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Abstract. In this paper, firstly we give weighted Jensen inequality for interval valued functions.Then,
by using Jensen inequality, we establish weighted Hermite-Hadamard type inclusions for interval-valued
functions. Moreover, we obtain some inclusions of weighted Hermite-Hadamard type for co-ordinated
convex interval-valued functions. These inclusions are generalizations of some results given in earlier
works.

1. Introduction

Over the last century, integral inequalities have attracted interest of a good many researchers because
of the importance in applied and pure mathematics. For example, Hermite-Hadamard inequalities, based
on convex functions, have an important place in many areas of mathematics, specifically optimization
theory. These inequalities, introduced by C. Hermite and J. Hadamard, express that if ϕ : I→ R is a convex
mapping on the interval I of real numbers and τ1, τ2 ∈ I with τ1 < τ2, then

ϕ
(
τ1 + τ2

2

)
≤

1
τ2 − τ1

τ2∫
τ1

ϕ(κ1)dκ1 ≤
ϕ (τ1) + ϕ(τ2)

2
. (1)

Ifϖ is concave, both of the inequalities hold in the opposite direction. The best known results associated with
these inequalities are Midpoint and Trapezoid inequalities which are frequently used in Special means and
estimation errors (see [10, 14]). Afterwards, many authors derived new results related to these inequalities
under various conditions of the mappings. Also, some researchers examined refinements, counterparts
and generalizations of the inequalities (1).

The general structure of this paper consists of four main sections including introduction. In this
section, we give weighted Hermite-Hadamard inequality for real valued functions and Hermite-Hadamard
inclusion for interval valued functions. We also mention some related works in the literature. In Section
2, we present some basic informations about one and two variables interval-valued functions, respectively.
In Section 3, we first provide weighted Jensen inclusion for interval valued-functions. Then we also
prove some weighted Hermite-Hadamard type inclusions for interval-valued convex functions. Finally, by
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applying the inclusions given in Section 3, we establish weighted Hermite-Hadamard type inclusions for
interval-valued co-ordinated convex functions in Section 4. We note that the opinion and technique of this
work may inspire new research in this area.

The weighted version of the inequality (1), which is also named Hermite-Hadamard-Fejér inequality,
was established by Fejér in [11] as follows:

Theorem 1.1. Suppose that ϕ : [τ1, τ2] → R is a convex function, and let ϖ : [τ1, τ2] → R be non-negative,
integrable, and symmetric about κ1 =

τ1+τ2
2 (i.e. ϖ(κ1) = ϖ(τ1 + τ2 − κ1)). Then, we have the inequality

ϕ
(
τ1 + τ2

2

) τ2∫
τ1

ϖ(κ1)dκ1 ≤

τ2∫
τ1

ϕ(κ1)ϖ(κ1)dκ1 ≤
ϕ (τ1) + ϕ (τ2)

2

τ2∫
τ1

ϖ(κ1)dκ1. (2)

Many mathematicians derived some generalizations and new results involving fractional integrals
regarding to the inequality (2) to obtain new bounds for the left and right sides of the inequality (2) (for
example, [1, 27–29]).
On the other side, interval analysis handled as one of the methods of solving interval uncertainty is an
important material which is used in mathematical and computer models. Although this theory has a long
history which may be dated back to Archimedes’ calculation of the circumference of a circle, a considerable
study was not published in this field until 1950s. The first book [17] about interval analysis was published
by Ramon E. Moore known as the pioneer of interval calculus in 1966. Thereafter, a great many researchers
started to investigate theories and applications of interval analysis. Recently, many authors have focused on
integral inequalities obtained by using interval-valued functions. For example, Sadowska [26] established
Hermite-Hadamard inequality for set-valued functions that is more general version of interval-valued
mappings as follows:

Theorem 1.2. ([26]) Suppose that Φ : [τ1, τ2] → R+
I

is interval–valued convex function such that Φ(t) =[
Φ(t),Φ(t)

]
. Then, we have

Φ
(
τ1 + τ2

2

)
⊇

1
τ2 − τ1

(IR)

τ2∫
τ1

Φ(κ1)dκ1 ⊇
Φ(τ1) + Φ(τ2)

2
. (3)

Furthermore, well-known inequalities such as Ostrowski, Minkowski and Beckenbach and their some
applications were provided by considering interval-valued functions in [5, 6, 12, 24]. In addition, some
inequalities involving interval-valued Riemann-Liouville fractional integrals were derived by Budak et al.
in [4]. In [15], Liu et al. gave the definition of interval-valued harmonically convex functions, and so they
obtain some Hermite-Hadamard type inequalities including interval-valued fractional integrals. On the
other hand Budak et al. prove some weighted Fejer type inclusions in [3]. For more details about this topic,
one can refer to [2, 7, 8, 13, 16, 18–21, 25, 30, 31].

2. Preliminaries

In this section we summarize some properties of one and two variables interval-valued functions.

2.1. Integral of Interval-Valued Functions
In this subsection, the notion of integral of the interval-valued mappings is mentioned. Before we can

understand the definition of integrals of interval-valued functions, we need to give some concepts in the
following.

A function φ is said to be an interval-valued function of t on [τ1, τ2] if it assigns a non-empty interval to
each t ∈ [τ1, τ2]

φ(t) =
[
φ(t), φ(t)

]
.
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A partition of [τ1, τ2] is any finite ordered subset D having the form

D : τ1 = t0 < t1 < ... < tn = τ2.

The mesh of a partition D is indicated by

mesh(D) = max {ti − ti−1 : i = 1, 2, ...,n} .

We denote by D ([τ1, τ2]) the set of all partition of [τ1, τ2] . Suppose that D (δ, [τ1, τ2]) is the set of all
D ∈ D ([τ1, τ2]) such that mesh(D) < δ. We take an arbitrary point ξi in interval [ti−1, ti] , i = 1, 2, ...,n, and we
define the sum

S(φ,D, δ) =
n∑

i=1

φ(ξi) [ti − ti−1]

where φ : [τ1, τ2] → RI. The sum S(φ,D, δ) is said to be a Riemann sum of φ corresponding to D ∈
D (δ, [τ1, τ2]) .

Definition 2.1. ([22],[23]) φ : [τ1, τ2] → RI is said to be an interval Riemann integrable function (IR-
integrable) on [τ1, τ2] if there exist A ∈ P and δ > 0, for each ε > 0, such that

d
(
S(φ,D, δ),A

)
< ε

for every Riemann sum S of φ corresponding to each D ∈ D (δ, [τ1, τ2]) and independent of choice of
ξi ∈ [ti−1, ti], 1 ≤ i ≤ n. In this case, A is called as the IR-integral of φ on [τ1, τ2] and is denoted by

A = (IR)

τ2∫
τ1

φ(t)dt.

The collection of all functions that are IR-integrable on [τ1, τ2] will be denote by IR([τ1,τ2]).

The next theorem explains connection between IR-integrable and Riemann integrable (R-integrable):

Theorem 2.2. Assume that φ : [τ1, τ2] → RI is an interval-valued function such that φ(t) =
[
φ(t), φ(t)

]
. φ ∈

IR([τ1,τ2]) if and only if φ(t), φ(t) ∈ R([τ1,τ2]) and

(IR)

τ2∫
τ1

φ(t)dt =

(R)

τ2∫
τ1

φ(t)dt, (R)

τ2∫
τ1

φ(t)dt


where R([τ1,τ2]) denotes the all R-integrable function.

It is easy to see that if φ(t) ⊆ ψ(t) for all t ∈ [τ1, τ2], then (IR)
τ2∫
τ1

φ(t)dt ⊆ (IR)
τ2∫
τ1

ψ(t)dt

2.2. Interval-Valued Double Integral and Co-ordinated Convexity
A set of numbers {ti−1, ξi, ti}

m
i=1 is called tagged partition P1 of [τ1, τ2] if

P1 : τ1 = t0 < t1 < . . . < tn = τ2

and if ti−1 ≤ ξi ≤ ti for all i = 1, 2, 3, . . . ,m. Moreover if we have ∆ti = ti − ti−1, then P1 is said to be δ−fine if
∆ti < δ for all i. Let P(δ, [τ1, τ2]) denote the set of all δ−fine partitions of [τ1, τ2]. If {ti−1, ξi, ti}

m
i=1 is a δ−fine

P1 of [τ1, τ2] and if {s j−1, η j, s j}
n
j=1 is δ−fine P2 of [τ3, τ4], then rectangles

∆i, j = [ti−1, ti] × [s j−1, s j]
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are the partition of the rectangle ∆ = [τ1, τ2] × [τ3, τ4] and the points (ξi, η j) are inside the rectangles
[ti−1, ti] × [s j−1, s j]. Further, by P (δ,∆) we denote the set of all δ−fine partitions P of ∆ with P1 × P2, where
P1 ∈ P(δ, [τ1, τ2]) and P2 ∈ P(δ, [τ3, τ4]). Let ∆Ai, j be the area of rectangle ∆i, j. In each rectangle ∆i, j, where
1≤ i ≤ m, 1 ≤ j ≤ n, choose arbitrary (ξi, η j) and get

S(F,P, δ,∆) =
m∑

i=1

n∑
j=1

F(ξi, η j)∆Ai, j.

We call S(F,P, δ,∆) is integral sum of F associated with P ∈ P(δ,∆).
Now we recall the concept of interval-valued double integral given by Zhao et al. in [31].

Theorem 2.3. ([31]) Let F : ∆→ RI. Then F is called ID−integrable on∆with ID−integral U = (ID)
!
∆

F(t, s)τ4A,

if for any ϵ > 0 there exist δ > 0 such that

d(S(F,P, δ,∆),U) < ϵ

for any P ∈ P(δ,∆). The collection of all ID−integrable functions on ∆ will be denoted by ID(∆).

Theorem 2.4. ([31]) Let ∆ = [τ1, τ2] × [τ3, τ4]. If F : ∆→ RI is ID−integrable on ∆, then we have

(ID)
"
∆

F(s, t)τ4A = (IR)
∫ τ2

τ1

(IR)
∫ τ4

τ3

F(s, t)dsdt.

Definition 2.5. ([32]) A function F : ∆ → R+
I

is said to be interval-valued co-ordinated convex function, if
the following inequality holds:

F(tκ1 + (1 − t)κ2, su + (1 − s)w)
⊇ tsF(κ1,u) + t(1 − s)F(κ1,w) + s(1 − t)F(κ2,u) + (1 − s)(1 − t)F(κ2,w),

for all (κ1, κ2), (u,w) ∈ ∆ and s, t ∈ [0, 1].

3. Weighted Hermite-Hadamard Type Inclusions for Interval-Valued Convex Functions

In this section we prove some weighted Hermite-Hadamard type inclusions for interval valued convex
functions.

First we need to following weighted Jensen inclusion:

Theorem 3.1 (Weighted Jensen Inclusion). Let 1 : [τ1, τ2] → [τ1, τ2] be a function from L∞ [τ1, τ2] and w :

[τ1, τ2] → R be non-negative functions from L1 [τ1, τ2] such that
τ2∫
τ1

w(t)dt , 0. If F : [τ1, τ2] → RI is an interval–

valued convex function such that F(t) =
[
F(t),F(t)

]
, then we have

F


1

τ2∫
τ1

w (t) dt

τ2∫
τ1

w(t)1 (t) dt

 ⊇
1

τ2∫
τ1

w (t) dt
(IR)

τ2∫
τ1

F
(
1(t)

)
w (t) dt.

Proof. The proof can be easily seen by applying the classical Jensen inequality to convex function F and
concave function F.
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Theorem 3.2. Suppose that F : [τ1, τ2] → R+I is interval–valued convex function such that F(t) =
[
F(t),F(t)

]
. Let

1 : [0, 1] → R be a non-negative and Riemann integrable function and let λ =

 1∫
0

t1 (t) dt

 / 1∫
0
1 (t) dt

 . Then, we

have

F (λτ1 + (1 − λ) τ2) ⊇
1
G

(IR)

τ2∫
τ1

F (κ1) 1
(
τ2 − κ1

τ2 − τ1

)
dκ1 ⊇ λF (τ1) + (1 − λ) F (τ2) (4)

where

G =

τ2∫
τ1

1

(
τ2 − κ1

τ2 − τ1

)
dκ1.

Proof. By changing variable to κ1 = tτ1 + (1 − t)τ2, we get

1
τ2∫
τ1

1
(
τ2−κ1
τ2−τ1

)
dκ1

(IR)

τ2∫
τ1

F (κ1) 1
(
τ2 − κ1

τ2 − τ1

)
dκ1 =

1
1∫

0
1 (t) dt

(IR)

1∫
0

F (tτ1 + (1 − t) τ2) 1 (t) dt. (5)

Since F is interval-valued convex function on [τ1, τ2], we have

F (tτ1 + (1 − t) τ2) ⊇ tF(τ1) + (1 − t)F(τ2)

As 1 is non-negative and integrable on [0, 1], we can write

(IR)

1∫
0

F (tτ1 + (1 − t) τ2) 1(t)dt ⊇ (IR)

1∫
0

(tF(τ1) + (1 − t)F(τ2)) 1(t)dt

(6)

= F(τ1)

1∫
0

t1(t)dt + F(τ2)

1∫
0

(1 − t)1(t)dt.

Combining inclusions (5) and (6) yields

1
τ2∫
τ1

1
(
τ2−κ1
τ2−τ1

)
dκ1

(IR)

τ2∫
τ1

F (κ1) 1
(
τ2 − κ1

τ2 − τ1

)
dκ1

⊇


1

1∫
0
1(t)dt

1∫
0

t1(t)dt

 F(τ1) +

1 −
1

1∫
0
1(t)dt

1∫
0

t1(t)dt

 F(τ2)

= λF (τ1) + (1 − λ) F (τ2)

which gives the proof right-hand side of (4).
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In view of the assumption that F is interval-valued convex function, 1 is nonnegative and integrable on
[0, 1], we deduce from the weighted Jensen inequality for interval-valued function that

1
1∫

0
1 (t) dt

(IR)

1∫
0

F (tτ1 + (1 − t) τ2) 1 (t) dt

⊆ F


1

1∫
0
1 (t) dt

1∫
0

(tτ1 + (1 − t) τ2) 1 (t) dt



= F




1

1∫
0
1 (t) dt

1∫
0

t1 (t) dt

 τ1 +

1 −
1

1∫
0
1 (t) dt

1∫
0

t1 (t) dt

 τ2


= F(τ1λ + (1 − λ)τ2).

This completes the proof of Theorem 3.2.

Remark 3.3. If we choose 1(t) = 1 for all t ∈ [0, 1] , the Theorem 3.2 reduces to Theorem 1.2.

Theorem 3.4. Suppose that F : [τ1, τ2] → R+I is interval–valued convex function such that F(t) =
[
F(t),F(t)

]
. Let

1 be a nonnegative and integrable function on [τ1, τ2], and let

λ =


τ2∫
τ1

(τ2 − κ1) 1 (τ1 + τ2 − κ1) dκ1


/

τ2∫
τ1

(τ2 − κ1) 1 (κ1) dκ1

 .
Then, we have

F
(
τ1 + λτ2

1 + λ

)
⊇

1
τ2∫
τ1

1 (κ1) dκ1

(IR)

τ2∫
τ1

F (κ1) 1 (κ1) dκ1 ⊇
F (τ1) + λF (τ2)

1 + λ
.

Proof. Since 1 is a nonnegative and integrable function on [τ1, τ2] , then it can be easily seen that φ(κ1) =
1(τ2 − (τ2 − τ1)κ1) is nonnegative and integrable function on [0, 1] . Therefore, by applying Theorem 3.2 , we
obtain

F
(
µτ1 +

(
1 − µ

)
τ2

)
⊇

1
τ2∫
τ1

φ
(
τ2−κ1
τ2−τ1

)
dκ1

(IR)

τ2∫
τ1

F (κ1)φ
(
τ2 − κ1

τ2 − τ1

)
dκ1 ⊇ µF (τ1) +

(
1 − µ

)
F (τ2) ,

where

µ =
1

1∫
0
φ (t) dt

1∫
0

tφ (t) dt =
1

1∫
0
1 (τ2 − (τ2 − τ1)t) dt

1∫
0

t1 (τ2 − (τ2 − τ1)t) dt
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=
1

τ2∫
τ1

(τ2 − τ1) 1 (κ1) dκ1

τ2∫
τ1

(τ2 − κ1) 1 (κ1) dκ1

=
1

τ2∫
τ1

(τ2 − κ1) 1 (κ1) dκ1 +
τ2∫
τ1

(τ2 − κ1) 1 (τ1 + τ2 − κ1) dκ1

τ2∫
τ1

(τ2 − κ1) 1 (κ1) dκ1

=
1

1 + λ
.

This completes the proof.

Remark 3.5. Under assumption of Theorem 3.4, if we supose that 1 is symmetric about τ1+τ2
2 , (i.e. 1(κ1) =

1(τ1 + τ2 − κ1) for all κ1 ∈ [τ1, τ2]), then Theorem 3.4 reduces to [15, Theorem 3.4 for α = 1].

4. Weighted Hermite-Hadamard Type Inclusions for Interval-Valued Co-ordinated Convex Functions

In this section, we present some Hermite-Hadamard type inclusions for interval-valued inclusions for
co-ordinated convex function:

Theorem 4.1. Let F : ∆ → R+I be a inteval-valued co-ordinated convex functions on ∆. Let 11 : [0, 1] → R and
12 : [0, 1]→ R be two a nonnegative and Riemann integrable functions and let

λ =
1

1∫
0
11 (t) dt

1∫
0

t11 (t) dt and β =
1

1∫
0
12 (s) ds

1∫
0

s12 (s) ds.

Then, one has the following inclusions

F
(
λτ1 + (1 − λ) τ2, βτ3 + (1 − β)τ4

)
(7)

⊇
1
2

 1
G1

(IR)

τ2∫
τ1

F
(
κ1, βτ3 + (1 − β)τ4

)
11

(
τ2 − κ1

τ2 − τ1

)
dκ1

+
1

G2
(IR)

τ4∫
τ3

F (λτ1 + (1 − λ) τ2, κ2) 12

(
τ4 − κ2

τ4 − τ3

)
dκ2


⊇

1
G1G2

(ID)

τ2∫
τ1

τ4∫
τ3

F(κ1, κ2)11

(
τ2 − κ1

τ2 − τ1

)
12

(
τ4 − κ2

τ4 − τ3

)
dκ2dκ1

⊇
1
2

 βG1
(IR)

τ2∫
τ1

F(κ1, τ3)11

(
τ2 − κ1

τ2 − τ1

)
dκ1 +

(1 − β)
G1

(IR)

τ2∫
τ1

F(κ1, τ4)11

(
τ2 − κ1

τ2 − τ1

)
dκ1

+
λ

G2
(IR)

τ4∫
τ3

F(τ1, κ2)12

(
τ4 − κ2

τ4 − τ3

)
dκ2 +

(1 − λ)
G2

(IR)

τ4∫
τ3

F(τ2, κ2)12

(
τ4 − κ2

τ4 − τ3

)
dκ2


⊇ βλ f (τ1, τ3) + λ

(
1 − β

)
F (τ1, τ4) + (1 − λ)β f (τ2, τ3) + (1 − β) (1 − λ) F (τ2, τ4)
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where

G1 =

τ2∫
τ1

11

(
τ2 − κ1

τ2 − τ1

)
dκ1, G2 =

τ4∫
τ3

12

(
τ4 − κ2

τ4 − τ3

)
dκ2.

Proof. Since F is an interval-valued co-ordinated convex functions on ∆, if we define the mappings Fκ1 :
[τ3, τ4]→ R+I , Fκ1 (κ2) = F(κ1, κ2), then Fκ1 (κ2) is interval-valued convex on [τ3, τ4] for all κ1 ∈ [τ1, τ2] . If we
apply the inclusion (4) for the interval-valued convex function Fκ1 (κ2), then we have

Fκ1

(
βτ3 + (1 − β)τ4

)
⊇

1
τ4∫
τ3

12

(
τ4−κ2
τ4−τ3

)
dκ2

(IR)

τ4∫
τ3

Fκ1 (κ2)12

(
τ4 − κ2

τ4 − τ3

)
dκ2 ⊇ β fκ1 (τ3) + (1 − β)Fκ1 (τ4). (8)

That is,

F
(
κ1, βτ3 + (1 − β)τ4

)
⊇

1
G2

(IR)

τ4∫
τ3

F(κ1, κ2)12

(
τ4 − κ2

τ4 − τ3

)
dκ2 ⊇ β f (κ1, τ3) + (1 − β)F(κ1, τ4). (9)

Multiplying with
11(

τ2−κ1
τ2−κ1

)

G1
the inclusion (9) and integrating with respect to κ1 from τ1 to τ2, we obtain

1
G1

(IR)

τ2∫
τ1

F
(
κ1, βτ3 + (1 − β)τ4

)
11

(
τ2 − κ1

τ2 − τ1

)
dκ1 (10)

⊇
1

G1G2
(ID)

τ2∫
τ1

τ4∫
τ3

F(κ1, κ2)11

(
τ2 − κ1

τ2 − τ1

)
12

(
τ4 − κ2

τ4 − τ3

)
dκ2dκ1

⊇
β

G1
(IR)

τ2∫
τ1

F(κ1, τ3)11

(
τ2 − κ1

τ2 − τ1

)
dκ1 +

(1 − β)
G1

(IR)

τ2∫
τ1

F(κ1, τ4)11

(
τ2 − κ1

τ2 − τ1

)
dκ1.

Similarly, as F is interval-valued co-ordinated convex functions on ∆, if we define the mappings Fκ2 :
[τ1, τ2] → R+I , Fκ2 (κ1) = F(κ1, κ2), then Fκ2 (κ1) is inteval-valued convex on [τ1, τ2] for all κ2 ∈ [τ3, τ4] .
Utilizing the inclusion (4) for the interval-valued convex function Fκ2 (κ1), then we obtain the inclusion

Fκ2 (λτ1 + (1 − λ) τ2) ⊇
1

τ2∫
τ1

11

(
τ2−κ1
τ2−τ1

)
dκ1

(IR)

τ2∫
τ1

Fκ2 (κ1)11

(
τ2 − κ1

τ2 − τ1

)
dκ1 ⊇ λ fκ2 (τ1) + (1 − λ) Fκ2 (τ2), (11)

i.e.

F (λτ1 + (1 − λ) τ2, κ2) ⊇
1

τ2∫
τ1

11

(
τ2−κ1
τ2−τ1

)
dκ1

(IR)

τ2∫
τ1

F(κ1, κ2)11

(
τ2 − κ1

τ2 − τ1

)
dκ1 (12)

⊇ λ f (τ1, κ2) + (1 − λ) F(τ2, κ2).

Multiplying with
12(

τ4−κ2
τ4−τ3

)

G2
the inclusion (12) and integrating with respect to κ2 on [τ3, τ4] , we get

1
G2

(IR)

τ4∫
τ3

F (λτ1 + (1 − λ) τ2, κ2) 12

(
τ4 − κ2

τ4 − τ3

)
dκ2 (13)
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⊇
1

G1G2
(ID)

τ2∫
τ1

τ4∫
τ3

F(κ1, κ2)11

(
τ2 − κ1

τ2 − τ1

)
12

(
τ4 − κ2

τ4 − τ3

)
dκ2dκ1

⊇
λ

G2
(IR)

τ4∫
τ3

F(τ1, κ2)12

(
τ4 − κ2

τ4 − τ3

)
dκ2 +

(1 − λ)
G2

(IR)

τ4∫
τ3

F(τ2, κ2)12

(
τ4 − κ2

τ4 − τ3

)
dκ2.

Summing the inclusions (10) and (13), we obtain the second and third inclusions in (7).
Since F

(
κ1, βτ3 + (1 − β)τ4

)
is inteval-valued convex on [τ1, τ2] and 11(κ1) is positive and integrable,

using the first inclusion in (4), we have

F
(
λτ1 + (1 − λ) τ2, βτ3 + (1 − β)τ4

)
⊇

1
G1

(IR)

τ2∫
τ1

F
(
κ1, βτ3 + (1 − β)τ4

)
11

(
τ2 − κ1

τ2 − τ1

)
dκ1. (14)

And similarly, since F (λτ1 + (1 − λ) τ2, κ2) is interval-valued convex on [τ3, τ4] and 12(κ2) is positive and
integrable,by the first inclusion in (4), we get

F
(
λτ1 + (1 − λ) τ2, βτ3 + (1 − β)τ4

)
⊇

1
G2

(IR)

τ4∫
τ3

F (λτ1 + (1 − λ) τ2, κ2) 12

(
τ4 − κ2

τ4 − τ3

)
dκ2. (15)

Summing the inclusions (14) and (15), we obtain the first inclusion in (7).
Since F (κ1, τ3) and F(κ1, τ4) are interval-valued convex on [τ1, τ2] and 11(κ1) is positive, integrable, by

the second inclusion in (4), we get

β

G1
(IR)

τ2∫
τ1

F(κ1, τ3)11

(
τ2 − κ1

τ2 − τ1

)
dκ1 +

(1 − β)
G1

(IR)

τ2∫
τ1

F(κ1, τ4)11

(
τ2 − κ1

τ2 − τ1

)
dκ1 (16)

⊇ βλ f (τ1, τ3) + β (1 − λ) F (τ2, τ3) + (1 − β)λ f (τ1, τ4) + (1 − β) (1 − λ) F (τ2, τ4) .

And similarly, since F (τ1, κ2) and F(τ2, κ2) are interval-valued convex on [τ3, τ4] and 12(κ2) is positive,
integrable, by the second inclusion in (4), we have the folllowing inclusion

λ
G2

(IR)

τ4∫
τ3

F(τ1, κ2)12

(
τ4 − κ2

τ4 − τ3

)
dκ2 +

(1 − λ)
G2

(IR)

τ4∫
τ3

F(τ2, κ2)12

(
τ4 − κ2

τ4 − τ3

)
dκ2 (17)

⊇ βλ f (τ1, τ3) + λ
(
1 − β

)
F (τ1, τ4) + (1 − λ)β f (τ2, τ3) + (1 − β) (1 − λ) F (τ2, τ4) .

By summing the resulting inclusions (16) and (17), then we obtain the last inclusion in (7). This completes
the proof.

Remark 4.2. Under assumptions of Theorem 4.1 with 11(t) = 1 and 12(s) = 1 for all t, s ∈ [0, 1] , then we
have

F
(
τ1 + τ2

2
,
τ3 + τ4

2

)
(18)

⊇
1
2

 1
(τ2 − τ1)

(IR)

τ2∫
τ1

F
(
κ1,

τ3 + τ4

2

)
dκ1 +

1
(τ4 − τ3)

(IR)

τ4∫
τ3

F
(
τ1 + τ2

2
, κ2

)
dκ2


⊇

1
(τ2 − τ1) (τ4 − τ3)

(ID)

τ2∫
τ1

τ4∫
τ3

F(κ1, κ2)dκ2dκ1
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⊇
1
4

 1
(τ2 − τ1)

(IR)

τ2∫
τ1

F(κ1, τ3)dκ1 +
1

(τ2 − τ1)
(IR)

τ2∫
τ1

F(κ1, τ4)dκ1

+
1

(τ4 − τ3)
(IR)

τ4∫
τ3

F(τ1, κ2)dκ2 +
1

(τ4 − τ3)
(IR)

τ4∫
τ3

F(τ2, κ2)dκ2


⊇

f (τ1, τ3) + F (τ1, τ4) + f (τ2, τ3) + F (τ2, τ4)
4

which was proved by Zhao et al. in [32].

Theorem 4.3. Let F : ∆→ R+I be a interval-valued co-ordinated convex functions on ∆. Let 11 : [τ1, τ2]→ R and
12 : [τ3, τ4]→ R be two a nonnegative and Riemann integrable functions and let

λ =
1

τ2∫
τ1

(τ2 − κ1) 11 (κ1) dκ1

τ2∫
τ1

(τ2 − κ1) 11 (τ1 + τ2 − κ1) dκ1

and

β =
1

τ4∫
τ3

(τ4 − κ2) 12 (κ2) dκ2

τ4∫
τ3

(τ4 − κ2) 12 (τ3 + τ4 − κ2) dκ2.

Then, one has the following inclusions

F
(
τ1 + λτ2

1 + λ
,
τ3 + βτ4

1 + β

)

⊇
1
2

 1
G3

(IR)

τ2∫
τ1

F
(
κ1,

τ3 + βτ4

1 + β

)
11 (κ1) dκ1 +

1
G4

(IR)

τ4∫
τ3

F
(
τ1 + λτ2

1 + λ
, κ2

)
12 (κ2) dκ2


⊇

1
G3G4

(ID)

τ2∫
τ1

τ4∫
τ3

F(κ1, κ2)11 (κ1) 12 (κ2) dκ2dκ1

⊇
1
2

 1
(1 + β)G3

(IR)

τ2∫
τ1

F(κ1, τ3)11(κ1)dκ1 +
β

(1 + β)G3
(IR)

τ2∫
τ1

F(κ1, τ4)11(κ2)dκ1

+
1

(1 + λ) G4
(IR)

τ4∫
τ3

F(τ1, κ2)12 (κ2) dκ2 +
λ

(1 + λ) G4
(IR)

τ4∫
τ3

F(τ2, κ2)12 (κ2) dκ2


⊇

F (τ1, τ3) + β f (τ1, τ4) + λ f (τ2, τ3) + λβ f (τ2, τ4)
(1 + λ)

(
1 + β

)
where G3 =

τ2∫
τ1

11 (κ1) dκ1 and G4 =
τ4∫
τ3

12 (κ2) dκ2.

Proof. Based on the assumption that 11 and 12 are nonnegative, integrable functions on [τ1, τ2] and [τ3, τ4] ,
respectively. Then, it can be shown thatφ1(t) = 11(τ2−(τ2−τ1)t) andφ2(s) = 12(τ4−(τ4−τ3)s) are nonnegative,
integrable functions on [0, 1] . Thus, by using Theorem 4.1, we can write the following inclusions,

F
(
γτ1 +

(
1 − γ

)
τ2, δτ3 + (1 − δ)τ4

)
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⊇
1
2


1

τ2∫
τ1

φ1

(
τ2−κ1
τ2−τ1

)
dκ1

(IR)

τ2∫
τ1

F (κ1, δτ3 + (1 − δ)τ4)φ1

(
τ2 − κ1

τ2 − τ1

)
dκ1

+
1

τ4∫
τ3

φ2

(
τ4−κ2
τ4−τ3

)
dκ2

(IR)

τ4∫
τ3

F
(
γτ1 +

(
1 − γ

)
τ2, κ2

)
φ2

(
τ4 − κ2

τ4 − τ3

)
dκ2


⊇

1
τ2∫
τ1

τ4∫
τ3

φ1

(
τ2−κ1
τ2−τ1

)
φ2

(
τ4−κ2
τ4−τ3

)
dκ2dκ1

(ID)

τ2∫
τ1

τ4∫
τ3

F(κ1, κ2)φ1

(
τ2 − κ1

τ2 − τ1

)
φ2

(
τ4 − κ2

τ4 − τ3

)
dκ2dκ1

⊇
1
2


δ

τ2∫
τ1

φ1

(
τ2−κ1
τ2−τ1

)
dκ1

(IR)

τ2∫
τ1

F(κ1, τ3)φ1

(
τ2 − κ1

τ2 − τ1

)
dκ1

+
(1 − δ)

τ2∫
τ1

φ1

(
τ2−κ1
τ2−τ1

)
dκ1

(IR)

τ2∫
τ1

F(κ1, τ4)φ1

(
τ2 − κ1

τ2 − τ1

)
dκ1

+
γ

τ4∫
τ3

φ2

(
τ4−κ2
τ4−τ3

)
dκ2

(IR)

τ4∫
τ3

F(τ1, κ2)φ2

(
τ4 − κ2

τ4 − τ3

)
dκ2

+

(
1 − γ

)
τ4∫
τ3

φ2

(
τ4−κ2
τ4−τ3

)
dκ2

(IR)

τ4∫
τ3

F(τ2, κ2φ2

(
τ4 − κ2

τ4 − τ3

)
dκ2


⊇ δγ f (τ1, τ3) + γ (1 − δ) F (τ1, τ4) + (1 − γ)δ f (τ2, τ4) + (1 − δ)

(
1 − γ

)
F (τ2, τ4) .

This gives

F
(
γτ1 +

(
1 − γ

)
τ2, δτ3 + (1 − δ)τ4

)
⊇

1
2

 1
G3

(IR)

τ2∫
τ1

F (κ1, δτ3 + (1 − δ)τ4) 11 (κ1) dκ1 +
1

G4
(IR)

τ4∫
τ3

F
(
γτ1 +

(
1 − γ

)
τ2, κ2

)
12 (κ2) dκ2


⊇

1
G3G4

(ID)

τ2∫
τ1

τ4∫
τ3

F(κ1, κ2)11 (κ1) 12 (κ2) dκ2dκ1

⊇
1
2

 δG3
(IR)

τ2∫
τ1

F(κ1, τ3)11(κ1)dκ1 +
(1 − δ)

G3
(IR)

τ2∫
τ1

F(κ1, τ4)11(κ1)dκ1

+
γ

G4
(IR)

τ4∫
τ3

F(τ1, κ2)12 (κ2) dκ2 +

(
1 − γ

)
G4

(IR)

τ4∫
τ3

F(τ2, κ2)12 (κ2) dκ2
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⊇ δγ f (τ1, τ3) + γ (1 − δ) F (τ1, τ4) + (1 − γ)δ f (τ2, τ4) + (1 − δ)
(
1 − γ

)
F (τ2, τ4) ,

where

γ =
1

1∫
0
11 (τ2 − (τ2 − τ1)t) dt

1∫
0

t11 (τ2 − (τ2 − τ1)t) dt

=
1

τ2∫
τ1

(τ2 − τ1) 11 (κ1) dκ1

τ2∫
τ1

(τ2 − κ1) 11 (κ1) dκ1

=

τ2∫
τ1

(τ2 − κ1) 11 (κ1) dκ1

τ2∫
τ1

(τ2 − κ1) 11 (κ1) dκ1 +
τ2∫
τ1

(τ2 − κ1) 11 (τ1 + τ2 − κ1) dκ1

=
1

1 + λ

and similarly

δ =
1

1∫
0
12 (τ4 − (τ4 − τ3)s) ds

1∫
0

s12 (τ4 − (τ4 − τ3)s) ds =
1

1 + β
.

This completes the proof.

Corollary 4.4. Under assumptions of Theorem 4.3, let 11(κ1) = 11(τ1 + τ2 − κ1) for any κ1 ∈ [τ1, τ2] and 12(κ2) =
12(τ3 + τ4 − κ2) for any κ2 ∈ [τ3, τ4], then we have the following inclusion

F
(
τ1 + τ2

2
,
τ3 + τ4

2

)
⊇

1
2

 1
G3

(IR)

τ2∫
τ1

F
(
κ1,

τ3 + τ4

2

)
11(κ1)dκ1 +

1
G4

(IR)

τ4∫
τ3

F
(
τ1 + τ2

2
, κ2

)
12(κ2)dκ2


⊇

1
G3G4

(ID)

τ2∫
τ1

τ4∫
τ3

F(κ1, κ2)11(κ1)12(κ2)dκ2dκ1

⊇
1
4

 1
G3

(IR)

τ2∫
τ1

[F(κ1, τ3) + F(κ1, τ4)] 11(κ1)dκ1 +
1

G4
(IR)

τ4∫
τ3

[F(τ1, κ2) + F(τ2, κ2)] 12(κ2)dκ2


⊇

F(τ1, τ3) + F(τ1, τ4) + F(τ2, τ3) + F(τ2, τ4)
4

.
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