[σ(Γ,P)]) − δ∗(x∗,Lr[u])| = 0 for all x∗ ∈ X∗,

for all r ∈]0, 1], where ΠH (δn) denotes the collection of all Henstock partitions subordinate to δn .

Proof. The “if” part is trivial. To prove the “only if” part let (δn) be as mentioned in Definition 3.8 and set

an := sup
P∈ΠH (δn)

|δ∗(x∗,Lr[σ(Γ,P)]) − δ∗(x∗,Lr[u])| (n ≥ 1).

For each n ≥ 1 select Pn ∈ ΠH (δn) such that

|δ∗(x∗,Lr[σ(Γ,Pn)]) − δ∗(x∗,Lr[u])| ≥ an −
1
n

if an < ∞

≥ 1 if an = ∞.

Since
lim
n→∞
|δ∗(x∗,Lr[σ(Γ,Pn)]) − δ∗(x∗,Lr[u])| = 0,

we must have an < ∞ except perhaps for a finite number of indices n, and it follows then that limn→∞ an = 0.

Remark 3.16. Proceeding analogously, Proposition 3.15 remains valid in the context of FSM-integrals.
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Proposition 3.17. Let Γ : [0, 1] −→ F (X) be a fuzzy number FSH-integrable valued function. Then for each
r ∈]0, 1] the function δ∗(x∗,Lr[Γ]) is scalarly Henstock integrable and

δ∗(x∗,Lr[(FSH)
∫ 1

0
Γ dλ]) = (KH)

∫ 1

0
δ∗(x∗,Lr[Γ]) dλ,

for all x∗ ∈ X∗ and r ∈]0, 1].

Proof. As consequence of Remark 2.2 and Proposition 3.15.

Lemma 3.18 ( Saks scalar fuzzy Henstock lemma). LetΓ : [0, 1] −→ F (X) be a fuzzy numberFSH-integrable
valued function and (δn) be a sequence of gauges on [0, 1] such that

lim
n→+∞

δ∗(x∗,Lr[σ(Γ,Pn)]) = δ∗(x∗,Lr[(FSH)
∫ 1

0
Γ dλ]),

for all x∗ ∈ X∗, for all r ∈]0, 1] and for each sequence (Pn) of Henstock partitions adapted to (δn). Then

lim
n→+∞

|

kn∑
i=1

[λ(In
i )δ∗(x∗,LrΓ(tn

i )]) − (KH)
∫

In
i

δ∗(x∗,Lr[Γ]) dλ| = 0,

for all x∗ ∈ X∗, for all r ∈]0, 1] and for each sequence ((In
i , t

n
i )1≤i≤kn )n≥1 of partial Henstock partitions adapted to (δn).

Proof. By Propositions 3.15 and 3.17, there exists a sequence (δn) of gauges from [0, 1] such that

lim
n→+∞

sup
P∈ΠH(δn)

|σ(δ∗(x∗,Lr[Γ]),P) − (KH)
∫ 1

0
δ∗(x∗,Lr[Γ]) dλ| = 0.

for all x∗ ∈ X∗, for all r ∈]0, 1], whereΠH (δn) denotes the collection of all Henstock partitions subordinate to
δn. Let x∗ ∈ X∗, r ∈]0, 1] and ε > 0. Then there exists N ≥ 1 (possibly depending on x∗) such that

sup
P∈ΠH(δn )

|σ(δ∗(x∗,Lr[Γ]),P) − (KH)
∫ 1

0
δ∗(x∗,Lr[Γ]) dλ| ≤ ε for all n ≥ N.

By application of Lemma 2.5 to the function δ∗(x∗,Lr[Γ]) we get

sup
(Ii,ti)1≤i≤k∈Π

p
H

(δn)

|

k∑
i=1

[λ(Ii)δ∗(x∗,Lr[Γ(ti)]) − (KH)
∫

Ii

δ∗(x∗,Lr[Γ]) dλ]| ≤ ε,

for all n ≥ N, whereΠ
p

H
(δn) denotes the collection of all partial Henstock partitions subordinate to δn. Since

this holds for all n ≥ N and ε was arbitrary, it follows that

lim
n→+∞

sup
(Ii,ti)1≤i≤k∈Π

p
H

(δn)

|

k∑
i=1

[λ(Ii)δ∗(x∗,LrΓ(ti)]) − (KH)
∫

Ii

δ∗(x∗,Lr[Γ]) dλ]| = 0.



R. Sayyad, S. El Ouahbi / Filomat 36:13 (2022), 4347–4361 4357

4. From Fuzzy scalar Henstock to Fuzzy scalar McShane integrability

In this section we present our principal result in which we give a sufficient condition so that a fuzzy scalar
Henstock integrable function is also fuzzy scalar McShane integrable as the following theorem shows.

Theorem 4.1. Let Γ : [0, 1] −→ F (X) be a fuzzy-number valued function on [0, 1], such that the set-valued function
supp[Γ] is bounded on [0, 1]. Then Γ is SFM-integrable on [0, 1] if and only if SFH-integrable on [0, 1]. Then we
have

(SFM)
∫ 1

0
Γ dλ = (SFH)

∫ 1

0
Γ dλ.

The proof of Theorem 4.1 involves the following technic lemma:

Lemma 4.2. Let ϕ : [0, 1] −→ R be a function, (δn)n≥1 sequence of gauges on [0, 1] and ε, η > 0 such that

lim sup
n→+∞

σ(ϕ,PH
n ) ≤ η,

for each sequence (PH
n ) of partial Henstock partitions adapted to (δn). Then

lim sup
n→+∞

λ([0, 1]
⋂ ⋃

ϕ(t)≥ε

]t − δn(t), t + δn(t)[) ≤
η

ε
.

Proof. For each n ≥ 1, choose a compact Kn of [0, 1] contained on
[0, 1]

⋂⋃
ϕ(t)≥ε]t − δn(t), t + δn(t)[ such that

λ([0, 1]
⋂ ⋃

ϕ(t)≥ε

]t − δn(t), t + δn(t)[\Kn) ≤
1
n
.

According to Lemma 5 [21], there exists a sequence (PH
n )n≥1 = ((In

i , t
n
i )1≤i≤kn )n≥1 of partial Henstock partitions

adapted to (δn) such that

ϕ(tn
i ) ≥ ε for all 1 ≤ i ≤ kn and Kn ⊂

kn⋃
i=1

In
i ,

for every n ≥ 1. Therefore

ελ(Kn) ≤ ε
kn∑

i=1

λ(In
i ) ≤ σ(ϕ,PH

n ) for all n ≥ 1.

By letting n→ +∞ in the following inequality

ελ([0, 1]
⋂ ⋃

ϕ(t)≥ε

]t − δn(t), t + δn(t)[)

= ελ([0, 1]
⋂ ⋃

ϕ(t)≥ε

]t − δn(t), t + δn(t)[\Kn) + ελ(Kn)

≤
ε
n
+ σ(ϕ,PH

n ) for all n ≥ 1

we get
ε lim sup

n→+∞
λ([0, 1]

⋂ ⋃
ϕ(t)≥ε

]t − δn(t), t + δn(t)[) ≤ η.

This finish the proof of lemma.
Proof of Theorem 4.1.
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If Γ isFSM-integrable on [0, 1], then it isFSH-integrable on [0, 1] (Proposition 3.10). Conversely, suppose
that Γ is FSH-integrable on [0, 1] and prove that it is FSM-integrable on [0, 1] and

(FSM)
∫ 1

0
Γ dλ = (FSH)

∫ 1

0
Γ dλ.

Let M := supt∈[0,1] ∥supp[Γ(t)]∥ and ε > 0. According to Proposition 3.17, Theorem 9.13 [24] and the following
inequality

(4.1.1) δ∗(x∗,Lr[Γ]) ≤ δ∗(x∗, supp[Γ]) ≤M

for each r ∈]0, 1], the set-valued function Lr[Γ] is scalarly integrable and

(4.1.2)
∫

I
δ∗(x∗,Lr[Γ]) dλ = (KH)

∫
I
δ∗(x∗,Lr[Γ]) dλ,

for all x∗ ∈ X∗, r ∈]0, 1] and for every closed subinterval I ⊂ [0, 1]. Next, define the set

C = {δ∗(x∗,Lr[Γ]), x∗ ∈ BX∗ , r ∈]0, 1]}.

Since the space of Lebesgue integrable functions, provided with the L1-norm, is separable, we can find a
sequence (ϕℓ)ℓ≥1 which is L1-dense in C. That is

∀ϕ ∈ C ∃l ≥ 1,
∫ 1

0
|ϕ − ϕl| dλ ≤ ε2.

The functions ϕl are McShane integrables, because are Lebesgue integrables (Theorem 10.11 [24]), therefore,
for each l ≥ 1 we can select a sequence (δn,l)n≥1 of gauges on [0, 1] such that, for every sequence PM

n of
McShane partitions of [0, 1] adapted to (δn,l)n≥1, we have

lim
n→+∞

|σ(ϕl,PM
n ) −

∫ 1

0
ϕl dλ| = 0.

For each n ≥ 1 define a gauge ∆1
n by

∆1
n := inf{δn,1, ..., δn,n}.

Then, for every sequence PM
n of McShane partitions of [0, 1] adapted to ∆1

n, we have

(4.1.3) lim
n→+∞

|σ(ϕl,PM
n ) −

∫ 1

0
ϕl dλ| = 0 for all l ≥ 1.

Next, as Γ is FSH-integrable on [0, 1], we can select a sequence (∆2
n) of gauges on [0, 1] such that, for every

r ∈]0, 1] and for every sequence PH
n of Henstock partitions of [0, 1] adapted to (∆2

n), we have

lim
n→+∞

δ∗(x∗,Lr[σ(Γ,PH
n )]) = δ∗(x∗,Lr[(FSH)

∫ 1

0
Γ dλ]),

for all x∗ ∈ X∗. Define a sequence (∆n) of gauges on [0, 1] by writing

∆n := inf{∆1
n,∆

2
n)} n ≥ 1.

Let ϕ ∈ C be fixed but arbitrary and take l0 ≥ 1 such that

(4.1.4)
∫ 1

0
|ϕ − ϕl0 | dλ ≤ ε

2.
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We seek to prove that
lim sup

n→+∞
λ([0, 1]

⋂
Vn) ≤ ε,

where
Vn :=

⋃
ϕ(t)−ϕl0 (t)≥ε

]t − ∆n(t), t + ∆n(t)[, n ≥ 1.

Indeed, if (PH
n )n≥1 = ((Kn

j ,u
n
j )1≤ j≤sn )n≥1 be a sequence of partial Henstock partitions adapted to (∆n), then

according to Lemma 3.18 and (4.1.2), we have

lim
n→+∞

|

sn∑
j=1

[λ(Kn
j )δ∗(x∗,Lr[Γ(un

j )]) −
∫

Kn
j

δ∗(x∗,Lr[Γ]) dλ]| = 0,

for all x∗ ∈ BX∗ and r ∈]0, 1]. In other words

lim
n→+∞

|σ(ψ,PH
n ) −

∫
Hn

ψ dλ| = 0 for all ψ ∈ C,

where Hn =
⋃sn

j=1 Kn
j n ≥ 1. In particular, we have

(4.1.5) lim
n→+∞

|σ(ϕ − ϕl0 ,P
H
n ) −

∫
Hn

ϕ − ϕl0 dλ| = 0.

According to (4.1.4), (4.1.5) and the following inequality

σ(ϕ − ϕl0 ,P
H
n ) ≤

∫ 1

0
|ϕ − ϕl0 |dλ + |σ(ϕ − ϕl0 ,P

H
n ) −

∫
Hn

ϕ − ϕl0 dλ|

≤ ε2 + |σ(ϕ − ϕl0 ,P
H
n ) −

∫
Hn

ϕ − ϕl0 dλ|,

we get
lim sup

n→+∞
σ(ϕ − ϕl0 ,P

H
n ) ≤ ε2.

Therefore, we can invoke Lemma 4.1, which yields the inequality

lim sup
n→+∞

λ([0, 1]
⋂

Vn) ≤ ε.

Now let (PM
n )n≥1 = ((In

i , t
n
i )1≤i≤kn )n≥1 be a sequence of McShane partitions on [0, 1] adapted to (∆n), then by

remark that ⋃
1≤i≤kn, ϕl0 (tn

i )−ϕ(tn
i )≥ε

In
i ⊂ [0, 1]

⋂
Vn for all n ≥ 1,

we get
lim sup

n→+∞

∑
1≤i≤kn, ϕ(tn

i )−ϕl0 (tn
i )≥ε

λ(In
i ) ≤ ε.

Similarly,
lim sup

n→+∞

∑
1≤i≤kn, ϕl0 (tn

i )−ϕ(tn
i )≥ε

λ(In
i ) ≤ ε.

So
(4.1.6) lim sup

n→+∞

∑
1≤i≤kn, |ϕ(tn

i )−ϕl0 (tn
i )|≥ε

λ(In
i ) ≤ 2ε.
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On the other hand
kn∑

i=1

λ(In
i )|ϕ(tn

i ) − ϕl0 (tn
i )| =

∑
1≤i≤kn, |ϕ(tn

i )−ϕl0 (tn
i )|≥ε

λ(In
i )|ϕ(tn

i ) − ϕl0 (tn
i ) +

∑
1≤i≤kn, |ϕ(tn

i )−ϕl0 (tn
i )|≤ε

λ(In
i )|ϕ(tn

i ) − ϕl0 (tn
i )|

≤ 2M
∑

1≤i≤kn, |ϕ(tn
i )−ϕl0 (tn

i )|≥ε

λ(In
i ) + ε.

because
|ϕ(tn

i ) − ϕl0 (tn
i )| ≤ 2M for all 1 ≤ i ≤ kn and n ≥ 1,

This together with (4.1.4) implies

|σ(ϕ,PM
n ) −

∫ 1

0
ϕ dλ| ≤ |

∫ 1

0
ϕ dλ −

∫ 1

0
ϕl0 dλ| + |σ(ϕl0 ,P

M
n ) −

∫ 1

0
ϕl0 dλ| + |σ(ϕ,PM

n ) − σ(ϕl0 ,P
M
n )|

≤ ε2 + |σ(ϕl0 ,P
M
n ) −

∫ 1

0
ϕl0 dλ| + 2M

∑
1≤i≤kn, |ϕ(tn

i )−ϕl0 (tn
i )|≥ε

λ(In
i ) + ε,

for every n ≥ 1. Therefore, using (4.1.3) and (4.1.6) we get

lim sup
n→+∞

|σ(ϕ,PM
n ) −

∫ 1

0
ϕ dλ| ≤ ε2 + ε + 4Mε.

By the arbitrariness of ε > 0, we conclude that

lim
n→+∞

σ(ϕ,PM
n ) =

∫ 1

0
ϕ dλ for all ϕ ∈ C.

Using (4.1.2) and Proposition 3.17 this equality becomes

lim
n→+∞

δ(x∗,Lr[σ(Γ,PM
n )]) = δ∗(x∗,Lr[(FSH)

∫ 1

0
Γ dλ)],

for all x∗ ∈ BX∗ and r ∈]0, 1]. Thus Γ is FSM-integrable on [0, 1] and

(FSM)
∫ 1

0
Γ dλ = (FSH)

∫ 1

0
Γ dλ.

This finish the proof of our theorem.

Remark 4.3. Remark that if Γ(t) = 1{ f (t)}, where f is a real-valued function, Theorem 4.1 becomes Gordon theorem
(Theorem 9.13 [24]) concerning real-valued McShane andKH-integrals.
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