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Abstract. In this paper, a three-species stochastic hybrid Lotka-Volterra system with distributed delay
and Lévy noise is proposed and studied by using stochastic analytical techniques. First, the existence and
uniqueness of global positive solution with positive initial condition is proved. Then, sufficient conditions
for persistence in mean and extinction of each species are established. Finally, some numerical simulations
are provided to support our results.

1. Introduction

The relationship between predators and their preys has long been and will continue to be one of the
dominant themes in ecology due to its ubiquity and importance ([1], [2], [3]). The most significant advance
in population dynamics was the widely-accepted two-species Lotka-Volterra system ([4], [5]). However,
several researchers found that numerous critical behaviors can only be exhibited by models with three or
more species ([6]). The classical three-species food chain model can be expressed as follows:

dx1(t)
dt

=x1(t) [r1 − a11x1(t) − a12x2(t)] ,

dx2(t)
dt

=x2(t) [−r2 + a21x1(t) − a22x2(t) − a23x3(t)] ,

dx3(t)
dt

=x3(t) [−r3 + a32x2(t) − a33x3(t)] ,

(1)

where x1(t), x2(t) and x3(t) are the population sizes of prey, intermediate predator and top predator, respec-
tively. ri and ai j are positive constants.

However, the deterministic system has its limitation in mathematical modeling of ecosystems since the
parameters involved in the system are unable to capture the influence of environmental noises ([7], [8]).
Hence, it is important to consider the stochastic population systems. Assume that the growth rate and the
death rates are affected by white noises, i.e., r1 ↪→ r1 + σ1Ẇ1(t), −r2 ↪→ −r2 + σ2Ẇ2(t), −r3 ↪→ −r3 + σ3Ẇ3(t),
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where Wi(t) are mutually independent standard Wiener processes defined on a complete probability space
(Ω,F ,P) with a filtration {Ft}t≥0 satisfying the usual conditions and the three-species food chain model with
white noises can be expressed as follows ([9]):

dx1(t) =x1(t) [r1 − a11x1(t) − a12x2(t)] dt + σ1x1(t)dW1(t),
dx2(t) =x2(t) [−r2 + a21x1(t) − a22x2(t) − a23x3(t)] dt + σ2x2(t)dW2(t),
dx3(t) =x3(t) [−r3 + a32x2(t) − a33x3(t)] dt + σ3x3(t)dW3(t).

(2)

On the other hand, population system may be affected by telephone noises, which can cause the system
to switch from one environmental regime to another ([10], [11], [12]). Some authors claimed that the regime
switching can be described by a continuous-time Markov chain ρ(t) with finite-state space ([11], [12], [13],
[14], [15], [16], [17], [18]). System (2) under regime switching can be described by the following system:

dx1(t) =x1(t)
[
r1(ρ(t)) − a11x1(t) − a12x2(t)

]
dt + σ1(ρ(t))x1(t)dW1(t),

dx2(t) =x2(t)
[
−r2(ρ(t)) + a21x1(t) − a22x2(t) − a23x3(t)

]
dt + σ2(ρ(t))x2(t)dW2(t),

dx3(t) =x3(t)
[
−r3(ρ(t)) + a32x2(t) − a33x3(t)

]
dt + σ3(ρ(t))x3(t)dW3(t).

(3)

Now, let us further improve system (3) by considering time-delay and another type of environmental
noise-Lévy noise. On the one hand, ”all species should exhibit time-delay” in the real world, and in-
corporating time-delays in biological systems makes the systems much more realistic than those without
time-delays ([19], [20], [21]). As is known, systems with discrete time-delays and those with continuously
distributed time-delays do not contain each other. However, systems with S-type distributed time-delays
contain both ([22], [23]). On the other hand, some scholars pointed out that Lévy noise can be used to de-
scribe some sudden environmental perturbations, for instance, earthquakes and hurricanes ([24], [25], [26],
[27], [28], [29], [30]). Recently, stochastic population systems have been received great attention ([31], [32],
[33], [34], [35], [36], [37], [38], [39]). However, to the best of our knowledge, results about stochastic hybrid
delay population systems with Lévy noise have rarely been reported. So, in this paper we concern the
dynamics of the following stochastic hybrid three-species food chain model with distributed time-delays
and Lévy noise:

dx1(t) =x1(t)
[(

r1(ρ(t)) −D11(x1)(t) −D12(x2)(t)
)

dt + S1
(
t, ρ(t)

)]
,

dx2(t) =x2(t)
[(
−r2(ρ(t)) +D21(x1)(t) −D22(x2)(t) −D23(x3)(t)

)
dt + S2

(
t, ρ(t)

)]
,

dx3(t) =x3(t)
[(
−r3(ρ(t)) +D32(x2)(t) −D33(x3)(t)

)
dt + S3

(
t, ρ(t)

)]
,

(4)

whereD ji(xi)(t) = a jixi(t)+
∫ 0

−τ ji
xi(t+ θ)dµ ji(θ), Si

(
t, ρ(t)

)
= σi(ρ(t))dWi(t)+

∫
Z
γi(µ, ρ(t))Ñ(dt,dµ),

∫ 0

−τ ji
xi(t+

θ)dµ ji(θ) are Lebesgue-Stieltjes integrals, τ ji > 0 are time-delays,µ ji(θ) are nondecreasing bounded variation
functions defined on [−τ, 0], τ = maxi, j=1,2,3

{
τ ji

}
, ρ(t) is a right-continuous Markov chain, taking values in

S = {1, 2, ...,S}, N is a Poisson counting measure with characteristic measure λ on a measurable subset Z of
[0,+∞) with λ(Z) < +∞ and Ñ(dt,dµ) = N(dt,dµ)−λ(dµ)dt, γ j(µ, ρ(t)) > −1 (µ ∈ Z) are bounded functions
( j = 1, 2, 3).

The structure of this paper is as follows. In Section 2, we show the existence and uniqueness of global
positive solution. In Section 3, we obtain sufficient conditions for persistence in mean and extinction of each
species. In Section 4, some numerical simulations are provided to verify the correctness of the theoretical
results.

2. Existence and uniqueness of global positive solution

Throughout this paper, the generator Γ = (γi j)S×S of ρ(t) is given by

P
{
ρ(t + ς) = j|ρ(t) = i

}
=

γi jς + o(ς), i , j,
1 + γi jς + o(ς), i = j,

(5)
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where ς > 0. Here γi j represents the transition rate from i to j and γi j ≥ 0 if i , j, while γii = −
∑

j,i γi j.
Assume that ρ(t), W1(t), W2(t), W3(t) and N are mutually independent and ρ(t) is irreducible. Hence, system
(4) can switch from any regime to any other regime and ρ(t) has a unique stationary probability distribution
π = (π1, π2, ..., πS) ∈ R1×S which can be determined by solving πΓ = 0, subject to

∑S
i=1 πi = 1 and πi > 0,

∀i ∈ S. Denote

B1(·) = r1(·) −
σ2

1(·)

2
−

∫
Z

[
γ1(µ, ·) − ln(1 + γ1(µ, ·))

]
λ(dµ),

B j(·) = r j(·) +
σ2

j (·)

2
+

∫
Z

[
γ j(µ, ·) − ln(1 + γ j(µ, ·))

]
λ(dµ), ( j = 2, 3),

Ai j = ai j +

∫ 0

−τi j

dµi j(θ)
(
i, j = 1, 2, 3, (i, j) , (1, 3), (i, j) , (3, 1)

)
,

Σ1 =

S∑
i=1

πiB1(i), Σ2 = −

S∑
i=1

πiB2(i) +
A21

A11
Σ1, Σ3 = −

S∑
i=1

πiB3(i) +
A32

A22
Σ2,

M|A|
33 =

∣∣∣∣∣ A11 A12
−A21 A22

∣∣∣∣∣ , M|A1 |

33 =

∣∣∣∣∣∣ Σ1 A12

Σ2 −
A21
A11
Σ1 A22

∣∣∣∣∣∣ , M|A2 |

33 =

∣∣∣∣∣∣ A11 Σ1

−A21 Σ2 −
A21
A11
Σ1

∣∣∣∣∣∣ ,
A =

 A11 A12 0
−A21 A22 A23

0 −A32 A33

 , A1 =


Σ1 A12 0

Σ2 −
A21
A11
Σ1 A22 A23

Σ3 −
A32
A22
Σ2 −A32 A33

 ,
A2 =


A11 Σ1 0
−A21 Σ2 −

A21
A11
Σ1 A23

0 Σ3 −
A32
A22
Σ2 A33

 , A3 =


A11 A12 Σ1

−A21 A22 Σ2 −
A21
A11
Σ1

0 −A32 Σ3 −
A32
A22
Σ2

 .
In this paper, we impose the following assumptions:

(H1) r j(i) > 0, a jk > 0 and there exist γ∗j(i) ≥ γ j∗(i) > −1 such that γ j∗(i) ≤ γ j(µ, i) ≤ γ∗j(i) (µ ∈ Z), ∀i ∈ S,
j, k = 1, 2, 3.
(H2) A22A33M|A|

33 > A12A21A23A32.

Theorem 2.1. For any initial condition
(
ϕ, ρ(0)

)
∈ C([−τ, 0],R3

+) × S, system (4) has a unique global positive
solution on t ∈ [−τ,+∞) a.s.

Proof. Since the coefficients of system (4) are locally Lipschitz continuous, from [40] and [41] we observe
that system (4) admits a unique local solution xloc(t) on t ∈ [−τ, τe) a.s., where τe is the explosion time. To
prove τe = +∞ a.s., consider the following stochastic hybrid delay differential equation:

dX1(t) =X1(t)
[(

r1(ρ(t)) −D11(X1)(t)
)

dt + S1
(
t, ρ(t)

)]
,

dX2(t) =X2(t)
[(
−r2(ρ(t)) +D21(X1)(t) −D22(X2)(t)

)
dt + S2

(
t, ρ(t)

)]
,

dX3(t) =X3(t)
[(
−r3(ρ(t)) +D32(X2)(t) −D33(X3)(t)

)
dt + S3

(
t, ρ(t)

)]
.

(6)

Thanks to Theorem 2.1 in [42] and the stochastic comparison theorem, we deduce that system (6) admits a
unique global positive solution on t ∈ [−τ,+∞) a.s. By the stochastic comparison theorem, xi(t) ≤ Xi(t) a.s.,
t ∈ [0,+∞) (i = 1, 2, 3), which implies τe = +∞ a.s. The proof is complete.

3. Extinction and persistence in mean

Lemma 3.1. ([43]) Let Z(t) ∈ C(Ω× [0,+∞),R+) and f (t) be two stochastic processes satisfying limt→+∞ f (t)/t = 0
a.s..
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(i) If there exist positive constants T and δ0 such that for all t ≥ T,

ln Z(t) ≤ δt − δ0

∫ t

0
Z(s)ds + f (t), (7)

then 
lim sup

t→+∞
t−1

∫ t

0
Z(s)ds ≤

δ
δ0

a.s. i f δ ≥ 0;

lim
t→+∞

Z(t) = 0 a.s. i f δ < 0.
(8)

(ii) If there exist positive constants T, δ and δ0 such that for all t ≥ T,

ln Z(t) ≥ δt − δ0

∫ t

0
Z(s)ds + f (t), (9)

then

lim inf
t→+∞

t−1
∫ t

0
Z(s)ds ≥

δ
δ0

a.s. (10)

Lemma 3.2. For system (6):
(i) If Σ1 < 0, then limt→+∞ Xi(t) = 0 a.s. (i = 1, 2, 3).
(ii) If Σ1 ≥ 0, Σ2 < 0, then

lim
t→+∞

t−1
∫ t

0
X1(s)ds =

Σ1

A11
, lim

t→+∞
Xi(t) = 0 a.s. (i = 2, 3). (11)

(iii) If Σ1 ≥ 0, Σ2 ≥ 0, Σ3 < 0, then

lim
t→+∞

t−1
∫ t

0
Xi(s)ds =

Σi

Aii
, lim

t→+∞
X3(t) = 0 a.s. (i = 1, 2). (12)

(iv) If Σ1 ≥ 0, Σ2 ≥ 0, Σ3 ≥ 0, then

lim
t→+∞

t−1
∫ t

0
Xi(s)ds =

Σi

Aii
a.s. (i = 1, 2, 3). (13)

Proof. Consider dX1(t) = X1(t)
[(

r1(ρ(t)) −D11(X1)(t)
)

dt + S1
(
t, ρ(t)

)]
. Similar to the proof of Lemma 2.3 in

[44], we have
lim

t→+∞
X1(t) = 0 a.s. (Σ1 < 0) ;

lim
t→+∞

t−1
∫ t

0
X1(s)ds =

Σ1

A11
a.s. (Σ1 ≥ 0) .

(14)

By Lemma 3.1 in [24] and the strong law of large numbers,
lim

t→+∞
t−1

∫ t

0
σ j(ρ(s))dW j(s) = 0 a.s.

lim
t→+∞

t−1
∫ t

0

∫
Z

ln
(
1 + γ j(µ, ρ(s))

)
Ñ(ds,dµ) = 0 a.s.

(15)
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By Itô’s formula and (15),

ln X1(t) =
∫ t

0
B1(ρ(s))ds − A11

∫ t

0
X1(s)ds − T11(X1)(t) + o(t),

ln X2(t) = −
∫ t

0
B2(ρ(s))ds + A21

∫ t

0
X1(s)ds − A22

∫ t

0
X2(s)ds + T21(X1)(t) − T22(X2)(t) + o(t),

ln X3(t) = −
∫ t

0
B3(ρ(s))ds + A32

∫ t

0
X2(s)ds − A33

∫ t

0
X3(s)ds + T32(X2)(t) − T33(X3)(t) + o(t),

(16)

where T ji(Xi)(t) =
∫ 0

−τ ji

∫ 0

θ
Xi(s)dsdµ ji(θ) −

∫ 0

−τ ji

∫ t

t+θ Xi(s)dsdµ ji(θ).
Case (i) : Σ1 < 0. Then limt→+∞ X1(t) = 0 a.s. Therefore, for ∀ϵ ∈ (0, 1) and t≫ 1,

ln X2(t) ≤

− S∑
i=1

πiB2(i) + ϵ

 t − a22

∫ t

0
X2(s)ds. (17)

Thus, limt→+∞ X2(t) = 0 a.s. Similarly, limt→+∞ X3(t) = 0 a.s.
Case (ii) : Σ1 ≥ 0. Then,

lim
t→+∞

t−1
∫ t

0
X1(s)ds =

Σ1

A11
a.s. (18)

Consider the following auxiliary function:

dX̃2(t) =X̃2(t)
[(
−r2(ρ(t)) +D21(X1)(t) − a22X̃2(t)

)
dt + S2

(
t, ρ(t)

)]
. (19)

Then X2(t) ≤ X̃2(t) a.s. By Itô’s formula and (18),

ln X̃2(t) = −
∫ t

0
B2(ρ(s))ds + A21

∫ t

0
X1(s)ds − a22

∫ t

0
X̃2(s)ds + o(t). (20)

Thanks to (18) and (20), for ∀ϵ ∈ (0, 1) and t≫ 1,
ln X̃2(t) ≤ (Σ2 + ϵ) t − a22

∫ t

0
X̃2(s)ds,

ln X̃2(t) ≥ (Σ2 − ϵ) t − a22

∫ t

0
X̃2(s)ds.

(21)

In view of Lemma 3.1, (21) and the arbitrariness of ϵ, we obtain:
⟨1⟩ If Σ1 ≥ 0, Σ2 < 0, then limt→+∞ X̃2(t) = 0 a.s.
⟨2⟩ If Σ1 ≥ 0, Σ2 ≥ 0, then

lim
t→+∞

t−1
∫ t

0
X̃2(s)ds =

Σ2

a22
a.s. (22)

Therefore, for arbitrary γ > 0,

lim
t→+∞

t−1
∫ t

t−γ
Xi(s)ds = 0 a.s. (i = 1, 2). (23)

According to (23) and system (16), for ∀ϵ ∈ (0, 1) and t≫ 1,
ln X2(t) ≤ (Σ2 + ϵ) t − A22

∫ t

0
X2(s)ds,

ln X2(t) ≥ (Σ2 − ϵ) t − A22

∫ t

0
X2(s)ds.

(24)
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Thanks to Lemma 3.1 and the arbitrariness of ϵ, we obtain:
⟨3⟩ If Σ1 ≥ 0, Σ2 < 0, then limt→+∞ X2(t) = 0 a.s.
⟨4⟩ If Σ1 ≥ 0, Σ2 ≥ 0, then

lim
t→+∞

t−1
∫ t

0
X2(s)ds =

Σ2

A22
a.s. (25)

Therefore, the desired assertion (ii) follows from combining (18) with ⟨3⟩.
Case (iii) : Σ1 ≥ 0, Σ2 ≥ 0. Consider the following stochastic differential equation:

dX̃3(t) =X̃3(t)
[(
−r3(ρ(t)) +D32(X2)(t) − a33X̃3(t)

)
dt + S3

(
t, ρ(t)

)]
. (26)

By Itô’s formula and (25),

ln X̃3(t) = −
∫ t

0
B3(ρ(s))ds + A32

∫ t

0
X2(s)ds − a33

∫ t

0
X̃3(s)ds + o(t). (27)

Thanks to (25) and (27), for ∀ϵ ∈ (0, 1) and t≫ 1,
ln X̃3(t) ≤ (Σ3 + ϵ) t − a33

∫ t

0
X̃3(s)ds,

ln X̃3(t) ≥ (Σ3 − ϵ) t − a33

∫ t

0
X̃3(s)ds.

(28)

Thanks to Lemma 3.1, (28) and the arbitrariness of ϵ, we deduce:
⟨5⟩ If Σ1 ≥ 0, Σ2 ≥ 0, Σ3 < 0, then limt→+∞ X̃3(t) = 0 a.s.
⟨6⟩ If Σ1 ≥ 0, Σ2 ≥ 0, Σ3 ≥ 0, then

lim
t→+∞

t−1
∫ t

0
X̃3(s)ds =

Σ3

a33
a.s. (29)

Hence, for arbitrary γ > 0,

lim
t→+∞

t−1
∫ t

t−γ
Xi(s)ds = 0 a.s. (i = 1, 2, 3). (30)

Combining (30) with system (16) yields that for ∀ϵ ∈ (0, 1) and t≫ 1,
ln X3(t) ≤ (Σ3 + ϵ) t − A33

∫ t

0
X3(s)ds,

ln X3(t) ≥ (Σ3 − ϵ) t − A33

∫ t

0
X3(s)ds.

(31)

Thanks to Lemma 3.1, (31) and the arbitrariness of ϵ, we deduce:
⟨7⟩ If Σ1 ≥ 0, Σ2 ≥ 0, Σ3 < 0, then limt→+∞ X3(t) = 0 a.s.
⟨8⟩ If Σ1 ≥ 0, Σ2 ≥ 0, Σ3 ≥ 0, then

lim
t→+∞

t−1
∫ t

0
X3(s)ds =

Σ3

A33
a.s. (32)

In view of (18), ⟨4⟩ and ⟨7⟩, we obtain (iii). And (iv) follows from combining (18), ⟨4⟩ with ⟨8⟩. The proof is
complete.



S. Wang et al. / Filomat 36:14 (2022), 4737–4750 4743

Lemma 3.3. For system (4):
(i) lim supt→+∞ t−1 ln xi(t) ≤ 0 a.s. (i = 1, 2, 3).
(ii) limt→+∞ xi(t) = 0 =⇒ limt→+∞ x j(t) = 0 a.s. (1 ≤ i < j ≤ 3).

Proof. An application of (30) and Lemma 3.2 in system (16) yields

lim sup
t→+∞

t−1 ln Xi(t) ≤ 0 a.s. (i = 1, 2, 3). (33)

Hence, the desired assertion (i) follows from (33). The proof of (ii) is similar to that of Lemma 3.2 (a) and
here is omitted.

Theorem 3.4. For system (4):
(i) if |A3| > 0, then

lim
t→+∞

t−1
∫ t

0
xi(s)ds =

|Ai|

|A|
a.s. (i = 1, 2, 3). (34)

(ii) if M|A2 |

33 > 0 > |A3|, then

lim
t→+∞

t−1
∫ t

0
xi(s)ds =

M|Ai |

33

M|A|
33

, lim
t→+∞

x3(t) = 0 a.s. (i = 1, 2). (35)

(iii) if Σ1 > 0 >M|A2 |

33 , then

lim
t→+∞

t−1
∫ t

0
x1(s)ds =

Σ1

A11
lim

t→+∞
xi(t) = 0 a.s. (i = 2, 3). (36)

(iv) if 0 > Σ1, then limt→+∞ xi(t) = 0 a.s. (i = 1, 2, 3).

Proof. Compute |A3| < A32M|A2 |

33 < A21A32Σ1. By (30), for any γ > 0,

lim
t→+∞

t−1
∫ t

t−γ
xi(s)ds = 0 a.s. (i = 1, 2, 3). (37)

By Itô’s formula and (37), we deduce

 ln x1(t)
ln x2(t)
ln x3(t)

 =


∫ t

0 B1(ρ(s))ds
−

∫ t

0 B2(ρ(s))ds
−

∫ t

0 B3(ρ(s))ds

 − A


∫ t

0 x1(s)ds∫ t

0 x2(s)ds∫ t

0 x3(s)ds

 + o(t)

 1
1
1

 . (38)

Case (i) : |A3| > 0. According to system (38), we compute

A21A32 ln x1(t) + A11A32 ln x2(t) +M|A|
33 ln x3(t) = |A3|t − |A|

∫ t

0
x3(s)ds + o(t). (39)

Combining Lemma 3.3 with (39) yields that for ∀ϵ ∈ (0, 1) and t≫ 1,

M|A|
33 ln x3(t) ≥ (|A3| − ϵ) t − |A|

∫ t

0
x3(s)ds. (40)

In view of Lemma 3.1, (40) and the arbitrariness of ϵ, we obtain

lim inf
t→+∞

t−1
∫ t

0
x3(s)ds ≥

|A3|

|A|
a.s. (41)



S. Wang et al. / Filomat 36:14 (2022), 4737–4750 4744

On the basis of system (38), we compute

A22 ln x1(t) − A12 ln x2(t) =M|A1 |

33 t −M|A|
33

∫ t

0
x1(s)ds + A12A23

∫ t

0
x3(s)ds + o(t). (42)

By Lemma 3.3 and (42), for ∀ϵ ∈ (0, 1) and t≫ 1,

A22 ln x1(t) ≤
(
M|A1 |

33 + A12A23 lim sup
t→+∞

t−1
∫ t

0
x3(s)ds + ϵ

)
t −M|A|

33

∫ t

0
x1(s)ds. (43)

Based on Lemma 3.1, (43) and the arbitrariness of ϵ, we obtain

lim sup
t→+∞

t−1
∫ t

0
x1(s)ds ≤

(
M|A|

33

)−1
(
M|A1 |

33 + A12A23 lim sup
t→+∞

t−1
∫ t

0
x3(s)ds

)
≜ Γ

sup
x1

a.s. (44)

According to (41), (44) and system (38), for ∀ϵ ∈ (0, 1) and t≫ 1,

ln x2(t) ≤
(
Σ2 −

A21

A11
Σ1 + A21Γ

sup
x1
− A23

|A3|

|A|
+ ϵ

)
t − A22

∫ t

0
x2(s)ds. (45)

In view of (41), Lemma 3.3, Lemma 3.1 and the arbitrariness of ϵ, we obtain

lim sup
t→+∞

t−1
∫ t

0
x2(s)ds ≤ A−1

22

(
Σ2 −

A21

A11
Σ1 + A21Γ

sup
x1
− A23

|A3|

|A|

)
a.s. (46)

Combining (46) with system (38) yields that for ∀ϵ ∈ (0, 1) and t≫ 1,

ln x3(t) ≤
[
Σ3 −

A21A32

A11A22
Σ1 +

A32

A22

(
A21Γ

sup
x1
− A23

|A3|

|A|

)
+ ϵ

]
t − A33

∫ t

0
x3(s)ds. (47)

In view of (41), (47), Lemma 3.1 and the arbitrariness of ϵ, we obtain

lim sup
t→+∞

t−1
∫ t

0
x3(s)ds ≤ A−1

33

[
Σ3 −

A21A32

A11A22
Σ1 +

A32

A22

(
A21Γ

sup
x1
− A23

|A3|

|A|

)]
a.s. (48)

In other words, we have

A22A33M|A|
33 − A12A21A23A32

A22M|A|
33

lim sup
t→+∞

t−1
∫ t

0
x3(s)ds ≤ Σ3 −

A21A32

A11A22
Σ1 +

A32

A22

A21
M|A1 |

33

M|A|
33

− A23
|A3|

|A|

 a.s. (49)

In view of (49) and assumption (H2), we deduce

lim sup
t→+∞

t−1
∫ t

0
x3(s)ds ≤

|A3|

|A|
a.s. (50)

Based on (41) and (50), we obtain

lim
t→+∞

t−1
∫ t

0
x3(s)ds =

|A3|

|A|
a.s. (51)

Substituting (51) into (44) yields

lim sup
t→+∞

t−1
∫ t

0
x1(s)ds ≤

(
M|A|

33

)−1
(
M|A1 |

33 + A12A23
|A3|

|A|

)
=
|A1|

|A|
a.s. (52)
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Substituting (52) into (46) leads to

lim sup
t→+∞

t−1
∫ t

0
x2(s)ds ≤ A−1

22

(
Σ2 −

A21

A11
Σ1 + A21

|A1|

|A|
− A23

|A3|

|A|

)
=
|A2|

|A|
a.s. (53)

In view of system (38), we compute

A21 ln x1(t) + A11 ln x2(t) =M|A2 |

33 t −M|A|
33

∫ t

0
x2(s)ds − A11A23

∫ t

0
x3(s)ds + o(t). (54)

Based on Lemma 3.3 and (54), for ∀ϵ ∈ (0, 1) and t≫ 1,

A11 ln x2(t) ≥
(
M|A2 |

33 − A11A23
|A3|

|A|
− ϵ

)
t −M|A|

33

∫ t

0
x2(s)ds. (55)

Thanks to (55), Lemma 3.1 and the arbitrariness of ϵ, we obtain

lim inf
t→+∞

t−1
∫ t

0
x2(s)ds ≥

(
M|A|

33

)−1
(
M|A2 |

33 − A11A23
|A3|

|A|

)
=
|A2|

|A|
a.s. (56)

Combining (53) with (56) yields

lim
t→+∞

t−1
∫ t

0
x2(s)ds =

|A2|

|A|
a.s. (57)

Combining (57) with system (38) yields that for ∀ϵ ∈ (0, 1) and t≫ 1,
ln x1(t) ≥

(
Σ1 − A12

|A2|

|A|
− ϵ

)
t − A11

∫ t

0
x1(s)ds,

ln x1(t) ≤
(
Σ1 − A12

|A2|

|A|
+ ϵ

)
t − A11

∫ t

0
x1(s)ds.

(58)

In view of (58), Lemma 3.1 and the arbitrariness of ϵ, we obtain

lim
t→+∞

t−1
∫ t

0
x1(s)ds = A−1

11

(
Σ1 − A12

|A2|

|A|

)
=
|A1|

|A|
a.s. (59)

Case (ii) : M|A2 |

33 > 0 > |A3|. Thanks to (39), we obtain

lim sup
t→+∞

t−1 ln
[
xA21A32

1 (t)xA11A32
2 (t)x

M|A|33
3 (t)

]
≤ |A3| < 0 a.s. (60)

In view of (60) and Lemma 3.3, we obtain

lim
t→+∞

t−1
∫ t

0
x3(s)ds = 0 a.s. (61)

From (54) and (61), we derive that for ∀ϵ ∈ (0, 1) and t≫ 1,

A11 ln x2(t) ≥
(
M|A2 |

33 − ϵ
)

t −M|A|
33

∫ t

0
x2(s)ds. (62)

According to (62), Lemma 3.1 and the arbitrariness of ϵ, we have

lim inf
t→+∞

t−1
∫ t

0
x2(s)ds ≥

M|A2 |

33

M|A|
33

a.s. (63)



S. Wang et al. / Filomat 36:14 (2022), 4737–4750 4746

In view of (42) and (61), for ∀ϵ ∈ (0, 1) and t≫ 1,

A22 ln x1(t) ≤
(
M|A1 |

33 + ϵ
)

t −M|A|
33

∫ t

0
x1(s)ds. (64)

Thanks to (63), Lemma 3.3, Lemma 3.1 and the arbitrariness of ϵ, we deduce

lim sup
t→+∞

t−1
∫ t

0
x1(s)ds ≤

M|A1 |

33

M|A|
33

a.s. (65)

Substituting (61) and (65) into system (38) yields that for ∀ϵ ∈ (0, 1) and t≫ 1,

ln x2(t) ≤

Σ2 −
A21

A11
Σ1 + A21

M|A1 |

33

M|A|
33

+ ϵ

 t − A22

∫ t

0
x2(s)ds. (66)

Based on (66), Lemma 3.1 and the arbitrariness of ϵ, we deduce

lim sup
t→+∞

t−1
∫ t

0
x2(s)ds ≤ A−1

22

Σ2 −
A21

A11
Σ1 + A21

M|A1 |

33

M|A|
33

 = M|A2 |

33

M|A|
33

a.s. (67)

Combining (63) with (67) yields

lim
t→+∞

t−1
∫ t

0
x2(s)ds =

M|A2 |

33

M|A|
33

a.s. (68)

Combining (68) with system (38) yields that for ∀ϵ ∈ (0, 1) and t≫ 1,
ln x1(t) ≥

Σ1 − A12
M|A2 |

33

M|A|
33

− ϵ

 t − A11

∫ t

0
x1(s)ds,

ln x1(t) ≤

Σ1 − A12
M|A2 |

33

M|A|
33

+ ϵ

 t − A11

∫ t

0
x1(s)ds.

(69)

Based on (69), Lemma 3.1 and the arbitrariness of ϵ, we obtain

lim
t→+∞

t−1
∫ t

0
x1(s)ds =

M|A1 |

33

M|A|
33

a.s. (70)

Case (iii) : Σ1 > 0 >M|A2 |

33 . Then, limt→+∞ x3(t) = 0 a.s. In view of (54),

lim sup
t→+∞

t−1 ln
(
xA21

1 (t)xA11
2 (t)

)
≤M|A2 |

33 < 0 a.s. (71)

On the basis of (71) and Lemma 3.3, we derive that limt→+∞ x2(t) = 0 a.s. Thus, for ∀ϵ ∈ (0, 1) and t≫ 1,
ln x1(t) ≥ (Σ1 − ϵ) t − A11

∫ t

0
x1(s)ds,

ln x1(t) ≤ (Σ1 + ϵ) t − A11

∫ t

0
x1(s)ds.

(72)

In the light of (72), Lemma 3.1 and the arbitrariness of ϵ, we obtain

lim
t→+∞

t−1
∫ t

0
x1(s)ds =

Σ1

A11
a.s. (73)

Case (iv) : 0 > Σ1. Then, limt→+∞ x1(t) = 0 a.s. Consequently, based on Lemma 3.3, we obtain that
limt→+∞ x2(t) = limt→+∞ x3(t) = 0 a.s.
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Remark 3.5. If S = {1} and µi j(θ) = Ci j (θ ∈ [−τ, 0]), then system (4) becomes the system discussed in [31].

Remark 3.6. If S = {1}, γ j(µ, ·) = 0
(
µ ∈ Z

)
, µii(θ) = Cii (θ ∈ [−τ, 0]), ai j = 0

(
i , j

)
and µi j(θ) are defined as

follows:

µ12(θ) =

ã12, −τ1 < θ ≤ 0,
0, −τ12 ≤ θ ≤ −τ1,

µ21(θ) =

ã21, −τ2 < θ ≤ 0,
0, −τ21 ≤ θ ≤ −τ2,

µ23(θ) =

ã23, −τ3 < θ ≤ 0,
0, −τ23 ≤ θ ≤ −τ3,

µ32(θ) =

ã32, −τ4 < θ ≤ 0,
0, −τ32 ≤ θ ≤ −τ4,

then system (4) becomes the following system discussed in [45]:
dx1(t) =x1(t)

[
r1 − a11x1(t) − ã12x2(t − τ1)

]
dt + σ1x1(t)dW1(t),

dx2(t) =x2(t)
[
−r2 + ã21x1(t − τ2) − a22x2(t) − ã23x3(t − τ3)

]
dt + σ2x2(t)dW2(t),

dx3(t) =x3(t)
[
−r3 + ã32x2(t − τ4) − a33x3(t)

]
dt + σ3x3(t)dW3(t).

4. Numerical simulations

In this section we provide some numerical simulations to show the effectiveness of our main theoretical
results by using the Milstein approach mentioned in [46]. For simplicity, we suppose that system (4) has
only two regimes, namely S = {1, 2}. Then system (4) is a hybrid system of the following two subsystems:

dx1(t) =x1(t) [(r1(1) −D11(x1)(t) −D12(x2)(t)) dt + S1 (t, 1)] ,
dx2(t) =x2(t) [(−r2(1) +D21(x1)(t) −D22(x2)(t) −D23(x3)(t)) dt + S2 (t, 1)] ,
dx3(t) =x3(t) [(−r3(1) +D32(x2)(t) −D33(x3)(t)) dt + S3 (t, 1)] ,

(74)

and 
dx1(t) =x1(t) [(r1(2) −D11(x1)(t) −D12(x2)(t)) dt + S1 (t, 2)] ,
dx2(t) =x2(t) [(−r2(2) +D21(x1)(t) −D22(x2)(t) −D23(x3)(t)) dt + S2 (t, 2)] ,
dx3(t) =x3(t) [(−r3(2) +D32(x2)(t) −D33(x3)(t)) dt + S3 (t, 2)] .

(75)

Let τ ji = ln 2, µ ji(θ) = µ jieθ, γ j(µ, i) = γ j(i), λ(Z) = 1. Denote

Param(i) =

r1(i) a11 a12 0 µ11 µ12 0 σ1(i) γ1(i)
r2(i) a21 a22 a23 µ21 µ22 µ23 σ2(i) γ2(i)
r3(i) 0 a32 a33 0 µ32 µ33 σ3(i) γ3(i)

 .
Then system (4) may be regarded as the result of regime switching between subsystems (74) and (75) with
the following parameters, respectively,

Param(1) =

0.9 0.2 0.2 0 0.2 0.2 0 0.1 0.1
0.3 0.4 0.3 0.2 0.4 0.2 0.2 0.1 0.1
0.2 0 0.3 0.3 0 0.2 0.2 0.1 0.1

 ,
Param(2) =

0.5 0.2 0.2 0 0.2 0.2 0 1.2 0.2
0.2 0.4 0.3 0.2 0.4 0.2 0.2 0.2 0.2
0.2 0 0.3 0.3 0 0.2 0.2 0.2 0.2

 ,
subject to x1(θ) = 1.8eθ, x2(θ) = 1.3eθ, x3(θ) = 0.8eθ, θ ∈ [− ln 2, 0]. For subsystem (74), we compute B1(1) =
0.795+ln 1.1, B2(1) = 0.405−ln 1.1, B3(1) = 0.305−ln 1.1, |A1| = 0.24375+0.25 ln 1.1, |A2| = 0.16965+0.27 ln 1.1,
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|A3| = 0.0507+ 0.66 ln 1.1 = 0.1136 > 0. Based on Theorem 3.4 (i), all species in subsystem (74) are persistent
in mean and

lim
t→+∞

t−1
∫ t

0
x1(s)ds =

|A1|

|A|
=

0.2676
0.156

= 1.7154 a.s.

lim
t→+∞

t−1
∫ t

0
x2(s)ds =

|A2|

|A|
=

0.1954
0.156

= 1.2526 a.s.

lim
t→+∞

t−1
∫ t

0
x3(s)ds =

|A3|

|A|
=

0.1136
0.156

= 0.7282 a.s.

(76)

For subsystem (75), we compute B1(2) = −0.42 + ln 1.2, B2(2) = 0.42 − ln 1.2, B3(2) = 0.42 − ln 1.2, Σ1 =
−0.42 + ln 1.2 = −0.2377 < 0. In view of Theorem 3.4(iv), all species in subsystem (75) are extinctive. See
Figure 1 (a) and Figure 1 (b), respectively.
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Figure 1: (a) shows the solution to subsystem (74) with Param (1). This subfigure represents that all species in regime 1 are persistent
in mean; (b) shows three sample paths of subsystem (75) with Param (2). This subfigure represents that all species in regime 2 are
extinctive.

Case 1. Γ = (γi j)2×2 =

(
−1 1
9 −9

)
. Then π = (π1, π2) =

(
9

10 ,
1

10

)
. Thus, we have |A1| = 0.208875 +

0.225 ln 1.1+0.025 ln 1.2, |A2| = 0.141345+0.243 ln 1.1+0.027 ln 1.2, |A3| = 0.01791+0.594 ln 1.1+0.066 ln 1.2 =
0.0866 > 0. Based on Theorem 3.4 (i), all species in system (4) are persistent in mean (see Figure 2 (a)) and

lim
t→+∞

t−1
∫ t

0
x1(s)ds =

|A1|

|A|
=

0.2349
0.156

= 1.5058 a.s.

lim
t→+∞

t−1
∫ t

0
x2(s)ds =

|A2|

|A|
=

0.1694
0.156

= 1.0859 a.s.

lim
t→+∞

t−1
∫ t

0
x3(s)ds =

|A3|

|A|
=

0.0866
0.156

= 0.5551 a.s.

(77)

Case 2. Γ = (γi j)2×2 =

(
−9 9
11 −11

)
. Then π = (π1, π2) =

(
11
20 ,

9
20

)
. Thus, we compute |A3| = −0.096855 +

0.363 ln 1.1 + 0.297 ln 1.2 = −0.0081 < 0, M|A1 |

33 = 0.222825 + 0.055 ln 1.1 + 0.045 ln 1.2, M|A2 |

33 = 0.025425 +
0.495 ln 1.1 + 0.405 ln 1.2 = 0.1464 > 0. By Theorem 3.4 (ii), x1(t) and x2(t) are persistent in mean, while x3(t)
is extinctive (see Figure 2 (b)) and

lim
t→+∞

t−1
∫ t

0
x1(s)ds =

M|A1 |

33

M|A|
33

=
0.2363

0.3
= 0.7877 a.s.

lim
t→+∞

t−1
∫ t

0
x2(s)ds =

M|A2 |

33

M|A|
33

=
0.1464

0.3
= 0.4880 a.s.

(78)
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Figure 2: (a) shows the solution to hybrid system (4) withπ =
(

9
10 ,

1
10

)
. This subfigure represents that all species in Case 1 are persistent

in mean; (b) shows the solution to hybrid system (4) with π =
(

11
20 ,

9
20

)
. This subfigure represents that in Case 2, x1(t) and x2(t) are

persistent in mean, while x3(t) is extinctive; (c) shows the solution to hybrid system (4) with π =
(

1
4 ,

3
4

)
. This subfigure represents that

in Case 3, x1(t) is persistent in mean, while x2(t) and x3(t) are extinctive; (d) shows the solution to hybrid system (4) with π =
(

1
6 ,

5
6

)
.

This subfigure represents that all species in Case 4 are extinctive. Other parameters in Figure 2 are the same as those in Figure 1.

Case 3. Γ = (γi j)2×2 =

(
−3 3
1 −1

)
. Then π = (π1, π2) =

(
1
4 ,

3
4

)
. Thus, we obtain M|A2 |

33 = −0.194625 +

0.225 ln 1.1 + 0.675 ln 1.2 = −0.0501 < 0, Σ1 = −0.11625 + 0.25 ln 1.1 + 0.75 ln 1.2 = 0.0443 > 0. By Theorem
3.4 (iii), x1(t) is persistent in mean, while x2(t), x3(t) are extinctive (see Figure 2 (c)) and

lim
t→+∞

t−1
∫ t

0
x1(s)ds =

Σ1

A11
=

0.0443
0.3

= 0.1477 a.s. (79)

Case 4. Γ = (γi j)2×2 =

(
−5 5
1 −1

)
. Then π = (π1, π2) =

(
1
6 ,

5
6

)
. Hence, we have Σ1 =

−1.305+ln 1.1+5 ln 1.2
6 =

−0.0497 < 0. Based on Theorem 3.4 (iv), all species in system (4) are extinctive (see Figure 2 (d)).
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[26] M. Liu, K. Wang, Dynamics of a Leslie-Gower Holling-type II predator-prey system with Lévy jumps, Nonlinear Anal. 85 (2013)
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