Characterization of Weighted (b,c) Inverse of an Element in a Ring

Bibekananda Sitha ${ }^{\text {a }}$, Jajati Keshari Sahoo ${ }^{\text {a }}$, Ratikanta Behera ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, BITS Pilani, K.K. Birla Goa Campus, Goa, India
${ }^{b}$ Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, 560012, India

Abstract

The notion of the weighted (b, c)-inverse of an element in rings were introduced very recently. In this paper, we further elaborate on this theory by establishing a few characterizations of this inverse and their relationships with other (v, w)-weighted (b, c)-inverses. We discuss a few necessary and sufficient conditions for the existence of the hybrid (v, w)-weighted (b, c)-inverse and the annihilator (v, w)-weighted (b, c)-inverse of an element in a ring. In addition, we explore a few sufficient conditions for the reverse-order law of the annihilator (v, w)-weighted (b, c)-inverses.

1. Introduction

1.1. Background and motivation

The theory of generalized inverses has generated tremendous interest in many research areas in mathematics $[1,11,17,20,22-24,26]$. Several types of generalized inverses are available in the literature, such as Moore-Penrose inverse [15], group inverse [12], Drazin inverse [6], and core inverse [23]. It is worth mentioning that Drazin in [7] introduced (b, c)-inverse in the setting of a semigroup, which is a generalization of Moore-Penrose inverse. Further, the notion of (b, c)-inverse [2, 3, 13, 14] extended to rings along with various characterizations and representations [29]. The concepts of annihilator (b, c)-inverses and hybrid (b, c)-inverses were established as generalizations of (b, c)-inverses in [7]. Further, several characterizations of hybrid and annihilator (b, c)-inverse have been discussed in [27,28]. Mary proposed the inverse along an element (see [18] Definition 4), as a new type of generalized inverse. Many researchers [8, 9] explored numerous properties of these inverses and interconnections with other generalized inverses. Among the extensive work of generalized inverses, there has been a growing interest in "weighted" generalized inverses $[5,19,25]$ for encompassing the above-mentioned generalized inverses.

In connection with the theory of (b, c)-inverses (see [7], Definition 1.3 and [21]) and the Bott-Duffin inverse [4], Drazin explored the Bott-Duffin (e, f)-inverse (see [7], Definition 3.2) in a semigroup. Further, " (v, w)-weighted version" of (b, c)-inverses are introduced in [10], e.g., annihilator ($v, w)$-weighted (b, c)inverses (see Definition 4.1) and hybrid ($v, w)$-weighted (b, c)-inverses (see Definition 4.2). The vast work on the hybrid and annihilator (b, c)-inverse along with the above weighted (b, c)-inverse, motivate us to study a few characterizations and representations for hybrid and annihilator (v, w)-weighted (b, c)-inverse.

More precisely, the main contributions of this paper are as follows:

[^0]- A few necessary and sufficient conditions for the existence of the (v, w)-weighted (b, c) inverses of elements in rings are introduced.
- Some characterizations of the (v, w)-weighted hybrid (b, c)-inverse and annihilator (v, w)-weighted (b, c)-inverses are investigated.
- The construction of the (v, w)-weighted hybrid (b, c)-inverse via group inverse is presented.

1.2. Outline

Our presentation is organized as follows. We present some notations and definitions in Section 2. In Section 3, we have discussed a few characterizations for the (v, w)-weighted (b, c)-inverse. Various equivalent properties of the hybrid (v, w)-weighted (b, c)-inverse are presented in Section 4. In Section 5, we study the representation of the annihilator (v, w)-weighted (b, c)-inverse. The contribution of our work is summarized in Section 6.

2. Preliminaries

Throughout this paper, \mathcal{R} is an associative ring with unity 1 . The sets of all left annihilators and right annihilators of a are respectively defined by

$$
\operatorname{lann}(a)=\{x \in \mathcal{R}: x a=0\} \text { and } \operatorname{rann}(a)=\{z \in \mathcal{R}: a z=0\} .
$$

We denote the left and right ideals by $a \mathcal{R}=\{a r: r \in \mathcal{R}\}$ and $\mathcal{R} a=\{z a: z \in \mathcal{R}\}$. An element $y \in \mathcal{R}$ is called generalized or inner inverse of $a \in \mathcal{R}$ if $a y a=a$. If such y exist, we say a is regular. The set of inner inverses of a is denoted by $a\{1\}$ and an inner inverse of a is represented by a^{-}. The following result proved in [16], gives the relation between ideals and annihilators.
Proposition 2.1. If a is idempotent then $\operatorname{rann}(a)=(1-a) \mathcal{R}$ and lann $(a)=\mathcal{R}(1-a)$.
Next, we recall the definition of group inverse [6] of an element in \mathcal{R}. An element y is called group inverse of $a \in \mathcal{R}$ if $a y a=a$, yay $=y$, and $a y=y a$. The group inverse of a is denoted by $a^{\#}$. The necessary and sufficient condition for the existence of group inverse is stated in the next result.

Lemma 2.2. [12, Theorem 1] Let $a \in \mathcal{R}$. Then a is group invertible if and only if $a \in a^{2} \mathcal{R} \cap \mathcal{R} a^{2}$.
We now recall the " (v, w)-weighted" version of (b, c) inverse.
Definition 2.3. [10, Theorem 2.1 (i)] Let $a, b, c, v, w \in \mathcal{R}$. An element $y \in \mathcal{R}$ satisfying

$$
y \in b \mathcal{R} w y \cap y v \mathcal{R} c, \text { yvawb }=b \text { and } c v a w y=c
$$

is called the (v, w)-weighted (b, c)-inverse of a and denoted by $a_{b, c}^{v, w}$.
In [10], Drazin proved that [see Theorem 2.4, [10] for a proof] $a_{b, c}^{v, w}$ is unique if exists.
An equivalent characterization of the (v, w)-weighted (b, c)-inverse is presented below.
Lemma 2.4. [10, Theorem 2.1 and 2.8] Let $a, b, c, v, w \in \mathcal{R}$. Then the following conditions are equivalent:
(i) a has a (v, w)-weighted (b, c)-inverse.
(ii) $c \in c v a w b \mathcal{R}$ and $b \in \mathcal{R} c v a w b$.
(iii) there exists $y \in \mathcal{R}$ such that yvawy $=y, y v \mathcal{R}=b \mathcal{R}$ and $\mathcal{R} w y=\mathcal{R} c$.

Following the definition (see [18], Definition 4) of the inverse along an element of \mathcal{R}, we next, define (v, w)-weighted inverse of a along $d \in \mathcal{R}$.

Definition 2.5. Let $a, d, v, w \in \mathcal{R}$. An element $y \in \mathcal{R}$ satisfying

$$
\text { yvawd }=d=d v a w y, \mathcal{R} w y \subseteq R d \text { and } y v \mathcal{R} \subseteq d \mathcal{R},
$$

is called the (v, w)-weighted inverse of a along $d \in \mathcal{R}$ and denoted by $a_{\| d}^{v, w}$.
Here is an example illustrating the above definition.
Example 2.6. Let $\mathcal{R}=M_{2}(\mathbb{R})$, with $a=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right], v=\left[\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right], w=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, and $d=\left[\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right]$. Since the matrix $y=\left[\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right]$ satisfies

$$
\begin{aligned}
& \text { yvawd }=\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right] \cdot\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \cdot\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]=d \\
& \text { dvawy }=\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right] \cdot\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \cdot\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]=d
\end{aligned}
$$

$w y=\left[\begin{array}{ll}0 & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right] \cdot\left[\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right]=r_{1} d$ and $y v=\left[\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right]=\left[\begin{array}{cc}1 & 2 \\ 0 & 0\end{array}\right] \cdot\left[\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right]=d r_{2}$ for some $r_{1}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$ and $r_{2}=\left[\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right]$, it follows that $a_{\| d}^{v, w}=y$.

In view of right [resp. left] hybrid (v, w)-weighted (b, c)-inverse (see [10], Definition 4.2) and annihilator (v, w)-weighted (b, c)-inverse (see [10], Definition 4.1) of $a \in \mathcal{R}$, we next present the definition of the hybrid (v, w)-weighted (b, c)-inverse and annihilator (v, w)-weighted (b, c)-inverse of $a \in \mathcal{R}$.

Definition 2.7. [10, Definition 4.2] Let $a, b, c, v, w \in \mathcal{R}$. An element $y \in \mathcal{R}$ satisfying

$$
\text { yvawy }=y, y v \mathcal{R}=b \mathcal{R}, \text { and } \operatorname{rann}(c)=\operatorname{rann}(w y)
$$

is called the right hybrid (or hybrid) (v, w)-weighted (b, c)-inverse of a and denoted by $a_{b, c}^{h, v, w}$.
In section 4, we will discuss some results on right hybrid inverse (v, w)-weighted (b, c)-inverse, which can be similarly proved for left hybrid (v, w)-weighted (b, c)-inverse. So from here onward, we call the right hybrid (v, w)-weighted (b, c)-inverse as hybrid (v, w)-weighted (b, c)-inverse.

The existence of hybrid (v, w)-weighted (b, c)-inverse over a semigroup, as proved in [10], is restated for a ring \mathcal{R}, below.

Lemma 2.8. Let $a, b, c, v, w \in \mathcal{R}$. Then $a_{b, c}^{h, v, w}$ exists if and only if rann(cvawb) $\subseteq \operatorname{rann}(b)$ and $c \in \operatorname{cvawb} \mathcal{R}$.
Definition 2.9. [10, Definition 4.2] Let $a, b, c, v, w \in \mathcal{R}$. An element $y \in \mathcal{R}$ satisfying

$$
y v a w y=y, \operatorname{lann}(y v)=\operatorname{lann}(b), \text { and } \operatorname{rann}(c)=\operatorname{rann}(w y),
$$

is called the annihilator (v, w)-weighted (b, c)-inverse of a and denoted by $a_{b, c}^{a, v, w}$.
In [10], it is proved that both $a_{b, c}^{h, v, w}$ and $a_{b, c}^{a, v, w}$ are unique. In view of Bott-Duffin inverse [7], we next introduce the (v, w)-weighted Bott-Duffin (e, f)-inverse.

Definition 2.10. Let $a, v, w, e, f \in \mathcal{R}$ with $e^{2}=e$ and $f^{2}=f$. An element $z \in \mathcal{R}$ is called (v, w)-weighted Bott-Duffin (e, f)-inverse of a if it satisfies

$$
z=e w z=z v f, z v a w e=e, f v a w z=f .
$$

The (v, w)-weighted Bott-Duffin (e, f)-inverse of the element a is denoted as $a_{e, f}^{b, v, w}$.

Example 2.11. Let $\mathcal{R}=M_{2}(\mathbb{R})$ with $a=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right], v=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right], w=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], e=\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]$, and $f=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$. It is easy to verify that the matrix $z=\left[\begin{array}{cc}0 & 0 \\ -1 & -1\end{array}\right]$ satisfies

$$
\text { zvawe }=\left[\begin{array}{cc}
0 & 0 \\
-1 & -1
\end{array}\right] \cdot\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \cdot\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \cdot\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right]=e
$$

$f v a w z=f$, and $e w z=z=z v f$. Hence $a_{e, f}^{b, v, w}=z$.

3. Further results on (v, w)-weighted (b, c)-inverse

In this section, we derive a few useful representations and properties of (v, w)-weighted (b, c)-inverse.
Proposition 3.1. Let $v, w, d \in \mathcal{R}$. Then the following hold:
(i) If $\mathcal{R} w y=\mathcal{R} d(\mathcal{R} w y \subseteq \mathcal{R} d)$ then $\operatorname{rann}(w y)=\operatorname{rann}(d)(\operatorname{rann}(d) \subseteq \operatorname{rann}(w y))$.
(ii) If $y v \mathcal{R}=d \mathcal{R}(y v \mathcal{R} \subseteq d \mathcal{R})$ then lann $(y v)=\operatorname{lann}(d)(\operatorname{lann}(d) \subseteq \operatorname{lann}(y v))$.
(iii) If $\operatorname{rann}(d) \subseteq \operatorname{rann}(w y)$ and d^{-}exists, then $\mathcal{R} w y \subseteq \mathcal{R} d$.
(iv) If lann $(d) \subseteq \operatorname{lann}(y v)$ and d^{-}exists, then $y v \mathcal{R} \subseteq d \mathcal{R}$.

Proof. (i) Let $x \in \operatorname{rann}(w y)$. Then $w y x=0$. From $\mathcal{R} w y=\mathcal{R} d$, we obtain $d=t w y$ for some $t \in \mathcal{R}$. Now $d x=\operatorname{twyx}=0$. Hence $\operatorname{rann}(w y) \subseteq \operatorname{rann}(d)$. Again from $\mathcal{R} w y=\mathcal{R} d$, we have $w y=s d$ for some $s \in \mathcal{R}$. If $z \in \operatorname{rann}(d)$ then $d z=0$ and hence $w y z=s d z=0$. Thus $\operatorname{rann}(d) \subseteq \operatorname{rann}(w y)$.
(ii) A similar argument as (i).
(iii) Let $x \in d\{1\}$. Then $(1-x d) \in \operatorname{rann}(d) \subseteq \operatorname{rann}(w y)$, which implies $w y=(w y x) d$. Therefore, $\mathcal{R} w y \subseteq \mathcal{R} d$.
(iv) Is similar to part (iii).

Proposition 3.2. Let $a, b, c, v, w \in \mathcal{R}$. If a has (v, w)-weighted (b, c)-inverse, then both b and c are regular.
Proof. Let y be the (v, w)-weighted (b, c)-inverse of a. Then by Definition $2.3, y v a w b=b, c v a w y=c$ and $y \in b R w y \cap y v R c$. From the ideals, we further obtain $y=b s w y$ and $y=y v t c$ for some $s, t \in \mathcal{R}$. Now $b=$ yvawb $=b s w y v a w b=b s w b$. Thus b is regular. Similarly, we have $c=c v a w y=c v a w y v t c=c v t c$ and completes the proof.

An equivalent characterization of the (v, w)-weighted (b, c)-inverse is presented in the next result.
Theorem 3.3. Let $a, b, c, v, w \in \mathcal{R}$. Then the following statements are equivalent:
(i) a has (v,w)-weighted (b,c)-inverse.
(ii) b is regular, $\mathcal{R}=\mathcal{R}$ cvaw $\oplus \operatorname{lann}(b)$ and lann(vaw) $\cap \mathcal{R} c=\{0\}$.
(iii) $\mathcal{R}=\mathcal{R c v a w} \oplus \operatorname{lann}($ b), lann $($ vaw $) \cap \mathcal{R} c=\{0\}$ and cvawb is regular.
(iv) c is regular, $\mathcal{R}=$ vawb $\mathcal{R} \oplus \operatorname{rann}(c)$ and rann(vaw) $\cap b \mathcal{R}=\{0\}$.
(v) $\mathcal{R}=\operatorname{vawb} \mathcal{R} \oplus \operatorname{rann}(c), \operatorname{rann}(v a w) \cap b \mathcal{R}=\{0\}$ and cvawb is regular.

Proof. (i) \Rightarrow (ii) Assume that a has a (v, w)-weighted (b, c)-inverse. By Proposition 3.2, we have b is regular. From Lemma 2.4, there exist $p, q \in R$ such that $b=p c v a w b$ and $c=c v a w b q$. Let $r=1-p c v a w$. Then $r \in \operatorname{lann}(b)$. For any $t \in \mathcal{R}$,

$$
t=t \cdot 1=t(p c v a w+r)=t p c v a w+t r \in \operatorname{Rcvaw}+\operatorname{lann}(b) .
$$

Therefore, $\mathcal{R}=\mathcal{R c v a w}+\operatorname{lann}(b)$. If $u \in \mathcal{R c v a w} \cap \operatorname{lann}(b)$ then $u b=0$ and $u=x c v a w$ for some $x \in \mathcal{R}$. Now $x c=x(c v a w b q)=(u b) q=0$ and $u=x c v a w=0$. Thus Rcvaw $\cap \operatorname{lann}(b)=\{0\}$.

If $m \in \operatorname{lann}(v a w) \cap \mathcal{R} c$ then mvaw $=0$ and $m=s c$, for some $s \in \mathcal{R}$. Therefore, $m=s c=s c v a w b q=m v a w b q=$ 0 and hence lann(vaw) $\cap R c=\{0\}$.
(ii) \Rightarrow (iii) Let $\mathcal{R}=\mathcal{R c v a w} \oplus \operatorname{lann}(b)$. Then $1=$ gcvaw $+h$ for some $g \in \mathcal{R}$ and $h \in \operatorname{lann}(b)$. Therefore, $b=$ gcvawb $\in \mathcal{R}$ cvawb, which implies $\mathcal{R} b \subseteq \mathcal{R}$ cvawb. Since $\mathcal{R c v a w b} \subseteq \mathcal{R} b$ is trivial, it follows that $\mathcal{R} b=\mathcal{R} c v a w b$. From $\mathcal{R} b=\mathcal{R c v a w b}$, we have $b=s c v a w b$ and $c v a w b=t b$ for some $s, t \in \mathcal{R}$. Now

$$
c v a w b=t b=t b b^{-} b=c v a w b b^{-} \text {scvawb, where } b^{-} \in b\{1\} .
$$

Hence, cvawb is regular.
(iii) $\Rightarrow(\mathrm{i})$ Let $\mathcal{R}=\mathcal{R c v a w} \oplus \operatorname{lann}(b)$. Then $1=$ gcvaw $+h$ for some $g \in \mathcal{R}$ and $h \in \operatorname{lann}(b)$. Therefore, $b=$ gcvawb \in Rcvawb. Now, we will prove lann (c) = lann(cvawb). Obviously, lann(c) $\subseteq \operatorname{lann}(c v a w b)$. For $x \in \operatorname{lann}(c v a w b)$, we have $x c v a w \in \operatorname{lann}(b) \cap \mathcal{R c v a w}=\{0\}$, i.e. $x c v a z=0$. This implies that $x c \in \operatorname{lann}(v a w) \cap R c=\{0\}$. Thus $x \in \operatorname{lann}(c)$, i.e. $\operatorname{lann}(c)=\operatorname{lann}(c v a w b)$. Now, let $t \in(c v a w b)\{1\}$. Since $(1-c v a w b t) c v a w b=0$, we have $1-$ cvawbt $\in \operatorname{lann}(c v a w b)=\operatorname{lann}(c)$. Thus, $c=$ cvawbtc $\in \operatorname{cvawb\mathcal {R}}$. By Lemma 2.4, a has (v, w)-weighted (b, c)-inverse.
The proof of $(\mathrm{i}) \Rightarrow(\mathrm{iv}) \Rightarrow(\mathrm{v}) \Rightarrow(\mathrm{i})$ is similar to $(\mathrm{i}) \Rightarrow(\mathrm{ii}) \Rightarrow(\mathrm{iii}) \Rightarrow(\mathrm{i})$.
Theorem 3.4. Let $a, b, c, w, v \in \mathcal{R}$. Then the following statements are equivalent:
(i) $y=a_{b, c}^{v, w}$.
(ii) yvawy $=y, y v \mathcal{R}=b \mathcal{R}$ and $\mathcal{R} w y=\mathcal{R} c$.
(iii) yvawy $=y$, $\operatorname{lann}(y v)=\operatorname{lann}(b), \mathcal{R} w y=\mathcal{R} c$, and b is regular.
(iv) $y v a w y=y, y v \mathcal{R}=b \mathcal{R}, \operatorname{rann}(w y)=\operatorname{rann}(c)$, and c is regular.
(v) y vawy $=y, \operatorname{lann}(y v)=\operatorname{lann}(b)$ and $\operatorname{rann}(w y)=\operatorname{rann}(c)$, and both b, c are regular.
(vi) both b, c are regular, $y=b b^{-} y, b b^{-}=y v a w b b^{-}, y c^{-} c=y$, and $c^{-} c=c^{-}$cvawy.
(vii) both b, c are regular, $b b^{-} \in \mathcal{R}\left(c^{-} c v a w b b^{-}\right)$, and $c^{-} c \in\left(c^{-} c v a w b b^{-}\right) \mathcal{R}$.
(viii) both b, c are regular, and there exists $s, t \in \mathcal{R}$ such that $b b^{-}=t c^{-} c v a w b b^{-}, c^{-} c=c^{-} c v a w b b^{-} s$.

Proof. (i) \Leftrightarrow (ii) The proof of this equivalence follows from Lemma 2.4.
(ii) \Rightarrow (iii) The regularity of b is follows from the equivalence of (ii) \Leftrightarrow (i) and Proposition 3.2. For any $z \in \operatorname{lann}(y v)$, we have $z y v=0$. Now $z b=z y v t=0$. Thus $z \in \operatorname{lann}(b)$ and subsequently $\operatorname{lann}(y v) \subseteq \operatorname{lann}(b)$. The reverse inclusion $\operatorname{lann}(b) \subseteq \operatorname{lann}(y v)$ can be shown similarly. Therefore, $\operatorname{lann}(y v)=\operatorname{lann}(b)$.
(iii) \Rightarrow (iv) Let $\mathcal{R} w y=\mathcal{R} c$. Then $w y=s c$ and $c=t w y$ for some $s, t \in \mathcal{R}$. Now

$$
c=t w y=t w(y v a w y)=c v a(w y)=c(v a s) c .
$$

Thus c is regular. From yvawy $=y$, we have $($ yvaw -1$) \in \operatorname{lann}(y) \subseteq \operatorname{lann}(y v)=\operatorname{lann}(b)$. Further, yvawb $=b$. Thus $b \mathcal{R} \subseteq y v \mathcal{R}$. The reverse inclusion $y v \mathcal{R} \subseteq b \mathcal{R}$ can be shown using Proposition 3.1(iv). Hence $y v \mathcal{R}=b \mathcal{R}$. For any $z \in \operatorname{rann}(w y)$, we have $w y z=0$. Now $c z=t w y z=0$. This implies $z \in \operatorname{rann}(c)$. Hence $\operatorname{rann}(w y) \subseteq$ $\operatorname{rann}(c)$. On the other hand, if $x \in \operatorname{rann}(c)$ then $c x=0$. Now $w y x=s c x=0$. Therefore, $\operatorname{rann}(w y)=\operatorname{rann}(c)$.
$(\mathrm{iv}) \Rightarrow(\mathrm{v})$ It is enough to show b is regular and $\operatorname{lann}(y v)=\operatorname{lann}(b)$. The regularity of b and $\operatorname{lann}(y v)=\operatorname{lann}(b)$ can be proved in the similar way as (ii) \Rightarrow (iii).
(v) \Rightarrow (ii) Follows from Proposition 3.1(iii) and (iv).
(i) \Rightarrow (vi) Let $y=a_{b, c}^{v, w}$. Then there exist $s, t \in \mathcal{R}$ such that $y=b s w y$ and $y=y v t c$. Now

$$
b b^{-} y=b b^{-} b s w y=b s w y=y \text { and } y v a w b b^{-}=b b^{-} .
$$

Similarly we can show, $y c^{-} c=y$ and $c^{-} c=c^{-} c v a w y$. Further, the regularity of b and c follows by Proposition 3.2.
(vi) \Rightarrow (vii) If (vi) holds, then $b b^{-}=y v a w b b^{-}=y c^{-} c v a w b b^{-} \in \mathcal{R}\left(c^{-} c v a w b b^{-}\right)$. Similarly we can show $c^{-} c \in\left(c^{-} c v a z w b b^{-}\right) R$.
(vii) \Rightarrow (viii) It is obvious.
(viii) \Rightarrow (i) Let $b b^{-}=t c^{-} c v a w b b^{-}$. Post-multiplying by b, we obtain $b=b b^{-} b=t c^{-} c v a w b \in \mathcal{R c v a w b}$. Similarly, pre-multiplying c to $c^{-} c=c^{-} c v a w b b^{-} s$, we obtain $c=c v a w b b^{-} s \in c v a w b \mathcal{R}$. Hence by Lemma 2.4, we obtain $a_{b, c}^{v, w}=y$.

The relation between group inverse and (v, w)-weighted (b, c)-inverse is presented in the next result.
Theorem 3.5. Let $a, b, c, v, w \in \mathcal{R}$ and $a_{b, c}^{v, w}$ exist. If there exist an element $s \in \mathcal{R}$ such that $s \mathcal{R}=b \mathcal{R}$ and $\operatorname{rann}(s)=\operatorname{rann}(c)$, then vaws, svaw $\in \mathcal{R}^{\#}$ and $a_{b, c}^{v, w}=s(\text { vaws })^{\#}=(s v a w)^{\#} s$.
Proof. First, we will show that vaws $\in \mathcal{R}^{\#}$ and $a_{b, c}^{v, w}=s(v a w s)^{\#}$. Let $g \in \operatorname{rann}(v a w s)$. Then vaws $g=0$, which implies $s g \in \operatorname{rann}($ vaw) $\cap s \mathcal{R}=\operatorname{rann}(v a w) \cap b \mathcal{R}=\{0\}$ by Theorem 3.3. It follows that $s g=0$ and $g \in \operatorname{rann}(s)$. Thus, $\operatorname{rann}($ vaws $) \subseteq \operatorname{rann}(s)$ and consequently $\operatorname{rann}($ vaws $)=\operatorname{rann}(s)=\operatorname{rann}(c)$. Since $s \mathcal{R}=b \mathcal{R}$, we have vaws $\mathcal{R}=$ vawbR. Using Theorem 3.3, we get

$$
\mathcal{R}=v a w b \mathcal{R} \oplus \operatorname{rann}(c)=v a w s \mathcal{R} \oplus \operatorname{rann}(v a w s) .
$$

Thus $1=$ vaws $u+t$ for some $u \in \mathcal{R}$ and $t \in \operatorname{rann(vaws).~Now~vaws~=~vawsvawsu.~This~yields~vaws(vaws~-~}$ vawsuvaws $)=0$. Hence (vaws - vawsuvaws $) \in \operatorname{rann}($ vaws $) \cap$ vaws $\mathcal{R}=\{0\}$ and subsequently,

$$
\begin{equation*}
\text { vaws }=\text { vawsuvaws }=\text { vawsvaws } u \tag{1}
\end{equation*}
$$

Clearly, vawsu is idempotent. Using Proposition 2.1, we obtain rann(vawsu) $=(1-v a w s u) \mathcal{R}$. Using equation (1), we obtain $\operatorname{rann}(v a w s u) \subseteq \operatorname{rann}(v a w s)$. For $h \in \operatorname{rann}(v a w s)$, we have vawsh $=0$. By equation (1), vawsvawsuh $=$ vawsh $=0$. Thus vawsuh $\in \operatorname{rann}(v a w s) \cap$ vaws $\mathcal{R}=\{0\}$ and hence $\operatorname{rann}(v a w s) \subseteq \operatorname{rann}(v a w s u)$. Again, vaws $-u v a w s v a w s \in \operatorname{rann}(v a w s)=\operatorname{rann}(v a w s u)$. Thus vawsu(vaws - uvawsvaws $)=0$. From equation (1), we get

$$
\begin{equation*}
\text { vaws }=\text { vawsuvaws }=\left(v a w s u^{2}\right) \text { vawsvaws. } \tag{2}
\end{equation*}
$$

From equations (1) and (2), we have vaws $\in \mathcal{R}(v a w s)^{2} \cap(v a w s)^{2} \mathcal{R}$. Hence by Lemma 2.2, vaws is group invertible.

Next we will show that $s(v a w s)^{\#}$ is the (v, w)-weighted (b, c)-inverse of a. Let $t=s(v a w s)^{\#}$. Then

$$
\text { tvawt }=s(\text { vaws })^{\#} \text { vaws }(\text { vaws) })^{\#}=s(v a w s)^{\#}=t
$$

Clearly, $t v \mathcal{R}=\left(s(v a w s)^{\#}\right) v \mathcal{R} \subseteq s v \mathcal{R} \subseteq s \mathcal{R}=b \mathcal{R}$. Since vaws $\left((v a w s)^{\#} v a w s-1\right)=0$ and $\operatorname{rann}(v a w s)=\operatorname{rann}(s)$, it follows that $s(v a w s)^{\#}$ vaws $=s$. Hence,

$$
b R=s \mathcal{R}=\left(s(v a w s)^{\#} v a w s\right) \mathcal{R}=t v a w s \mathcal{R} \subseteq t v \mathcal{R}
$$

Similarly, we have

$$
\operatorname{rann}(w t)=\operatorname{rann}\left(w s(v a w s)^{\#}\right) \subseteq \operatorname{rann}\left(v a w s(v a w s)^{\#}\right)=\operatorname{rann}(v a w s)=\operatorname{rann}(s)=\operatorname{rann}(c)
$$

and

$$
\begin{aligned}
\operatorname{rann}(c) & =\operatorname{rann}(s)=\operatorname{rann}(v a w s)=\operatorname{rann}\left(v a w s(v a w s)^{\#}\right) \subseteq \operatorname{rann}\left(s(v a w s)^{\#} \operatorname{vaws}(v a w s)^{\#}\right) \\
& =\operatorname{rann}\left(s(v a w s)^{\#}\right)=\operatorname{rann}(t) \subseteq \operatorname{rann}(w t) .
\end{aligned}
$$

Hence by Proposition 3.2 and Theorem 3.4(iv), we obtain $a_{b, c}^{v, w}=t=s(v a w s)^{\#}$. Similarly, it can be shown that svaw $\in \mathcal{R}^{\#}$ and $a_{b, c}^{v, w}=(v a w s)^{\#} s$.
Theorem 3.6. Let $a, v, w \in \mathcal{R}$. If $e, f \in \mathcal{R}$ with $e^{2}=e$ and $f^{2}=f$, then the following are equivalent:
(i) $e \in e \mathcal{R}$ fvawe and $f \in$ fvawe $\mathcal{R} f$.
(ii) there exist $m, n \in \mathcal{R}$ such that $p=m f$ fawe $+1-e$ is invertible and fvawep $^{-1} n=f$.
(iii) there exist $m, n \in \mathcal{R}$ such that $q=$ fvawen $+1-f$ is invertible and $m q^{-1}$ fvawe $=e$.
(iv) there exist $m, n \in \mathcal{R}$ such that $p=m f$ fawe $+1-e$ and $q=$ fvawen $+1-f$ are invertible.

Proof. (i) \Rightarrow (ii),(iii) Let $e \in \mathcal{R}$ fvawe and $f \in f$ foawe \mathcal{R}. Then there exist $m, n \in \mathcal{R}$ such that $e=m f$ fawe and $f=$ fvawen. Take $p=m$ fvazve $+1-e$ and $q=$ fvawen $+1-f$. Then $p=q=1, f=$ fvawen $=$ frawep $^{-1} n$ and $e=m q^{-1}$ fvawe.
(ii) \Rightarrow (i) From $f=$ frawep $^{-1} n$ and $p e=m f$ vawe, we have $e=p^{-1} m f$ fawe. Post-multiplying $f=$ frawep $^{-1} n$ by f and pre-multiplying $e=p^{-1} m f$ vawe by e, we obtain $e \in e \mathcal{R} f$ vawe and $f \in f$ foawe $\mathcal{R} f$.
(iii) \Rightarrow (i) Is similar to (ii) \Rightarrow (i).
(ii) \Rightarrow (iv) Using (ii), we have $f=$ fvawep $^{-1} n$ and $p=m f$ farwe $+1-e$ is invertible. Let $n_{1}=p^{-1} n$. Then fvawen $_{1}+1-f=f+1-f=1$. Thus $q=$ fvawen $_{1}+1-f$ is invertible.
(iv) \Rightarrow (i) Let $p=m f$ foawe $+1-e$. Then $p e=m f$ vawe and subsequently, $e=p^{-1} m f$ fawe. Now $e=e^{2}=$ $e p^{-1} m f$ vawe $\in e \mathcal{R}$ fvawe. Similarly, we can show $f \in$ fvawe $\mathcal{R} f$.

Following the Definition 2.10, we present the following characterizations for (v, w)-weighted Bott-Duffin (e, f)-inverse.

Proposition 3.7. Let $a, v, w, e, f \in \mathcal{R}$ with $e^{2}=e$ and $f^{2}=f$. If $a_{e, f}^{b, v, w}$ exist then $e \in e \mathcal{R} f v a w e$ and $f \in f v a w e \mathcal{R} f$.
Proof. Let $z=a_{e, f}^{b, v, w}$. Then by Definition 2.10, $e=$ zvawe $=e$ ewzvawe $=e(w z v)$ fvawe $\in e \mathcal{R}$ fvawe and $f=$ fvawz $=$ fvawzv $f=$ fvawe $(w z v) f \in$ fvaweR f.

Theorem 3.8. Let $a, e, f, v, w \in \mathcal{R}$ such that $e=e^{*}=e^{2}$ and $f=f^{*}=f^{2}$. If $a_{e, f}^{b, v, w}$ exist then the following hold:
(i) $e \in \mathcal{R}(\text { fvawe })^{*}$ fvawe and $f \in$ fvawe $(\text { fvawe })^{*} \mathcal{R}$.
(ii) $p=\left(\right.$ fvawe * fvawe $+1-e$ is invertible and fvawep ${ }^{-1}\left(\right.$ f vawe $^{*}=f$.
(iii) $q=$ fvawe $(\text { fvawe })^{*}+1-f$ is invertible and $(f \text { foawe })^{*} q^{-1}$ fvawe $=e$.

Proof. (i) Let $a_{e, f}^{b, v, v}$ exists. Then by Theorem 3.6 and Proposition 3.7, we get $r=g f v a w e+1-e$ is invertible and foawer ${ }^{-1} h=f$ for some $g, h \in \mathcal{R}$. Using this, we have $e=r^{-1} g$ fvawe. Now

$$
e^{*}=\left(r^{-1} g \text { fvawe }\right)^{*}=(\text { fvawe })^{*}\left(r^{-1} g\right)^{*}=(\text { fvawe })^{*} f\left(r^{-1} g\right)^{*}=\left(\text { fvawe }^{*} \text { fvawer }{ }^{-1} h\left(r^{-1} g\right)^{*} .\right.
$$

Thuse $=\left(r^{-1} g\right)\left(r^{-1} h\right)^{*}(\text { fvawe })^{*}$ fvawe $\in \mathcal{R}(\text { fvawe })^{*}$ fvawe. Similarly, we can show that $f=$ fvawe $(\text { fvawe })^{*}\left(r^{-1} g\right)^{*} r^{-1} h$ and $f \in$ fvawe (fvawe) ${ }^{*} \mathcal{R}$.
(ii) From part (i), we have $e=r^{-1} g$ fvawe and foawer ${ }^{-1} h=f$. So $r^{-1} g f=e r^{-1} h$.

Let $\beta=\left(r^{-1} g\right)\left(r^{-1} h\right)^{*}$. Then

$$
\beta e=\beta e^{*}=\left(r^{-1} g\right)\left(r^{-1} h\right)^{*}(\text { fvawe })^{*}\left(r^{-1} g\right)^{*}=r^{-1} g f\left(r^{-1} g\right)^{*}=e r^{-1} h\left(r^{-1} g\right)^{*}=e \beta^{*}
$$

Thus $(\beta e+1-e)\left((\text { fvawe })^{*}\right.$ fvawe $\left.+1-e\right)=1=\left((f \text { foawe })^{*}\right.$ fvawe $\left.+1-e\right)(\beta e+1-e)$. Hence $p=\left(\text { fvawe }^{*}\right)^{*}$ fvawe $+1-e$ is invertible and $p^{-1}=(\beta e+1-e)$. Further,

$$
\begin{aligned}
& \text { fvawep }^{-1}\left(\text { fvawe }^{*}=\text { fvawe }(\beta e+1-e)\left(\text { fvawe }^{*}\right)^{*}=\text { fvawe }^{*}\left(\text { fvawe }^{*}\right)^{*}=\text { fvawer }^{-1} g\left(r^{-1} h\right)^{*}(\text { fvawe })^{*}\right. \\
& =\text { fvawer }^{-1} g f=\text { fvawer }^{-1} h=f .
\end{aligned}
$$

(iii) Analogous to (ii).

4. Hybrid (v,w)-weighted (b,c)-inverse

First we discuss an equivalent definition of the hybrid (v, w)-weighted (b, c)-inverse, which will help us to prove more characterizations of this inverse.
Theorem 4.1. Let $a, b, c, v, w, y \in \mathcal{R}$ with either v or w invertible. Then the followings are equivalent.
(i) y vawy $=y, y v \mathcal{R}=b \mathcal{R}$ and $\operatorname{rann}(w y)=\operatorname{rann}(c)$.
(ii) y vawb $=b, c v a w y=c, y v \mathcal{R} \subseteq b \mathcal{R}$ and $\operatorname{rann}(c) \subseteq \operatorname{rann}(w y)$.

Proof. (i) \Rightarrow (ii) Let $y v \mathcal{R}=b \mathcal{R}$. Then there exist a $t \in \mathcal{R}$ such that $b=y v t$. Now $b=y v t=y v a w y v t=y v a w b$. From yoawy $=y$, we obtain $1-$ vawy $\in \operatorname{rann}(y) \subseteq \operatorname{rann}(w y)=\operatorname{rann}(c)$. Thus $c=\operatorname{cvawy}$.
(ii) \Rightarrow (i) Let $y v \mathcal{R} \subseteq b \mathcal{R}$. Then $y v=b r$ for some $r \in \mathcal{R}$. Multiplying yvawb $=b$ by $r v^{-1}$ on the right gives yvawy $=y$. If w is invertible then yvawy $=y$ is similarly follows from $c v a w y=c$. Using yvawb $=b$, we get $b \mathcal{R} \subseteq y v R$, and hence $y v \mathcal{R}=b \mathcal{R}$. Now, let $s \in \operatorname{rann}(w y)$. Then $w y s=0$. Further, $s \in \operatorname{rann}(c)$ since $c s=c v a w y s=0$. Hence $\operatorname{rann}(w y)=\operatorname{rann}(c)$.

In view of Lemma 2.8, we explore a necessary condition for the hybrid (v, w)-weighted (b, c)-inverse in the below result.

Theorem 4.2. Let $a, b, c, v, w \in \mathcal{R}$ with either v or w invertible. If the hybrid (v, w)-weighted (b, c)-inverse of a exists, then there exist a $t \in \mathcal{R}$ such that bt is the hybrid (v, w)-weighted (b, c)-inverse of a satisfying $c=c v a w b t$.

Proof. Let a has a hybrid (v, w)-weighted (b, c)-inverse. Then by Lemma 2.8,

$$
c=c v a w b t \text { for some } t \in \mathcal{R} .
$$

Let $y=b t$. Now we will claim that y is the hybrid (v, w)-weighted (b, c)-inverse of a. Clearly, $y v \mathcal{R}=b t v \mathcal{R} \subseteq$ $b \mathcal{R}$. Using $c=c v a w b t$, we obtain cvawb $=$ cvawbtvawb. Thus $(1-t v a w b) \in \operatorname{rann}(c v a w b) \subseteq r a n n(b)$ by Lemma 2.8. Hence

$$
b=b t v a w b=\text { yvawb } .
$$

For $x \in \operatorname{rann}(c)$, we have $\operatorname{cvawbtx}=c x=0$, which yields $t x \in \operatorname{rann}(c v a w b)$. Further, by Lemma 2.8, $t x \in \operatorname{rann}(b)$ and consequently $w y x=w b t x=0$. Therefore,

$$
\operatorname{rann}(c) \subseteq \operatorname{rann}(w y)
$$

By Theorem 4.1, we get $y=b t$ is the hybrid (v, w)-weighted (b, c)-inverse of a.
A necessary and sufficient condition for the existence of hybrid (v, w)-weighted (b, c) is presented below.
Theorem 4.3. Let $a, b, c, v, w \in \mathcal{R}$ with either v or w invertible. Then $a_{b, c}^{h, v, w}$ exists if and only if $\mathcal{R}=v a w b \mathcal{R} \oplus \operatorname{rann}(c)$ and rann(vaw) $\cap b \mathcal{R}=\{0\}$.

Proof. Let a has a hybrid (v, w)-weighted (b, c)-inverse. Then by Theorem $4.2, b t$ is the hybrid (v, w)-weighted (b, c)-inverse of a satisfying $c=c v a w b t$, where $t \in \mathcal{R}$. Subsequently $z:=(1-v a w b t) \in \operatorname{rann}(c)$. For any $x \in \mathcal{R}$, we can write

$$
x=1 \cdot x=(z+\text { vawbt }) x=z x+\text { vawbtx } \in \operatorname{rann}(c)+\text { vawb } \mathcal{R} .
$$

Thus $\mathcal{R}=\operatorname{rann}(c)+v a w b \mathcal{R}$ since the reverse inclusion is trivial. If $r \in \operatorname{rann}(c) \cap \operatorname{vawb\mathcal {R}}$, then $c r=0$ and $r=v a w b u$ for some $u \in \mathcal{R}$. From Theorem 4.1, taking $y=b t$, we have

$$
\begin{equation*}
\operatorname{rann}(w b t)=\operatorname{rann}(c) \text { and } b t v a w b=b \tag{3}
\end{equation*}
$$

which yields $w b t v a w b u=w b t r=0$ and $r=v a w(b) u=v a(w b t v a w b u)=0$. Hence $R=v a w b \mathcal{R} \oplus \operatorname{rann}(c)$. Next we will show that $\operatorname{rann}(v a w) \cap b \mathcal{R}=\{0\}$. Let $h \in \operatorname{rann}($ vaw $) \cap b \mathcal{R}$, then vawh $=0$ and $h=b k$ for some $k \in \mathcal{R}$, which implies vawbk $=0$. Using second part of equation (3), we have $h=b k=b t(v a w b k)=0$. Thus
$\operatorname{rann}(v a w) \cap b \mathcal{R}=\{0\}$.
Conversely, let $\mathcal{R}=\operatorname{vawb} R \oplus \operatorname{rann}(c)$. Then $1=\operatorname{vawbm}+n$ for some $m \in \mathcal{R}$ and $n \in \operatorname{rann}(c)$. Further,

$$
\begin{equation*}
c=c v a w b m+c n=c v a w b m \in \operatorname{cvawb} \mathcal{R} \text { since } n \in \operatorname{rann}(c) . \tag{4}
\end{equation*}
$$

If $x \in \operatorname{rann}(c v a w b)$, then $c v a w b x=0$ and hence vawbx $\in \operatorname{rann}(c) \cap v a w b \mathcal{R}=\{0\}$. Thus $b x \in \operatorname{rann}(v a w) \oplus b \mathcal{R}=\{0\}$ since $\operatorname{rann}(v a w) \cap b \mathcal{R}=\{0\}$. Hence $x \in \operatorname{rann}(b)$ and subsequently, we obtain $\operatorname{rann}(c v a w b) \subseteq \operatorname{rann}(b)$.

In view of equations (4), (5) and Lemma 2.8, a has a hybrid (v, w)-weighted (b, c)-inverse.
Lemma 4.4. Let $a, b, c, v, w \in \mathcal{R}$ with either v or w invertible. Assume that $a_{b, c}^{h, v, w}$ exists. Then $a_{b, c}^{v, w}$ exists if and only if any one of the following holds.
(i) coawb is regular.
(ii) c is regular.

Proof. (i) Let $a_{b, c}^{v, w}$ exists. Then $b \in \mathcal{R c v a w b}$ and $c \in \operatorname{cvawbR}$. Furtehr, $b=s c v a w b$ and $c=c v a w b t$ for some $s, t \in \mathcal{R}$. Now

$$
\begin{gathered}
b=\text { scvawb }=\text { scvawbtvawb }=\text { btvawb }, c=c v a w b t=c v a w s c v a w b t=c(v a w s) c, \text { and } \\
c v a w b=c v a w b t v a w s c v a w b=c v a w b(\text { tvaws }) c v a w b .
\end{gathered}
$$

Hence cvawb is regular.
Conversely, let $c v a w b$ be regular. Then there exist an element $z \in \mathcal{R}$ such that $c v a w b=c v a w b z c v a w b$. Since a has a hybrid (v, w)-weighted (b, c)-inverse, by Lemma 2.8, we have $c \in c v a w b \mathcal{R}$ and $b=b z c v a w b \in \mathcal{R c v a w b}$ due to the fact that $1-z c v a w b \in \operatorname{rann}(c v a w b) \subseteq \operatorname{rann}(b)$. Hence by Lemma 2.4, a has a (v, w)-weighted (b, c)-inverse.
(ii) The regularity of c is follows from Theorem 3.4.

Conversely, let c be regular and the hybrid (v, w)-weighted (b, c)-inverse of a exist. Then by Theorem 4.3, $\mathcal{R}=\operatorname{vawb\mathcal {R}} \oplus \operatorname{rann}(c)$ and subsequently $1=$ vawbs $+t$ for some $s \in \mathcal{R}$ and $t \in \operatorname{rann}(c)$. Therefore, $c=c v a w b s+c t=c v a w b s$. Since c is regular, there exist an element $x \in \mathcal{R}$ such that $c=c x c$. Now

$$
c v a w b=(c) v a w b=(c) x c v a w b=c v a w b s x c v a w b=c v a w b(s x) c v a w b .
$$

Thus cvawb is regular. Hence by part (i), a has a (v, w)-weighted (b, c)-inverse.
We next present the following characterizations of hybrid (v, w)-weighted (b, c) through annihilators.
Theorem 4.5. Let $a, b, c, v, w \in \mathcal{R}$ with either v or w invertible. If a has a hybrid (v, w)-weighted (b, c)-inverse then the following statements hold:
(i) $\operatorname{rann}(v a w b)=\operatorname{rann}(b)$.
(ii) If $\operatorname{rann}(b)=\operatorname{rann}(c)$ then $\operatorname{rann}($ vawbs $)=\operatorname{rann}($ vawb $)$, where $s \in \mathcal{R}$ satisfies vawb $=(v a w b)^{2} s$.

Proof. (i) It is trivial that $\operatorname{rann}(b) \subseteq \operatorname{rann}(v a w b)$. Let a has a hybrid (v, w)-weighted (b, c)-inverse. Then by Theorem 4.3, $\operatorname{rann}(v a w) \cap b \mathcal{R}=\{0\}$. For $r \in \operatorname{rann}(v a w b)$, we have $b r \in \operatorname{rann}(v a w)$ and $b r \in b \mathcal{R}$. Thus $b r \in \operatorname{rann}($ vaw $) \cap b \mathcal{R}=\{0\}$ and hence $r \in \operatorname{rann}(b)$. Therefore, $\operatorname{rann}(v a w b) \subseteq \operatorname{rann}(b)$.
(ii) Using the condition $\mathcal{R}=v a w b \mathcal{R} \oplus \operatorname{rann}(c)$ of Theorem 4.3, we have $1=v a w b s+t$ for some $s \in \mathcal{R}$ and $t \in \operatorname{rann}(c)=\operatorname{rann}(b)$. Thus $b=$ bvawbs and vawb $=$ vawbvawbs $=(v a w b)^{2} s$. Let $x \in \operatorname{rann}(v a w b)$. Then $(v a w b)^{2} s x=$ vawb $x=0$. Now

$$
\text { vawbs } x \in \operatorname{rann}(v a w b) \cap \operatorname{vawb\mathcal {R}}=\operatorname{rann}(b) \cap \operatorname{vawb\mathcal {R}}=\operatorname{rann}(c) \cap \operatorname{vawb\mathcal {R}}=\{0\} .
$$

Therefore $x \in \operatorname{rann}(v a w b s)$ and consequently, $\operatorname{rann}(v a w b) \subseteq \operatorname{rann}(v a w b s)$.
Conversely, let $z \in \operatorname{rann}(v a w b s)$. Then vawbz $=(v a w b)^{2} s z=0$, which implies $z \in \operatorname{rann}(v a w b)$. Thus, $\operatorname{rann}(v a w b s) \subseteq \operatorname{rann}(v a w b)$ and hence $\operatorname{rann}(v a w b s)=\operatorname{rann}(v a w b)$, where s satisfies vawb $=(v a w b)^{2} s$.

The following result represent a necessary and sufficient condition for hybrid (v, w)-weighted (b, c) inverse through group inverse.

Theorem 4.6. Let $a, b, c, v, w \in \mathcal{R}$ with either v or w invertible. Assume that $\operatorname{rann}(v a z w)=\operatorname{rann}(b)=\operatorname{rann}(c)$. Then the hybrid (v, w)-weighted (b, c)-inverse of a exists if and only of vawb is group invertible.
Proof. Let a have a hybrid (v, w)-weighted (b, c)-inverse. Then by Theorem 4.3, we have $1=v a w b s+t$ for some $s \in \mathcal{R}$ and $t \in \operatorname{rann}(c)=\operatorname{rann}($ vawb $)$, which implies

$$
\begin{equation*}
v a w b=(v a w b)^{2} s \in(v a w b)^{2} \mathcal{R} \text { and }(v a w b)^{2}=(v a w b)^{2} \text { svawb. } \tag{6}
\end{equation*}
$$

Using the second part of equation (6) and Theorem 4.3, we obtain

$$
\text { vawb }- \text { vawbsvawb } \in \operatorname{rann}(v a w b) \cap \text { vawb } \mathcal{R}=\operatorname{rann}(c) \cap \text { vawb尺 }=\{0\} .
$$

Thus

$$
\begin{equation*}
\text { vawb }=\text { vawbsvawb and }(v a w b)^{2}=\text { vawbs }(v a w b)^{2} . \tag{7}
\end{equation*}
$$

Applying equation (7) and Theorem 4.5, we have

$$
\text { vawb }-s(v a w b)^{2} \in \operatorname{rann}(v a w b)=\operatorname{rann}(\text { vawobs }) .
$$

Further, vawbs ${ }^{2}(v a w b)^{2}=v a w b s v a w b=v a w b$ and vawb $\in \mathcal{R}(v a w b)^{2}$. Hence by Lemma 2.2, vawb is group invertible since $v a w b \in(v a w b)^{2} \mathcal{R} \cap \mathcal{R}(v a w b)^{2}$.

Conversely, let $y=b(v a w b)^{\#}$. From vawb $=(v a w b)^{2}(v a w b)^{\#}$ and $\operatorname{rann}(v a w b)=\operatorname{rann}(c)$, we have $c(1-$ vawb(vawb) $\left.{ }^{\#}\right)=0$ and

$$
c=\operatorname{cvawb}(v a w b)^{\#}=\operatorname{cvawy} .
$$

Similarly by applying $\operatorname{rann}(v a w b)=\operatorname{rann}(b)$, we obtain

$$
b=b(v a w b)^{\#} \text { vawb }=\text { yvawb. }
$$

The condition $y v \mathcal{R} \subseteq y \mathcal{R} \subseteq b R$ follows from $y=b(v a z b b)^{\#}$. Next we will show that $\operatorname{rann}(c) \subseteq \operatorname{rann}(w y)$. Let $x \in \operatorname{rann}(c)=\operatorname{rann}(b)$. Then $b x=0$.
Now $w y x=w b(v a w b)^{\#} x=w b(v a w b)^{\#}(v a w b)^{\#} v a w b x=0$. Thus $x \in \operatorname{rann}(w y)$ and hence $\operatorname{rann}(c) \subseteq \operatorname{rann}(w y)$. By Theorem 4.1, $y=b(v a w b)^{\#}$ is the hybrid (v, w)-weighted (b, c)-inverse of a.

Remark 4.7. Let $a, b, c, v, w \in \mathcal{R}$ with either v or w invertible. If rann $(v a w b)=\operatorname{rann}(b)=\operatorname{rann}(c)$ and vawb is group invertible, then $b(v a w b)^{\#}$ is the hybrid (v, w)-weighted (b, c)-inverse of a.

Corollary 4.8. Let $a, b, c, v, w \in \mathcal{R}$ with either v or w be invertible and $y=a_{b, c}^{h, v, w}$. Then $\operatorname{rann}(b)=\operatorname{rann}(v a w b)=$ rann(c) if and only of vawb is group invertible with $y=b(v a w b)^{\#}$.
Proof. Let vawb be group invertible with $y=b(v a w b)^{\#}$. From $y=a_{b, c}^{h, v, w}$, we have $\operatorname{rann}(c)=\operatorname{rann}(w y)$. If $x \in$ $\operatorname{rann}(v a z v b)$, then by Theorem 4.3, $b x \in \operatorname{rann}(v a w) \cap b \mathcal{R}=\{0\}$ and hence $x \in \operatorname{rann}(b)$. Thus rann $(v a w b)=\operatorname{rann}(b)$ since the reverse inclusion $\operatorname{rann}(b) \subseteq \operatorname{rann}(v a w b)$ is obvious. Next we will show that $\operatorname{rann}(b)=\operatorname{rann}(w y)$. Let $z \in \operatorname{rann}(b)$. Then $b z=0$ and consequently

$$
w y z=w b(v a w b)^{\#} z=w b(v a w b)^{\#}(v a w b)^{\#} v a w b z=0 .
$$

Therefore, $z \in \operatorname{rann}(w y)$ and $\operatorname{rann}(b) \subseteq \operatorname{rann}(w y)$. If $x \in \operatorname{rann}(w y)$, then $w y x=0$ and

$$
\text { vawbx }=(v a w b)^{2}(v a w b)^{\#} x=\text { vawbvawy } x=0 .
$$

Further, by Theorem 4.3, we obtain $b x \in \operatorname{rann}(v a w) \cap b \mathcal{R}=\{0\}$. Thus $x \in \operatorname{rann}(b)$. Hence $\operatorname{rann}(b)=\operatorname{rann}(w y)=$ $\operatorname{rann}(c)$.

The converse part follows from Theorem 4.6.
The following result presents hybrid (v, w)-weighted (b, c) inverse in the relationships with annihilators and (v, w)-weighted inverse of a along $d \in \mathcal{R}$.

Theorem 4.9. Let $a, d, v, w, y \in \mathcal{R}$ with either v or w invertible. Then the following statements are equivalent:
(i) y is the (v, w)-weighted inverse of a along d.
(ii) yvawd $=d=d v a w y, \mathcal{R} w y \subseteq \mathcal{R} d$, and $\operatorname{lann}(d) \subseteq \operatorname{lann}(y v)$.
(iii) yvawy $=y, \mathcal{R} w y=\mathcal{R d}$, and $\operatorname{lann}(y v)=\operatorname{lann}(d)$.
(iv) yvawd $=d=d v a w y, y v \mathcal{R} \subseteq d \mathcal{R}$, and $\operatorname{rann}(w y)=\operatorname{rann}(d)$.
(v) yvawy $=y, y v \mathcal{R}=d \mathcal{R}$, and $\operatorname{rann}(w y)=\operatorname{rann}(d)$.
(vi) y is the hybrid (v, w)-weighted (d, d)-inverse of a.
(vii) y is the (v, w)-weighted (d, d)-inverse of a.

Proof. (i) \Rightarrow (ii) The proof follows from the Definition 2.5 and Proposition 3.1 (ii).
(ii) \Rightarrow (iii) Let $\mathcal{R} w y \subseteq \mathcal{R} d$. Then $w y=s d$ for some $s \in \mathcal{R}$. Pre-multiplying $d=d v a w y$ by $w^{-1} s$, we obtain

$$
y=w^{-1} s d=w^{-1} \text { sdvawy }=\text { yvaw } y .
$$

From $d=d v a w y$, we have $\mathcal{R} d \subseteq \mathcal{R} w y$ and hence $\mathcal{R} w y=\mathcal{R} d$. Next we will show that $\operatorname{lann}(y v) \subseteq \operatorname{lann}(d)$. If $z \in \operatorname{lann}(y v)$, then by applying yvawd $=d$, we obtain

$$
z d=z(y v a w d)=(z y v) a w d=0 .
$$

Thus $\operatorname{lann}(y v) \subseteq \operatorname{lann}(d)$ and consequently $\operatorname{lann}(d)=\operatorname{lann}(y v)$.
$($ iii $) \Rightarrow($ iv $)$ Let $y=y v a w y$. Then $(1-y v a w) \in \operatorname{lann}(y) \subseteq \operatorname{lann}(y v)=\operatorname{lann}(d)$. Thus $d=y v a w d$. From $\mathcal{R} d=\mathcal{R} w y$, we have

$$
\begin{equation*}
d=s w y \text { and } w y=t d \text { for some } s, t \in \mathcal{R} \tag{8}
\end{equation*}
$$

Pre-multylying yvawy $=y$ by $s w$, we obtain $d=s w(y)=(s w y) v a w y=d v a w y$. The condition $\operatorname{rann}(w y)=$ $\operatorname{rann}(d)$ follows from Proposition 3.1 (i). Using the second part of equation (8), we get d is regular since

$$
d=d v a w y=d(v a t) d .
$$

Hence by Proposition 3.1 (iv), $y v \mathcal{R} \subseteq d \mathcal{R}$.
(iv) \Rightarrow (v) The proof is similar to (ii) \Rightarrow (iii).
$(v) \Leftrightarrow(v i)$ This part is trivial and follows from the definition.
(v) \Rightarrow (vii) To establish the result, it is sufficient to show

$$
\text { yvawd }=d=d v a w y \text { and } y \in y v \mathcal{R} d \cap d \mathcal{R} w y .
$$

Let y be the hybrid (v, w)-weighted (d, d)-inverse of a. Then yvaw $y=y, y v R=d R$ and $\operatorname{rann}(w y)=\operatorname{rann}(d)$. From $y=$ yvawy, we obtain $(1-v a w y) \in \operatorname{rann}(y) \subseteq \operatorname{rann}(w y)=\operatorname{rann}(d)$. Thus $d=d v a w y$. From $y v \mathcal{R}=d \mathcal{R}$, we have $d=y v s$ and $y v=d t$ for some $s, t \in \mathcal{R}$. Therefore,

$$
y=y v a w y=d(t a) w y \in d \mathcal{R} w y, d=y v s=y v a w y v s=y v a w d \text { and } d=d(t a w) d .
$$

Hence d is regular and by Proposition 3.1 (iii), we obtain $\mathcal{R} w y \subseteq \mathcal{R} d$, which implies $w y=z d$ for some $z \in \mathcal{R}$ and $y=y v a w y=y v(a z) d \in y v \mathcal{R} d$. Hence y is the (v, w)-weighted (d, d)-inverse of a.
(vii) \Rightarrow (i) Let y be the (v, w)-weighted (d, d)-inverse of a. Then yvawd $=d=d v a w y$, and $y=d s w y=y v t d$ for some $s, t \in \mathcal{R}$. To establish the result, it is enough to show $y v \mathcal{R} \subseteq d \mathcal{R}$ and $\mathcal{R} w y \subseteq \mathcal{R} d$. Since $y v=d(s w y v)=d s_{1}$ and $w y=w y v t d=t_{1} d$ for some $s_{1}=s w y v \in \mathcal{R}$ and $t_{1}=w y v t \in \mathcal{R}$, it follows that $y v \mathcal{R} \subseteq d \mathcal{R}$ and $\mathcal{R} w y \subseteq \mathcal{R} d$. Hence by Definition 2.5, y is the (v, w)-weighted inverse of a along d.

In view of Theorem 4.9, and taking $b=c=d$ in Theorem 3.3, we obtain the following result as a corollary.
Corollary 4.10. Let $a, d, v, w \in \mathcal{R}$ with either v or w invertible. Then the following statements are equivalent:
(i) a has a (v, w)-weighted inverse along d.
(ii) d is regular, $\mathcal{R}=\mathcal{R} d v a w \oplus \operatorname{lann}(d)$, and lann(vaw) $\cap \mathcal{R} d=\{0\}$.
(iii) $\mathcal{R}=\mathcal{R} d v a w \oplus \operatorname{lann}(d)$, lann(vaw) $\cap \mathcal{R} d=\{0\}$ and dvawd is regular.
(iv) d is regular, $\mathcal{R}=$ vawd $\mathcal{R} \oplus \operatorname{rann}(d)$, and $\operatorname{rann}(v a w) \cap d \mathcal{R}=\{0\}$.
(v) $\mathcal{R}=\operatorname{vawd} \mathcal{R} \oplus \operatorname{rann}(d), \operatorname{rann}(v a w) \cap d \mathcal{R}=\{0\}$ and dvawd is regular.

The relation between (v, w)-weighted inverse along $d \in \mathcal{R}$ and the group inverse of an element is discussed in the next result.

Corollary 4.11. Let $a, d, v, w \in \mathcal{R}$. Then $a_{\| d}^{v, w}$ exists if and only if vawd is group invertible and rann $(v a w d)=\operatorname{rann}(d)$.
Proof. Let y be the (v, w)-weighted inverse of a along along d. Then by Theorem 4.9, y is the hybrid (v, w) weighted (d, d)-inverse of a and yoawd $=d$. From the condition yoaw $d=d$, we have $\mathcal{R} d \subseteq \mathcal{R} v a w d$. Then $\operatorname{rann}(v a w d) \subseteq \operatorname{rann}(d)$ follows directly from Proposition 3.1 (i). Hence $\operatorname{rann}(v a w d)=\operatorname{rann}(d)$ since the reverse inclusion $\operatorname{rann}(d) \subseteq \operatorname{rann}(v a w d)$ is trivial. Replacing b and c by d in Corollary 4.8, we get vawd is group invertible. The converse part follows from Theorem 4.6

5. Annihilator (v, w)-weighted (b, c)-inverse

This section is devoted to the characterizations of annihilator (v, w)-weighted (b, c)-inverse. The first result is represent an equivalent definition of annihilator (v, w)-weighted (b, c)-inverse, which will be used in the subsequent results.
Theorem 5.1. Let $a, b, c, v, w, y \in \mathcal{R}$ with either v or w invertible. Then the following statements are equivalent:
(i) y vawy $=y, \operatorname{rann}(w y)=\operatorname{rann}(c)$ and lann $(y v)=\operatorname{lann}(b)$.
(ii) $y v a w b=b, c v a w y=c, \operatorname{rann}(c) \subseteq \operatorname{rann}(w y)$ and $\operatorname{lann}(b) \subseteq \operatorname{lann}(y v)$.

Proof. (i) \Rightarrow (ii) Let yvawy $=y$. Then $($ yvaw -1$) \in \operatorname{lann}(y v)=\operatorname{lann}(b)$. This yields yvawb $=b$. Similarly cvawy $=c$ follows from

$$
(v a w y-1) \in \operatorname{rann}(w y)=\operatorname{rann}(c)
$$

Hence completes the proof.
$(\mathrm{ii}) \Rightarrow(\mathrm{i})$ Let $\operatorname{rann}(c) \subseteq \operatorname{rann}(w y)$ and $c v a w y=c$. Then $(v a w y-1) \in \operatorname{rann}(c) \subseteq \operatorname{rann}(w y)$. Thus wyvawy $=w y$. Similarly, from $\operatorname{lann}(b) \subseteq \operatorname{lann}(y v)$ and yvawb $=b$, we can obtain yvawyv $=y v$. If either v or w is invertible then yoawy $=y$. Next we will claim that $\operatorname{rann}(w y) \subseteq \operatorname{rann}(c)$ and $\operatorname{lann}(y v) \subseteq \operatorname{lann}(b)$. For $x \in \operatorname{rann}(w y)$, we have $w y x=0$. Now $c x=c v a(w y x)=0$. Thus $\operatorname{rann}(w y) \subseteq \operatorname{rann}(c)$. If $z \in \operatorname{lann}(y v)$, then $z y v=0$. Further, $z b=(z y v) a w b=0$. Hence lann $(y v) \subseteq \operatorname{lann}(b)$.

With the help of Theorem 5.1 (i), we present the following property of annihilator ($v, w)$-weighted (b, c)-inverse.

Proposition 5.2. For $i=1,2$, let $a_{i}, b_{i}, c_{i}, v, w, y_{i} \in \mathcal{R}$ with both v, w invertible and $y_{i}=a_{i b, c}^{a, v, w}$. If $r c_{1}=c_{2} r$ $r v a_{1} w=v a_{2} w r$ and $r b_{1}=b_{2} r$ for any $r \in \mathcal{R}$, then $r y_{1}=y_{2} r$.

Proof. Let $y_{i}=a_{i b, c}^{a, v, w}$. Then by Theorem 5.1, we obtain $y_{2} v a_{2} w b_{2}=b_{2}$ and $\operatorname{lann}\left(b_{1}\right) \subseteq \operatorname{lann}\left(y_{1} v\right)$. Thus

$$
r b_{1}=b_{2} r=y_{2} v a_{2} w b_{2} r=y_{2}\left(v a_{2} w r\right) b_{1}=y_{2}\left(r v a_{1} w\right) b_{1}
$$

Further, $\left(r-y_{2} r v a_{1} w\right) \in \operatorname{lann}\left(b_{1}\right) \subseteq \operatorname{lann}\left(y_{1} v\right)$, which implies

$$
\begin{equation*}
r y_{1} v=y_{2} r v a_{1} w y_{1} v \tag{9}
\end{equation*}
$$

Similarly, we have $c_{2} r=r c_{1}=r c_{1} v a_{1} w y_{1}=c_{2} r v a_{1} w y_{1}$ and $\left(r-r v a_{1} w y_{1}\right) \in \operatorname{rann}\left(c_{2}\right) \subseteq \operatorname{rann}\left(w y_{2}\right)$. Thus

$$
\begin{equation*}
w y_{2} r=w y_{2} r v a_{1} w y_{1} \tag{10}
\end{equation*}
$$

Using the invetibility of v and w in equation (9) and (10), we get $r y_{1}=y_{2} r$.
In the similar manner, we have the following result for the (v, w)-weighted (b, c)-inverse.
Corollary 5.3. For $i=1,2$, let $a_{i}, b_{i}, c_{i}, v, w, y_{i} \in \mathcal{R}$ and y_{i} be the (v, w)-weighted $\left(b_{i}, c_{i}\right)$-inverse of a_{i}. If $r c_{1}=c_{2} r$, $r v a_{1} w=v a_{2} w r$ and $r b_{1}=b_{2} r$ for any $r \in \mathcal{R}$, then $r y_{1}=y_{2} r$.

Proof. We first note that $\left(r v a_{1} w\right) b_{1}=\left(v a_{2} w r\right) b_{1}=v a_{2} w\left(r b_{1}\right)$ and similarly $r v a_{1} w b_{1}=v a_{2} w b_{2} r, r c_{1} v a_{1} w=$ $c_{2} v a_{2} w r$. Since y_{i} is the (v, w)-weighted $\left(b_{i}, c_{i}\right)$-inverse of a_{i}, we have $c_{1} v a_{1} w y_{1}=c_{1}$ and $y_{2} v a_{2} w b_{2}=b_{2}$. Also we can write $y_{1}=b_{1} e w y_{1}$ and $y_{2}=y_{2} v f c_{2}$ for some $e, f \in \mathcal{R}$. Now we find

$$
\begin{aligned}
r y_{1} & =r\left(b_{1} e w y_{1}\right)=\left(r b_{1}\right) e w y_{1}=\left(b_{2} r\right) e w y_{1}=\left(y_{2} v a_{2} w b_{2}\right) r e w y_{1}=y_{2}\left(v a_{2} w b_{2} r\right) e w y_{1} \\
& =y_{2}\left(r v a_{1} w b_{1}\right) e w y_{1}=y_{2} r v a_{1} w\left(b_{1} e w y_{1}\right)=y_{2} r v a_{1} w y_{1}, \\
y_{2} r & =\left(y_{2} v f c_{2}\right) r=y_{2} v f\left(c_{2} r\right)=y_{2} v f\left(r c_{1}\right)=y_{2} v f r\left(c_{1} v a_{1} w y_{1}\right)=y_{2} v f\left(r c_{1} v a_{1} w\right) y_{1}=y_{2} v f\left(c_{2} v a_{2} w r\right) y_{1} \\
& =\left(y_{2} v f c_{2}\right) v a_{2} w r y_{1}=y_{2}\left(v a_{2} w r\right) y_{1}=y_{2}\left(r v a_{1} w\right) y_{1} .
\end{aligned}
$$

Hence $r y_{1}=y_{2} r$.
The next result concerning on the reverse order law for the annihilator (v, w)-weighted (b, c)-inverse.
Theorem 5.4. Let $s, t, b, c, v, w \in \mathcal{R}$ with both v and w invertible. Assume that both $s_{b, c}^{a, v, w}$ and $t_{b, c}^{a, v, w}$ exists. If $b v t w=v t w b$ and $c v s w=v s w c$ then $(s w v t)_{b, c}^{a, v, w}=t_{b, c}^{a, v, w} s_{b, c}^{a, v, v}$.
Proof. Let $y=t_{b, c}^{a, v, w} s_{b, c}^{a, v, w}$. Then we have

$$
y v(s w v t) w b=t_{b, c}^{a, v, w} s_{b, c}^{a, v, w} v s w v t w b=t_{b, c}^{a, v, w} s_{b, c}^{a, v, w} v s w b v t w=t_{b, c}^{a, v, w} b v t w=t_{b, c}^{a, v, w} v t w b=b .
$$

Similalry, we can show $c v(s w v t) w y=c v s w v t w t_{b, c}^{a, v, w} s_{b, c}^{a, v, w}=c$. From Definition 2.9, we have lann $(b)=$ $\operatorname{lann}\left(t_{b, c}^{a, v, w} v\right)$ and $\operatorname{rann}(c)=\operatorname{rann}\left(w_{b, c}^{a, v, w}\right)$. Now for any $z \in \operatorname{lann}(b)$, we obtain $z t_{b, c}^{a, v, w} v=0$ and

$$
z y v=z t_{b, c}^{a, v, w} s_{b, c}^{a, v, w} v=z t_{b, c}^{a, v, w} v t w t_{b, c}^{a, v, w} s_{b, c}^{a, v, w} v=0 .
$$

Hence $\operatorname{lann}(b) \subseteq \operatorname{lann}(y v)$. Let $z \in \operatorname{rann}(c)=\operatorname{rann}\left(w s_{b, c}^{a, v, w}\right)$. Then $w_{b, c}^{a, v, w} z=0$. Now

$$
w y z=w \tau_{b, c}^{a, v, w} s_{b, c}^{a, v, w} z=w w_{b, c}^{a, v, w} s_{b, c}^{a, v, w} v s w s_{b, c}^{a, v, w} z=0 .
$$

Thus $\operatorname{rann}(c) \subseteq \operatorname{rann}(w y)$. Hence by Theorem 5.1 (ii), we obtain $(s w v t)_{b, c}^{a, v, w}=y=t_{b, c}^{a, v, w} s_{b, c}^{a, v, w}$.
Corollary 5.5. Let $s, t, b, c, v, w \in \mathcal{R}$ and both $s_{b, c}^{v, w}, t_{b, c}^{v, w}$ exists. If $c v s w=v s w c$ and bvtw $=v t w b$ then $(s w v t)_{b, c}^{v, w}=$ $t_{b, c}^{v, w}{ }_{b, c}^{v, w}$.
Proof. Let $y=t_{b, c}^{v, w} s_{b, c}^{v, w}$. Then

$$
y v s w v t w b=t_{b, c}^{v, w} s_{b, c}^{v, w} v s w v t w b=t_{b, c}^{v, w} s_{b, c}^{v, w} v s w b v t w=t_{b, c}^{v, w} b v t w=t_{b, c}^{v, w} v t w b=b
$$

Similalry,

$$
\operatorname{cvswvtwy=cvswvtwt_{b,c}^{v,w}s_{b,c}^{v,w}=vswcvtwt_{b,c}^{v,w}s_{b,c}^{v,w}=vswcs_{b,c}^{v,w}=\operatorname {cvsws}_{b,c}^{v,w}=c......}
$$

Since $t_{b, c}^{v, w} \in b \mathcal{R} w t_{b, c}^{v, w}$, we have

$$
y=t_{b, c}^{v, w} s_{b, c}^{v, w} \in b \mathcal{R} w t_{b, c}^{v, w} s_{b, c}^{v, w}=b \mathcal{R} w y .
$$

From $s_{b, c}^{v, w} \in s_{b, c}^{v, w} v \mathcal{R} c$, we obtain

$$
y=t_{b, c}^{v, w} s_{b, c}^{v, w} \in t_{b, c}^{v, w} s_{b, c}^{v, w} v \mathcal{R} c=y v \mathcal{R} c .
$$

Hence $(s w v t)_{b, c}^{v, w}=t_{b, c}^{v, w} s_{b, c}^{v, w}$.
The following result present annihilator (v, w)-weighted (b, c) inverse in the relationships with hybrid (v, w) weighted (b, c) inverse and (v, w)-weighted inverse of a along $d \in \mathcal{R}$.
Proposition 5.6. Let $a, v, w, y, e \in \mathcal{R}$ with either v or w invertible and let e be regular. Then the following conditions are equivalent:
(i) $y=a_{\| e}^{v, w}$.
(ii) yvawe $=e=$ evawy, $\mathcal{R} w y \subseteq \mathcal{R e}$ and $\operatorname{lann}(e) \subseteq \operatorname{lann}(y v)$.
(iii) y vawy $=y, \mathcal{R} w y \subseteq \mathcal{R e}$ and $\operatorname{lann}(y v)=\operatorname{lann}(e)$.
(iv) yvawe $=e=e v a w y, y v \mathcal{R} \subseteq e \mathcal{R}$ and $\operatorname{rann}(e) \subseteq \operatorname{rann}(w y)$.
(v) $y v a w y=y, y v \mathcal{R} \subseteq e \mathcal{R}$ and $\operatorname{rann}(w y)=\operatorname{rann}(e)$.
(vi) $y=a_{e, e}^{h, v, w}$.
(vii) $y=a_{e, e}^{v, w}$.
(viii) $y=a_{e, e}^{a, v, w}$.

Proof. The equivalence of (i) \Leftrightarrow (vii) follows from Theorem 4.9. Next we will show that (vi) \Leftrightarrow (viii). Since $a_{e, e}^{h, v, w}$ is a special case of $a_{e, e}^{a, v, w}$, it is enough show (viii) $\Rightarrow(\mathrm{vi})$. Let $y=a_{e, e}^{a, v, w}$. Then

$$
y v a w y=y, \operatorname{rann}(w y)=\operatorname{rann}(e), \text { and } \operatorname{lann}(y v)=\operatorname{lann}(e) .
$$

Clearly both e and y are regular. So by Proposition 3.1, $\operatorname{lann}(y v)=\operatorname{lann}(e)$ gives $y v \mathcal{R}=e \mathcal{R}$ and $\operatorname{rann}(w y)=$ $\operatorname{rann}(e)$ gives $\mathcal{R} w y=\mathcal{R} e$. Hence $y=a_{e, e}^{v, w}$.

Lemma 5.7. For $i=1,2$, let $a_{i}, b_{i}, c_{i}, v, w, y_{i} \in \mathcal{R}$ with v, w both invertible and $y_{i}=a_{i b_{i}, c_{i}}^{a, v, w}$. If $b_{1}=b_{2}$ then $y_{1} v a_{1} w y_{2}=y_{2}$ and $y_{2} v a_{2} w y_{1}=y_{1}$. Mutually, if $c_{1}=c_{2}$ then $y_{1} v a_{2} w y_{2}=y_{1}$ and $y_{2} v a_{1} w y_{1}=y_{2}$.

Proof. Let $y_{i}=a_{i b_{i}, c_{i}}^{a, v, v}$. Then by Theorem 5.1, $y_{1} v a_{1} w b_{1}=b_{1}$ and consequently,

$$
\left(y_{1} v a_{1} w-1\right) \in \operatorname{lann}\left(b_{1}\right)=\operatorname{lann}\left(b_{2}\right) \subseteq \operatorname{lann}\left(y_{2} v\right)
$$

Thus $y_{1} v a_{1} w y_{2} v=y_{2} v$. Post-multiplying by v^{-1} we get $y_{1} v a_{1} w y_{2}=y_{2}$. From $y_{2} v a_{2} w b_{2}=b_{2}$, we have

$$
\left(y_{2} v a_{2} w-1\right) \in \operatorname{lann}\left(b_{2}\right)=\operatorname{lann}\left(b_{1}\right) \subseteq \operatorname{lann}\left(y_{1} v\right)
$$

Therefore, $y_{2} v a_{2} w y_{1} v=y_{1} v$. Again post-multiplying by v^{-1}, we obtain $y_{2} v a_{2} w y_{1}=y_{1}$. In the similar manner, we can show if $c_{1}=c_{2}$ then $y_{1} v a_{2} w y_{2}=y_{1}$ and $y_{2} v a_{1} w y_{1}=y_{2}$.

Theorem 5.8. Let $a_{1}, a_{2}, v, w, b, c \in \mathcal{R}$ with both v and w invertible. If $y_{1}=a_{1}^{a, v, w}$ and $y_{2}=a_{2}^{a, v, c}$ then $y_{1}+y_{2}=y_{1} v\left(a_{1}+a_{2}\right) w y_{2}=y_{2} v\left(a_{1}+a_{2}\right) w y_{1}$.

Proof. Let $y_{1}=a_{1}^{a, v, c}{ }_{b, c}^{a}$ and $y_{2}=a_{2}^{a, v, c}$. Then by Lemma 5.7, we have $y_{1} v a_{1} w y_{2}=y_{2}, y_{2} v a_{2} w y_{1}=y_{1}$, $y_{2} v a_{1} w y_{1}=y_{2}$, and $y_{1} v a_{2} w y_{2}=y_{1}$. Now

$$
y_{1} v\left(a_{1}+a_{2}\right) w y_{2}=y_{1} v a_{1} w y_{2}+y_{1} v a_{2} w y_{2}=y_{2}+y_{1} \text { and }
$$

$y_{2} v\left(a_{1}+a_{2}\right) w y_{1}=y_{2} v a_{1} w y_{1}+y_{2} v a_{2} w y_{1}=y_{2}+y_{1}$.

6. Conclusion

We have discussed a few necessary and sufficient conditions for the existence of the (v, w)-weighted (b, c) inverse of an elements in a ring. Derived representations are used in generating corresponding representations of the (v, w)-weighted hybrid (b, c)-inverse and annihilator (v, w)-weighted (b, c)-inverse. We have also explored a few results related to the reverse order law for annihilator (v, w)-weighted (b, c)-inverses. In addition, the notion of (v, w)-weighted Bott-Duffin (e, f)-inverse was introduced along with a few characterizations of this inverse.

Conflicts of interest

No potential conflict of interest was reported by the authors.

References

[1] A. Ben-Israel, T. N. E. Greville, Generalized inverses: theory and applications. John Wiley \& Sons, New York-London-Sydney, 1974.
[2] E. Boasso, G. K. Montiel, The (b, c)-inverse in rings and in the Banach context, Mediterranean Journal of Mathematics, 14(3) (2017).
[3] X. Chen, J. Chen, The (b, c)-inverse in semigroups and rings with involution, Front. Math. China, 15(6) (2020) 1089—1104
[4] R. Bott, R. J. Duffin, On the algebra of networks, Trans. Amer. Math. Soc., 74 (1953) 99—109.
[5] S. Das, J. K. Sahoo, R. Behera, Further results on weighted core inverse in a ring, arXiv preprint arXiv:2005.01130, 2020.
[6] M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly, 65 (1958) 506--514.
[7] M. P. Drazin, A class of outer generalized inverses. Linear Algebra Appl., 436 (7) (2012) 1909--1923.
[8] M. P. Drazin, Commuting properties of generalized inverses, Linear Multilinear Algebra, 61(12) (2013) 1675--1681.
[9] M. P. Drazin, Left and right generalized inverses, Linear Algebra Appl., 510 (2016) 64-78.
[10] M. P. Drazin, Weighted (b, c)-inverses in categories and semigroups, Comm. Algebra, 48(4) (2020) 1423-1438.
[11] T. N. E. Greville ,Note on the generalized inverse of a matrix product, SIAM Rev. 8 (1966) 518-521.
[12] R. E. Hartwig, J. Luh, A note on the group structure of unit regular ring elements, Pacific J. Math. 71(2) (1977) 449-461.
[13] Y. Ke, S. D. Cvetković-Ilić, J. Chen, J. Višnjić, New results on (b, c)-inverses, Linear Multilinear Algebra, 66 (3) (2018) 447-458.
[14] Y. Ke, Y. Gao, J. Chen, Representations of the (b, c)-inverses in rings with involution, Filomat, 31:9 (2017) 2867-2875.
[15] J. J. Koliha, D. Djordjević, D. Cvetković, Moore-Penrose inverse in rings with involution. Linear Algebra Appl. 426(2-3) (2007) 371-381.
[16] J. J. Koliha, V. Rakočević, Invertibility of the difference of idempotents, Linear Multilinear Algebra, 51(1) (2003) 97-110.
[17] W. Long, N. C. Gonzalez, J. Chen, Characterizations of outer generalized inverses, Canad. Math. Bull. 60(4) (2017) 861-871.
[18] X. Mary, On generalized inverses and Green's relations, Linear Algebra Appl., 434(8) (2011) 1836-1844.
[19] D. Mosić, C. Deng, H. Ma, On a weighted core inverse in a ring with involution, Comm. Algebra, 46(6) (2018) $2332-2345$.
[20] D. Mosić, D. Djordjević, Weighted outer inverse, Monatsh. Math. 188(2) (2019) 297-307.
[21] D. Mosić, H. Zou, J. Chen, On the (b, c)-inverse in rings, Filomat 32(4) (2018) 1221-1231.
[22] D. Mosić, P. S. Stanimirović, J. K. Sahoo, R. Behera, V. N. Katsikis, One-sided weighted outer inverses of tensor,J. Comput. Appl. Math. 388, Paper No. 113293, 22 (2021)
[23] D. S. Rakić, N. C. Dinčić, D. S. Djordjević, Group, Moore-Penrose, core and dual core inverse in rings with involution, Linear Algebra Appl. 463 (2014) 115-133.
[24] J. K. Sahoo, R. Behera, P. S. Stanimirović, V. N. Katsikis, H. Ma, Core and core-EP inverses of tensors. Comput. Appl. Math. 39(1) (2020), 10.1007/s40314-019-0983-5.
[25] P. S. Stanimirović, V. N. Katsikis, H. Ma, Representations and properties of the W-weighted Drazin inverse, Linear Multilinear Algebra, 65(6) (2017) 1080--1096.
[26] P. S. Stanimirović, D. Mosić, H. Ma, New classes of more general weighted outer inverses, Linear Multilinear Algebra 70 (1) (2022) 122-147.
[27] L. Wang, Further results on hybrid (b,c)-inverses in rings, Filomat, 33:15 (2019) 4943-4950.
[28] H. Zhu, Further results on several types of generalized inverses, Comm. Algebra, 46(8) (2018) 3388-3396.
[29] Bhaskara Rao, K. P. S. The theory of generalized inverses over commutative rings. With a foreword by Adi Ben-Israel. Algebra, Logic and Applications, 17. Taylor \& Francis Group, London, 2002. xii+167 pp. ISBN: 0-415-27248-3 MR1919967

[^0]: 2020 Mathematics Subject Classification. Primary 15A09; Secondary 16U90, 16W10
 Keywords. Generalized inverse, Weighted (b, c)-inverse, Weighted hybrid (b, c)-inverse, Weighted annihilator (b, c)-inverse, Weighted Bott-Duffin (e, f)-inverse

 Received: 19 August 2021; Revised: 07 June 2022; Accepted: 11 July 2022
 Communicated by Predrag Stanimirović
 Email addresses: p20190066@goa.bits-pilani.ac.in (Bibekananda Sitha), jksahoo@goa.bits-pilani.ac.in (Jajati Keshari Sahoo), ratikanta@iisc.ac.in (Ratikanta Behera)

