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Abstract. The notion of the weighted (b, c)-inverse of an element in rings were introduced very recently.
In this paper, we further elaborate on this theory by establishing a few characterizations of this inverse
and their relationships with other (v,w)-weighted (b, c)-inverses. We discuss a few necessary and sufficient
conditions for the existence of the hybrid (v,w)-weighted (b, c)-inverse and the annihilator (v,w)-weighted
(b, c)-inverse of an element in a ring. In addition, we explore a few sufficient conditions for the reverse-order
law of the annihilator (v,w)-weighted (b, c)-inverses.

1. Introduction

1.1. Background and motivation
The theory of generalized inverses has generated tremendous interest in many research areas in mathe-

matics [1, 11, 17, 20, 22–24, 26]. Several types of generalized inverses are available in the literature, such as
Moore-Penrose inverse [15], group inverse [12], Drazin inverse [6], and core inverse [23]. It is worth men-
tioning that Drazin in [7] introduced (b, c)-inverse in the setting of a semigroup, which is a generalization
of Moore–Penrose inverse. Further, the notion of (b, c)-inverse [2, 3, 13, 14] extended to rings along with
various characterizations and representations [29]. The concepts of annihilator (b, c)-inverses and hybrid
(b, c)-inverses were established as generalizations of (b, c)-inverses in [7]. Further, several characterizations
of hybrid and annihilator (b, c)-inverse have been discussed in [27, 28]. Mary proposed the inverse along
an element (see [18] Definition 4), as a new type of generalized inverse. Many researchers [8, 9] explored
numerous properties of these inverses and interconnections with other generalized inverses. Among the ex-
tensive work of generalized inverses, there has been a growing interest in “weighted” generalized inverses
[5, 19, 25] for encompassing the above-mentioned generalized inverses.

In connection with the theory of (b, c)-inverses (see [7], Definition 1.3 and [21]) and the Bott-Duffin
inverse [4], Drazin explored the Bott-Duffin (e, f )-inverse (see [7], Definition 3.2) in a semigroup. Further,
“(v,w)-weighted version” of (b, c)-inverses are introduced in [10], e.g., annihilator (v,w)-weighted (b, c)-
inverses (see Definition 4.1) and hybrid (v,w)-weighted (b, c)-inverses (see Definition 4.2). The vast work on
the hybrid and annihilator (b, c)-inverse along with the above weighted (b, c)-inverse, motivate us to study
a few characterizations and representations for hybrid and annihilator (v,w)-weighted (b, c)-inverse.

More precisely, the main contributions of this paper are as follows:
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• A few necessary and sufficient conditions for the existence of the (v,w)-weighted (b, c) inverses of
elements in rings are introduced.

• Some characterizations of the (v,w)-weighted hybrid (b, c)-inverse and annihilator (v,w)-weighted
(b, c)-inverses are investigated.

• The construction of the (v,w)-weighted hybrid (b, c)-inverse via group inverse is presented.

1.2. Outline
Our presentation is organized as follows. We present some notations and definitions in Section 2.

In Section 3, we have discussed a few characterizations for the (v,w)-weighted (b, c)-inverse. Various
equivalent properties of the hybrid (v,w)-weighted (b, c)-inverse are presented in Section 4. In Section 5,
we study the representation of the annihilator (v,w)-weighted (b, c)-inverse. The contribution of our work
is summarized in Section 6.

2. Preliminaries

Throughout this paper, R is an associative ring with unity 1. The sets of all left annihilators and right
annihilators of a are respectively defined by

lann(a) = {x ∈ R : xa = 0} and rann(a) = {z ∈ R : az = 0}.

We denote the left and right ideals by aR = {ar : r ∈ R} and Ra = {za : z ∈ R}. An element y ∈ R is called
generalized or inner inverse of a ∈ R if aya = a. If such y exist, we say a is regular. The set of inner inverses
of a is denoted by a{1} and an inner inverse of a is represented by a−. The following result proved in [16],
gives the relation between ideals and annihilators.

Proposition 2.1. If a is idempotent then rann(a) = (1 − a)R and lann(a) = R(1 − a).

Next, we recall the definition of group inverse [6] of an element in R. An element y is called group
inverse of a ∈ R if aya = a, yay = y, and ay = ya. The group inverse of a is denoted by a#. The necessary
and sufficient condition for the existence of group inverse is stated in the next result.

Lemma 2.2. [12, Theorem 1] Let a ∈ R. Then a is group invertible if and only if a ∈ a2
R ∩ Ra2.

We now recall the “(v,w)-weighted” version of (b, c) inverse.

Definition 2.3. [10, Theorem 2.1 (i)] Let a, b, c, v,w ∈ R. An element y ∈ R satisfying

y ∈ bRwy ∩ yvRc, yvawb = b and cvawy = c,

is called the (v,w)-weighted (b, c)-inverse of a and denoted by av,w
b,c .

In [10], Drazin proved that [see Theorem 2.4, [10] for a proof] av,w
b,c is unique if exists.

An equivalent characterization of the (v,w)-weighted (b, c)-inverse is presented below.

Lemma 2.4. [10, Theorem 2.1 and 2.8] Let a, b, c, v,w ∈ R. Then the following conditions are equivalent:

(i) a has a (v,w)-weighted (b, c)-inverse.

(ii) c ∈ cvawbR and b ∈ Rcvawb.

(iii) there exists y ∈ R such that yvawy = y, yvR = bR and Rwy = Rc.

Following the definition (see [18], Definition 4) of the inverse along an element of R, we next, define
(v,w)-weighted inverse of a along d ∈ R.

Definition 2.5. Let a, d, v,w ∈ R. An element y ∈ R satisfying
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yvawd = d = dvawy, Rwy ⊆ Rd and yvR ⊆ dR,

is called the (v,w)-weighted inverse of a along d ∈ R and denoted by av,w
∥d .

Here is an example illustrating the above definition.

Example 2.6. Let R = M2(R), with a =
[
1 1
0 0

]
, v =

[
1 1
0 −1

]
, w =

[
0 1
1 0

]
, and d =

[
1 2
0 0

]
. Since the matrix

y =
[
1 2
0 0

]
satisfies

yvawd =
[
1 2
0 0

]
·

[
1 1
0 −1

]
·

[
1 1
0 0

]
·

[
0 1
1 0

]
·

[
1 2
0 0

]
=

[
1 2
0 0

]
= d,

dvawy =
[
1 2
0 0

]
·

[
1 1
0 −1

]
·

[
1 1
0 0

]
·

[
0 1
1 0

]
·

[
1 2
0 0

]
=

[
1 2
0 0

]
= d,

wy =
[
0 0
1 2

]
=

[
0 0
1 0

]
·

[
1 2
0 0

]
= r1d and yv =

[
1 −1
0 0

]
=

[
1 2
0 0

]
·

[
1 −1
0 0

]
= dr2 for some r1 =

[
0 0
1 0

]
and

r2 =

[
1 −1
0 0

]
, it follows that av,w

∥d = y.

In view of right [resp. left] hybrid (v,w)-weighted (b, c)-inverse (see [10], Definition 4.2) and annihilator
(v,w)-weighted (b, c)-inverse (see [10], Definition 4.1) of a ∈ R, we next present the definition of the hybrid
(v,w)-weighted (b, c)-inverse and annihilator (v,w)-weighted (b, c)-inverse of a ∈ R.

Definition 2.7. [10, Definition 4.2] Let a, b, c, v,w ∈ R. An element y ∈ R satisfying

yvawy = y, yvR = bR, and rann(c) = rann(wy),

is called the right hybrid (or hybrid) (v,w)-weighted (b, c)-inverse of a and denoted by ah,v,w
b,c .

In section 4, we will discuss some results on right hybrid inverse (v,w)-weighted (b, c)-inverse, which
can be similarly proved for left hybrid (v,w)-weighted (b, c)-inverse. So from here onward, we call the right
hybrid (v,w)-weighted (b, c)-inverse as hybrid (v,w)-weighted (b, c)-inverse.

The existence of hybrid (v,w)-weighted (b, c)-inverse over a semigroup, as proved in [10], is restated for
a ring R, below.

Lemma 2.8. Let a, b, c, v,w ∈ R. Then ah,v,w
b,c exists if and only if rann(cvawb) ⊆ rann(b) and c ∈ cvawbR.

Definition 2.9. [10, Definition 4.2] Let a, b, c, v,w ∈ R. An element y ∈ R satisfying

yvawy = y, lann(yv) = lann(b), and rann(c) = rann(wy),

is called the annihilator (v,w)-weighted (b, c)-inverse of a and denoted by aa,v,w
b,c .

In [10], it is proved that both ah,v,w
b,c and aa,v,w

b,c are unique. In view of Bott-Duffin inverse [7], we next
introduce the (v,w)-weighted Bott-Duffin (e, f )-inverse.

Definition 2.10. Let a, v,w, e, f ∈ R with e2 = e and f 2 = f . An element z ∈ R is called (v,w)-weighted Bott-Duffin
(e, f )-inverse of a if it satisfies

z = ewz = zv f , zvawe = e, f vawz = f .

The (v,w)-weighted Bott-Duffin (e, f )-inverse of the element a is denoted as ab,v,w
e, f .
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Example 2.11. Let R = M2(R) with a =
[
0 0
0 1

]
, v =

[
0 −1
1 0

]
, w =

[
1 0
0 1

]
, e =

[
0 0
1 1

]
, and f =

[
1 1
0 0

]
. It is

easy to verify that the matrix z =
[

0 0
−1 −1

]
satisfies

zvawe =
[

0 0
−1 −1

]
·

[
0 −1
1 0

]
·

[
0 0
0 1

]
·

[
1 0
0 1

]
·

[
0 0
1 1

]
=

[
0 0
1 1

]
= e,

f vawz = f , and ewz = z = zv f . Hence ab,v,w
e, f = z.

3. Further results on (v,w)-weighted (b, c)-inverse

In this section, we derive a few useful representations and properties of (v,w)-weighted (b, c)-inverse.

Proposition 3.1. Let v,w, d ∈ R. Then the following hold:

(i) If Rwy = Rd (Rwy ⊆ Rd) then rann(wy) = rann(d) (rann(d) ⊆ rann(wy)).

(ii) If yvR = dR (yvR ⊆ dR) then lann(yv) = lann(d) (lann(d) ⊆ lann(yv)).

(iii) If rann(d) ⊆ rann(wy) and d− exists, then Rwy ⊆ Rd.

(iv) If lann(d) ⊆ lann(yv) and d− exists, then yvR ⊆ dR.

Proof. (i) Let x ∈ rann(wy). Then wyx = 0. From Rwy = Rd, we obtain d = twy for some t ∈ R. Now
dx = twyx = 0. Hence rann(wy) ⊆ rann(d). Again from Rwy = Rd, we have wy = sd for some s ∈ R. If
z ∈ rann(d) then dz = 0 and hence wyz = sdz = 0. Thus rann(d) ⊆ rann(wy).
(ii) A similar argument as (i).
(iii) Let x ∈ d{1}. Then (1 − xd) ∈ rann(d) ⊆ rann(wy), which implies wy = (wyx)d. Therefore, Rwy ⊆ Rd.
(iv) Is similar to part (iii).

Proposition 3.2. Let a, b, c, v,w ∈ R. If a has (v,w)-weighted (b, c)-inverse, then both b and c are regular.

Proof. Let y be the (v,w)-weighted (b, c)-inverse of a. Then by Definition 2.3, yvawb = b, cvawy = c and
y ∈ bRwy ∩ yvRc. From the ideals, we further obtain y = bswy and y = yvtc for some s, t ∈ R. Now
b = yvawb = bswyvawb = bswb. Thus b is regular. Similarly, we have c = cvawy = cvawyvtc = cvtc and
completes the proof.

An equivalent characterization of the (v,w)-weighted (b, c)-inverse is presented in the next result.

Theorem 3.3. Let a, b, c, v,w ∈ R. Then the following statements are equivalent:

(i) a has (v,w)-weighted (b, c)-inverse.

(ii) b is regular, R = Rcvaw ⊕ lann(b) and lann(vaw) ∩ Rc = {0}.

(iii) R = Rcvaw ⊕ lann(b), lann(vaw) ∩ Rc = {0} and cvawb is regular.

(iv) c is regular, R = vawbR ⊕ rann(c) and rann(vaw) ∩ bR = {0}.

(v) R = vawbR ⊕ rann(c), rann(vaw) ∩ bR = {0} and cvawb is regular.

Proof. (i)⇒(ii) Assume that a has a (v,w)-weighted (b, c)-inverse. By Proposition 3.2, we have b is regular.
From Lemma 2.4, there exist p, q ∈ R such that b = pcvawb and c = cvawbq. Let r = 1−pcvaw. Then r ∈ lann(b).
For any t ∈ R,

t = t · 1 = t(pcvaw + r) = tpcvaw + tr ∈ Rcvaw + lann(b).
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Therefore, R = Rcvaw + lann(b). If u ∈ Rcvaw ∩ lann(b) then ub = 0 and u = xcvaw for some x ∈ R. Now
xc = x(cvawbq) = (ub)q = 0 and u = xcvaw = 0. Thus Rcvaw ∩ lann(b) = {0}.

If m ∈ lann(vaw)∩Rc then mvaw = 0 and m = sc, for some s ∈ R. Therefore, m = sc = scvawbq = mvawbq =
0 and hence lann(vaw) ∩ Rc = {0}.
(ii)⇒(iii) Let R = Rcvaw ⊕ lann(b). Then 1 = 1cvaw + h for some 1 ∈ R and h ∈ lann(b). Therefore,
b = 1cvawb ∈ Rcvawb, which impliesRb ⊆ Rcvawb. SinceRcvawb ⊆ Rb is trivial, it follows thatRb = Rcvawb.
From Rb = Rcvawb, we have b = scvawb and cvawb = tb for some s, t ∈ R. Now

cvawb = tb = tbb−b = cvawbb−scvawb, where b− ∈ b{1}.

Hence, cvawb is regular.
(iii)⇒(i) LetR = Rcvaw⊕ lann(b). Then 1 = 1cvaw+h for some 1 ∈ R and h ∈ lann(b). Therefore, b = 1cvawb ∈
Rcvawb. Now, we will prove lann(c) = lann(cvawb). Obviously, lann(c) ⊆ lann(cvawb). For x ∈ lann(cvawb),
we have xcvaw ∈ lann(b) ∩ Rcvaw = {0}, i.e. xcvaw = 0. This implies that xc ∈ lann(vaw) ∩ Rc = {0}. Thus
x ∈ lann(c), i.e. lann(c) = lann(cvawb). Now, let t ∈ (cvawb){1}. Since (1 − cvawbt)cvawb = 0, we have
1 − cvawbt ∈ lann(cvawb) = lann(c). Thus, c = cvawbtc ∈ cvawbR. By Lemma 2.4, a has (v,w)-weighted
(b, c)-inverse.
The proof of (i)⇒(iv)⇒(v)⇒(i) is similar to (i)⇒(ii)⇒(iii)⇒(i).

Theorem 3.4. Let a, b, c,w, v ∈ R. Then the following statements are equivalent:

(i) y = av,w
b,c .

(ii) yvawy = y, yvR = bR and Rwy = Rc.

(iii) yvawy = y, lann(yv) = lann(b), Rwy = Rc, and b is regular.

(iv) yvawy = y, yvR = bR, rann(wy) = rann(c), and c is regular.

(v) yvawy = y, lann(yv) = lann(b) and rann(wy) = rann(c), and both b, c are regular.

(vi) both b, c are regular, y = bb−y, bb− = yvawbb−, yc−c = y, and c−c = c−cvawy.

(vii) both b, c are regular, bb− ∈ R(c−cvawbb−), and c−c ∈ (c−cvawbb−)R.

(viii) both b, c are regular, and there exists s, t ∈ R such that bb− = tc−cvawbb−, c−c = c−cvawbb−s.

Proof. (i)⇔(ii) The proof of this equivalence follows from Lemma 2.4.
(ii)⇒(iii) The regularity of b is follows from the equivalence of (ii)⇔(i) and Proposition 3.2. For any
z ∈ lann(yv), we have zyv = 0. Now zb = zyvt = 0. Thus z ∈ lann(b) and subsequently lann(yv) ⊆ lann(b).
The reverse inclusion lann(b) ⊆ lann(yv) can be shown similarly. Therefore, lann(yv) = lann(b).
(iii)⇒(iv) Let Rwy = Rc. Then wy = sc and c = twy for some s, t ∈ R. Now

c = twy = tw(yvawy) = cva(wy) = c(vas)c.

Thus c is regular. From yvawy = y, we have (yvaw − 1) ∈ lann(y) ⊆ lann(yv) = lann(b). Further, yvawb = b.
Thus bR ⊆ yvR. The reverse inclusion yvR ⊆ bR can be shown using Proposition 3.1(iv). Hence yvR = bR.
For any z ∈ rann(wy), we have wyz = 0. Now cz = twyz = 0. This implies z ∈ rann(c). Hence rann(wy) ⊆
rann(c). On the other hand, if x ∈ rann(c) then cx = 0. Now wyx = scx = 0. Therefore, rann(wy) = rann(c).
(iv)⇒(v) It is enough to show b is regular and lann(yv) = lann(b). The regularity of b and lann(yv) = lann(b)
can be proved in the similar way as (ii)⇒(iii).
(v)⇒(ii) Follows from Proposition 3.1(iii) and (iv).
(i)⇒(vi) Let y = av,w

b,c . Then there exist s, t ∈ R such that y = bswy and y = yvtc. Now

bb−y = bb−bswy = bswy = y and yvawbb− = bb−.
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Similarly we can show, yc−c = y and c−c = c−cvawy. Further, the regularity of b and c follows by Proposition
3.2.
(vi)⇒(vii) If (vi) holds, then bb− = yvawbb− = yc−cvawbb− ∈ R(c−cvawbb−). Similarly we can show
c−c ∈ (c−cvawbb−)R.
(vii)⇒(viii) It is obvious.
(viii)⇒(i) Let bb− = tc−cvawbb−. Post-multiplying by b, we obtain b = bb−b = tc−cvawb ∈ Rcvawb. Similarly,
pre-multiplying c to c−c = c−cvawbb−s, we obtain c = cvawbb−s ∈ cvawbR. Hence by Lemma 2.4, we obtain
av,w

b,c = y.

The relation between group inverse and (v,w)-weighted (b, c)-inverse is presented in the next result.

Theorem 3.5. Let a, b, c, v,w ∈ R and av,w
b,c exist. If there exist an element s ∈ R such that sR = bR and

rann(s) = rann(c), then vaws, svaw ∈ R# and av,w
b,c = s(vaws)# = (svaw)#s.

Proof. First, we will show that vaws ∈ R# and av,w
b,c = s(vaws)#. Let 1 ∈ rann(vaws). Then vaws1 = 0, which

implies s1 ∈ rann(vaw) ∩ sR = rann(vaw) ∩ bR = {0} by Theorem 3.3. It follows that s1 = 0 and 1 ∈ rann(s).
Thus, rann(vaws) ⊆ rann(s) and consequently rann(vaws) = rann(s) = rann(c). Since sR = bR, we have
vawsR = vawbR. Using Theorem 3.3, we get

R = vawbR ⊕ rann(c) = vawsR ⊕ rann(vaws).

Thus 1 = vawsu + t for some u ∈ R and t ∈ rann(vaws). Now vaws = vawsvawsu. This yields vaws(vaws −
vawsuvaws) = 0. Hence (vaws − vawsuvaws) ∈ rann(vaws) ∩ vawsR = {0} and subsequently,

vaws = vawsuvaws = vawsvawsu. (1)

Clearly, vawsu is idempotent. Using Proposition 2.1, we obtain rann(vawsu) = (1− vawsu)R. Using equation
(1), we obtain rann(vawsu) ⊆ rann(vaws). For h ∈ rann(vaws), we have vawsh = 0. By equation (1),
vawsvawsuh = vawsh = 0. Thus vawsuh ∈ rann(vaws) ∩ vawsR = {0} and hence rann(vaws) ⊆ rann(vawsu).
Again, vaws − uvawsvaws ∈ rann(vaws) = rann(vawsu). Thus vawsu(vaws − uvawsvaws) = 0. From equation
(1), we get

vaws = vawsuvaws = (vawsu2)vawsvaws. (2)

From equations (1) and (2), we have vaws ∈ R(vaws)2
∩ (vaws)2

R. Hence by Lemma 2.2, vaws is group
invertible.

Next we will show that s(vaws)# is the (v,w)-weighted (b, c)-inverse of a. Let t = s(vaws)#. Then

tvawt = s(vaws)#vaws(vaws)# = s(vaws)# = t.

Clearly, tvR = (s(vaws)#)vR ⊆ svR ⊆ sR = bR. Since vaws((vaws)#vaws − 1) = 0 and rann(vaws) = rann(s), it
follows that s(vaws)#vaws = s. Hence,

bR = sR = (s(vaws)#vaws)R =tvawsR ⊆ tvR.

Similarly, we have

rann(wt) = rann(ws(vaws)#) ⊆ rann(vaws(vaws)#) = rann(vaws) = rann(s) = rann(c),

and

rann(c) = rann(s) = rann(vaws) = rann(vaws(vaws)#) ⊆ rann(s(vaws)#vaws(vaws)#)
= rann(s(vaws)#) = rann(t) ⊆ rann(wt).

Hence by Proposition 3.2 and Theorem 3.4(iv), we obtain av,w
b,c = t = s(vaws)#. Similarly, it can be shown that

svaw ∈ R# and av,w
b,c = (vaws)#s.

Theorem 3.6. Let a, v,w ∈ R. If e, f ∈ R with e2 = e and f 2 = f , then the following are equivalent:
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(i) e ∈ eR f vawe and f ∈ f vaweR f .

(ii) there exist m,n ∈ R such that p = m f vawe + 1 − e is invertible and f vawep−1n = f .

(iii) there exist m,n ∈ R such that q = f vawen + 1 − f is invertible and mq−1 f vawe = e.

(iv) there exist m,n ∈ R such that p = m f vawe + 1 − e and q = f vawen + 1 − f are invertible.

Proof. (i)⇒ (ii),(iii) Let e ∈ R f vawe and f ∈ f vaweR. Then there exist m,n ∈ R such that e = m f vawe and
f = f vawen. Take p = m f vawe + 1 − e and q = f vawen + 1 − f . Then p = q = 1, f = f vawen = f vawep−1n and
e = mq−1 f vawe.
(ii)⇒(i) From f = f vawep−1n and pe = m f vawe, we have e = p−1m f vawe. Post-multiplying f = f vawep−1n by
f and pre-multiplying e = p−1m f vawe by e, we obtain e ∈ eR f vawe and f ∈ f vaweR f .
(iii)⇒ (i) Is similar to (ii)⇒(i).
(ii)⇒(iv) Using (ii), we have f = f vawep−1n and p = m f vawe + 1 − e is invertible. Let n1 = p−1n. Then
f vawen1 + 1 − f = f + 1 − f = 1. Thus q = f vawen1 + 1 − f is invertible.
(iv)⇒(i) Let p = m f vawe + 1 − e. Then pe = m f vawe and subsequently, e = p−1m f vawe. Now e = e2 =
ep−1m f vawe ∈ eR f vawe. Similarly, we can show f ∈ f vaweR f .

Following the Definition 2.10, we present the following characterizations for (v,w)-weighted Bott-Duffin
(e, f )-inverse.

Proposition 3.7. Let a, v,w, e, f ∈ R with e2 = e and f 2 = f . If ab,v,w
e, f exist then e ∈ eR f vawe and f ∈ f vaweR f .

Proof. Let z = ab,v,w
e, f . Then by Definition 2.10, e = zvawe = ewzvawe = e(wzv) f vawe ∈ eR f vawe and f =

f vawz = f vawzv f = f vawe(wzv) f ∈ f vaweR f .

Theorem 3.8. Let a, e, f , v,w ∈ R such that e = e∗ = e2 and f = f ∗ = f 2. If ab,v,w
e, f exist then the following hold:

(i) e ∈ R( f vawe)∗ f vawe and f ∈ f vawe( f vawe)∗R.

(ii) p = ( f vawe)∗ f vawe + 1 − e is invertible and f vawep−1( f vawe)∗ = f .

(iii) q = f vawe( f vawe)∗ + 1 − f is invertible and ( f vawe)∗q−1 f vawe = e.

Proof. (i) Let ab,v,w
e, f exists. Then by Theorem 3.6 and Proposition 3.7, we get r = 1 f vawe + 1 − e is invertible

and f vawer−1h = f for some 1, h ∈ R. Using this, we have e = r−11 f vawe. Now

e∗ = (r−11 f vawe)∗ = ( f vawe)∗(r−11)∗ = ( f vawe)∗ f (r−11)∗ = ( f vawe)∗ f vawer−1h(r−11)∗.

Thus e = (r−11)(r−1h)∗( f vawe)∗ f vawe ∈ R( f vawe)∗ f vawe. Similarly, we can show that f = f vawe( f vawe)∗(r−11)∗r−1h
and f ∈ f vawe( f vawe)∗R.
(ii) From part (i), we have e = r−11 f vawe and f vawer−1h = f . So r−11 f = er−1h.
Let β = (r−11)(r−1h)∗. Then

βe = βe∗ = (r−11)(r−1h)∗( f vawe)∗(r−11)∗ = r−11 f (r−11)∗ = er−1h(r−11)∗ = eβ∗

Thus (βe+1−e)(( f vawe)∗ f vawe + 1 − e) = 1 = (( f vawe)∗ f vawe + 1 − e)(βe+1−e). Hence p = ( f vawe)∗ f vawe+1−e
is invertible and p−1 = (βe + 1 − e). Further,

f vawep−1( f vawe)∗ = f vawe(βe + 1 − e)( f vawe)∗ = f vaweβ∗( f vawe)∗ = f vawer−11(r−1h)∗( f vawe)∗

= f vawer−11 f = f vawer−1h = f .

(iii) Analogous to (ii).
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4. Hybrid (v,w)-weighted (b,c)-inverse

First we discuss an equivalent definition of the hybrid (v,w)-weighted (b, c)-inverse, which will help us
to prove more characterizations of this inverse.

Theorem 4.1. Let a, b, c, v,w, y ∈ R with either v or w invertible. Then the followings are equivalent.

(i) yvawy = y, yvR = bR and rann(wy) = rann(c).

(ii) yvawb = b, cvawy = c, yvR ⊆ bR and rann(c) ⊆ rann(wy).

Proof. (i)⇒(ii) Let yvR = bR. Then there exist a t ∈ R such that b = yvt. Now b = yvt = yvawyvt = yvawb.
From yvawy = y, we obtain 1 − vawy ∈ rann(y) ⊆ rann(wy) = rann(c). Thus c = cvawy.
(ii)⇒(i) Let yvR ⊆ bR. Then yv = br for some r ∈ R. Multiplying yvawb = b by rv−1 on the right gives
yvawy = y. If w is invertible then yvawy = y is similarly follows from cvawy = c. Using yvawb = b, we
get bR ⊆ yvR, and hence yvR = bR. Now, let s ∈ rann(wy). Then wys = 0. Further, s ∈ rann(c) since
cs = cvawys = 0. Hence rann(wy) = rann(c).

In view of Lemma 2.8, we explore a necessary condition for the hybrid (v,w)-weighted (b, c)-inverse in
the below result.

Theorem 4.2. Let a, b, c, v,w ∈ R with either v or w invertible. If the hybrid (v,w)-weighted (b, c)-inverse of a exists,
then there exist a t ∈ R such that bt is the hybrid (v,w)-weighted (b, c)-inverse of a satisfying c = cvawbt.

Proof. Let a has a hybrid (v,w)-weighted (b, c)-inverse. Then by Lemma 2.8,

c = cvawbt for some t ∈ R.

Let y = bt. Now we will claim that y is the hybrid (v,w)-weighted (b, c)-inverse of a. Clearly, yvR = btvR ⊆
bR. Using c = cvawbt, we obtain cvawb = cvawbtvawb. Thus (1 − tvawb) ∈ rann(cvawb)⊆rann(b) by Lemma
2.8. Hence

b = btvawb = yvawb.

For x ∈ rann(c), we have cvawbtx = cx = 0, which yields tx ∈ rann(cvawb). Further, by Lemma 2.8,
tx ∈ rann(b) and consequently wyx = wbtx = 0. Therefore,

rann(c) ⊆ rann(wy).

By Theorem 4.1, we get y = bt is the hybrid (v,w)-weighted (b, c)-inverse of a.

A necessary and sufficient condition for the existence of hybrid (v,w)-weighted (b, c) is presented below.

Theorem 4.3. Let a, b, c, v,w ∈ R with either v or w invertible. Then ah,v,w
b,c exists if and only if R = vawbR⊕ rann(c)

and rann(vaw) ∩ bR = {0}.

Proof. Let a has a hybrid (v,w)-weighted (b, c)-inverse. Then by Theorem 4.2, bt is the hybrid (v,w)-weighted
(b, c)-inverse of a satisfying c = cvawbt, where t ∈ R. Subsequently z := (1 − vawbt) ∈ rann(c). For any x ∈ R,
we can write

x = 1 · x = (z + vawbt)x = zx + vawbtx ∈ rann(c) + vawbR.

Thus R = rann(c) + vawbR since the reverse inclusion is trivial. If r ∈ rann(c) ∩ vawbR, then cr = 0 and
r = vawbu for some u ∈ R. From Theorem 4.1, taking y = bt, we have

rann(wbt) = rann(c) and btvawb = b, (3)

which yields wbtvawbu = wbtr = 0 and r = vaw(b)u = va(wbtvawbu) = 0. Hence R = vawbR ⊕ rann(c).
Next we will show that rann(vaw) ∩ bR = {0}. Let h ∈ rann(vaw) ∩ bR, then vawh = 0 and h = bk for some
k ∈ R, which implies vawbk = 0. Using second part of equation (3), we have h = bk = bt(vawbk) = 0. Thus
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rann(vaw) ∩ bR = {0}.
Conversely, let R = vawbR ⊕ rann(c). Then 1 = vawbm + n for some m ∈ R and n ∈ rann(c). Further,

c = cvawbm + cn = cvawbm ∈ cvawbR since n ∈ rann(c). (4)

If x ∈ rann(cvawb), then cvawbx = 0 and hence vawbx ∈ rann(c)∩vawbR = {0}. Thus bx ∈ rann(vaw)⊕bR = {0}
since rann(vaw) ∩ bR = {0}. Hence x ∈ rann(b) and subsequently, we obtain

rann(cvawb) ⊆ rann(b). (5)

In view of equations (4), (5) and Lemma 2.8, a has a hybrid (v,w)-weighted (b, c)-inverse.

Lemma 4.4. Let a, b, c, v,w ∈ R with either v or w invertible. Assume that ah,v,w
b,c exists. Then av,w

b,c exists if and only
if any one of the following holds.

(i) cvawb is regular.

(ii) c is regular.

Proof. (i) Let av,w
b,c exists. Then b ∈ Rcvawb and c ∈ cvawbR. Furtehr, b = scvawb and c = cvawbt for some

s, t ∈ R. Now

b = scvawb = scvawbtvawb = btvawb, c = cvawbt = cvawscvawbt = c(vaws)c, and

cvawb = cvawbtvawscvawb = cvawb(tvaws)cvawb.

Hence cvawb is regular.
Conversely, let cvawb be regular. Then there exist an element z ∈ R such that cvawb = cvawbzcvawb. Since

a has a hybrid (v,w)-weighted (b, c)-inverse, by Lemma 2.8, we have c ∈ cvawbR and b = bzcvawb ∈ Rcvawb
due to the fact that 1 − zcvawb ∈ rann(cvawb) ⊆ rann(b). Hence by Lemma 2.4, a has a (v,w)-weighted
(b, c)-inverse.
(ii) The regularity of c is follows from Theorem 3.4.

Conversely, let c be regular and the hybrid (v,w)-weighted (b, c)-inverse of a exist. Then by Theorem
4.3, R = vawbR ⊕ rann(c) and subsequently 1 = vawbs + t for some s ∈ R and t ∈ rann(c). Therefore,
c = cvawbs + ct = cvawbs. Since c is regular, there exist an element x ∈ R such that c = cxc. Now

cvawb = (c)vawb = (c)xcvawb = cvawbsxcvawb = cvawb(sx)cvawb.

Thus cvawb is regular. Hence by part (i), a has a (v,w)-weighted (b, c)-inverse.

We next present the following characterizations of hybrid (v,w)-weighted (b, c) through annihilators.

Theorem 4.5. Let a, b, c, v,w ∈ R with either v or w invertible. If a has a hybrid (v,w)-weighted (b, c)-inverse then
the following statements hold:

(i) rann(vawb) = rann(b).

(ii) If rann(b) = rann(c) then rann(vawbs) = rann(vawb), where s ∈ R satisfies vawb = (vawb)2s.

Proof. (i) It is trivial that rann(b) ⊆ rann(vawb). Let a has a hybrid (v,w)-weighted (b, c)-inverse. Then
by Theorem 4.3, rann(vaw) ∩ bR = {0}. For r ∈ rann(vawb), we have br ∈ rann(vaw) and br ∈ bR. Thus
br ∈ rann(vaw) ∩ bR = {0} and hence r ∈ rann(b). Therefore, rann(vawb) ⊆ rann(b).
(ii) Using the condition R = vawbR ⊕ rann(c) of Theorem 4.3, we have 1 = vawbs + t for some s ∈ R and
t ∈ rann(c) = rann(b). Thus b = bvawbs and vawb = vawbvawbs = (vawb)2s. Let x ∈ rann(vawb). Then
(vawb)2sx = vawbx = 0. Now

vawbsx ∈ rann(vawb) ∩ vawbR = rann(b) ∩ vawbR = rann(c) ∩ vawbR = {0}.
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Therefore x ∈ rann(vawbs) and consequently, rann(vawb) ⊆ rann(vawbs).
Conversely, let z ∈ rann(vawbs). Then vawbz = (vawb)2sz = 0, which implies z ∈ rann(vawb). Thus,

rann(vawbs) ⊆ rann(vawb) and hence rann(vawbs) = rann(vawb), where s satisfies vawb = (vawb)2s.

The following result represent a necessary and sufficient condition for hybrid (v,w)-weighted (b, c)
inverse through group inverse.

Theorem 4.6. Let a, b, c, v,w ∈ R with either v or w invertible. Assume that rann(vawb) = rann(b) = rann(c).
Then the hybrid (v,w)-weighted (b, c)-inverse of a exists if and only of vawb is group invertible.

Proof. Let a have a hybrid (v,w)-weighted (b, c)-inverse. Then by Theorem 4.3, we have 1 = vawbs + t for
some s ∈ R and t ∈ rann(c) = rann(vawb), which implies

vawb = (vawb)2s ∈ (vawb)2
R and (vawb)2 = (vawb)2svawb. (6)

Using the second part of equation (6) and Theorem 4.3, we obtain

vawb − vawbsvawb ∈ rann(vawb) ∩ vawbR = rann(c) ∩ vawbR = {0}.

Thus

vawb = vawbsvawb and (vawb)2 = vawbs(vawb)2. (7)

Applying equation (7) and Theorem 4.5, we have

vawb − s(vawb)2
∈ rann(vawb) = rann(vawbs).

Further, vawbs2(vawb)2 = vawbsvawb = vawb and vawb ∈ R(vawb)2. Hence by Lemma 2.2, vawb is group
invertible since vawb ∈ (vawb)2

R ∩ R(vawb)2.
Conversely, let y = b(vawb)#. From vawb = (vawb)2(vawb)# and rann(vawb) = rann(c), we have c(1 −

vawb(vawb)#) = 0 and

c = cvawb(vawb)# = cvawy.

Similarly by applying rann(vawb) = rann(b), we obtain

b = b(vawb)#vawb = yvawb.

The condition yvR ⊆ yR ⊆ bR follows from y = b(vawb)#. Next we will show that rann(c) ⊆ rann(wy). Let
x ∈ rann(c) = rann(b). Then bx = 0.
Now wyx = wb(vawb)#x = wb(vawb)#(vawb)#vawbx = 0. Thus x ∈ rann(wy) and hence rann(c) ⊆ rann(wy). By
Theorem 4.1, y = b(vawb)# is the hybrid (v,w)-weighted (b, c)-inverse of a.

Remark 4.7. Let a, b, c, v,w ∈ R with either v or w invertible. If rann(vawb) = rann(b) = rann(c) and vawb is
group invertible, then b(vawb)# is the hybrid (v,w)-weighted (b, c)-inverse of a.

Corollary 4.8. Let a, b, c, v,w ∈ R with either v or w be invertible and y = ah,v,w
b,c . Then rann(b) = rann(vawb) =

rann(c) if and only of vawb is group invertible with y = b(vawb)#.

Proof. Let vawb be group invertible with y = b(vawb)#. From y = ah,v,w
b,c , we have rann(c) = rann(wy). If x ∈

rann(vawb), then by Theorem 4.3, bx ∈ rann(vaw)∩bR = {0} and hence x ∈ rann(b). Thus rann(vawb) = rann(b)
since the reverse inclusion rann(b) ⊆ rann(vawb) is obvious. Next we will show that rann(b) = rann(wy). Let
z ∈ rann(b). Then bz = 0 and consequently

wyz = wb(vawb)#z = wb(vawb)#(vawb)#vawbz = 0.

Therefore, z ∈ rann(wy) and rann(b) ⊆ rann(wy). If x ∈ rann(wy), then wyx = 0 and

vawbx = (vawb)2(vawb)#x = vawbvawyx = 0.
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Further, by Theorem 4.3, we obtain bx ∈ rann(vaw)∩bR = {0}. Thus x ∈ rann(b). Hence rann(b) = rann(wy) =
rann(c).

The converse part follows from Theorem 4.6.

The following result presents hybrid (v,w)-weighted (b, c) inverse in the relationships with annihilators
and (v,w)-weighted inverse of a along d ∈ R.

Theorem 4.9. Let a, d, v,w, y ∈ R with either v or w invertible. Then the following statements are equivalent:

(i) y is the (v,w)-weighted inverse of a along d.

(ii) yvawd = d = dvawy, Rwy ⊆ Rd, and lann(d) ⊆ lann(yv).

(iii) yvawy = y, Rwy = Rd, and lann(yv) = lann(d).

(iv) yvawd = d = dvawy, yvR ⊆ dR, and rann(wy) = rann(d).

(v) yvawy = y, yvR = dR, and rann(wy) = rann(d).

(vi) y is the hybrid (v,w)-weighted (d, d)-inverse of a.

(vii) y is the (v,w)-weighted (d, d)-inverse of a.

Proof. (i)⇒(ii) The proof follows from the Definition 2.5 and Proposition 3.1 (ii).
(ii)⇒(iii) Let Rwy ⊆ Rd. Then wy = sd for some s ∈ R. Pre-multiplying d = dvawy by w−1s, we obtain

y = w−1sd = w−1sdvawy = yvawy.

From d = dvawy, we have Rd ⊆ Rwy and hence Rwy = Rd. Next we will show that lann(yv) ⊆ lann(d). If
z ∈ lann(yv), then by applying yvawd = d, we obtain

zd = z(yvawd) = (zyv)awd = 0.

Thus lann(yv) ⊆ lann(d) and consequently lann(d) = lann(yv).
(iii)⇒(iv) Let y = yvawy. Then (1 − yvaw) ∈ lann(y) ⊆ lann(yv) = lann(d). Thus d = yvawd. From Rd = Rwy,
we have

d = swy and wy = td for some s, t ∈ R. (8)

Pre-multylying yvawy = y by sw, we obtain d = sw(y) = (swy)vawy = dvawy. The condition rann(wy) =
rann(d) follows from Proposition 3.1 (i). Using the second part of equation (8), we get d is regular since

d = dvawy = d(vat)d.

Hence by Proposition 3.1 (iv), yvR ⊆ dR.
(iv)⇒(v) The proof is similar to (ii)⇒(iii).
(v)⇔(vi) This part is trivial and follows from the definition.
(v)⇒(vii) To establish the result, it is sufficient to show

yvawd = d = dvawy and y ∈ yvRd ∩ dRwy.

Let y be the hybrid (v,w)-weighted (d, d)-inverse of a. Then yvawy = y, yvR = dR and rann(wy) = rann(d).
From y = yvawy, we obtain (1 − vawy) ∈ rann(y) ⊆ rann(wy) = rann(d). Thus d = dvawy. From yvR = dR,
we have d = yvs and yv = dt for some s, t ∈ R. Therefore,

y = yvawy = d(ta)wy ∈ dRwy, d = yvs = yvawyvs = yvawd and d = d(taw)d.
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Hence d is regular and by Proposition 3.1 (iii), we obtain Rwy ⊆ Rd, which implies wy = zd for some z ∈ R
and y = yvawy = yv(az)d ∈ yvRd. Hence y is the (v,w)-weighted (d, d)-inverse of a.
(vii)⇒(i) Let y be the (v,w)-weighted (d, d)-inverse of a. Then yvawd = d = dvawy, and y = dswy = yvtd for
some s, t ∈ R. To establish the result, it is enough to show yvR ⊆ dR andRwy ⊆ Rd. Since yv = d(swyv) = ds1
and wy = wyvtd = t1d for some s1 = swyv ∈ R and t1 = wyvt ∈ R, it follows that yvR ⊆ dR and Rwy ⊆ Rd.
Hence by Definition 2.5, y is the (v,w)-weighted inverse of a along d.

In view of Theorem 4.9, and taking b = c = d in Theorem 3.3, we obtain the following result as a corollary.

Corollary 4.10. Let a, d, v,w ∈ R with either v or w invertible. Then the following statements are equivalent:

(i) a has a (v,w)-weighted inverse along d.

(ii) d is regular, R = Rdvaw ⊕ lann(d), and lann(vaw) ∩ Rd = {0}.

(iii) R = Rdvaw ⊕ lann(d), lann(vaw) ∩ Rd = {0} and dvawd is regular.

(iv) d is regular, R = vawdR ⊕ rann(d), and rann(vaw) ∩ dR = {0}.

(v) R = vawdR ⊕ rann(d), rann(vaw) ∩ dR = {0} and dvawd is regular.

The relation between (v,w)-weighted inverse along d ∈ R and the group inverse of an element is
discussed in the next result.

Corollary 4.11. Let a, d, v,w ∈ R. Then av,w
∥d exists if and only if vawd is group invertible and rann(vawd) = rann(d).

Proof. Let y be the (v,w)-weighted inverse of a along along d. Then by Theorem 4.9, y is the hybrid (v,w)-
weighted (d, d)-inverse of a and yvawd = d. From the condition yvawd = d, we have Rd ⊆ Rvawd. Then
rann(vawd) ⊆ rann(d) follows directly from Proposition 3.1 (i). Hence rann(vawd) = rann(d) since the reverse
inclusion rann(d) ⊆ rann(vawd) is trivial. Replacing b and c by d in Corollary 4.8, we get vawd is group
invertible. The converse part follows from Theorem 4.6

5. Annihilator (v,w)-weighted (b,c)-inverse

This section is devoted to the characterizations of annihilator (v,w)-weighted (b,c)-inverse. The first
result is represent an equivalent definition of annihilator (v,w)-weighted (b, c)-inverse, which will be used
in the subsequent results.

Theorem 5.1. Let a, b, c, v,w, y ∈ R with either v or w invertible. Then the following statements are equivalent:

(i) yvawy = y, rann(wy) = rann(c) and lann(yv) = lann(b).

(ii) yvawb = b, cvawy = c, rann(c) ⊆ rann(wy) and lann(b) ⊆ lann(yv).

Proof. (i)⇒(ii) Let yvawy = y. Then (yvaw − 1) ∈ lann(yv) = lann(b). This yields yvawb = b. Similarly
cvawy = c follows from

(vawy − 1) ∈ rann(wy) = rann(c).

Hence completes the proof.
(ii)⇒(i) Let rann(c) ⊆ rann(wy) and cvawy = c. Then (vawy − 1) ∈ rann(c) ⊆ rann(wy). Thus wyvawy = wy.
Similarly, from lann(b) ⊆ lann(yv) and yvawb = b, we can obtain yvawyv = yv. If either v or w is invertible
then yvawy = y. Next we will claim that rann(wy) ⊆ rann(c) and lann(yv) ⊆ lann(b). For x ∈ rann(wy), we
have wyx = 0. Now cx = cva(wyx) = 0. Thus rann(wy) ⊆ rann(c). If z ∈ lann(yv), then zyv = 0. Further,
zb = (zyv)awb = 0. Hence lann(yv) ⊆ lann(b).

With the help of Theorem 5.1 (i), we present the following property of annihilator (v,w)-weighted
(b, c)-inverse.
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Proposition 5.2. For i = 1, 2, let ai, bi, ci, v,w, yi ∈ R with both v,w invertible and yi = ai
a,v,w
b,c . If rc1 = c2r

rva1w = va2wr and rb1 = b2r for any r ∈ R, then ry1 = y2r.

Proof. Let yi = ai
a,v,w
b,c . Then by Theorem 5.1, we obtain y2va2wb2 = b2 and lann(b1) ⊆ lann(y1v). Thus

rb1 = b2r=y2va2wb2r=y2(va2wr)b1=y2(rva1w)b1.

Further, (r − y2rva1w) ∈ lann(b1) ⊆ lann(y1v), which implies

ry1v = y2rva1wy1v (9)

Similarly, we have c2r = rc1 = rc1va1wy1 = c2rva1wy1 and (r − rva1wy1) ∈ rann(c2) ⊆ rann(wy2). Thus

wy2r = wy2rva1wy1. (10)

Using the invetibility of v and w in equation (9) and (10), we get ry1 = y2r.

In the similar manner, we have the following result for the (v,w)-weighted (b, c)-inverse.

Corollary 5.3. For i = 1, 2, let ai, bi, ci, v,w, yi ∈ R and yi be the (v,w)-weighted (bi, ci)-inverse of ai. If rc1 = c2r,
rva1w = va2wr and rb1 = b2r for any r ∈ R, then ry1 = y2r.

Proof. We first note that (rva1w)b1 = (va2wr)b1 = va2w(rb1) and similarly rva1wb1 = va2wb2r, rc1va1w =
c2va2wr. Since yi is the (v,w)-weighted (bi, ci)-inverse of ai, we have c1va1wy1 = c1 and y2va2wb2 = b2. Also
we can write y1 = b1ewy1 and y2 = y2v f c2 for some e, f ∈ R. Now we find

ry1 = r(b1ewy1) = (rb1)ewy1 = (b2r)ewy1 = (y2va2wb2)rewy1 = y2(va2wb2r)ewy1

= y2(rva1wb1)ewy1 = y2rva1w(b1ewy1) = y2rva1wy1,

y2r = (y2v f c2)r = y2v f (c2r) = y2v f (rc1) = y2v f r(c1va1wy1) = y2v f (rc1va1w)y1 = y2v f (c2va2wr)y1

= (y2v f c2)va2wry1 = y2(va2wr)y1 = y2(rva1w)y1.

Hence ry1 = y2r.

The next result concerning on the reverse order law for the annihilator (v,w)-weighted (b, c)-inverse.

Theorem 5.4. Let s, t, b, c, v,w ∈ R with both v and w invertible. Assume that both sa,v,w
b,c and ta,v,w

b,c exists. If
bvtw = vtwb and cvsw = vswc then (swvt)a,v,w

b,c = ta,v,w
b,c sa,v,w

b,c .

Proof. Let y = ta,v,w
b,c sa,v,w

b,c . Then we have

yv(swvt)wb = ta,v,w
b,c sa,v,w

b,c vswvtwb=ta,v,w
b,c sa,v,w

b,c vswbvtw=ta,v,w
b,c bvtw=ta,v,w

b,c vtwb = b.

Similalry, we can show cv(swvt)wy=cvswvtwta,v,w
b,c sa,v,w

b,c = c. From Definition 2.9, we have lann(b) =
lann(ta,v,w

b,c v) and rann(c) = rann(wsa,v,w
b,c ). Now for any z ∈ lann(b), we obtain zta,v,w

b,c v = 0 and

zyv = zta,v,w
b,c sa,v,w

b,c v = zta,v,w
b,c vtwta,v,w

b,c sa,v,w
b,c v = 0.

Hence lann(b) ⊆ lann(yv). Let z ∈ rann(c) = rann(wsa,v,w
b,c ). Then wsa,v,w

b,c z = 0. Now

wyz = wta,v,w
b,c sa,v,w

b,c z= wta,v,w
b,c sa,v,w

b,c vswsa,v,w
b,c z = 0.

Thus rann(c) ⊆ rann(wy). Hence by Theorem 5.1 (ii), we obtain (swvt)a,v,w
b,c = y = ta,v,w

b,c sa,v,w
b,c .

Corollary 5.5. Let s, t, b, c, v,w ∈ R and both sv,w
b,c , tv,w

b,c exists. If cvsw = vswc and bvtw = vtwb then (swvt)v,w
b,c =

tv,w
b,c sv,w

b,c .

Proof. Let y = tv,w
b,c sv,w

b,c . Then
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yvswvtwb = tv,w
b,c sv,w

b,c vswvtwb=tv,w
b,c sv,w

b,c vswbvtw=tv,w
b,c bvtw=tv,w

b,c vtwb = b.

Similalry,

cvswvtwy=cvswvtwtv,w
b,c sv,w

b,c = vswcvtwtv,w
b,c sv,w

b,c = vswcsv,w
b,c = cvswsv,w

b,c = c.

Since tv,w
b,c ∈ bRwtv,w

b,c , we have

y = tv,w
b,c sv,w

b,c ∈ bRwtv,w
b,c sv,w

b,c = bRwy.

From sv,w
b,c ∈ sv,w

b,c vRc, we obtain

y = tv,w
b,c sv,w

b,c ∈ tv,w
b,c sv,w

b,c vRc = yvRc.

Hence (swvt)v,w
b,c = tv,w

b,c sv,w
b,c .

The following result present annihilator (v,w)-weighted (b, c) inverse in the relationships with hybrid (v,w)-
weighted (b, c) inverse and (v,w)-weighted inverse of a along d ∈ R.

Proposition 5.6. Let a, v,w, y, e ∈ R with either v or w invertible and let e be regular. Then the following conditions
are equivalent:

(i) y = av,w
∥e .

(ii) yvawe = e = evawy, Rwy ⊆ Re and lann(e) ⊆ lann(yv).

(iii) yvawy = y, Rwy ⊆ Re and lann(yv) = lann(e).

(iv) yvawe = e = evawy, yvR ⊆ eR and rann(e) ⊆ rann(wy).

(v) yvawy = y, yvR ⊆ eR and rann(wy) = rann(e).

(vi) y = ah,v,w
e,e .

(vii) y = av,w
e,e .

(viii) y = aa,v,w
e,e .

Proof. The equivalence of (i)⇔(vii) follows from Theorem 4.9. Next we will show that (vi)⇔(viii). Since
ah,v,w

e,e is a special case of aa,v,w
e,e , it is enough show (viii)⇒(vi). Let y = aa,v,w

e,e . Then

yvawy = y, rann(wy) = rann(e), and lann(yv) = lann(e).

Clearly both e and y are regular. So by Proposition 3.1, lann(yv) = lann(e) gives yvR = eR and rann(wy) =
rann(e) gives Rwy = Re. Hence y = av,w

e,e .

Lemma 5.7. For i = 1, 2, let ai, bi, ci, v,w, yi ∈ R with v,w both invertible and yi = ai
a,v,w
bi,ci

. If b1 = b2 then
y1va1wy2 = y2 and y2va2wy1 = y1. Mutually, if c1 = c2 then y1va2wy2 = y1 and y2va1wy1 = y2.

Proof. Let yi = ai
a,v,w
bi,ci

. Then by Theorem 5.1, y1va1wb1 = b1 and consequently,

(y1va1w − 1) ∈ lann(b1) = lann(b2) ⊆ lann(y2v).

Thus y1va1wy2v = y2v. Post-multiplying by v−1 we get y1va1wy2 = y2. From y2va2wb2 = b2, we have

(y2va2w − 1) ∈ lann(b2) = lann(b1) ⊆ lann(y1v).

Therefore, y2va2wy1v = y1v. Again post-multiplying by v−1, we obtain y2va2wy1 = y1. In the similar manner,
we can show if c1 = c2 then y1va2wy2 = y1 and y2va1wy1 = y2.
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Theorem 5.8. Let a1, a2, v,w, b, c ∈ R with both v and w invertible. If y1 = a1
a,v,w
b,c and y2 = a2

a,v,w
b,c then

y1 + y2 = y1v(a1 + a2)wy2 = y2v(a1 + a2)wy1.

Proof. Let y1 = a1
a,v,w
b,c and y2 = a2

a,v,w
b,c . Then by Lemma 5.7, we have y1va1wy2 = y2, y2va2wy1 = y1,

y2va1wy1 = y2, and y1va2wy2 = y1. Now

y1v(a1 + a2)wy2 = y1va1wy2 + y1va2wy2 = y2 + y1 and

y2v(a1 + a2)wy1 = y2va1wy1 + y2va2wy1 = y2 + y1.

6. Conclusion

We have discussed a few necessary and sufficient conditions for the existence of the (v,w)-weighted (b, c)
inverse of an elements in a ring. Derived representations are used in generating corresponding represen-
tations of the (v,w)-weighted hybrid (b, c)-inverse and annihilator (v,w)-weighted (b, c)-inverse. We have
also explored a few results related to the reverse order law for annihilator (v,w)-weighted (b, c)-inverses. In
addition, the notion of (v,w)-weighted Bott-Duffin (e, f )-inverse was introduced along with a few charac-
terizations of this inverse.
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[21] D. Mosić, H. Zou, J. Chen, On the (b, c)-inverse in rings, Filomat 32(4) (2018) 1221–1231.
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