Filomat 36:13 (2022), 4363–4373 https://doi.org/10.2298/FIL2213363J

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On σ **-Amenability of** T_{σ_A,σ_B}

Alireza Jaberi^a, Behrouz Shojaee^b, Amin Mahmoodi^a

^aDepartment of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran ^bDepartment of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran

Abstract. Let σ_A and σ_B be two homomorphisms on Banach algebras *A* and *B*, respectively. In this paper, we study σ -amenability, σ -weak amenability, σ -biflatness, and σ -biprojectivity of triangular Banach algebras of the form T_{σ_A,σ_B} , where $\sigma = \sigma_A \oplus \sigma_B$.

1. Introduction

Let *A* be a Banach algebra. The set of all continuous homomorphisms from *A* into *A* is denoted by Hom(A). Suppose that $\sigma \in Hom(A)$, and that *X* is a Banach *A*-bimodule. A bounded linear map $D : A \longrightarrow X$ is a σ -derivation if $D(ab) = D(a).\sigma(b) + \sigma(a).D(b)$ for all $a, b \in A$. A σ -derivation *D* is σ -inner derivation if there exists $x \in X$ such that $D(a) = \sigma(a) \cdot x - x \cdot \sigma(a)$ for all $a \in A$. The set of all σ -derivation from *A* into *X* is denoted by $Z_{\sigma}^{1}(A, X)$, and the set of all σ -inner derivations from *A* into *X* by $N_{\sigma}^{1}(A, X)$. Then, we define the space $H_{\sigma}^{1}(A, X) = \frac{Z_{\sigma}^{1}(A,X)}{N_{\sigma}^{1}(A,X)}$. We say *A* is σ -amenable if $H_{\sigma}^{1}(A, X^{*}) = 0$ for every Banach *A*-bimodule *X* [11]. We call *A* is σ -weakly amenable if $H_{\sigma}^{1}(A, A^{*}) = 0$ [3, 13]. Note that the module version of such notions are available in [2].

For a Banach algebra *A*, the corresponding diagonal operator $\pi : A \widehat{\otimes} A \longrightarrow A$ is defined by $\pi(a \otimes b) = ab$. Let *X* and *Y* be Banach *A*-bimodules, and $\sigma \in Hom(A)$. A bounded linear map $T : X \longrightarrow Y$ is a σ -*A*-bimodule homomorphism if $T(a \cdot x) = \sigma(a) \cdot T(x)$ and $T(x \cdot a) = T(x) \cdot \sigma(a)$ for $a \in A, x \in X$. Then, *A* is σ -biprojective if there exists a σ -*A*-bimodule homomorphism $\rho : A \longrightarrow A \widehat{\otimes} A$ such that $\pi \circ \rho = \sigma$ [14]. Moreover, *A* is σ -biflat if there exists a bounded linear map $\rho : (A \widehat{\otimes} A)^* \longrightarrow A^*$ satisfying $\rho(\sigma(a) \cdot \lambda) = a \cdot \rho(\lambda)$ and $\rho(\lambda \cdot \sigma(a)) = \rho(\lambda) \cdot a$, such that $\rho \circ \pi^* = \sigma^*$ where $a \in A, \lambda \in (A \widehat{\otimes} A)^*$ [7].

Let *A* and *B* be Banach algebras, and *X* be a Banach *A*, *B*-module; that is, *X* is a left Banach *A*-module and is a right Banach *B*-module such that $||a \cdot x \cdot b|| \le ||a|| ||x|| ||b||$, for $a \in A$, $x \in X$ and $b \in B$. We define the corresponding triangular Banach algebra $T = \begin{pmatrix} A & X \\ 0 & B \end{pmatrix}$ with the sum and product being given by the usual 2×2 matrix operations and obvious internal module actions along with the norm

$$\left\| \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} \right\| = \|a\| + \|x\| + \|b\|, \ (a \in A, b \in B, x \in X).$$

²⁰²⁰ Mathematics Subject Classification. Primary 46H25; Secondary 16E40, 43A20

Keywords. Amenability, weak amenability, Triangular Banach Algebras

Received: 07 May 2021; Accepted: 21 February 2022

Communicated by Dragan S. Djordjević

Corresponding Author: Behrouz Shojaee

Email addresses: alirezajaberii1350@gmail.com (Alireza Jaberi), shoujaei@kiau.ac.ir (Behrouz Shojaee),

aminmahmoodikebria@gmail.com (Amin Mahmoodi)

For Banach *A*, *B*-module *X*, the first dual space of *X*, that is denoted by *X*^{*} is a Banach *B*, *A*-module with the following actions:

$$\langle b \cdot x^*, x \rangle = \langle x^*, x \cdot b \rangle$$
 and $\langle x^* \cdot a, x \rangle = \langle x^*, a \cdot x \rangle$

for all $a \in A, b \in B, x \in X$ and $x^* \in X^*$. Moreover, for each $x \in X, x^* \in X^*$ we can consider $x \cdot x^* \in A^*$ and $x^* \cdot x \in B^*$ through

$$\langle x \cdot x^*, a \rangle = \langle x^*, a \cdot x \rangle, \ \langle x^* \cdot x, b \rangle = \langle x^*, x \cdot b \rangle \ (a \in A, b \in B).$$

Similarly for each $x \in X$, $a^{**} \in A^{**}$ and $b^{**} \in B^{**}$ we can consider $a^{**} \cdot x \in X^{**}$ and $x \cdot b^{**} \in X^{**}$ through

$$\langle a^{**} \cdot x, x^* \rangle = \langle a^{**}, x \cdot x^* \rangle, \ \langle x \cdot b^{**}, x^* \rangle = \langle b^{**}, x^* \cdot x \rangle,$$

for all $x^* \in X^*$. We may continue this process to higher order dual spaces of X; that is, $X^{(2n)}$ is a Banach A, B-module $X^{(2n-1)}$ is a Banach B, A-module and $A^{(2n)} \cdot X \subseteq X^{(2n)}$, $X \cdot B^{(2n)} \subseteq X^{(2n)}$, $X \cdot X^{(2n-1)} \subseteq A^{(2n-1)}$, $X^{(2n-1)} \cdot X \subseteq B^{(2n-1)}$ for all $n \in \mathbb{N}$. Here, we recall that the n-weak amenability of Banach algebras based on homomorphisms were investigated in [4].

In [1], the authors introduced a new product on triangular Banach algebras as follows.

Definition 1.1. ([1, Definition 1.1]) Let A and B be Banach algebras, X be a Banach A, B-module, $\sigma_A \in Hom(A)$ and $\sigma_B \in Hom(B)$. Let T_{σ_A,σ_B} denote the algebra whose underlying Banach space is T but whose multiplication is defined by

$$\begin{pmatrix} a_1 & x_1 \\ 0 & b_1 \end{pmatrix} \begin{pmatrix} a_2 & x_2 \\ 0 & b_2 \end{pmatrix} = \begin{pmatrix} a_1 a_2 & \sigma_A(a_1) \cdot x_2 + x_1 \cdot \sigma_B(b_2) \\ 0 & b_1 b_2 \end{pmatrix},$$

for all $\begin{pmatrix} a_1 & x_1 \\ 0 & b_1 \end{pmatrix}$, $\begin{pmatrix} a_2 & x_2 \\ 0 & b_2 \end{pmatrix} \in T$.

Amenability, weak amenability, biflatness and biprojectivity of T_{σ_A,σ_B} have been studied in [1]. In this paper, motivated by [1–4], we shall study σ -amenability, σ -weak amenability, σ - biflatness and σ -biprojectivity of T_{σ_A,σ_B} for the homomorphism $\sigma = \sigma_A \oplus \sigma_B$.

The organization of the paper is as follows. In section 2, we prove that T_{σ_A,σ_B} is $\sigma_A \oplus \sigma_B$ -amenable if and only if A is σ_A -amenable and B is σ_B -amenable and X = 0 provided σ_A and σ_B are idempotents. Section 3 is devoted to $\sigma_A \oplus \sigma_B$ -weak amenability of T_{σ_A,σ_B} . In other words, for unital Banach algebras A and Bwith idempotents σ_A and σ_B , we show that T_{σ_A,σ_B} is $\sigma_A \oplus \sigma_B$ -weakly amenable if and only if A is σ_A -weakly amenable and B is σ_B -weakly amenable. In section 4, under some mild conditions, we prove that T_{σ_A,σ_B} is $\sigma_A \oplus \sigma_B$ -biprojective (biflat) if and only if A is σ_A -biprojective (biflat) and B is σ_B -biprojective (biflat) and X = 0.

2. $\sigma_A \oplus \sigma_B$ - amenability of T_{σ_A,σ_B}

Let *A* and *B* be Banach algebras and $\sigma_A \in Hom(A)$, $\sigma_B \in Hom(B)$. Let *X* be a Banach algebra *A*, *B*-module. We consider the map $\sigma_A \oplus \sigma_B : T_{\sigma_A,\sigma_B} \to T_{\sigma_A,\sigma_B}$ defined by

$$\sigma_A \oplus \sigma_B \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} = \begin{pmatrix} \sigma_A(a) & x \\ 0 & \sigma_B(b) \end{pmatrix} (a \in A, b \in B, x \in X).$$

Proposition 2.1. Let A and B be Banach algebras and $\sigma_A \in Hom(A)$, $\sigma_B \in Hom(B)$. Let X be a Banach algebra A, B-module. If $\sigma_A^2 = \sigma_A$ and $\sigma_B^2 = \sigma_B$, then $\sigma_A \oplus \sigma_B \in Hom(T_{\sigma_A,\sigma_B})$.

Proof. For
$$\begin{pmatrix} a_1 & x_1 \\ 0 & b_1 \end{pmatrix}$$
, $\begin{pmatrix} a_2 & x_2 \\ 0 & b_2 \end{pmatrix} \in T_{\sigma_A, \sigma_B}$,
 $\sigma_A \oplus \sigma_B \begin{pmatrix} a_1 & x_1 \\ 0 & b_1 \end{pmatrix} \begin{pmatrix} a_2 & x_2 \\ 0 & b_2 \end{pmatrix} = \sigma_A \oplus \sigma_B \begin{pmatrix} a_1 a_2 & \sigma_A(a_1) \cdot x_2 + x_1 \cdot \sigma_B(b_2) \\ 0 & b_1 b_2 \end{pmatrix}$

$$= \begin{pmatrix} \sigma_A(a_1 a_2) & \sigma_A(a_1) \cdot x_2 + x_1 \cdot \sigma_B(b_2) \\ 0 & \sigma_B(b_1 b_2) \end{pmatrix}.$$

On the other hand,

$$\begin{split} \sigma_A \oplus \sigma_B \begin{pmatrix} a_1 & x_1 \\ 0 & b_1 \end{pmatrix} \sigma_A \oplus \sigma_B \begin{pmatrix} a_2 & x_2 \\ 0 & b_2 \end{pmatrix} &= \begin{pmatrix} \sigma_A(a_1) & x_1 \\ 0 & \sigma_B(b_1) \end{pmatrix} \begin{pmatrix} \sigma_A(a_2) & x_2 \\ 0 & \sigma_B(b_2) \end{pmatrix} \\ &= \begin{pmatrix} \sigma_A(a_1a_2) & \sigma_A^2(a_1) \cdot x_2 + x_1 \cdot \sigma_B^2(b_2) \\ 0 & \sigma_B(b_1b_2) \end{pmatrix} \\ &= \begin{pmatrix} \sigma_A(a_1a_2) & \sigma_A(a_1) \cdot x_2 + x_1 \cdot \sigma_B(b_2) \\ 0 & \sigma_B(b_1b_2) \end{pmatrix}. \end{split}$$

Thus $\sigma_A \oplus \sigma_B$ is a homomorphism. \Box

Theorem 2.2. Let A and B be Banach algebras, X be a Banach A, B-module, and $\sigma_A \in Hom(B)$, $\sigma_B \in Hom(A)$ such that $\sigma_A^2 = \sigma_A$, $\sigma_B^2 = \sigma_B$. Then T_{σ_A,σ_B} is $\sigma_A \oplus \sigma_B$ -amenable if and only if A is σ_A -amenable and B is σ_B -amenable and X = 0.

Proof. Suppose that T_{σ_A,σ_B} is $\sigma_A \oplus \sigma_B$ -amenable and $D: A \longrightarrow Y^*$ is a σ_A -derivation such that Y is a Banach A-bimodule. Define the map $P: T_{\sigma_A,\sigma_B} \longrightarrow A$ by $P\begin{pmatrix} a & x \\ 0 & b \end{pmatrix} = a$. It is obvious, that P is a homomorphism. Now we can consider Y as a T_{σ_A,σ_B} -bimodule via

$$\sigma_A \oplus \sigma_B(T') \cdot y = P(\sigma_A \oplus \sigma_B(T')) \cdot y$$
 and $y \cdot \sigma_A \oplus \sigma_B(T') = y \cdot P(\sigma_A \oplus \sigma_B(T')),$

for $T' \in T_{\sigma_A,\sigma_B}$, $y \in Y$. Hence for each $T_1, T_2 \in T_{\sigma_A,\sigma_B}$, we have

$$D \circ P(T_1T_2) = D(P(T_1)P(T_2)) = D(P(T_1)) \cdot \sigma_A(P(T_2)) + \sigma_A(P(T_1)) \cdot D(P(T_2))$$

= $D \circ P(T_1) \cdot P(\sigma_A \oplus \sigma_B(T_2)) + P(\sigma_A \oplus \sigma_B(T_1)) \cdot D \circ P(T_2)$
= $D \circ P(T_1) \cdot \sigma_A \oplus \sigma_B(T_2) + \sigma_A \oplus \sigma_B(T_1) \cdot D \circ P(T_2).$

Hence $D \circ P$ is a $\sigma_A \oplus \sigma_B$ -derivation, so $D \circ P$ is $\sigma_A \oplus \sigma_B$ -inner, thus there exists a $y^* \in Y^*$ such that for every $\begin{pmatrix} a & x \\ 0 & b \end{pmatrix} \in T_{\sigma_A,\sigma_B}$, we have, $D(a) = D \circ P \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} = \sigma_A \oplus \sigma_B \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} \cdot y^* - y^* \cdot \sigma_A \oplus \sigma_B \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} = \sigma_A(a) \cdot y^* - y^* \cdot \sigma_A(a).$ It implies that A is σ_A -amenable and similarly, B is σ_B -amenable. Now we prove that X = 0. Since $X \simeq \begin{pmatrix} 0 & X \\ 0 & X \end{pmatrix}$ we get $X^{**} \simeq \begin{pmatrix} 0 & X^{**} \\ 0 & X \end{pmatrix}$. Hence for the map D : T and X^{**} defined by $D \begin{pmatrix} a & x \\ 0 & X \end{pmatrix} = \begin{pmatrix} 0 & x \\ 0 & X \end{pmatrix}$, we

It implies that A is σ_A -amenable and similarly, B is σ_B -amenable. Now we prove that X = 0. Since $X \simeq \begin{pmatrix} 0 & X \\ 0 & 0 \end{pmatrix}$, we get $X^{**} \simeq \begin{pmatrix} 0 & X^{**} \\ 0 & 0 \end{pmatrix}$. Hence for the map $D : T_{\sigma_A, \sigma_B} \longrightarrow X^{**}$ defined by $D \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} = \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix}$, we have

$$D\begin{pmatrix} \begin{pmatrix} a_1 & x_1 \\ 0 & b_1 \end{pmatrix} \begin{pmatrix} a_2 & x_2 \\ 0 & b_2 \end{pmatrix} = D\begin{pmatrix} a_1a_2 & \sigma_A(a_1) \cdot x_2 + x_1 \cdot \sigma_B(b_2) \\ 0 & b_1b_2 \end{pmatrix} = \begin{pmatrix} 0 & \sigma_A(a_1) \cdot x_2 + x_1 \cdot \sigma_B(b_2) \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & x_1 \cdot \sigma_B(b_2) \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & \sigma_A(a_1) \cdot x_2 \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & x_1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \sigma_A(a_2) & x_2 \\ 0 & \sigma_B(b_2) \end{pmatrix} + \begin{pmatrix} \sigma_A(a_1) & x_1 \\ 0 & \sigma_B(b_1) \end{pmatrix} \begin{pmatrix} 0 & x_2 \\ 0 & 0 \end{pmatrix}$$
$$= D\begin{pmatrix} a_1 & x_1 \\ 0 & b_1 \end{pmatrix} \cdot \sigma_A \oplus \sigma_B \begin{pmatrix} a_2 & x_2 \\ 0 & b_2 \end{pmatrix} + \sigma_A \oplus \sigma_B \begin{pmatrix} a_1 & x_1 \\ 0 & b_1 \end{pmatrix} \cdot D \begin{pmatrix} a_2 & x_2 \\ 0 & b_2 \end{pmatrix}.$$

Therefore, *D* is a $\sigma_A \oplus \sigma_B$ -derivation. Since T_{σ_A,σ_B} is $\sigma_A \oplus \sigma_B$ -amenable, there exists an element $\begin{pmatrix} 0 & x^{**} \\ 0 & 0 \end{pmatrix} \in X^{**}$ such that,

$$\begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} = D \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} = \sigma_A \oplus \sigma_B \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} \cdot \begin{pmatrix} 0 & x^{**} \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & x^{**} \\ 0 & 0 \end{pmatrix} \cdot \sigma_A \oplus \sigma_B \begin{pmatrix} a & x \\ 0 & b \end{pmatrix}$$
$$= \begin{pmatrix} 0 & \sigma_A(a) \cdot x^{**} - x^{**} \cdot \sigma_B(b) \\ 0 & 0 \end{pmatrix},$$

set a = b = 0, as a result x = 0 and hence X = 0. Conversely, suppose that A is σ_A -amenable and B is σ_B -amenable and X = 0. Then T_{σ_A,σ_B} is the l^1 -direct sum of A and B, that is, $T_{\sigma_A,\sigma_B} = A \oplus_1 B$. Since A and $B \simeq \frac{A \oplus_1 B}{A}$ are ideals in $A \oplus_1 B$, similar to the proof of [12, Theorem 2.3.10], we obtain that T_{σ_A,σ_B} is $\sigma_A \oplus \sigma_B$ -amenable. \Box

Let *A* and *B* be Banach algebras, and $\sigma_A \in Hom(A)$, $\sigma_B \in Hom(B)$ such that $\sigma_A^2 = \sigma_A$, $\sigma_B^2 = \sigma_B$. By [10, Theorem 4.2] and [1, Theorem 2.3], amenability of two triangulars Banach algebras *T* and T_{σ_A,σ_B} are equivalent.

It is clear that amenability of T_{σ_A,σ_B} implies $\sigma_A \oplus \sigma_B$ -amenability of T_{σ_A,σ_B} . However, we show that the converse is not true.

Example 2.3. Suppose that A is a non-amenable Banach algebra with a right (or a left) approximate identity. Then A^{\sharp} (the unitization of A) is not amenable [12, Corollary 2.3.11]. Define $\sigma_{A^{\sharp}} \in Hom(A^{\sharp})$ by $\sigma_{A^{\sharp}}(a + \lambda) = \lambda$ for $a \in A$, $\lambda \in C$. Then $\sigma_{A^{\sharp}}^2 = \sigma_{A^{\sharp}}$. By [8, Corollary 3.2], A^{\sharp} is $\sigma_{A^{\sharp}}$ -amenable. Hence $T_{\sigma_{A^{\sharp}},\sigma_{A^{\sharp}}} = \begin{pmatrix} A^{\sharp} & 0 \\ 0 & A^{\sharp} \end{pmatrix}$ is $\sigma_{A^{\sharp}}^{\sharp} \oplus \sigma_{A^{\dagger}}^{\sharp}$ -amenable by Theorem 2.2, however $T_{\sigma_{A^{\sharp}},\sigma_{A^{\sharp}}}$ is not amenable, since A^{\sharp} is not amenable [1, Theorem 2.3]. Consequently T is not amenable.

3. $\sigma_A \oplus \sigma_B$ -weak amenability of T_{σ_A,σ_B}

Lemma 3.1. Let A and B be Banach algebras, X be a Banach A, B-module and $\sigma_A \in Hom(A)$, $\sigma_B \in Hom(B)$. Then for $\begin{pmatrix} a & x \\ 0 & b \end{pmatrix} \in T_{\sigma_A,\sigma_B}$ and $\begin{pmatrix} a^{(2n-1)} & x^{(2n-1)} \\ 0 & b^{(2n-1)} \end{pmatrix} \in T_{\sigma_A,\sigma_B}^{(2n-1)}$, the following statements hold;

$$(i) \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} \begin{pmatrix} a^{(2n-1)} & x^{(2n-1)} \\ 0 & b^{(2n-1)} \end{pmatrix} = \begin{pmatrix} a \cdot a^{(2n-1)} + \sigma_A^{(2n-1)} (x \cdot x^{(2n-1)}) & \sigma_B(b) \cdot x^{(2n-1)} \\ 0 & b \cdot b^{(2n-1)} \end{pmatrix};$$

$$(ii) \begin{pmatrix} a^{(2n-1)} & x^{(2n-1)} \\ 0 & b^{(2n-1)} \end{pmatrix} \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} = \begin{pmatrix} a^{(2n-1)} \cdot a & x^{(2n-1)} \cdot \sigma_A(a) \\ 0 & b^{(2n-1)} \cdot b + \sigma_B^{(2n-1)} (x^{(2n-1)} \cdot x) \end{pmatrix}.$$

Proof. (*i*) It is easily seen that for each $\begin{pmatrix} a^{(2n-2)} & x^{(2n-2)} \\ 0 & b^{(2n-2)} \end{pmatrix} \in T^{(2n-2)}_{\sigma_A,\sigma_B}$ we have $\begin{pmatrix} a & x \\ 0 & b \end{pmatrix} \begin{pmatrix} a^{(2n-2)} & x^{(2n-2)} \\ 0 & b^{(2n-2)} \end{pmatrix} = \begin{pmatrix} a \cdot a^{(2n-2)} & \sigma_A(a) \cdot x^{(2n-2)} + x \cdot \sigma_B^{(2n-2)}(b^{(2n-2)}) \\ 0 & b \cdot b^{(2n-2)} \end{pmatrix}$,

and

$$\begin{pmatrix} a^{(2n-2)} & x^{(2n-2)} \\ 0 & b^{(2n-2)} \end{pmatrix} \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} = \begin{pmatrix} a^{(2n-2)} \cdot a & \sigma_A^{(2n-2)} (a^{(2n-2)}) \cdot x + x^{(2n-2)} \cdot \sigma_B(b) \\ 0 & b^{(2n-2)} \cdot b \end{pmatrix}.$$

$$\begin{split} & \langle \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} \begin{pmatrix} a^{(2n-1)} & x^{(2n-1)} \\ 0 & b^{(2n-1)} \end{pmatrix}, \begin{pmatrix} a^{(2n-2)} & x^{(2n-2)} \\ 0 & b^{(2n-2)} \end{pmatrix} \rangle \\ & = \langle \begin{pmatrix} a^{(2n-1)} & x^{(2n-1)} \\ 0 & b^{(2n-1)} \end{pmatrix}, \begin{pmatrix} a^{(2n-2)} & x^{(2n-2)} \\ 0 & b^{(2n-2)} \end{pmatrix} \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} \rangle \\ & = \langle a^{(2n-1)} & x^{(2n-1)} \\ 0 & b^{(2n-1)} \end{pmatrix}, \begin{pmatrix} a^{(2n-2)} \cdot a & \sigma_A^{(2n-2)}(a^{(2n-2)}) \cdot x + x^{(2n-2)} \cdot \sigma_B(b) \\ 0 & b^{(2n-2)} \cdot b \end{pmatrix} \\ & = \langle a^{(2n-1)}, a^{(2n-2)} \cdot a \rangle + \langle x^{(2n-1)}, \sigma_A^{(2n-2)}(a^{(2n-2)}) \cdot x + x^{(2n-2)} \cdot \sigma_B(b) \rangle \\ & + \langle b^{(2n-1)}, b^{(2n-2)} \cdot b \rangle \\ & = \langle a \cdot a^{(2n-1)}, a^{(2n-2)} \rangle + \langle \sigma_A^{(2n-1)}(x \cdot x^{(2n-1)}), a^{(2n-2)} \rangle \\ & + \langle \sigma_B(b) \cdot x^{(2n-1)}, x^{(2n-2)} \rangle + \langle b \cdot b^{(2n-1)} \rangle, b^{(2n-2)} \rangle \\ & = \langle \begin{pmatrix} a \cdot a^{(2n-1)} + \sigma_A^{(2n-1)}(x \cdot x^{(2n-1)}) & \sigma_B(b) \cdot x^{(2n-1)} \\ 0 & b \cdot b^{(2n-1)} \end{pmatrix}, \begin{pmatrix} a^{(2n-2)} & x^{(2n-2)} \\ 0 & b^{(2n-2)} \end{pmatrix} \rangle. \end{split}$$

It implies (*i*). The proof of (*ii*) is similar. \Box

Suppose that *A* has a unit e_A and *B* has a unit e_B and $\sigma_A \in Hom(A), \sigma_B \in Hom(B)$, then *X* is unital, if $e_A \cdot x = x \cdot e_B = x$ for all $x \in X$. Moreover, X is said (σ_A, σ_B) -unital if $\sigma_A(e_A) \cdot x = x \cdot \sigma_B(e_B) = x$ for all $x \in X$.

Lemma 3.2. Let A and B be unital Banach algebras and $\sigma_A \in Hom(A)$, $\sigma_B \in Hom(B)$ such that $\sigma_A^2 = \sigma_A$ and $\sigma_B^2 = \sigma_B$. Let X be a (σ_A, σ_B) -unital Banach A, B-module. Let $D : T_{\sigma_A,\sigma_B} \longrightarrow T_{\sigma_A,\sigma_B}^{(2n-1)}$ be a $\sigma_A \oplus \sigma_B$ -derivation and $n \in \mathbb{N}$. Then there exist σ_A -derivation $\delta_A : A \longrightarrow A^{(2n-1)}$ and σ_B -derivation $\delta_B : B \longrightarrow B^{(2n-1)}$ and $x_0^{(2n-1)} \in X^{(2n-1)}$, such that

(i)
$$D\begin{pmatrix}a&0\\0&0\end{pmatrix} = \begin{pmatrix}\delta_A(a)&x_0^{(2n-1)}\cdot\sigma_A(a)\\0&0\end{pmatrix}$$

(*ii*)
$$D\begin{pmatrix} 0 & 0\\ 0 & b \end{pmatrix} = \begin{pmatrix} 0 & -\sigma_B(b) \cdot x_0^{(2n-1)}\\ 0 & \delta_B(b) \end{pmatrix};$$

(*iii*)
$$D\begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} -\sigma_A^{(2n-1)}(x \cdot x_0^{(2n-1)}) & 0 \\ 0 & \sigma_B^{(2n-1)}(x_0^{(2n-1)} \cdot x) \end{pmatrix}$$

Proof. (i) Setting $D\begin{pmatrix} a & 0\\ 0 & 0 \end{pmatrix} = \begin{pmatrix} \delta_A(a) & s(a)\\ 0 & \theta(a) \end{pmatrix}$, we wish to find the maps $\delta_A(a), s(a)$ and $\theta(a)$. Since *D* is a $\sigma_A \oplus \sigma_B$ -derivation, so

$$D\begin{pmatrix}aa' & 0\\ 0 & 0\end{pmatrix} = D\begin{pmatrix}a & 0\\ 0 & 0\end{pmatrix}\begin{pmatrix}\sigma_A(a') & 0\\ 0 & 0\end{pmatrix} + \begin{pmatrix}\sigma_A(a) & 0\\ 0 & 0\end{pmatrix}D\begin{pmatrix}a' & 0\\ 0 & 0\end{pmatrix}$$

By lemma 3.1, $\begin{pmatrix} \delta_A(aa') & s(aa') \\ 0 & \theta(aa') \end{pmatrix} = \begin{pmatrix} \delta_A(a) \cdot \sigma_A(a') & s(a) \cdot \sigma_A(a) \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} \sigma_A(a) \cdot \delta_A(a') & 0 \\ 0 & 0 \end{pmatrix}$. As a result $\delta_A(aa') = \delta_A(a) \cdot \sigma_A(a') + \sigma_A(a) \cdot \delta_A(a')$, i.e., δ_A is a σ_A -derivation, and also $s : A \longrightarrow X^{(2n-1)}$ is a right σ_A -A-module homomorphism. Consider $s(e_A) = x_0^{(2n-1)} \in X^{(2n-1)}$, therefore $s(a) = s(e_A) \cdot \sigma_A(a) = x_0^{(2n-1)} \cdot \sigma_A(a)$. Moreover $\theta(aa') = 0$ for each $a, a' \in A$, hence $\theta(a) = 0$. (*ii*) Suppose that $D\begin{pmatrix} 0 & 0 \\ 0 & b \end{pmatrix} = \begin{pmatrix} \theta(b) & r(b) \\ 0 & \delta_B(b) \end{pmatrix}$. A calculation similar to (*i*) shows that $\delta_B : B \longrightarrow X^{(2n-1)}$ is a

$$\begin{split} \sigma_{B}\text{-derivation and } \theta(b) &= 0. \text{ Furthermore from} \\ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} &= D\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = D\begin{pmatrix} 0 & 0 \\ 0 & b \end{pmatrix} \cdot \begin{pmatrix} \sigma_{A}(a) & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & \sigma_{B}(b) \end{pmatrix} \cdot D\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \\ \text{we obtain } -\sigma_{B}(b) \cdot x_{0}^{(2n-1)} \cdot \sigma_{A}(a) &= r(b) \cdot \sigma_{A}(a). \text{ Putting } a = e, \text{ since } X \text{ is } (\sigma_{A}, \sigma_{B})\text{-unital, we conclude that } r(b) &= -\sigma_{B}(b) \cdot x_{0}^{(2n-1)}. \\ (iii) \text{ Suppose } D\begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} &= \begin{pmatrix} \theta(x) & s(x) \\ 0 & r(x) \end{pmatrix}. \text{ Since } D \text{ is a } \sigma_{A} \oplus \sigma_{B}\text{-derivation,} \\ D\begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} &= D\begin{pmatrix} e_{A} & 0 \\ 0 & 0 \end{pmatrix} = D\begin{pmatrix} e_{A} & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} \sigma_{A}(e_{A}) & 0 \\ 0 & 0 \end{pmatrix} \cdot D\begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix}. \\ \text{Similar arguments as in (i) and (ii) shows that <math>r(x) = \sigma_{B}^{(2n-1)}(x_{0}^{(2n-1)} \cdot x) \text{ and } s(x) = 0. \\ \text{Moreover from,} \\ D\begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} &= D\begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} = D\begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 0 & \sigma_{B}(e_{B}) \end{pmatrix} + \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} \cdot D\begin{pmatrix} 0 & 0 \\ 0 & e_{B} \end{pmatrix}, \\ \text{we get } \theta(x) = -\sigma_{A}^{(2n-1)}(x \cdot x_{0}^{(2n-1)}). \\ \Box \end{split}$$

Lemma 3.3. Let A and B be Banach algebras, let $\sigma_A \in Hom(A)$, $\sigma_B \in Hom(B)$ such that $\sigma_A^2 = \sigma_A$ and $\sigma_B^2 = \sigma_B$. Let X be a Banach A, B-module. If $\delta_A : A \longrightarrow A^{(2n-1)}$ is a σ_A -derivation, then the mapping $D_{\delta_A} : T_{\sigma_A,\sigma_B} \longrightarrow T_{\sigma_A,\sigma_B}^{(2n-1)}$ by $D_{\delta_A} \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} = \begin{pmatrix} \delta_A(a) & 0 \\ 0 & 0 \end{pmatrix}$ is a $\sigma_A \oplus \sigma_B$ -derivation. Futhermore, δ_A is σ_A -inner if and only if D_{δ_A} is $\sigma_A \oplus \sigma_B$ -inner.

Proof. For each $\begin{pmatrix} a_1 & x_1 \\ 0 & b_1 \end{pmatrix}$, $\begin{pmatrix} a_2 & x_2 \\ 0 & b_2 \end{pmatrix} \in T_{\sigma_A, \sigma_B}$ we have

$$D_{\delta_{A}}\left(\begin{pmatrix}a_{1} & x_{1}\\ 0 & b_{1}\end{pmatrix}\begin{pmatrix}a_{2} & x_{2}\\ 0 & b_{2}\end{pmatrix}\right) = D_{\delta_{A}}\begin{pmatrix}a_{1}a_{2} & \sigma_{A}(a_{1})\cdot x_{2} + x_{1}\cdot\sigma_{B}(b_{2})\\ 0 & b_{1}b_{2}\end{pmatrix} = \begin{pmatrix}\delta_{A}(a_{1}a_{2}) & 0\\ 0 & 0\end{pmatrix}$$
$$= \begin{pmatrix}\delta_{A}(a_{1})\cdot\sigma_{A}(a_{2}) + \sigma_{A}(a_{1})\cdot\delta_{A}(a_{2}) & 0\\ 0 & 0\end{pmatrix}$$
$$= \begin{pmatrix}\delta_{A}(a_{1}) & 0\\ 0 & 0\end{pmatrix}\cdot\sigma_{A} \oplus \sigma_{B}\begin{pmatrix}a_{2} & 0\\ 0 & 0\end{pmatrix} + \sigma_{A} \oplus \sigma_{B}\begin{pmatrix}a_{1} & 0\\ 0 & 0\end{pmatrix}\cdot\begin{pmatrix}\delta_{A}(a_{2}) & 0\\ 0 & 0\end{pmatrix}.$$

The relation above implies that D_{δ_A} is $\sigma_A \oplus \sigma_B$ -derivation. Now, suppose that δ_A is σ_A -inner. Then there exists $a_0^{(2n-1)} \in A^{(2n-1)}$ such that $\delta_A(a) = \sigma_A(a) \cdot a_0^{(2n-1)} - a_0^{(2n-1)} \cdot \sigma_A(a)$ for all $a \in A$. Consider $\begin{pmatrix} a_0^{(2n-1)} & 0 \\ 0 & 0 \end{pmatrix} \in T^{(2n-1)}_{\sigma_A,\sigma_B}$, then

$$D_{\delta_A} \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} = \begin{pmatrix} \delta_A(a) & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} \sigma_A(a) \cdot a_0^{(2n-1)} - a_0^{(2n-1)} \cdot \sigma_A(a) & 0 \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} \sigma_A(a) \cdot a_0^{(2n-1)} & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} a_0^{(2n-1)} \cdot \sigma_A(a) & 0 \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} \sigma_A(a) & x \\ 0 & \sigma_B(b) \end{pmatrix} \cdot \begin{pmatrix} a_0^{(2n-1)} & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} a_0^{(2n-1)} & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} \sigma_A(a) & x \\ 0 & \sigma_B(b) \end{pmatrix}$$

Thus, D_{δ_A} is $\sigma_A \oplus \sigma_B$ -inner.

Conversely, suppose that D_{δ_A} is $\sigma_A \oplus \sigma_B$ -inner. Then there exists $\begin{pmatrix} a_0^{(2n-1)} & x_0^{(2n-1)} \\ 0 & b_0^{(2n-1)} \end{pmatrix} \in T^{(2n-1)}_{\sigma_A,\sigma_B}$ such that

$$\begin{pmatrix} \delta_A(a) & 0 \\ 0 & 0 \end{pmatrix} = D_{\delta_A} \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} = \begin{pmatrix} \sigma_A(a) & 0 \\ 0 & \sigma_B(b) \end{pmatrix} \cdot \begin{pmatrix} a_0^{(2n-1)} & x_0^{(2n-1)} \\ 0 & b_0^{(2n-1)} \end{pmatrix} \\ - \begin{pmatrix} a_0^{(2n-1)} & x_0^{(2n-1)} \\ 0 & b_0^{(2n-1)} \end{pmatrix} \cdot \begin{pmatrix} \sigma_A(a) & 0 \\ 0 & \sigma_B(b) \end{pmatrix} \\ = \begin{pmatrix} \sigma_A(a) \cdot a_0^{(2n-1)} + \sigma_A^{(2n-1)}(x \cdot x_0^{(2n-1)}) & \sigma_B^2(b) \cdot x_0^{(2n-1)} \\ 0 & \sigma_B(b) \cdot b_0^{(2n-1)} \end{pmatrix} \\ - \begin{pmatrix} a_0^{(2n-1)} \cdot \sigma_A(a) & x_0^{(2n-1)} \cdot \sigma_A^2(a) \\ 0 & b_0^{(2n-1)} \cdot \sigma_B(b) + \sigma_B^{(2n-1)}(x_0^{(2n-1)} \cdot x) \end{pmatrix}$$

It follows that $\delta_A(a) = \sigma_A(a) \cdot a_0^{(2n-1)} + \sigma_A^{(2n-1)}(x \cdot x_0^{(2n-1)}) - a_0^{(2n-1)} \cdot \sigma_A(a)$, for each $a \in A, x \in X$. Setting x = 0, we get $\delta_A(a) = \sigma_A(a) \cdot a_0^{(2n-1)} - a_0^{(2n-1)} \cdot \sigma_A(a)$, so δ_A is σ_A -inner, as required. \Box

Theorem 3.4. Let A and B be unital Banach algebras and X be a (σ_A, σ_B) -unital Banach A, B-module. Let $\sigma_A \in Hom(A), \sigma_B \in Hom(B)$ such that $\sigma_A^2 = \sigma_A$ and $\sigma_B^2 = \sigma_B$. Then for each $n \in N$,

$$H^1_{\sigma_A,\sigma_B}(T_{\sigma_A,\sigma_B},T^{(2n-1)}_{\sigma_A,\sigma_B}) \simeq H^1_{\sigma_A}(A,A^{(2n-1)}) \oplus H^1_{\sigma_B}(B,B^{(2n-1)})$$

Proof. Suppose that $\delta : T_{\sigma_A,\sigma_B} \longrightarrow T_{\sigma_A,\sigma_B}^{(2n-1)}$ is a $\sigma_A \oplus \sigma_B$ -derivation. By Lemma 3.2, there exist σ_A -derivation $\delta_A : A \longrightarrow A^{(2n-1)}$, and σ_B -derivation $\delta_B : B \longrightarrow B^{(2n-1)}$ and $x_0^{(2n-1)} \in X^{(2n-1)}$ such that

$$\delta \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} = \begin{pmatrix} \delta_A(a) - \sigma_A^{(2n-1)}(x \cdot x_0^{(2n-1)}) & x_0^{(2n-1)} \cdot \sigma_A(a) - \sigma_B(b) \cdot x_0^{(2n-1)} \\ 0 & \sigma_B^{(2n-1)}(x_0^{(2n-1)} \cdot x) + \delta_B(b) \end{pmatrix}$$

It is clear that the map $K : Z^1(T_{\sigma_A,\sigma_B}, T^{(2n-1)}_{\sigma_A,\sigma_B}) \longrightarrow H^1_{\sigma_A}(A, A^{(2n-1)}) \oplus H^1_{\sigma_B}(B, B^{(2n-1)})$, defined by $K(\delta) = (\delta_A + N^1_{\delta_A}(A, A^{(2n-1)}), \delta_B + N^1_{\delta_B}(B, B^{(2n-1)}))$ is linear. Then Lemmas 3.2 and 3.3 together with the proof of [6, Theorem 3.4], show that the map K is onto and $kerK = N^1(T_{\sigma_A,\sigma_B}, T^{(2n-1)}_{\sigma_A,\sigma_B})$. Thus,

$$H^1_{\sigma_A\oplus\sigma_B}(T_{\sigma_A,\sigma_B},T^{(2n-1)}_{\sigma_A,\sigma_B})\simeq H^1_{\sigma_A}(A,A^{(2n-1)})\oplus H^1_{\sigma_B}(B,B^{(2n-1)})$$

Corollary 3.5. Let A and B be unital Banach algebras and $\sigma_A \in Hom(A)$, $\sigma_B \in Hom(B)$ such that $\sigma_A^2 = \sigma_A$ and $\sigma_B^2 = \sigma_B$. Let X be a (σ_A, σ_B) -unital Banach A, B-module. Then T_{σ_A, σ_B} is $\sigma_A \oplus \sigma_B$ -weakly amenable if and only if A is σ_A -weakly amenable and B is σ_B -weakly amenable.

Let *A*, *B* be Banach algebras and *X* be a Banach *A*, *B*-module. Then, *X* is called essential, if $\overline{A \cdot X} = X = \overline{X \cdot B}$. A Banach *A*, *B*-module *X* is non-degenerate, if $A \cdot x = 0$ implies x = 0 and $x \cdot B = 0$ implies x = 0 for all $x \in X$. It is easily see that if *X* is essential then *X*^{*} is a non-degenerate Banach *B*, *A*-module. Moreover, for a Banach algebra *A* with a bounded approximate identity, *A*^{*} is non-degenerate.

Definition 3.6. Let A, B be Banach algebras, X be a Banach A, B-module and $\sigma_A \in Hom(A), \sigma_B \in Hom(B)$. We say that X is (σ_A, σ_B) -essential, if $\overline{\sigma_A(A) \cdot X} = X = \overline{X \cdot \sigma_B(B)}$. Furthermore, X is (σ_A, σ_B) -non-degenerate, if $\sigma_A(A) \cdot x = 0$ implies x = 0 and $x \cdot \sigma_B(B) = 0$ implies x = 0.

It is easily checked that if *X* is (σ_A , σ_B)-essential or (σ_A , σ_B)-non-degenerate then, it is essential or non-degenerate. The following lemma is easily proved.

Lemma 3.7. Let A have a bounded approximate identity and let $S : A \longrightarrow X^*$ be a right(left) σ -A-module homomorphism. Then there is a $x_0^* \in X^*$ such that $S(a) = x_0^* \cdot \sigma(a)$ ($S(a) = \sigma(a) \cdot x_0^*$) for all $a \in A$.

Theorem 3.8. Let A and B be Banach algebras and $\sigma_A \in Hom(A)$, $\sigma_B \in Hom(B)$ such that $\sigma_A^2 = \sigma_A$ and $\sigma_B^2 = \sigma_B$. Let A have a bounded approximate identity, let $A^{(2n-1)}$ be σ_A -non-degenerate, $B^{(2n-1)}$ be σ_B -non-degenerate and $X^{(2n-1)}$ be (σ_B, σ_A) -non-degenerate. Then for each $n \in \mathbb{N}$,

$$H^1_{\sigma_A\oplus\sigma_B}(T_{\sigma_A,\sigma_B},T^{(2n-1)}_{\sigma_A,\sigma_B})\simeq H^1_{\sigma_A}(A,A^{(2n-1)})\oplus H^1_{\sigma_B}(B,B^{(2n-1)}).$$

Proof. Suppose that $D: T_{\sigma_A,\sigma_B} \longrightarrow T_{\sigma_A,\sigma_B}^{(2n-1)}$ is a $\sigma_A \oplus \sigma_B$ -derivation. By Lemmas 3.2 and 3.7, there exist σ_A -derivation $\delta_A: A \longrightarrow A^{(2n-1)}, \sigma_B$ -derivation $\delta_B: B \longrightarrow B^{(2n-1)}, \text{ and } x_0^{(2n-1)} \in X^{(2n-1)}$ such that $D\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} \delta_A(a) & x_0^{(2n-1)} \cdot \sigma_A(a) \\ 0 & 0 \end{pmatrix}$. Now set $D\begin{pmatrix} 0 & 0 \\ 0 & b \end{pmatrix} = \begin{pmatrix} \theta(b) & r(b) \\ 0 & \delta_B(b) \end{pmatrix}$. By Lemma 3.2, we obtain $\delta_B: B \longrightarrow B^{(2n-1)}$ is a σ_B -derivation, $\theta(b) \cdot \sigma_A(a) = 0$ and $-\sigma_B(b) \cdot x_0^{(2n-1)} \cdot \sigma_A(a) = r(b) \cdot \sigma_A(a)$ for each $a \in A, b \in B$. Since $A^{(2n-1)}$ is σ_A -non-degenerate and $X^{(2n-1)}$ is (σ_B, σ_A) -non-degenerate, we have $\theta(b) = 0$ and $r(b) = -\sigma_B(b) \cdot x_0^{(2n-1)}$, hence $D(b) = \begin{pmatrix} 0 & -\sigma_B(b) \cdot x_0^{(2n-1)} \\ 0 & \delta_B(b) \end{pmatrix}$. For $D\begin{pmatrix} 0 & x \\ 0 & b \end{pmatrix} = \begin{pmatrix} \theta(x) & r(x) \\ 0 & s(x) \end{pmatrix}$. From the equation $\begin{pmatrix} 0 & 0 \\ 0 & b \end{pmatrix} = D(\begin{pmatrix} 0 & x \\ 0 & b \end{pmatrix} = \begin{pmatrix} \theta(x) & r(x) \\ 0 & s(x) \end{pmatrix}$.

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = D \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \\ = \begin{pmatrix} \theta(x) & r(x) \\ 0 & s(x) \end{pmatrix} \cdot \begin{pmatrix} \sigma_A(a) & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} \delta_A(a) & x_0^{(2n-1)}.\sigma_A(a) \\ 0 & 0 \end{pmatrix}$$

We have $r(x) \cdot \sigma_A(a) = 0$ and $\theta(x) \cdot \sigma_A(a) + \sigma_A^{(2n-1)}(x \cdot x_0^{(2n-1)} \cdot \sigma_A(a)) = 0$, hence $(\theta(x) + \sigma_A^{(2n-1)}(x \cdot x_0^{(2n-1)})) \cdot \sigma_A(a) = 0$ because $\sigma_A^2 = \sigma_A$. Since $A^{(2n-1)}$ is σ_A -non-degenerate and $X^{(2n-1)}$ is (σ_B, σ_A) -non-degenerate, we conclude that r(x) = 0 and $\theta(x) = -\sigma_A^{(2n-1)}(x \cdot x_0^{(2n-1)})$. Similarly $s(x) = \sigma_A^{(2n-1)}(x_0^{(2n-1)} \cdot x)$. Consequently

$$D\begin{pmatrix} a & x \\ 0 & b \end{pmatrix} = \begin{pmatrix} \delta_A(a) - \sigma_A^{(2n-1)}(x \cdot x_0^{(2n-1)}) & x_0^{(2n-1)} \cdot \sigma_A(a) - \sigma_B(b) \cdot x_0^{(2n-1)} \\ 0 & \delta_B(b) + \sigma_A^{(2n-1)}(x_0^{(2n-1)} \cdot x) \end{pmatrix},$$

The rest of proof follows from Theorem 3.4. \Box

Definition 3.9. *Let A be a Banach algebra. We say that A has a* σ *-bounded approximate identity, if there exists a bounded net* $(e_{\alpha}) \subseteq A$ *such that*

$$\sigma(e_{\alpha}) \cdot a \to a$$
, $a \cdot \sigma(e_{\alpha}) \to a$ $(a \in A)$.

Corollary 3.10. Let A and B be Banach algebras and $\sigma_A \in Hom(A)$, $\sigma_B \in Hom(B)$ such that $\sigma_A^2 = \sigma_A$ and $\sigma_B^2 = \sigma_B$. Let A have a σ_A -bounded approximate identity and B have a σ_B -bounded approximate identity, and X be a (σ_A, σ_B) essential. Then T_{σ_A,σ_B} is $\sigma_A \oplus \sigma_B$ -weakly amenable if and only if A is σ_A -weakly amenable and B is σ_B -weakly amenable.

Proof. It is easy to show that A^* is σ_A -non-degenerate, B^* is σ_B -non-degenerate and X^* is (σ_A, σ_B) -non-degenerate. Thus, it is immediate by Theorem 3.8. \Box

4. $\sigma_A \oplus \sigma_B$ -biflatness and biprojectivity of T_{σ_A,σ_B}

Suppose that $A_1, ..., A_n$ are Banach algebras. Then their direct sum $A = \bigoplus_{k=1}^n A_k$ with componentwise operations and l^1 -norm is a Banach algebra. We write $\phi_k : A_k \longrightarrow A$ for the natural embedding A_k into A, $1 \le k \le n$. Take $\sigma_k \in Hom(A_k)$, $1 \le k \le n$, and define $\sigma := \bigoplus_{k=1}^n \sigma_k : A \longrightarrow A$ via $\sigma(a) = (\sigma_1(a_1), ..., \sigma_n(a_n))$ for every $a = (a_1, ..., a_n) \in A$. Then, it is easy to see that $\sigma \in Hom(A)$.

Theorem 4.1. Let $A_1, A_2, ..., A_n$ be Banach algebras, and $A = \bigoplus_{k=1}^n A_k$. Then (i) A is σ -biflat if and only if every A_k is σ_k -biflat, $1 \le k \le n$; (ii) A is σ -biprojective if and only if every A_k is σ_k -biprojective, $1 \le k \le n$.

Proof. We only prove (*i*). Suppose that *A* is σ -biflat, so there exists a bounded linear map $\rho : (A \otimes A)^* \longrightarrow A^*$ satisfying $\rho(\sigma(a) \cdot \lambda) = a \cdot \rho(\lambda)$ and $\rho(\lambda \cdot \sigma(a)) = \rho(\lambda) \cdot a$ for $a \in A$, $\lambda \in (A \otimes A)^*$ such that $\rho \circ \pi^* = \sigma^*$. Consider the bounded σ -*A*-bimodule homomorphism $s : A \longrightarrow A \otimes A$ such that $s^* = \rho$. Then $\pi \circ s = \sigma$. Take the projection $p_k : A \longrightarrow A_k$, and then define $\rho_k := \phi_k^* \circ \rho \circ (p_k \otimes p_k)^* : (A_k \otimes A_k)^* \longrightarrow (A_k)^*, 1 \le k \le n$. So for each $a_k, b_k \in A_k, \lambda_k \in (A_k \otimes A_k)^*$,

$$\begin{aligned} \langle \rho_k(\sigma_k(a_k) \cdot \lambda_k), b_k \rangle &= \langle \sigma_k(a_k) \cdot \lambda_k, (p_k \otimes p_k) \circ s \circ \phi_k(b_k) \rangle \\ &= \langle \lambda_k, (p_k \otimes p_k) \circ s \circ \phi_k(b_k) \cdot \sigma_k(a_k) \rangle \\ &= \langle \lambda_k, (p_k \otimes p_k) (s \circ \phi_k(b_k) \cdot (0, ..., 0, \sigma_k(a_k), 0, ..., 0)) \rangle \\ &= \langle \lambda_k, (p_k \otimes p_k) (s(\phi_k(b_k a_k))) \rangle \\ &= \langle a_k \cdot (\phi_k^* \circ \rho \circ (p_k \otimes p_k)^*) (\lambda_k), b_k \rangle = \langle a_k \cdot \rho_k(\lambda_k), b_k \rangle. \end{aligned}$$

We get $\rho_k(\sigma_k(a_k) \cdot \lambda_k) = a_k \cdot \rho_k(\lambda_k)$ and similarly $\rho_k(\lambda_k \cdot \sigma_k(a_k)) = \rho_k(\lambda_k) \cdot a_k$. For the diagonal operator $\pi_k : A_k \otimes A_k \longrightarrow A_k$, because $(p_k \otimes p_k)^* \circ \pi_k^* = \pi^* \circ p_k^*$, we see that $\rho_k \circ \pi_k^* = \phi_k^* \circ \rho \circ (p_k \otimes p_k)^* \circ \pi_k^* = \phi_k^* \circ \rho \circ (p_k \otimes p_k)^* \circ \pi_k^* = \sigma_k^*$. Thus $\rho_k \circ \pi_k^* = \sigma_k^*$, which implies that A_k is σ_k -biflat, $1 \le k \le n$. Conversely, suppose that A_k is σ_k -biflat for each $1 \le k \le n$. Hence there are bounded linear maps

Conversely, suppose that A_k is σ_k -biflat for each $1 \le k \le n$. Hence there are bounded linear maps $\rho_k : (A_k \widehat{\otimes} A_k)^* \longrightarrow A_k^*$ with $\rho_k(\sigma_k(a_k) \cdot \lambda_k) = a_k \cdot \rho_k(\lambda_k)$ and $\rho_k(\lambda_k \cdot \sigma_k(a_k)) = \rho_k(\lambda_k) \cdot a_k$, where $a_k \in A_k$, $\lambda_k \in (A_k \widehat{\otimes} A_k)^*$ such that $\rho_k \circ \pi_k^* = \sigma_k^*$, $1 \le k \le n$. Define $\rho : (\widehat{A \otimes} A)^* \longrightarrow A^*$ by $\rho(\lambda) = \sum_{k=1}^n p_k^* \circ \rho_k \circ (\phi_k \otimes \phi_k)^*(\lambda)$. Therefore for each $a \in A, \lambda \in (\widehat{A \otimes} A)^*$, we have

$$\rho(\sigma(a) \cdot \lambda) = \sum_{k=1}^{n} p_{k}^{*} \circ \rho_{k} \circ (\phi_{k} \otimes \phi_{k})^{*} (\sigma(a) \cdot \lambda)$$

$$= \sum_{k=1}^{n} p_{k}^{*} \circ \rho_{k} (\sigma_{k}(a_{k}) \cdot (\phi_{k} \otimes \phi_{k})^{*} (\lambda)))$$

$$= \sum_{k=1}^{n} p_{k}^{*} (a_{k} \cdot (\rho_{k} \circ (\phi_{k} \otimes \phi_{k})^{*} (\lambda))))$$

$$= a \cdot (\sum_{k=1}^{n} p_{k}^{*} \circ \rho_{k} \circ (\phi_{k} \otimes \phi_{k})^{*} (\lambda)))$$

$$= a \cdot \rho(\lambda).$$

Similarly $\rho(\lambda \cdot \sigma(a)) = \rho(\lambda) \cdot a$. As $(\phi_k \otimes \phi_k)^* \circ \pi^* = \pi_k^* \circ \phi_k^*$, thus

$$\rho \circ \pi^* = \sum_{k=1}^n p_k^* \circ \rho_k \circ (\phi_k \otimes \phi_k)^* \circ \pi^*$$
$$= \sum_{k=1}^n p_k^* \circ \rho_k \circ \pi_k^* \circ \phi_k^*$$
$$= \sum_{k=1}^n p_k^* \circ \sigma_k^* \circ \phi_k^*$$
$$= \sigma^*.$$

Therefore *A* is σ -biflat. \Box

Lemma 4.2. Let A be a Banach algebra and $\sigma \in Hom(A)$ such that $\sigma^2 = \sigma$. Let $N \subseteq A$ be a closed complemented ideal where $\sigma(N) = N$ and $N^2 = 0$. Then $\sigma(A)N \cap \overline{N\sigma(A)} = 0$

Proof. Let $i: N \longrightarrow A$ be the inclusion map, $q: A \longrightarrow \frac{A}{N}$ be the quotient map, I_A, I_N and I_A be the identity maps on A, N and $\frac{A}{N}$, respectively, and let $p: \frac{A}{N} \otimes N \longrightarrow N$ be the map defined by $p((a + N) \otimes c) = ac$ for each $a + N \in \frac{A}{N}$ and $c \in N$. Suppose to wards a contraction that $\sigma(A)N \cap \overline{N\sigma(A)} \neq 0$. Suppose that $0 \neq \sigma(a)c \in \sigma(A)N \cap \overline{N\sigma(A)}$ where $a \in A, c \in N$. Hence $\sigma(a)c \in \overline{N\sigma(A)}$, so there exists sequences $(\sigma(a_n)) \subseteq \sigma(A)$ and $(c_n) \subseteq N$ such that $\sigma(a)c = \lim_{n\to\infty} c_n\sigma(a_n)$. Since A is σ -biflat, then there is a σ -A-bimodule homomorphism $\rho: A \longrightarrow (A \otimes A)^{**}$ such that $\pi^{**} \circ \rho = \sigma$. For $b \in N$, let $R_b(L_b): A \longrightarrow N$ be the map of right (resp.left) multiplication by b. Consider the operator $q \otimes R_c : A \otimes A \longrightarrow \frac{A}{N} \otimes N$ and let $d = ((q \otimes R_c)^{**} \circ \rho)\sigma(a)$. We have $p \circ (q \otimes R_c) = R_c \circ \pi$ and so $p^{**} \circ (q \otimes R_c)^{**} = R_c^{**} \circ \pi^{**}$. As a result

 $p^{**}(d) = (p^{**} \circ (q \otimes R_c)^{**} \circ \rho)\sigma(a) = ((R_c^{**} \circ \pi^{**}) \circ \rho)(\sigma(a)) = R_c^{**}((\pi^{**} \circ \rho)(\sigma(a))) = R_c^{**}(\sigma^2(a)) = \sigma(a)c \neq 0$, thus $d \neq 0$. By the assumption there exists $c_1 \in N$ such that $\sigma(c_1) = c$. As the proof of [9, Lemma 2.3], we have

$$\begin{aligned} (I_{\frac{A}{N}} \otimes i)^{**}(d) &= (((I_{\frac{A}{N}} \otimes i)^{**} \circ (q \otimes R_{c})^{**} \circ \rho)(\sigma(a))) \\ &= (((I_{\frac{A}{N}} \otimes i) \circ (q \otimes I_{N}) \circ (I_{A} \otimes R_{c}))^{**} \circ \rho)(\sigma(a))) \\ &= (((q \otimes I_{A}) \circ (I_{A} \otimes i) \circ (I_{A} \otimes R_{c}))^{**} \circ \rho)(\sigma(a))) \\ &= (q \otimes I_{A})^{**}(\rho(\sigma(a)) \cdot c) \\ &= (q \otimes I_{A})^{**}(\rho(\sigma(a)) \cdot \sigma^{2}(c_{1}))) \\ &= (q \otimes I_{A})^{**}(\rho(\sigma(a)\sigma(c_{1})))) \\ &= (q \otimes I_{A})^{**}(\rho(\sigma(a)\sigma(c_{1}))) \\ &= (q \otimes I_{A})^{**}(\rho(\sigma(a)c)) \\ &= (q \otimes I_{A})^{**}(\rho(\sigma(a)c)) \\ &= \lim_{n \to \infty} ((q \otimes I_{A})^{**} \circ ((i \circ L_{\sigma(c_{n})} \otimes I_{A})^{**}(\rho(\sigma(a_{n})))) \\ &= \lim_{n \to \infty} ((q \circ i \circ L_{\sigma(c_{n})}) \otimes I_{A})^{**}(\rho(\sigma(a_{n}))) = 0 \end{aligned}$$

The last equality is hold because of $q \circ i \circ L_{\sigma}(c_n) = 0$. Since *N* is a complemented closed ideal in *A*, then the map $I_{\frac{A}{N}} \otimes i$ is injective and has closed range and hence $(I_{\frac{A}{N}} \otimes i)^{**}$ is injective by [5, A.3.48]. This contradicts d = 0. Therefore $\sigma(A)N \cap \overline{N\sigma(A)} = 0$. \Box

Theorem 4.3. Let A be a Banach algebra and $\sigma \in Hom(A)$ where $\sigma^2 = \sigma$. Let $N \subseteq A$ be a closed σ -essential ideal, that is, $\overline{\sigma(A)N} = \overline{N\sigma(A)} = N$. Let $\sigma(N) = N$ and $N^2 = 0$. If A is σ -biflat, then A is not complement.

Proof. Since $\sigma(A)N \subseteq N \subseteq \overline{N\sigma(A)}$. According to Lemma 4.2, N = 0, this is a contradiction.

Theorem 4.4. Let A and B be Banach algebras and $\sigma_A \in Hom(A)$, $\sigma_B \in Hom(B)$ such that $\sigma_A^2 = \sigma_A$, $\sigma_B^2 = \sigma_B$. Let X be a (σ_A, σ_B) -essential module. Then the triangular Banach algebra $T_{\sigma_A,\sigma_B} = \begin{pmatrix} A & X \\ 0 & B \end{pmatrix}$ is $\sigma_A \oplus \sigma_B$ -biflat if and only if A is σ_A -biflat and B is σ_B -biflat and X = 0.

Proof. Suppose *A* is σ_A -biflat and *B* is σ_B -biflat and *X* = 0. Then T_{σ_A,σ_B} is the l^1 -direct sum of *A* and *B*, thus by Theorem 4.1, it is $\sigma_A \oplus \sigma_B$ -biflat.

Conversely, suppose that T_{σ_A,σ_B} is $\sigma_A \oplus \sigma_B$ -biflat. The closed ideal $N = \begin{pmatrix} 0 & X \\ 0 & 0 \end{pmatrix}$ of T_{σ_A,σ_B} is complemented closed ideal of T_{σ_A,σ_B} such that $\begin{pmatrix} 0 & X \\ 0 & 0 \end{pmatrix}^2 = 0$ and $\sigma_A \oplus \sigma_B(\begin{pmatrix} 0 & X \\ 0 & 0 \end{pmatrix}) = \begin{pmatrix} 0 & X \\ 0 & 0 \end{pmatrix}$ and

$$\begin{pmatrix} 0 & X \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & \overline{\sigma_A(A)N} \\ 0 & 0 \end{pmatrix} = (\sigma_A \oplus \sigma_B(\begin{pmatrix} A & X \\ 0 & B \end{pmatrix}) \begin{pmatrix} 0 & X \\ 0 & 0 \end{pmatrix})^{-},$$
$$\begin{pmatrix} 0 & X \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & \overline{X\sigma_B(B)} \\ 0 & 0 \end{pmatrix} = (\begin{pmatrix} 0 & X \\ 0 & 0 \end{pmatrix} \sigma_A \oplus \sigma_B(\begin{pmatrix} A & X \\ 0 & B \end{pmatrix}))^{-}.$$

Hence by Theorem 4.3, we conclude $X = \begin{pmatrix} 0 & X \\ 0 & 0 \end{pmatrix} = 0$. Therefore T_{σ_A,σ_B} is the l^1 -direct sum of A and B. By Theorem 4.1, A is σ_A -biflat and B is σ_B -biflat. \Box

Theorem 4.5. Let A and B be Banach algebras and $\sigma_A \in Hom(A)$, $\sigma_B \in Hom(B)$ such that $\sigma_A^2 = \sigma_A$. Let X be a (σ_A, σ_B) -essential module. Then the triangular Banach algebra $T_{\sigma_A, \sigma_B} = \begin{pmatrix} A & X \\ 0 & B \end{pmatrix}$ is $\sigma_A \oplus \sigma_B$ -biprojective if and only if A is σ_A -biprojective and B is σ_B -biprojective and X = 0.

Proof. Suppose that T_{σ_A,σ_B} is $\sigma_A \oplus \sigma_B$ -biprojective, so T_{σ_A,σ_B} is $\sigma_A \oplus \sigma_B$ -biflat. By Theorem 4.4, X = 0. Hence T_{σ_A,σ_B} is the l^1 -direct sum A and B, thus by Theorem 4.1, A is σ_A -biprojective and B is σ_B -biprojective. Conversely, if X = 0 and A is σ_A -biprojective and B is σ_B -biprojective then T_{σ_A,σ_B} is the l^1 -direct sum A and B, Thus by Theorem 4.1, it is $\sigma_A \oplus \sigma_B$ -biprojective. \Box

Acknowledgments

The authors would like to thank the anonymous for the comments to improve the paper.

References

- [1] S. Behnamian, A. Mahmoodi, Amenability properties of T_{σ_A,σ_B} , Honam Math. J. 42 (2020) 37-48.
- [2] A. Bodaghi, Module (φ, ψ)-amenability of Banach algebras, Arch. Math (Brno). 46 (2010), no. 4, 227-235.
- [3] A. Bodaghi, M. Eshaghi Gordji and A. R. Medghalchi, A generalization of the weak amenability of Banach algebras, Banach J. Math. Anal. 3 (2009), no. 1, 131-142.
- [4] A. Bodaghi, B. Shojaee, A generalized notion of n-weak amenability, Mathematica Bohemica, 139 (2014), no. 1, 99-112.
- [5] H. G. Dales, Banach algebras and automatic continuity, London Mathematical Society Monograps, Clarendon Press, 2000.
- [6] B. E. Forrest, L. W. Marcoux, Weak amenability of triangular Banach algebras, Trans. Amer. Math. Soc. 354 (2002) 1435-1452.
- [7] S. Haddad Sabzevar, A. Mahmoodi, σ-Biflat Banach Algebras; the older and the new notions, Iran. J. Sci. Tech. Trans. A. 43 (2019) 2975-2980.
- [8] Z. Hasanzadeh, A. Mahmoodi, σ-Connes amenability and pseudo-(Connes) amenability of Beurling algebras, Sahand Commu. Math. Anal. 15 (2019) 77-89.
- [9] A. R. Medghalchi, M. H. Sattari, Biflatness and biprojectivity of triangular Banach algebras, Bull. Iran. Math. Soc., 34 (2008) 115-120.
- [10] A. R. Medghalchi, M. H. Sattari, T. Yazdanpanah, Amenability and weak amenability of triangular Banach algebras, Bull. Iran. Math. Soc. 31 (2005) 57-69.
- [11] M. Mirzavaziri, M. S. Moslehian, σ-Derivations in Banach algebras, Bull. Iran. Math. Soc. 32 (2006) 65-78.
- [12] V. Runde, Lectures on amenability, Lecture Notes in Mathematics 1774, Springer Verlag, 2002.
- [13] T. Yazdanpanah, I. Mozzami Zadeh, σ-weak amenability of Banach Algebras, Int. J. Nonlinear Anal. Appl. 4 (2013) 66-73.
- [14] T. Yazdanpanah, H. Najafi, σ -Contractible and σ -Biprojective Banach Algebras, Quaestions Math. 33 (2010) 485-495.