On σ-Amenability of $T_{\sigma_{A}, \sigma_{B}}$

Alireza Jaberi ${ }^{\text {a }}$, Behrouz Shojaee ${ }^{\text {b }}$, Amin Mahmoodi ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran
${ }^{b}$ Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran

Abstract

Let σ_{A} and σ_{B} be two homomorphisms on Banach algebras A and B, respectively. In this paper, we study σ-amenability, σ-weak amenability, σ-biflatness, and σ-biprojectivity of triangular Banach algebras of the form $T_{\sigma_{A}, \sigma_{B}}$, where $\sigma=\sigma_{A} \oplus \sigma_{B}$.

1. Introduction

Let A be a Banach algebra. The set of all continuous homomorphisms from A into A is denoted by $\operatorname{Hom}(A)$. Suppose that $\sigma \in \operatorname{Hom}(A)$, and that X is a Banach A-bimodule. A bounded linear map $D: A \longrightarrow X$ is a σ-derivation if $D(a b)=D(a) . \sigma(b)+\sigma(a) . D(b)$ for all $a, b \in A$. A σ-derivation D is σ-inner derivation if there exists $x \in X$ such that $D(a)=\sigma(a) \cdot x-x \cdot \sigma(a)$ for all $a \in A$. The set of all σ-derivation from A into X is denoted by $Z_{\sigma}^{1}(A, X)$, and the set of all σ-inner derivations from A into X by $N_{\sigma}^{1}(A, X)$. Then, we define the space $H_{\sigma}^{1}(A, X)=\frac{Z_{\sigma}^{1}(A, X)}{N_{\sigma}^{1}(A, X)}$. We say A is σ-amenable if $H_{\sigma}^{1}\left(A, X^{*}\right)=0$ for every Banach A-bimodule X [11]. We call A is σ-weakly amenable if $H_{\sigma}^{1}\left(A, A^{*}\right)=0[3,13]$. Note that the module version of such notions are available in [2].

For a Banach algebra A, the corresponding diagonal operator $\pi: A \widehat{\otimes} A \longrightarrow A$ is defined by $\pi(a \otimes b)=a b$. Let X and Y be Banach A-bimodules, and $\sigma \in \operatorname{Hom}(A)$. A bounded linear map $T: X \longrightarrow Y$ is a σ - A-bimodule homomorphism if $T(a \cdot x)=\sigma(a) \cdot T(x)$ and $T(x \cdot a)=T(x) \cdot \sigma(a)$ for $a \in A, x \in X$. Then, A is σ-biprojective if there exists a σ - A-bimodule homomorphism $\rho: A \longrightarrow A \widehat{\otimes} A$ such that $\pi \circ \rho=\sigma$ [14]. Moreover, A is σ-biflat if there exists a bounded linear map $\rho:(\widehat{\otimes} A)^{*} \longrightarrow A^{*}$ satisfying $\rho(\sigma(a) \cdot \lambda)=a \cdot \rho(\lambda)$ and $\rho(\lambda \cdot \sigma(a))=\rho(\lambda) \cdot a$, such that $\rho \circ \pi^{*}=\sigma^{*}$ where $a \in A, \lambda \in(A \widehat{\otimes} A)^{*}[7]$.

Let A and B be Banach algebras, and X be a Banach A, B-module; that is, X is a left Banach A-module and is a right Banach B-module such that $\|a \cdot x \cdot b\| \leq\|a\|\|x\|\|b\|$, for $a \in A, x \in X$ and $b \in B$. We define the corresponding triangular Banach algebra $T=\left(\begin{array}{cc}A & X \\ 0 & B\end{array}\right)$ with the sum and product being given by the usual 2×2 matrix operations and obvious internal module actions along with the norm

$$
\left\|\left(\begin{array}{ll}
a & x \\
0 & b
\end{array}\right)\right\|=\|a\|+\|x\|+\|b\|, \quad(a \in A, b \in B, x \in X)
$$

[^0]For Banach A, B-module X, the first dual space of X, that is denoted by X^{*} is a Banach B, A-module with the following actions:

$$
\left\langle b \cdot x^{*}, x\right\rangle=\left\langle x^{*}, x \cdot b\right\rangle \text { and }\left\langle x^{*} \cdot a, x\right\rangle=\left\langle x^{*}, a \cdot x\right\rangle
$$

for all $a \in A, b \in B, x \in$ Xand $x^{*} \in X^{*}$. Moreover, for each $x \in X, x^{*} \in X^{*}$ we can consider $x \cdot x^{*} \in A^{*}$ and $x^{*} \cdot x \in B^{*}$ through

$$
\left\langle x \cdot x^{*}, a\right\rangle=\left\langle x^{*}, a \cdot x\right\rangle,\left\langle x^{*} \cdot x, b\right\rangle=\left\langle x^{*}, x \cdot b\right\rangle \quad(a \in A, b \in B) .
$$

Similarly for each $x \in X, a^{* *} \in A^{* *}$ and $b^{* *} \in B^{* *}$ we can consider $a^{* *} \cdot x \in X^{* *}$ and $x \cdot b^{* *} \in X^{* *}$ through

$$
\left\langle a^{* *} \cdot x, x^{*}\right\rangle=\left\langle a^{* *}, x \cdot x^{*}\right\rangle,\left\langle x \cdot b^{* *}, x^{*}\right\rangle=\left\langle b^{* *}, x^{*} \cdot x\right\rangle,
$$

for all $x^{*} \in X^{*}$. We may continue this process to higher order dual spaces of X; that is, $X^{(2 n)}$ is a Banach A, B-module $X^{(2 n-1)}$ is a Banach B, A-module and $A^{(2 n)} \cdot X \subseteq X^{(2 n)}, X \cdot B^{(2 n)} \subseteq X^{(2 n)}, X \cdot X^{(2 n-1)} \subseteq A^{(2 n-1)}$, $X^{(2 n-1)} \cdot X \subseteq B^{(2 n-1)}$ for all $n \in \mathbb{N}$. Here, we recall that the n-weak amenability of Banach algebras based on homomorphisms were investigated in [4].

In [1], the authors introduced a new product on triangular Banach algebras as follows.
Definition 1.1. ([1, Definition 1.1]) Let A and B be Banach algebras, X be a Banach A, B-module, $\sigma_{A} \in \operatorname{Hom}(A)$ and $\sigma_{B} \in \operatorname{Hom}(B)$. Let $T_{\sigma_{A}, \sigma_{B}}$ denote the algebra whose underlying Banach space is T but whose multiplication is defined by

$$
\left(\begin{array}{cc}
a_{1} & x_{1} \\
0 & b_{1}
\end{array}\right)\left(\begin{array}{cc}
a_{2} & x_{2} \\
0 & b_{2}
\end{array}\right)=\left(\begin{array}{cc}
a_{1} a_{2} & \sigma_{A}\left(a_{1}\right) \cdot x_{2}+x_{1} \cdot \sigma_{B}\left(b_{2}\right) \\
0 & b_{1} b_{2}
\end{array}\right)
$$

for all $\left(\begin{array}{cc}a_{1} & x_{1} \\ 0 & b_{1}\end{array}\right),\left(\begin{array}{cc}a_{2} & x_{2} \\ 0 & b_{2}\end{array}\right) \in T$.
Amenability, weak amenability, biflatness and biprojectivity of $T_{\sigma_{A}, \sigma_{B}}$ have been studied in [1]. In this paper, motivated by [1-4], we shall study σ-amenability, σ-weak amenability, σ - biflatness and σ biprojectivity of $T_{\sigma_{A}, \sigma_{B}}$ for the homomorphism $\sigma=\sigma_{A} \oplus \sigma_{B}$.

The organization of the paper is as follows. In section 2, we prove that $T_{\sigma_{A}, \sigma_{B}}$ is $\sigma_{A} \oplus \sigma_{B}$-amenable if and only if A is σ_{A}-amenable and B is σ_{B}-amenable and $X=0$ provided σ_{A} and σ_{B} are idempotents. Section 3 is devoted to $\sigma_{A} \oplus \sigma_{B}$-weak amenability of $T_{\sigma_{A}, \sigma_{B}}$. In other words, for unital Banach algebras A and B with idempotents σ_{A} and σ_{B}, we show that $T_{\sigma_{A}, \sigma_{B}}$ is $\sigma_{A} \oplus \sigma_{B}$-weakly amenable if and only if A is σ_{A}-weakly amenable and B is σ_{B}-weakly amenable. In section 4 , under some mild conditions, we prove that $T_{\sigma_{A}, \sigma_{B}}$ is $\sigma_{A} \oplus \sigma_{B}$-biprojective (biflat) if and only if A is σ_{A}-biprojective (biflat) and B is σ_{B}-biprojective (biflat) and $X=0$.

2. $\sigma_{A} \oplus \sigma_{B}$ - amenability of $T_{\sigma_{A}, \sigma_{B}}$

Let A and B be Banach algebras and $\sigma_{A} \in \operatorname{Hom}(A), \sigma_{B} \in \operatorname{Hom}(B)$. Let X be a Banach algebra A, B-module. We consider the map $\sigma_{A} \oplus \sigma_{B}: T_{\sigma_{A}, \sigma_{B}} \rightarrow T_{\sigma_{A}, \sigma_{B}}$ defined by

$$
\sigma_{A} \oplus \sigma_{B}\left(\begin{array}{ll}
a & x \\
0 & b
\end{array}\right)=\left(\begin{array}{cc}
\sigma_{A}(a) & x \\
0 & \sigma_{B}(b)
\end{array}\right)(a \in A, b \in B, x \in X) .
$$

Proposition 2.1. Let A and B be Banach algebras and $\sigma_{A} \in \operatorname{Hom}(A), \sigma_{B} \in \operatorname{Hom}(B)$. Let X be a Banach algebra A, B-module. If $\sigma_{A}^{2}=\sigma_{A}$ and $\sigma_{B}^{2}=\sigma_{B}$, then $\sigma_{A} \oplus \sigma_{B} \in \operatorname{Hom}\left(T_{\sigma_{A}, \sigma_{B}}\right)$.
Proof. For $\left(\begin{array}{cc}a_{1} & x_{1} \\ 0 & b_{1}\end{array}\right),\left(\begin{array}{cc}a_{2} & x_{2} \\ 0 & b_{2}\end{array}\right) \in T_{\sigma_{A}, \sigma_{B}}$,

$$
\begin{aligned}
\sigma_{A} \oplus \sigma_{B}\left(\left(\begin{array}{cc}
a_{1} & x_{1} \\
0 & b_{1}
\end{array}\right)\left(\begin{array}{cc}
a_{2} & x_{2} \\
0 & b_{2}
\end{array}\right)\right. & =\sigma_{A} \oplus \sigma_{B}\left(\begin{array}{cc}
a_{1} a_{2} & \sigma_{A}\left(a_{1}\right) \cdot x_{2}+x_{1} \cdot \sigma_{B}\left(b_{2}\right) \\
0 & b_{1} b_{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\sigma_{A}\left(a_{1} a_{2}\right) & \sigma_{A}\left(a_{1}\right) \cdot x_{2}+x_{1} \cdot \sigma_{B}\left(b_{2}\right) \\
0 & \sigma_{B}\left(b_{1} b_{2}\right)
\end{array}\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\sigma_{A} \oplus \sigma_{B}\left(\begin{array}{cc}
a_{1} & x_{1} \\
0 & b_{1}
\end{array}\right) \sigma_{A} \oplus \sigma_{B}\left(\begin{array}{cc}
a_{2} & x_{2} \\
0 & b_{2}
\end{array}\right) & =\left(\begin{array}{cc}
\sigma_{A}\left(a_{1}\right) & x_{1} \\
0 & \sigma_{B}\left(b_{1}\right)
\end{array}\right)\left(\begin{array}{cc}
\sigma_{A}\left(a_{2}\right) & x_{2} \\
0 & \sigma_{B}\left(b_{2}\right)
\end{array}\right) \\
& =\left(\begin{array}{cc}
\sigma_{A}\left(a_{1} a_{2}\right) & \sigma_{A}^{2}\left(a_{1}\right) \cdot x_{2}+x_{1} \cdot \sigma_{B}^{2}\left(b_{2}\right) \\
0 & \sigma_{B}\left(b_{1} b_{2}\right)
\end{array}\right) \\
& =\left(\begin{array}{cc}
\sigma_{A}\left(a_{1} a_{2}\right) & \sigma_{A}\left(a_{1}\right) \cdot x_{2}+x_{1} \cdot \sigma_{B}\left(b_{2}\right) \\
0 & \sigma_{B}\left(b_{1} b_{2}\right)
\end{array}\right) .
\end{aligned}
$$

Thus $\sigma_{A} \oplus \sigma_{B}$ is a homomorphism.

Theorem 2.2. Let A and B be Banach algebras, X be a Banach A, B-module, and $\sigma_{A} \in \operatorname{Hom}(B), \sigma_{B} \in \operatorname{Hom}(A)$ such that $\sigma_{A}^{2}=\sigma_{A}, \sigma_{B}^{2}=\sigma_{B}$. Then $T_{\sigma_{A}, \sigma_{B}}$ is $\sigma_{A} \oplus \sigma_{B}$-amenable if and only if A is σ_{A}-amenable and B is σ_{B}-amenable and $X=0$.

Proof. Suppose that $T_{\sigma_{A}, \sigma_{B}}$ is $\sigma_{A} \oplus \sigma_{B}$-amenable and $D: A \longrightarrow Y^{*}$ is a σ_{A}-derivation such that Y is a Banach A-bimodule. Define the map $P: T_{\sigma_{A}, \sigma_{B}} \longrightarrow A$ by $P\left(\begin{array}{ll}a & x \\ 0 & b\end{array}\right)=a$. It is obvious, that P is a homomorphism. Now we can consider Y as a $T_{\sigma_{A}, \sigma_{B}}$-bimodule via

$$
\sigma_{A} \oplus \sigma_{B}\left(T^{\prime}\right) \cdot y=P\left(\sigma_{A} \oplus \sigma_{B}\left(T^{\prime}\right)\right) \cdot y \text { and } y \cdot \sigma_{A} \oplus \sigma_{B}\left(T^{\prime}\right)=y \cdot P\left(\sigma_{A} \oplus \sigma_{B}\left(T^{\prime}\right)\right)
$$

for $T^{\prime} \in T_{\sigma_{A}, \sigma_{B}}, y \in Y$. Hence for each $T_{1}, T_{2} \in T_{\sigma_{A}, \sigma_{B}}$, we have

$$
\begin{aligned}
D \circ P\left(T_{1} T_{2}\right) & =D\left(P\left(T_{1}\right) P\left(T_{2}\right)\right)=D\left(P\left(T_{1}\right)\right) \cdot \sigma_{A}\left(P\left(T_{2}\right)\right)+\sigma_{A}\left(P\left(T_{1}\right)\right) \cdot D\left(P\left(T_{2}\right)\right) \\
& =D \circ P\left(T_{1}\right) \cdot P\left(\sigma_{A} \oplus \sigma_{B}\left(T_{2}\right)\right)+P\left(\sigma_{A} \oplus \sigma_{B}\left(T_{1}\right)\right) \cdot D \circ P\left(T_{2}\right) \\
& =D \circ P\left(T_{1}\right) \cdot \sigma_{A} \oplus \sigma_{B}\left(T_{2}\right)+\sigma_{A} \oplus \sigma_{B}\left(T_{1}\right) \cdot D \circ P\left(T_{2}\right) .
\end{aligned}
$$

Hence $D \circ P$ is a $\sigma_{A} \oplus \sigma_{B}$-derivation, so $D \circ P$ is $\sigma_{A} \oplus \sigma_{B}$-inner, thus there exists a $y^{*} \in Y^{*}$ such that for every $\left(\begin{array}{ll}a & x \\ 0 & b\end{array}\right) \in T_{\sigma_{A}, \sigma_{B}}$, we have,
$D(a)=D \circ P\left(\begin{array}{ll}a & x \\ 0 & b\end{array}\right)=\sigma_{A} \oplus \sigma_{B}\left(\begin{array}{ll}a & x \\ 0 & b\end{array}\right) \cdot y^{*}-y^{*} \cdot \sigma_{A} \oplus \sigma_{B}\left(\begin{array}{ll}a & x \\ 0 & b\end{array}\right)=\sigma_{A}(a) \cdot y^{*}-y^{*} \cdot \sigma_{A}(a)$.
It implies that A is σ_{A}-amenable and similarly, B is σ_{B}-amenable. Now we prove that $X=0$. Since $X \simeq\left(\begin{array}{ll}0 & X \\ 0 & 0\end{array}\right)$, we get $X^{* *} \simeq\left(\begin{array}{cc}0 & X^{* *} \\ 0 & 0\end{array}\right)$. Hence for the map $D: T_{\sigma_{A}, \sigma_{B}} \longrightarrow X^{* *}$ defined by $D\left(\begin{array}{ll}a & x \\ 0 & b\end{array}\right)=\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right)$, we have

$$
\begin{aligned}
D\left(\left(\begin{array}{cc}
a_{1} & x_{1} \\
0 & b_{1}
\end{array}\right)\left(\begin{array}{cc}
a_{2} & x_{2} \\
0 & b_{2}
\end{array}\right)\right. & =D\left(\begin{array}{cc}
a_{1} a_{2} & \sigma_{A}\left(a_{1}\right) \cdot x_{2}+x_{1} \cdot \sigma_{B}\left(b_{2}\right) \\
0 & b_{1} b_{2}
\end{array}\right)=\left(\begin{array}{cc}
0 & \sigma_{A}\left(a_{1}\right) \cdot x_{2}+x_{1} \cdot \sigma_{B}\left(b_{2}\right) \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & x_{1} \cdot \sigma_{B}\left(b_{2}\right) \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & \sigma_{A}\left(a_{1}\right) \cdot x_{2} \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & x_{1} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\sigma_{A}\left(a_{2}\right) & x_{2} \\
0 & \sigma_{B}\left(b_{2}\right)
\end{array}\right)+\left(\begin{array}{cc}
\sigma_{A}\left(a_{1}\right) & x_{1} \\
0 & \sigma_{B}\left(b_{1}\right)
\end{array}\right)\left(\begin{array}{cc}
0 & x_{2} \\
0 & 0
\end{array}\right) \\
& =D\left(\begin{array}{cc}
a_{1} & x_{1} \\
0 & b_{1}
\end{array}\right) \cdot \sigma_{A} \oplus \sigma_{B}\left(\begin{array}{cc}
a_{2} & x_{2} \\
0 & b_{2}
\end{array}\right)+\sigma_{A} \oplus \sigma_{B}\left(\begin{array}{cc}
a_{1} & x_{1} \\
0 & b_{1}
\end{array}\right) \cdot D\left(\begin{array}{cc}
a_{2} & x_{2} \\
0 & b_{2}
\end{array}\right) .
\end{aligned}
$$

Therefore, D is a $\sigma_{A} \oplus \sigma_{B}$-derivation. Since $T_{\sigma_{A}, \sigma_{B}}$ is $\sigma_{A} \oplus \sigma_{B}$-amenable, there exists an element $\left(\begin{array}{cc}0 & x^{* *} \\ 0 & 0\end{array}\right) \in X^{* *}$ such that,

$$
\begin{aligned}
\left(\begin{array}{ll}
0 & x \\
0 & 0
\end{array}\right)=D\left(\begin{array}{ll}
a & x \\
0 & b
\end{array}\right) & =\sigma_{A} \oplus \sigma_{B}\left(\begin{array}{ll}
a & x \\
0 & b
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & x^{* *} \\
0 & 0
\end{array}\right)-\left(\begin{array}{cc}
0 & x^{* *} \\
0 & 0
\end{array}\right) \cdot \sigma_{A} \oplus \sigma_{B}\left(\begin{array}{ll}
a & x \\
0 & b
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & \sigma_{A}(a) \cdot x^{* *}-x^{* *} \cdot \sigma_{B}(b) \\
0 & 0
\end{array}\right)
\end{aligned}
$$

set $a=b=0$, as a result $x=0$ and hence $X=0$. Conversely, suppose that A is σ_{A}-amenable and B is σ_{B}-amenable and $X=0$. Then $T_{\sigma_{A}, \sigma_{B}}$ is the l^{1}-direct sum of A and B, that is, $T_{\sigma_{A}, \sigma_{B}}=A \oplus_{1} B$. Since A and $B \simeq \frac{A \oplus_{1} B}{A}$ are ideals in $A \oplus_{1} B$, similar to the proof of [12, Theorem 2.3.10], we obtain that $T_{\sigma_{A}, \sigma_{B}}$ is $\sigma_{A} \oplus \sigma_{B}$-amenable.

Let A and B be Banach algebras, and $\sigma_{A} \in \operatorname{Hom}(A), \sigma_{B} \in \operatorname{Hom}(B)$ such that $\sigma_{A}^{2}=\sigma_{A}, \sigma_{B}^{2}=\sigma_{B}$. By [10, Theorem 4.2] and [1, Theorem 2.3], amenability of two triangulars Banach algebras T and $T_{\sigma_{A}, \sigma_{B}}$ are equivalent.

It is clear that amenability of $T_{\sigma_{A}, \sigma_{B}}$ implies $\sigma_{A} \oplus \sigma_{B}$-amenability of $T_{\sigma_{A}, \sigma_{B}}$. However, we show that the converse is not true.

Example 2.3. Suppose that A is a non-amenable Banach algebra with a right (or a left) approximate identity. Then A^{\sharp} (the unitization of A) is not amenable [12, Corollary 2.3.11]. Define $\sigma_{A^{\sharp}} \in \operatorname{Hom}\left(A^{\sharp}\right)$ by $\sigma_{A^{\sharp}}(a+\lambda)=\lambda$ for $a \in A$, $\lambda \in C$. Then $\sigma_{A^{\sharp}}^{2}=\sigma_{A^{\sharp}}$. By [8, Corollary 3.2], A^{\sharp} is $\sigma_{A^{\sharp}}$-amenable. Hence $T_{\sigma_{A^{\sharp}}, \sigma_{A}}=\left(\begin{array}{cc}A^{\sharp} & 0 \\ 0 & A^{\sharp}\end{array}\right)$ is $\sigma_{A}^{\sharp} \oplus \sigma_{A}^{\sharp}$-amenable by Theorem 2.2, however $T_{\sigma_{A^{\sharp}}, \sigma_{A}}$ is not amenable, since A^{\sharp} is not amenable [1, Theorem 2.3]. Consequently T is not amenable.

3. $\sigma_{A} \oplus \sigma_{B}$-weak amenability of $T_{\sigma_{A}, \sigma_{B}}$

Lemma 3.1. Let A and B be Banach algebras, X be a Banach A, B-module and $\sigma_{A} \in \operatorname{Hom}(A), \sigma_{B} \in \operatorname{Hom}(B)$. Then for $\left(\begin{array}{ll}a & x \\ 0 & b\end{array}\right) \in T_{\sigma_{A}, \sigma_{B}}$ and $\left(\begin{array}{cc}a^{(2 n-1)} & x^{(2 n-1)} \\ 0 & b^{(2 n-1)}\end{array}\right) \in T_{\sigma_{A}, \sigma_{B}}^{(2 n-1)}$, the following statements hold;
(i) $\left(\begin{array}{ll}a & x \\ 0 & b\end{array}\right)\left(\begin{array}{cc}a^{(2 n-1)} & x^{(2 n-1)} \\ 0 & b^{(2 n-1)}\end{array}\right)=\left(\begin{array}{cc}a \cdot a^{(2 n-1)}+\sigma_{A}^{(2 n-1)}\left(x \cdot x^{(2 n-1)}\right) & \sigma_{B}(b) \cdot x^{(2 n-1)} \\ 0 & b \cdot b^{(2 n-1)}\end{array}\right)$;
(ii) $\left(\begin{array}{cc}a^{(2 n-1)} & x^{(2 n-1)} \\ 0 & b^{(2 n-1)}\end{array}\right)\left(\begin{array}{ll}a & x \\ 0 & b\end{array}\right)=\left(\begin{array}{cc}a^{(2 n-1)} \cdot a & x^{(2 n-1)} \cdot \sigma_{A}(a) \\ 0 & b^{(2 n-1)} \cdot b+\sigma_{B}^{(2 n-1)}\left(x^{(2 n-1)} \cdot x\right)\end{array}\right)$.

Proof. (i) It is easily seen that for each $\left(\begin{array}{cc}a^{(2 n-2)} & x^{(2 n-2)} \\ 0 & b^{(2 n-2)}\end{array}\right) \in T_{\sigma_{A}, \sigma_{B}}^{(2 n-2)}$ we have
$\left(\begin{array}{ll}a & x \\ 0 & b\end{array}\right)\left(\begin{array}{cc}a^{(2 n-2)} & x^{(2 n-2)} \\ 0 & b^{(2 n-2)}\end{array}\right)=\left(\begin{array}{cc}a \cdot a^{(2 n-2)} & \sigma_{A}(a) \cdot x^{(2 n-2)}+x \cdot \sigma_{B}^{(2 n-2)}\left(b^{(2 n-2)}\right) \\ 0 & b \cdot b^{(2 n-2)}\end{array}\right)$,
and

$$
\left(\begin{array}{cc}
a^{(2 n-2)} & x^{(2 n-2)} \\
0 & b^{(2 n-2)}
\end{array}\right)\left(\begin{array}{ll}
a & x \\
0 & b
\end{array}\right)=\left(\begin{array}{cc}
a^{(2 n-2)} \cdot a & \sigma_{A}^{(2 n-2)}\left(a^{(2 n-2)}\right) \cdot x+x^{(2 n-2)} \cdot \sigma_{B}(b) \\
0 & b^{(2 n-2)} \cdot b
\end{array}\right)
$$

So,

$$
\begin{aligned}
& \left\langle\left(\begin{array}{ll}
a & x \\
0 & b
\end{array}\right)\left(\begin{array}{cc}
a^{(2 n-1)} & x^{(2 n-1)} \\
0 & b^{(2 n-1)}
\end{array}\right),\left(\begin{array}{cc}
a^{(2 n-2)} & x^{(2 n-2)} \\
0 & b^{(2 n-2)}
\end{array}\right)\right\rangle \\
& =\left\langle\left(\begin{array}{cc}
a^{(2 n-1)} & x^{(2 n-1)} \\
0 & b^{(2 n-1)}
\end{array}\right),\left(\begin{array}{cc}
a^{(2 n-2)} & x^{(2 n-2)} \\
0 & \left.b^{(2 n-2)}\right)
\end{array}\right)\left(\begin{array}{ll}
a & x \\
0 & b
\end{array}\right)\right\rangle \\
& =\left\langle\left(\begin{array}{cc}
a^{(2 n-1)} & x^{(2 n-1)} \\
0 & b^{(2 n-1)}
\end{array}\right),\left(\begin{array}{cc}
a^{(2 n-2)} \cdot a & \sigma_{A}^{(2 n-2)}\left(a^{(2 n-2)}\right) \cdot x+x^{(2 n-2)} \cdot \sigma_{B}(b) \\
0 & b^{(2 n-2)} \cdot b
\end{array}\right)\right\rangle \\
& =\left\langle a^{(2 n-1)}, a^{(2 n-2)} \cdot a\right\rangle+\left\langle x^{(2 n-1)}, \sigma_{A}^{(2 n-2)}\left(a^{(2 n-2)}\right) \cdot x+x^{(2 n-2)} \cdot \sigma_{B}(b)\right\rangle \\
& +\left\langle b^{(2 n-1)}, b^{(2 n-2)} \cdot b\right\rangle \\
& =\left\langle a \cdot a^{(2 n-1)}, a^{(2 n-2)}\right\rangle+\left\langle\sigma_{A}^{(2 n-1)}\left(x \cdot x^{(2 n-1)}\right), a^{(2 n-2)}\right\rangle \\
& \left.+\left\langle\sigma_{B}(b) \cdot x^{(2 n-1)}, x^{(2 n-2)}\right\rangle+\left\langle b \cdot b^{(2 n-1)}\right), b^{(2 n-2)}\right\rangle \\
& =\left\langle\left(\begin{array}{cc}
a \cdot a^{(2 n-1)}+\sigma_{A}^{(2 n-1)}\left(x \cdot x^{(2 n-1)}\right) & \sigma_{B}(b) \cdot x^{(2 n-1)} \\
0 & b \cdot b^{(2 n-1)}
\end{array}\right),\left(\begin{array}{cc}
a^{(2 n-2)} & x^{(2 n-2)} \\
0 & \left.b^{(2 n-2)}\right)
\end{array}\right)\right\rangle .
\end{aligned}
$$

It implies (i). The proof of $(i i)$ is similar.
Suppose that A has a unit e_{A} and B has a unit e_{B} and $\sigma_{A} \in \operatorname{Hom}(A), \sigma_{B} \in \operatorname{Hom}(B)$, then X is unital, if $e_{A} \cdot x=x \cdot e_{B}=x$ for all $x \in X$. Moreover, X is said $\left(\sigma_{A}, \sigma_{B}\right)$-unital if $\sigma_{A}\left(e_{A}\right) \cdot x=x \cdot \sigma_{B}\left(e_{B}\right)=x$ for all $x \in X$.

Lemma 3.2. Let A and B be unital Banach algebras and $\sigma_{A} \in \operatorname{Hom}(A), \sigma_{B} \in \operatorname{Hom}(B)$ such that $\sigma_{A}^{2}=\sigma_{A}$ and $\sigma_{B}^{2}=\sigma_{B}$. Let X be a $\left(\sigma_{A}, \sigma_{B}\right)$-unital Banach A, B-module. Let $D: T_{\sigma_{A}, \sigma_{B}} \longrightarrow T_{\sigma_{A}, \sigma_{B}}^{(2 n-1)}$ be a $\sigma_{A} \oplus \sigma_{B}$-derivation and $n \in N$. Then there exist σ_{A}-derivation $\delta_{A}: A \longrightarrow A^{(2 n-1)}$ and σ_{B}-derivation $\delta_{B}: B \longrightarrow B^{(2 n-1)}$ and $x_{0}^{(2 n-1)} \in X^{(2 n-1)}$, such that
(i) $D\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}\delta_{A}(a) & x_{0}^{(2 n-1)} \cdot \sigma_{A}(a) \\ 0 & 0\end{array}\right)$;
(ii) $D\left(\begin{array}{ll}0 & 0 \\ 0 & b\end{array}\right)=\left(\begin{array}{cc}0 & -\sigma_{B}(b) \cdot x_{0}^{(2 n-1)} \\ 0 & \delta_{B}(b)\end{array}\right)$;
(iii) $D\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}-\sigma_{A}^{(2 n-1)}\left(x \cdot x_{0}^{(2 n-1)}\right) & 0 \\ 0 & \sigma_{B}^{(2 n-1)}\left(x_{0}^{(2 n-1)} \cdot x\right)\end{array}\right)$.

Proof. (i) Setting $D\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}\delta_{A}(a) & s(a) \\ 0 & \theta(a)\end{array}\right)$, we wish to find the maps $\delta_{A}(a), s(a)$ and $\theta(a)$. Since D is a $\sigma_{A} \oplus \sigma_{B}$-derivation, so

$$
D\left(\begin{array}{rr}
a a^{\prime} & 0 \\
0 & 0
\end{array}\right)=D\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\sigma_{A}\left(a^{\prime}\right) & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
\sigma_{A}(a) & 0 \\
0 & 0
\end{array}\right) D\left(\begin{array}{cc}
a^{\prime} & 0 \\
0 & 0
\end{array}\right)
$$

By lemma 3.1, $\left(\begin{array}{cc}\delta_{A}\left(a a^{\prime}\right) & s\left(a a^{\prime}\right) \\ 0 & \theta\left(a a^{\prime}\right)\end{array}\right)=\left(\begin{array}{cc}\delta_{A}(a) \cdot \sigma_{A}\left(a^{\prime}\right) & s(a) \cdot \sigma_{A}(a) \\ 0 & 0\end{array}\right)+\left(\begin{array}{cc}\sigma_{A}(a) \cdot \delta_{A}\left(a^{\prime}\right) & 0 \\ 0 & 0\end{array}\right)$. As a result $\delta_{A}\left(a a^{\prime}\right)=$ $\delta_{A}(a) \cdot \sigma_{A}\left(a^{\prime}\right)+\sigma_{A}(a) \cdot \delta_{A}\left(a^{\prime}\right)$, i.e, δ_{A} is a σ_{A}-derivation, and also $s: A \longrightarrow X^{(2 n-1)}$ is a right $\sigma_{A}-A$-module homomorphism. Consider $s\left(e_{A}\right)=x_{0}^{(2 n-1)} \in X^{(2 n-1)}$, therefore $s(a)=s\left(e_{A}\right) \cdot \sigma_{A}(a)=x_{0}^{(2 n-1)} \cdot \sigma_{A}(a)$. Moreover $\theta\left(a a^{\prime}\right)=0$ for each $a, a^{\prime} \in A$, hence $\theta(a)=0$.
(ii) Suppose that $D\left(\begin{array}{ll}0 & 0 \\ 0 & b\end{array}\right)=\left(\begin{array}{cc}\theta(b) & r(b) \\ 0 & \delta_{B}(b)\end{array}\right)$. A calculation similar to (i) shows that $\delta_{B}: B \longrightarrow X^{(2 n-1)}$ is a
σ_{B}-derivation and $\theta(b)=0$. Furthermore from
$\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)=D\left(\left(\begin{array}{ll}0 & 0 \\ 0 & b\end{array}\right)\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)\right)=D\left(\begin{array}{ll}0 & 0 \\ 0 & b\end{array}\right) \cdot\left(\begin{array}{cc}\sigma_{A}(a) & 0 \\ 0 & 0\end{array}\right)+\left(\begin{array}{cc}0 & 0 \\ 0 & \sigma_{B}(b)\end{array}\right) \cdot D\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)$
we obtain $-\sigma_{B}(b) \cdot x_{0}^{(2 n-1)} \cdot \sigma_{A}(a)=r(b) \cdot \sigma_{A}(a)$. Putting $a=e$, since X is $\left(\sigma_{A}, \sigma_{B}\right)$-unital, we conclude that $r(b)=-\sigma_{B}(b) \cdot x_{0}^{(2 n-1)}$.
(iii) Suppose $D\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}\theta(x) & s(x) \\ 0 & r(x)\end{array}\right)$. Since D is a $\sigma_{A} \oplus \sigma_{B}$-derivation,
$D\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right)=D\left(\left(\begin{array}{cc}e_{A} & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right)\right)=D\left(\begin{array}{cc}e_{A} & 0 \\ 0 & 0\end{array}\right) \cdot\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right)+\left(\begin{array}{cc}\sigma_{A}\left(e_{A}\right) & 0 \\ 0 & 0\end{array}\right) \cdot D\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right)$.
Similar arguments as in (i) and (ii) shows that $r(x)=\sigma_{B}^{(2 n-1)}\left(x_{0}^{(2 n-1)} \cdot x\right)$ and $s(x)=0$.
Moreover from,
$D\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right)=D\left(\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right)\left(\begin{array}{cc}0 & 0 \\ 0 & e_{B}\end{array}\right)\right)=D\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right) \cdot\left(\begin{array}{cc}0 & 0 \\ 0 & \sigma_{B}\left(e_{B}\right)\end{array}\right)+\left(\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right) \cdot D\left(\begin{array}{cc}0 & 0 \\ 0 & e_{B}\end{array}\right)$,
we get $\theta(x)=-\sigma_{A}^{(2 n-1)}\left(x \cdot x_{0}^{(2 n-1)}\right)$.

Lemma 3.3. Let A and B be Banach algebras, let $\sigma_{A} \in \operatorname{Hom}(A), \sigma_{B} \in \operatorname{Hom}(B)$ such that $\sigma_{A}^{2}=\sigma_{A}$ and $\sigma_{B}^{2}=\sigma_{B}$. Let X be a Banach A, B-module. If $\delta_{A}: A \longrightarrow A^{(2 n-1)}$ is a σ_{A}-derivation, then the mapping $D_{\delta_{A}}: T_{\sigma_{A}, \sigma_{B}} \longrightarrow T_{\sigma_{A}, \sigma_{B}}^{(2 n-1)}$ by $D_{\delta_{A}}\left(\begin{array}{ll}a & x \\ 0 & b\end{array}\right)=\left(\begin{array}{cc}\delta_{A}(a) & 0 \\ 0 & 0\end{array}\right)$ is a $\sigma_{A} \oplus \sigma_{B}$-derivation. Futhermore, δ_{A} is σ_{A}-inner if and only if $D_{\delta_{A}}$ is $\sigma_{A} \oplus \sigma_{B}$-inner.

Proof. For each $\left(\begin{array}{cc}a_{1} & x_{1} \\ 0 & b_{1}\end{array}\right),\left(\begin{array}{cc}a_{2} & x_{2} \\ 0 & b_{2}\end{array}\right) \in T_{\sigma_{A}, \sigma_{B}}$ we have

$$
\begin{aligned}
D_{\delta_{A}}\left(\left(\begin{array}{cc}
a_{1} & x_{1} \\
0 & b_{1}
\end{array}\right)\left(\begin{array}{cc}
a_{2} & x_{2} \\
0 & b_{2}
\end{array}\right)\right. & =D_{\delta_{A}}\left(\begin{array}{cc}
a_{1} a_{2} & \sigma_{A}\left(a_{1}\right) \cdot x_{2}+x_{1} \cdot \sigma_{B}\left(b_{2}\right) \\
0 & b_{1} b_{2}
\end{array}\right)=\left(\begin{array}{cc}
\delta_{A}\left(a_{1} a_{2}\right) & 0 \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
\delta_{A}\left(a_{1}\right) \cdot \sigma_{A}\left(a_{2}\right)+\sigma_{A}\left(a_{1}\right) \cdot \delta_{A}\left(a_{2}\right) & 0 \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
\delta_{A}\left(a_{1}\right) & 0 \\
0 & 0
\end{array}\right) \cdot \sigma_{A} \oplus \sigma_{B}\left(\begin{array}{cc}
a_{2} & 0 \\
0 & 0
\end{array}\right)+\sigma_{A} \oplus \sigma_{B}\left(\begin{array}{cc}
a_{1} & 0 \\
0 & 0
\end{array}\right) \cdot\left(\begin{array}{cc}
\delta_{A}\left(a_{2}\right) & 0 \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

The relation above implies that $D_{\delta_{A}}$ is $\sigma_{A} \oplus \sigma_{B}$-derivation. Now, suppose that δ_{A} is σ_{A}-inner. Then there exists $a_{0}^{(2 n-1)} \in A^{(2 n-1)}$ such that $\delta_{A}(a)=\sigma_{A}(a) \cdot a_{0}^{(2 n-1)}-a_{0}^{(2 n-1)} \cdot \sigma_{A}(a)$ for all $a \in A$. Consider $\left(\begin{array}{cc}a_{0}^{(2 n-1)} & 0 \\ 0 & 0\end{array}\right) \in T_{\sigma_{A}, \sigma_{B}}^{(2 n-1)}$, then

$$
\begin{aligned}
D_{\delta_{A}}\left(\begin{array}{ll}
a & x \\
0 & b
\end{array}\right) & =\left(\begin{array}{cc}
\delta_{A}(a) & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
\sigma_{A}(a) \cdot a_{0}^{(2 n-1)}-a_{0}^{(2 n-1)} \cdot \sigma_{A}(a) & 0 \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
\sigma_{A}(a) \cdot a_{0}^{(2 n-1)} & 0 \\
0 & 0
\end{array}\right)-\left(\begin{array}{cc}
a_{0}^{(2 n-1)} \cdot \sigma_{A}(a) & 0 \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
\sigma_{A}(a) & x \\
0 & \sigma_{B}(b)
\end{array}\right) \cdot\left(\begin{array}{cc}
a_{0}^{(2 n-1)} & 0 \\
0 & 0
\end{array}\right)-\left(\begin{array}{cc}
a_{0}^{(2 n-1)} & 0 \\
0 & 0
\end{array}\right) \cdot\left(\begin{array}{cc}
\sigma_{A}(a) & x \\
0 & \sigma_{B}(b)
\end{array}\right)
\end{aligned}
$$

Thus, $D_{\delta_{A}}$ is $\sigma_{A} \oplus \sigma_{B}$-inner.

Conversely, suppose that $D_{\delta_{A}}$ is $\sigma_{A} \oplus \sigma_{B}$-inner. Then there exists $\left(\begin{array}{cc}a_{0}^{(2 n-1)} & x_{0}^{(2 n-1)} \\ 0 & b_{0}^{(2 n-1)}\end{array}\right) \in T_{\sigma_{A}, \sigma_{B}}^{(2 n-1)}$ such that

$$
\begin{aligned}
\left(\begin{array}{cl}
\delta_{A}(a) & 0 \\
0 & 0
\end{array}\right) & =D_{\delta_{A}}\left(\begin{array}{ll}
a & x \\
0 & b
\end{array}\right)=\left(\begin{array}{cc}
\sigma_{A}(a) & 0 \\
0 & \sigma_{B}(b)
\end{array}\right) \cdot\left(\begin{array}{cc}
a_{0}^{(2 n-1)} & x_{0}^{(2 n-1)} \\
0 & b_{0}^{(2 n-1)}
\end{array}\right) \\
& -\left(\begin{array}{cc}
a_{0}^{(2 n-1)} & x_{0}^{(2 n-1)} \\
0 & b_{0}^{(2 n-1)}
\end{array}\right) \cdot\left(\begin{array}{cc}
\sigma_{A}(a) & 0 \\
0 & \sigma_{B}(b)
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\sigma_{A}(a) \cdot a_{0}^{(2 n-1)}+\sigma_{A}^{(2 n-1)}\left(x \cdot x_{0}^{(2 n-1)}\right) & \sigma_{B}^{2}(b) \cdot x_{0}^{(2 n-1)} \\
0 & \sigma_{B}(b) \cdot b_{0}^{(2 n-1)}
\end{array}\right) \\
& -\left(\begin{array}{cc}
a_{0}^{(2 n-1)} \cdot \sigma_{A}(a) & x_{0}^{(2 n-1)} \cdot \sigma_{A}^{2}(a) \\
0 & b_{0}^{(2 n-1)} \cdot \sigma_{B}(b)+\sigma_{B}^{(2 n-1)}\left(x_{0}^{(2 n-1)} \cdot x\right)
\end{array}\right) .
\end{aligned}
$$

It follows that $\delta_{A}(a)=\sigma_{A}(a) \cdot a_{0}^{(2 n-1)}+\sigma_{A}^{(2 n-1)}\left(x \cdot x_{0}^{(2 n-1)}\right)-a_{0}^{(2 n-1)} \cdot \sigma_{A}(a)$, for each $a \in A, x \in X$. Setting $x=0$, we get $\delta_{A}(a)=\sigma_{A}(a) \cdot a_{0}^{(2 n-1)}-a_{0}^{(2 n-1)} \cdot \sigma_{A}(a)$, so δ_{A} is σ_{A}-inner, as required.
Theorem 3.4. Let A and B be unital Banach algebras and X be a $\left(\sigma_{A}, \sigma_{B}\right)$-unital Banach A, B-module. Let $\sigma_{A} \in$ $\operatorname{Hom}(A), \sigma_{B} \in \operatorname{Hom}(B)$ such that $\sigma_{A}^{2}=\sigma_{A}$ and $\sigma_{B}^{2}=\sigma_{B}$. Then for each $n \in N$,

$$
H_{\sigma_{A}, \sigma_{B}}^{1}\left(T_{\sigma_{A}, \sigma_{B}}, T_{\sigma_{A}, \sigma_{B}}^{(2 n-1)}\right) \simeq H_{\sigma_{A}}^{1}\left(A, A^{(2 n-1)}\right) \oplus H_{\sigma_{B}}^{1}\left(B, B^{(2 n-1)}\right)
$$

Proof. Suppose that $\delta: T_{\sigma_{A}, \sigma_{B}} \longrightarrow T_{\sigma_{A}, \sigma_{B}}^{(2 n-1)}$ is a $\sigma_{A} \oplus \sigma_{B}$-derivation. By Lemma 3.2, there exist σ_{A}-derivation $\delta_{A}: A \longrightarrow A^{(2 n-1)}$, and σ_{B}-derivation $\delta_{B}: B \longrightarrow B^{(2 n-1)}$ and $x_{0}^{(2 n-1)} \in X^{(2 n-1)}$ such that

$$
\delta\left(\begin{array}{ll}
a & x \\
0 & b
\end{array}\right)=\left(\begin{array}{cc}
\delta_{A}(a)-\sigma_{A}^{(2 n-1)}\left(x \cdot x_{0}^{(2 n-1)}\right) & x_{0}^{(2 n-1)} \cdot \sigma_{A}(a)-\sigma_{B}(b) \cdot x_{0}^{(2 n-1)} \\
0 & \sigma_{B}^{(2 n-1)}\left(x_{0}^{(2 n-1)} \cdot x\right)+\delta_{B}(b)
\end{array}\right)
$$

It is clear that the map $K: Z^{1}\left(T_{\sigma_{A}, \sigma_{B}}, T_{\sigma_{A}, \sigma_{B}}^{(2 n-1)}\right) \longrightarrow H_{\sigma_{A}}^{1}\left(A, A^{(2 n-1)}\right) \oplus H_{\sigma_{B}}^{1}\left(B, B^{(2 n-1)}\right)$,
defined by $K(\delta)=\left(\delta_{A}+N_{\delta_{A}}^{1}\left(A, A^{(2 n-1)}\right), \delta_{B}+N_{\delta_{B}}^{1}\left(B, B^{(2 n-1)}\right)\right)$ is linear. Then Lemmas 3.2 and 3.3 together with the proof of $[6$, Theorem 3.4], show that the map K is onto and
$\operatorname{ker} K=N^{1}\left(T_{\sigma_{A}, \sigma_{B}}, T_{\sigma_{A}, \sigma_{B}}^{(2 n-1)}\right)$. Thus,

$$
H_{\sigma_{A} \oplus \sigma_{B}}^{1}\left(T_{\sigma_{A}, \sigma_{B}}, T_{\sigma_{A}, \sigma_{B}}^{(2 n-1)}\right) \simeq H_{\sigma_{A}}^{1}\left(A, A^{(2 n-1)}\right) \oplus H_{\sigma_{B}}^{1}\left(B, B^{(2 n-1)}\right)
$$

Corollary 3.5. Let A and B be unital Banach algebras and $\sigma_{A} \in \operatorname{Hom}(A), \sigma_{B} \in \operatorname{Hom}(B)$ such that $\sigma_{A}^{2}=\sigma_{A}$ and $\sigma_{B}^{2}=\sigma_{B}$. Let X be a $\left(\sigma_{A}, \sigma_{B}\right)$-unital Banach A, B-module. Then $T_{\sigma_{A}, \sigma_{B}}$ is $\sigma_{A} \oplus \sigma_{B}$-weakly amenable if and only if A is σ_{A}-weakly amenable and B is σ_{B}-weakly amenable.

Let A, B be Banach algebras and X be a Banach A, B-module. Then, X is called essential, if $\overline{A \cdot X}=X=$ $\overline{X \cdot B}$. A Banach A, B-module X is non-degenerate, if $A \cdot x=0$ implies $x=0$ and $x \cdot B=0$ implies $x=0$ for all $x \in X$. It is easily see that if X is essential then X^{*} is a non-degenerate Banach B, A-module. Moreover, for a Banach algebra A with a bounded approximate identity, A^{*} is non-degenerate.

Definition 3.6. Let A, B be Banach algebras, X be a Banach A, B-module and $\sigma_{A} \in \operatorname{Hom}(A), \sigma_{B} \in \operatorname{Hom}(B)$. We say that X is $\left(\sigma_{A}, \sigma_{B}\right)$-essential, if $\overline{\sigma_{A}(A) \cdot X}=X=\overline{X \cdot \sigma_{B}(B)}$. Furthermore, X is $\left(\sigma_{A}, \sigma_{B}\right)$-non-degenerate, if $\sigma_{A}(A) \cdot x=0$ implies $x=0$ and $x \cdot \sigma_{B}(B)=0$ implies $x=0$.

It is easily checked that if X is $\left(\sigma_{A}, \sigma_{B}\right)$-essential or $\left(\sigma_{A}, \sigma_{B}\right)$-non-degenerate then, it is essential or nondegenerate. The following lemma is easily proved.

Lemma 3.7. Let A have a bounded approximate identity and let $S: A \longrightarrow X^{*}$ be a right (left) σ - A-module homomorphism. Then there is a $x_{0}^{*} \in X^{*}$ such that $S(a)=x_{0}^{*} \cdot \sigma(a)\left(S(a)=\sigma(a) \cdot x_{0}^{*}\right)$ for all $a \in A$.

Theorem 3.8. Let A and B be Banach algebras and $\sigma_{A} \in \operatorname{Hom}(A), \sigma_{B} \in \operatorname{Hom}(B)$ such that $\sigma_{A}^{2}=\sigma_{A}$ and $\sigma_{B}^{2}=\sigma_{B}$. Let A have a bounded approximate identity, let $A^{(2 n-1)}$ be σ_{A}-non-degenerate, $B^{(2 n-1)}$ be σ_{B}-non-degenerate and $X^{(2 n-1)}$ be $\left(\sigma_{B}, \sigma_{A}\right)$-non-degenerate. Then for each $n \in \mathbb{N}$,

$$
H_{\sigma_{A} \oplus \sigma_{B}}^{1}\left(T_{\sigma_{A}, \sigma_{B}}, T_{\sigma_{A}, \sigma_{B}}^{(2 n-1)}\right) \simeq H_{\sigma_{A}}^{1}\left(A, A^{(2 n-1)}\right) \oplus H_{\sigma_{B}}^{1}\left(B, B^{(2 n-1)}\right) .
$$

Proof. Suppose that $D: T_{\sigma_{A}, \sigma_{B}} \longrightarrow T_{\sigma_{A}, \sigma_{B}}^{(2 n-1)}$ is a $\sigma_{A} \oplus \sigma_{B}$-derivation. By Lemmas 3.2 and 3.7, there exist σ_{A}-derivation $\delta_{A}: A \longrightarrow A^{(2 n-1)}, \sigma_{B}$-derivation $\delta_{B}: B \longrightarrow B^{(2 n-1)}$, and $x_{0}^{(2 n-1)} \in X^{(2 n-1)}$ such that $D\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)=$ $\left(\begin{array}{cc}\delta_{A}(a) & x_{0}^{(2 n-1)} \cdot \sigma_{A}(a) \\ 0 & 0\end{array}\right)$. Now set $D\left(\begin{array}{ll}0 & 0 \\ 0 & b\end{array}\right)=\left(\begin{array}{cc}\theta(b) & r(b) \\ 0 & \delta_{B}(b)\end{array}\right)$. By Lemma 3.2, we obtain $\delta_{B}: B \longrightarrow B^{(2 n-1)}$ is a σ_{B}-derivation, $\theta(b) \cdot \sigma_{A}(a)=0$ and $-\sigma_{B}(b) \cdot x_{0}^{(2 n-1)} \cdot \sigma_{A}(a)=r(b) \cdot \sigma_{A}(a)$ for each $a \in A, b \in B$. Since $A^{(2 n-1)}$ is σ_{A}-non-degenerate and $X^{(2 n-1)}$ is $\left(\sigma_{B}, \sigma_{A}\right)$-non-degenerate, we have $\theta(b)=0$ and $r(b)=-\sigma_{B}(b) \cdot x_{0}^{(2 n-1)}$, hence $D(b)=\left(\begin{array}{cc}0 & -\sigma_{B}(b) \cdot x_{0}^{(2 n-1)} \\ 0 & \delta_{B}(b)\end{array}\right)$. For $D\left(\begin{array}{cc}0 & x \\ 0 & b\end{array}\right)=\left(\begin{array}{cc}\theta(x) & r(x) \\ 0 & s(x)\end{array}\right)$. From the equation

$$
\begin{aligned}
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) & =D\left(\left(\begin{array}{ll}
0 & x \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right)\right) \\
& =\left(\begin{array}{cc}
\theta(x) & r(x) \\
0 & s(x)
\end{array}\right) \cdot\left(\begin{array}{cc}
\sigma_{A}(a) & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & x \\
0 & 0
\end{array}\right) \cdot\left(\begin{array}{cc}
\delta_{A}(a) & x_{0}^{(2 n-1)} . \sigma_{A}(a) \\
0 & 0
\end{array}\right)
\end{aligned}
$$

We have $r(x) \cdot \sigma_{A}(a)=0$ and $\theta(x) \cdot \sigma_{A}(a)+\sigma_{A}^{(2 n-1)}\left(x \cdot x_{0}^{(2 n-1)} \cdot \sigma_{A}(a)\right)=0$, hence $\left(\theta(x)+\sigma_{A}^{(2 n-1)}\left(x \cdot x_{0}^{(2 n-1)}\right)\right) \cdot \sigma_{A}(a)=0$ because $\sigma_{A}^{2}=\sigma_{A}$. Since $A^{(2 n-1)}$ is σ_{A}-non-degenerate and $X^{(2 n-1)}$ is $\left(\sigma_{B}, \sigma_{A}\right)$-non-degenerate, we conclude that $r(x)=0$ and $\theta(x)=-\sigma_{A}^{(2 n-1)}\left(x \cdot x_{0}^{(2 n-1)}\right)$. Similarly $s(x)=\sigma_{A}^{(2 n-1)}\left(x_{0}^{(2 n-1)} \cdot x\right)$. Consequently

$$
D\left(\begin{array}{ll}
a & x \\
0 & b
\end{array}\right)=\left(\begin{array}{cc}
\delta_{A}(a)-\sigma_{A}^{(2 n-1)}\left(x \cdot x_{0}^{(2 n-1)}\right) & x_{0}^{(2 n-1)} \cdot \sigma_{A}(a)-\sigma_{B}(b) \cdot x_{0}^{(2 n-1)} \\
0 & \delta_{B}(b)+\sigma_{A}^{(2 n-1)}\left(x_{0}^{(2 n-1)} \cdot x\right)
\end{array}\right)
$$

The rest of proof follows from Theorem 3.4.
Definition 3.9. Let A be a Banach algebra. We say that A has a σ-bounded approximate identity, if there exists a bounded net $\left(e_{\alpha}\right) \subseteq A$ such that

$$
\sigma\left(e_{\alpha}\right) \cdot a \rightarrow a, a \cdot \sigma\left(e_{\alpha}\right) \rightarrow a \quad(a \in A) .
$$

Corollary 3.10. Let A and B be Banach algebras and $\sigma_{A} \in \operatorname{Hom}(A), \sigma_{B} \in \operatorname{Hom}(B)$ such that $\sigma_{A}^{2}=\sigma_{A}$ and $\sigma_{B}^{2}=\sigma_{B}$. Let A have a σ_{A}-bounded approximate identity and B have a σ_{B}-bounded approximate identity, and X be a $\left(\sigma_{A}, \sigma_{B}\right)$ essential. Then $T_{\sigma_{A}, \sigma_{B}}$ is $\sigma_{A} \oplus \sigma_{B}$-weakly amenable if and only if A is σ_{A}-weakly amenable and B is σ_{B}-weakly amenable.

Proof. It is easy to show that A^{*} is σ_{A}-non-degenerate, B^{*} is σ_{B}-non-degenerate and X^{*} is $\left(\sigma_{A}, \sigma_{B}\right)$-nondegenerate. Thus, it is immediate by Theorem 3.8.

4. $\sigma_{A} \oplus \sigma_{B}$-biflatness and biprojectivity of $T_{\sigma_{A}, \sigma_{B}}$

Suppose that A_{1}, \ldots, A_{n} are Banach algebras. Then their direct sum $A=\oplus_{k=1}^{n} A_{k}$ with componentwise operations and l^{1}-norm is a Banach algebra. We write $\phi_{k}: A_{k} \longrightarrow A$ for the natural embedding A_{k} into A, $1 \leq k \leq n$. Take $\sigma_{k} \in \operatorname{Hom}\left(A_{k}\right), 1 \leq k \leq n$, and define $\sigma:=\oplus_{k=1}^{n} \sigma_{k}: A \longrightarrow A$ via $\sigma(a)=\left(\sigma_{1}\left(a_{1}\right), \ldots, \sigma_{n}\left(a_{n}\right)\right)$ for every $a=\left(a_{1}, \ldots, a_{n}\right) \in A$. Then, it is easy to see that $\sigma \in \operatorname{Hom}(A)$.

Theorem 4.1. Let $A_{1}, A_{2}, \ldots, A_{n}$ be Banach algebras, and $A=\oplus_{k=1}^{n} A_{k}$. Then
(i) A is σ-biflat if and only if every A_{k} is σ_{k}-biflat, $1 \leq k \leq n$;
(ii) A is σ-biprojective if and only if every A_{k} is σ_{k}-biprojective, $1 \leq k \leq n$.

Proof. We only prove (i). Suppose that A is σ-biflat, so there exists a bounded linear map $\rho:(\widehat{\otimes} A)^{*} \longrightarrow A^{*}$ satisfying $\rho(\sigma(a) \cdot \lambda)=a \cdot \rho(\lambda)$ and $\rho(\lambda \cdot \sigma(a))=\rho(\lambda) \cdot a$ for $a \in A, \lambda \in(A \widehat{\otimes} A)^{*}$ such that $\rho \circ \pi^{*}=\sigma^{*}$. Consider the bounded σ - A-bimodule homomorphism $s: A \longrightarrow A \widehat{\otimes} A$ such that $s^{*}=\rho$. Then $\pi \circ s=\sigma$. Take the projection $p_{k}: A \longrightarrow A_{k}$, and then define $\rho_{k}:=\phi_{k}^{*} \circ \rho \circ\left(p_{k} \otimes p_{k}\right)^{*}:\left(A_{k} \widehat{\otimes} A_{k}\right)^{*} \longrightarrow\left(A_{k}\right)^{*}, 1 \leq k \leq n$. So for each $a_{k}, b_{k} \in A_{k}, \lambda_{k} \in\left(A_{k} \widehat{\otimes} A_{k}\right)^{*}$,

$$
\begin{aligned}
\left\langle\rho_{k}\left(\sigma_{k}\left(a_{k}\right) \cdot \lambda_{k}\right), b_{k}\right\rangle & =\left\langle\sigma_{k}\left(a_{k}\right) \cdot \lambda_{k}\left(p_{k} \otimes p_{k}\right) \circ s \circ \phi_{k}\left(b_{k}\right)\right\rangle \\
& =\left\langle\lambda_{k}\left(p_{k} \otimes p_{k}\right) \circ s \circ \phi_{k}\left(b_{k}\right) \cdot \sigma_{k}\left(a_{k}\right)\right\rangle \\
& =\left\langle\lambda_{k},\left(p_{k} \otimes p_{k}\right)\left(s \circ \phi_{k}\left(b_{k}\right) \cdot\left(0, \ldots, 0, \sigma_{k}\left(a_{k}\right), 0, \ldots, 0\right)\right)\right\rangle \\
& =\left\langle\lambda_{k},\left(p_{k} \otimes p_{k}\right)\left(s\left(\phi_{k}\left(b_{k} a_{k}\right)\right)\right)\right\rangle \\
& =\left\langle a_{k} \cdot\left(\phi_{k}^{*} \circ \rho \circ\left(p_{k} \otimes p_{k}\right)^{*}\right)\left(\lambda_{k}\right), b_{k}\right\rangle=\left\langle a_{k} \cdot \rho_{k}\left(\lambda_{k}\right), b_{k}\right\rangle .
\end{aligned}
$$

We get $\rho_{k}\left(\sigma_{k}\left(a_{k}\right) \cdot \lambda_{k}\right)=a_{k} \cdot \rho_{k}\left(\lambda_{k}\right)$ and similarly $\rho_{k}\left(\lambda_{k} \cdot \sigma_{k}\left(a_{k}\right)\right)=\rho_{k}\left(\lambda_{k}\right) \cdot a_{k}$. For the diagonal operator $\pi_{k}: A_{k} \widehat{\otimes} A_{k} \longrightarrow A_{k}$, because $\left(p_{k} \otimes p_{k}\right)^{*} \circ \pi_{k}^{*}=\pi^{*} \circ p_{k^{\prime}}^{*}$ we see that $\rho_{k} \circ \pi_{k}^{*}=\phi_{k}^{*} \circ \rho \circ\left(p_{k} \otimes p_{k}\right)^{*} \circ \pi_{k}^{*}=$ $\phi_{k}^{*} \circ \rho \circ \pi^{*} \circ p_{k}^{*}=\phi_{k}^{*} \circ \sigma^{*} \circ p_{k}^{*}=\sigma_{k}^{*}$. Thus $\rho_{k} \circ \pi_{k}^{*}=\sigma_{k^{\prime}}^{*}$ which implies that A_{k} is σ_{k}-biflat, $1 \leq k \leq n$.

Conversely, suppose that A_{k} is σ_{k}-biflat for each $1 \leq k \leq n$. Hence there are bounded linear maps $\rho_{k}:\left(A_{k} \widehat{\otimes} A_{k}\right)^{*} \longrightarrow A_{k}^{*}$ with $\rho_{k}\left(\sigma_{k}\left(a_{k}\right) \cdot \lambda_{k}\right)=a_{k} \cdot \rho_{k}\left(\lambda_{k}\right)$ and $\rho_{k}\left(\lambda_{k} \cdot \sigma_{k}\left(a_{k}\right)\right)=\rho_{k}\left(\lambda_{k}\right) \cdot a_{k}$, where $a_{k} \in A_{k}$, $\lambda_{k} \in\left(A_{k} \widehat{\otimes} A_{k}\right)^{*}$ such that $\rho_{k} \circ \pi_{k}^{*}=\sigma_{k}^{*}, 1 \leq k \leq n$. Define $\rho:(\widehat{\otimes} A)^{*} \longrightarrow A^{*}$ by $\rho(\lambda)=\sum_{k=1}^{n} p_{k}^{*} \circ \rho_{k} \circ\left(\phi_{k} \otimes \phi_{k}\right)^{*}(\lambda)$. Therefore for each $a \in A, \lambda \in(A \widehat{\otimes} A)^{*}$, we have

$$
\begin{aligned}
\rho(\sigma(a) \cdot \lambda) & =\sum_{k=1}^{n} p_{k}^{*} \circ \rho_{k} \circ\left(\phi_{k} \otimes \phi_{k}\right)^{*}(\sigma(a) \cdot \lambda) \\
& =\sum_{k=1}^{n} p_{k}^{*} \circ \rho_{k}\left(\sigma_{k}\left(a_{k}\right) \cdot\left(\phi_{k} \otimes \phi_{k}\right)^{*}(\lambda)\right) \\
& =\sum_{k=1}^{n} p_{k}^{*}\left(a_{k} \cdot\left(\rho_{k} \circ\left(\phi_{k} \otimes \phi_{k}\right)^{*}(\lambda)\right)\right) \\
& =a \cdot\left(\sum_{k=1}^{n} p_{k}^{*} \circ \rho_{k} \circ\left(\phi_{k} \otimes \phi_{k}\right)^{*}(\lambda)\right) \\
& =a \cdot \rho(\lambda)
\end{aligned}
$$

Similarly $\rho(\lambda \cdot \sigma(a))=\rho(\lambda) \cdot a$. As $\left(\phi_{k} \otimes \phi_{k}\right)^{*} \circ \pi^{*}=\pi_{k}^{*} \circ \phi_{k^{\prime}}^{*}$ thus

$$
\begin{aligned}
\rho \circ \pi^{*} & =\sum_{k=1}^{n} p_{k}^{*} \circ \rho_{k} \circ\left(\phi_{k} \otimes \phi_{k}\right)^{*} \circ \pi^{*} \\
& =\sum_{k=1}^{n} p_{k}^{*} \circ \rho_{k} \circ \pi_{k}^{*} \circ \phi_{k}^{*} \\
& =\sum_{k=1}^{n} p_{k}^{*} \circ \sigma_{k}^{*} \circ \phi_{k}^{*} \\
& =\sigma^{*} .
\end{aligned}
$$

Therefore A is σ-biflat.

Lemma 4.2. Let A be a Banach algebra and $\sigma \in \operatorname{Hom}(A)$ such that $\sigma^{2}=\sigma$. Let $N \subseteq A$ be a closed complemented ideal where $\sigma(N)=N$ and $N^{2}=0$. Then $\sigma(A) N \cap \overline{N \sigma(A)}=0$

Proof. Let $i: N \longrightarrow A$ be the inclusion map, $q: A \longrightarrow \frac{A}{N}$ be the quotient map, I_{A}, I_{N} and $I_{\frac{A}{N}}$ be the identity maps on A, N and $\frac{A}{N}$, respectively, and let $p: \frac{A}{N} \widehat{\otimes} N \longrightarrow N$ be the map defined by $p((a+N) \otimes c)=a c$ for each $a+N \in \frac{A}{N}$ and $c \in N$. Suppose to wards a contraction that $\sigma(A) N \cap \overline{N \sigma(A)} \neq 0$. Suppose that $0 \neq \sigma(a) c \in \sigma(A) N \cap \overline{N \sigma(A)}$ where $a \in A, c \in N$. Hence $\sigma(a) c \in \overline{N \sigma(A)}$, so there exists sequences $\left(\sigma\left(a_{n}\right)\right) \subseteq \sigma(A)$ and $\left(c_{n}\right) \subseteq N$ such that $\sigma(a) c=\lim _{n \rightarrow \infty} c_{n} \sigma\left(a_{n}\right)$. Since A is σ-biflat, then there is a σ - A-bimodule homomorphism $\rho: A \longrightarrow(A \widehat{\otimes} A)^{* *}$ such that $\pi^{* *} \circ \rho=\sigma$. For $b \in N$, let $R_{b}\left(L_{b}\right): A \longrightarrow N$ be the map of right (resp.left) multiplication by b. Consider the operator $q \otimes R_{c}: A \widehat{\otimes} A \longrightarrow \frac{A}{N} \widehat{\otimes} N$ and let $d=\left(\left(q \otimes R_{c}\right)^{* *} \circ \rho\right) \sigma(a)$. We have $p \circ\left(q \otimes R_{c}\right)=R_{c} \circ \pi$ and so $p^{* *} \circ\left(q \otimes R_{c}\right)^{* *}=R_{c}^{* *} \circ \pi^{* *}$. As a result $p^{* *}(d)=\left(p^{* *} \circ\left(q \otimes R_{c}\right)^{* *} \circ \rho\right) \sigma(a)=\left(\left(R_{c}^{* *} \circ \pi^{* *}\right) \circ \rho\right)(\sigma(a))=R_{c}^{* *}\left(\left(\pi^{* *} \circ \rho\right)(\sigma(a))\right)=R_{c}^{* *}\left(\sigma^{2}(a)\right)=\sigma(a) c \neq 0$, thus $d \neq 0$. By the assumption there exists $c_{1} \in N$ such that $\sigma\left(c_{1}\right)=c$. As the proof of [9, Lemma 2.3], we have

$$
\begin{aligned}
\left(I_{\frac{A}{N}} \otimes i\right)^{* *}(d) & =\left(\left(\left(I_{\frac{A}{N}} \otimes i\right)^{* *} \circ\left(q \otimes R_{c}\right)^{* *} \circ \rho\right)(\sigma(a))\right. \\
& =\left(\left(\left(I_{\frac{A}{N}} \otimes i\right) \circ\left(q \otimes I_{N}\right) \circ\left(I_{A} \otimes R_{c}\right)\right)^{* *} \circ \rho\right)(\sigma(a)) \\
& =\left(\left(\left(q \otimes I_{A}\right) \circ\left(I_{A} \otimes i\right) \circ\left(I_{A} \otimes R_{c}\right)\right)^{* *} \circ \rho\right)(\sigma(a)) \\
& =\left(q \otimes I_{A}\right)^{* *}(\rho(\sigma(a)) \cdot c) \\
& =\left(q \otimes I_{A}\right)^{* *}\left(\rho(\sigma(a)) \cdot \sigma^{2}\left(c_{1}\right)\right) \\
& =\left(q \otimes I_{A}\right)^{* *}\left(\rho\left(\sigma(a) \sigma\left(c_{1}\right)\right)\right) \\
& =\left(q \otimes I_{A}\right)^{* *}(\rho(\sigma(a) c)) \\
& =\left(q \otimes I_{A}\right)^{* *}\left(\lim _{n \rightarrow \infty} \sigma\left(c_{n}\right) \rho\left(\sigma\left(a_{n}\right)\right)\right) \\
& =\lim _{n \rightarrow \infty}\left((q \otimes I _ { A }) ^ { * * } \circ \left(\left(i \circ L_{\sigma\left(c_{n}\right)} \otimes I_{A}\right)^{* *}\left(\rho\left(\sigma\left(a_{n}\right)\right)\right)\right.\right. \\
& =\lim _{n \rightarrow \infty}\left((q \otimes I _ { A }) ^ { * * } \circ ((i \otimes I _ { A }) \circ (L _ { \sigma (c _ { n }) } \otimes I _ { A })) ^ { * * } \left(\rho\left(\sigma\left(a_{n}\right)\right)\right.\right. \\
& =\lim _{n \rightarrow \infty}\left(\left(q \circ i \circ L_{\sigma\left(c_{n}\right)}\right) \otimes I_{A}\right)^{* *}\left(\rho\left(\sigma\left(a_{n}\right)\right)=0\right.
\end{aligned}
$$

The last equality is hold because of $q \circ i \circ L_{\sigma}\left(c_{n}\right)=0$. Since N is a complemented closed ideal in A, then the map $I_{\frac{A}{N}} \otimes i$ is injective and has closed range and hence $\left(I_{\frac{A}{N}} \otimes i\right)^{* *}$ is injective by [5, A.3.48]. This contradicts $d=0$. Therefore $\sigma(A) N \cap \overline{N \sigma(A)}=0$.

Theorem 4.3. Let A be a Banach algebra and $\sigma \in \operatorname{Hom}(A)$ where $\sigma^{2}=\sigma$. Let $N \subseteq A$ be a closed σ-essential ideal, that is, $\overline{\sigma(A) N}=\overline{N \sigma(A)}=N$. Let $\sigma(N)=N$ and $N^{2}=0$. If A is σ-biflat, then A is not complement.

Proof. Since $\sigma(A) N \subseteq N \subseteq \overline{N \sigma(A)}$. According to Lemma 4.2, $N=0$, this is a contradiction.
Theorem 4.4. Let A and B be Banach algebras and $\sigma_{A} \in \operatorname{Hom}(A), \sigma_{B} \in \operatorname{Hom}(B)$ such that $\sigma_{A}^{2}=\sigma_{A}, \sigma_{B}^{2}=\sigma_{B}$. Let X be a $\left(\sigma_{A}, \sigma_{B}\right)$-essential module. Then the triangular Banach algebra $T_{\sigma_{A}, \sigma_{B}}=\left(\begin{array}{cc}A & X \\ 0 & B\end{array}\right)$ is $\sigma_{A} \oplus \sigma_{B}$-biflat if and only if A is σ_{A}-biflat and B is σ_{B}-biflat and $X=0$.

Proof. Suppose A is σ_{A}-biflat and B is σ_{B}-biflat and $X=0$. Then $T_{\sigma_{A}, \sigma_{B}}$ is the l^{1}-direct sum of A and B, thus by Theorem 4.1, it is $\sigma_{A} \oplus \sigma_{B}$-biflat.

Conversely, suppose that $T_{\sigma_{A}, \sigma_{B}}$ is $\sigma_{A} \oplus \sigma_{B}$-biflat. The closed ideal $N=\left(\begin{array}{ll}0 & X \\ 0 & 0\end{array}\right)$ of $T_{\sigma_{A}, \sigma_{B}}$ is complemented closed ideal of $T_{\sigma_{A}, \sigma_{B}}$ such that $\left(\begin{array}{cc}0 & X \\ 0 & 0\end{array}\right)^{2}=0$ and $\sigma_{A} \oplus \sigma_{B}\left(\begin{array}{ll}0 & X \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}0 & X \\ 0 & 0\end{array}\right)$ and
$\left(\begin{array}{cc}0 & X \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}0 & \overline{\sigma_{A}(A) N} \\ 0 & 0\end{array}\right)=\left(\sigma_{A} \oplus \sigma_{B}\left(\begin{array}{cc}A & X \\ 0 & B\end{array}\right)\left(\begin{array}{cc}0 & X \\ 0 & 0\end{array}\right)^{-}\right.$,
$\left(\begin{array}{cc}0 & X \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}0 & \overline{X \sigma_{B}(B)} \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}0 & X \\ 0 & 0\end{array}\right) \sigma_{A} \oplus \sigma_{B}\left(\left(\begin{array}{cc}A & X \\ 0 & B\end{array}\right)\right)^{-}$.
Hence by Theorem 4.3, we conclude $X=\left(\begin{array}{cc}0 & X \\ 0 & 0\end{array}\right)=0$. Therefore $T_{\sigma_{A}, \sigma_{B}}$ is the l^{1}-direct sum of A and B. By Theorem 4.1, A is σ_{A}-biflat and B is σ_{B}-biflat.

Theorem 4.5. Let A and B be Banach algebras and $\sigma_{A} \in \operatorname{Hom}(A), \sigma_{B} \in \operatorname{Hom}(B)$ such that $\sigma_{A}^{2}=\sigma_{A}$. Let X be a $\left(\sigma_{A}, \sigma_{B}\right)$-essential module. Then the triangular Banach algebra $T_{\sigma_{A}, \sigma_{B}}=\left(\begin{array}{cc}A & X \\ 0 & B\end{array}\right)$ is $\sigma_{A} \oplus \sigma_{B}$-biprojective if and only if A is σ_{A}-biprojective and B is σ_{B}-biprojective and $X=0$.

Proof. Suppose that $T_{\sigma_{A}, \sigma_{B}}$ is $\sigma_{A} \oplus \sigma_{B}$-biprojective, so $T_{\sigma_{A}, \sigma_{B}}$ is $\sigma_{A} \oplus \sigma_{B}$-biflat. By Theorem 4.4, $X=0$. Hence $T_{\sigma_{A}, \sigma_{B}}$ is the l^{1}-direct sum A and B, thus by Theorem 4.1, A is σ_{A}-biprojective and B is σ_{B}-biprojective. Conversely, if $X=0$ and A is σ_{A}-biprojective and B is σ_{B}-biprojective then $T_{\sigma_{A}, \sigma_{B}}$ is the l^{1}-direct sum A and B, Thus by Theorem 4.1, it is $\sigma_{A} \oplus \sigma_{B}$-biprojective.

Acknowledgments

The authors would like to thank the anonymous for the comments to improve the paper.

References

[1] S. Behnamian, A. Mahmoodi, Amenability properties of $T_{\sigma_{A}, \sigma_{B}}$, Honam Math. J. 42 (2020) 37-48.
[2] A. Bodaghi, Module (φ, ψ)-amenability of Banach algebras, Arch. Math (Brno). 46 (2010), no. 4, 227-235.
[3] A. Bodaghi, M. Eshaghi Gordji and A. R. Medghalchi, A generalization of the weak amenability of Banach algebras, Banach J. Math. Anal. 3 (2009), no. 1, 131-142.
[4] A. Bodaghi, B. Shojaee, A generalized notion of n-weak amenability, Mathematica Bohemica, 139 (2014), no. 1, 99-112.
[5] H. G. Dales, Banach algebras and automatic continuity, London Mathematical Society Monograps, Clarendon Press, 2000.
[6] B. E. Forrest, L. W. Marcoux, Weak amenability of triangular Banach algebras, Trans. Amer. Math. Soc. 354 (2002) 1435-1452.
[7] S. Haddad Sabzevar, A. Mahmoodi, σ-Biflat Banach Algebras; the older and the new notions, Iran. J. Sci. Tech. Trans. A. 43 (2019) 2975-2980.
[8] Z. Hasanzadeh, A. Mahmoodi, σ-Connes amenability and pseudo-(Connes) amenability of Beurling algebras, Sahand Commu. Math. Anal. 15 (2019) 77-89.
[9] A. R. Medghalchi, M. H. Sattari, Biflatness and biprojectivity of triangular Banach algebras, Bull. Iran. Math. Soc., 34 (2008) 115-120.
[10] A. R. Medghalchi, M. H. Sattari, T. Yazdanpanah, Amenability and weak amenability of triangular Banach algebras, Bull. Iran. Math. Soc. 31 (2005) 57-69.
[11] M. Mirzavaziri, M. S. Moslehian, σ-Derivations in Banach algebras, Bull. Iran. Math. Soc. 32 (2006) 65-78.
[12] V. Runde, Lectures on amenability, Lecture Notes in Mathematics 1774, Springer Verlag, 2002.
[13] T. Yazdanpanah, I. Mozzami Zadeh, σ-weak amenability of Banach Algebras, Int. J. Nonlinear Anal. Appl. 4 (2013) 66-73.
[14] T. Yazdanpanah, H. Najafi, σ-Contractible and σ-Biprojective Banach Algebras, Quaestions Math. 33 (2010) 485-495.

[^0]: 2020 Mathematics Subject Classification. Primary 46H25; Secondary 16E40, 43A20
 Keywords. Amenability, weak amenability, Triangular Banach Algebras
 Received: 07 May 2021; Accepted: 21 February 2022
 Communicated by Dragan S. Djordjević
 Corresponding Author: Behrouz Shojaee
 Email addresses: alirezajaberii1350@gmail.com (Alireza Jaberi), shoujaei@kiau.ac.ir (Behrouz Shojaee), aminmahmoodikebria@gmail.com (Amin Mahmoodi)

