Generalized Resolvents of Linear Relations Generated by Integral Equations with Operator Measures

Vladislav M. Bruk ${ }^{\text {a }}$
${ }^{a}$ Saratov State Technical University, Saratov, Russia

Abstract

We consider a symmetric minimal relation L_{0} generated by an integral equation with operators measures. We obtain a form of generalized resolvents of L_{0} and give a description of boundary value problems associated to generalized resolvents.

1. Introduction

Generalized resolvents of symmetric operators were introduced by M.A. Naimark in 1940 (see, for example, [1]). In [27], A.V. Straus described the generalized resolvents of a symmetric operator generated by a formally self-adjoint differential expression of even order in the scalar case. In [5], these results were spread to the operator case, and in [9] to the case of a differential-operator expression with a non-negative weight operator function. Further, the generalized resolvents of differential operators were studied in many works (a detailed bibliography is available, for example, in [25], [21]).

In this paper, we consider the integral equation

$$
\begin{equation*}
y(t)=x_{0}-i J \int_{a}^{t} d \mathbf{p}(s) y(s)-i J \int_{a}^{t} d \mathbf{m}(s) f(s) \tag{1}
\end{equation*}
$$

where y is an unknown function, $a \leqslant t \leqslant b$; J is an operator in a separable Hilbert space $H, J=J^{*}, J^{2}=E(E$ is the identical operator); \mathbf{p}, \mathbf{m} are operator-valued measures defined on Borel sets $\Delta \subset[a, b]$ and taking values in the set of linear bounded operators acting in $H ; x_{0} \in H, f \in L_{2}(H, d \mathbf{m} ; a, b)$. We assume that the measures \mathbf{p}, \mathbf{m} have bounded variations and \mathbf{p} is self-adjoint, \mathbf{m} is non-negative.

We consider a symmetric minimal relation L_{0} generated by equation (1). We obtain a form of generalized resolvents of L_{0} and give a description of boundary value problems associated to generalized resolvents. We give a detailed example of constructing a generalized resolvent.

If the measures \mathbf{p}, \mathbf{m} are absolutely continuous (i.e., $\mathbf{p}(\Delta)=\int_{\Delta} p(t) d t, \mathbf{m}(\Delta)=\int_{\Delta} m(t) d t$ for all Borel sets $\Delta \subset[a, b]$, where $p(t), m(t)$ are bounded operators for fixed t and the functions $\|p(t)\|,\|m(t)\|$ belong to $L_{1}(a, b)$), then integral equation (1) is transformed to a differential equation with a non-negative weight operator function. Linear relations and operators generated by such differential equations were considered in many works (see [23], [6], [9], further detailed bibliography can be found, for example, in [21], [3]).

[^0]The study of integral equation (1) differs essentially from the study of differential equations by the presence of the following features: i) a representation of a solution of equation (1) using an evolutional family of operators is possible if the measures \mathbf{p}, \mathbf{m} have not common single-point atoms (see [12]); ii) the Lagrange formula contains summands relating to single-point atoms of the measures \mathbf{p}, \mathbf{m} (see [13]). This article substantially uses the results of [17]. Also note that this article partially corrects the errors made in the work [11]. Moreover, equation (1) was considered in [14] under the assumption that \mathbf{m} is the usual Lebesque measure on $[a, b]$ and the set of single-point atoms of the measure \mathbf{p} can be arranged as an increasing sequence converging to b. In [14], a formula for generalized resolvents of L_{0} is obtained and a description of boundary value problems related to generalized resolvents is given. In [14], L_{0}, L_{0}^{*} are operators.

2. Preliminary assertions

Let H be a separable Hilbert space with a scalar product (\cdot, \cdot) and a norm $\|\cdot\|$. We consider a function $\Delta \rightarrow \mathbf{P}(\Delta)$ defined on Borel sets $\Delta \subset[a, b]$ and taking values in the set of linear bounded operators acting in H. The function \mathbf{P} is called an operator measure on $[a, b]$ (see, for example, [4, ch. 5]) if it is zero on the empty set and the equality $\mathbf{P}\left(\bigcup_{n=1}^{\infty} \Delta_{n}\right)=\sum_{n=1}^{\infty} \mathbf{P}\left(\Delta_{n}\right)$ holds for disjoint Borel sets Δ_{n}, where the series converges weakly. Further, we extend any measure \mathbf{P} on $[a, b]$ to a segment $\left[a, b_{0}\right]\left(b_{0}>b\right)$ letting $\mathbf{P}(\Delta)=0$ for each Borel set $\Delta \subset\left(b, b_{0}\right]$.

By $\mathbf{V}_{\Delta}(\mathbf{P})$ we denote $\mathbf{V}_{\Delta}(\mathbf{P})=\rho_{\mathbf{P}}(\Delta)=\sup \sum_{n}\left\|\mathbf{P}\left(\Delta_{n}\right)\right\|$, where the supremum is taken over all finite sums of disjoint Borel sets $\Delta_{n} \subset \Delta$. The number $\mathbf{V}_{\Delta}(\mathbf{P})$ is called the variation of the measure \mathbf{P} on the Borel set Δ. Suppose that the measure \mathbf{P} has the bounded variation on $[a, b]$. Then for $\rho_{\mathbf{P}}$-almost all $s \in[a, b]$ there exists an operator function $s \rightarrow \Psi_{\mathrm{P}}(s)$ such that Ψ_{P} possesses the values in the set of linear bounded operators acting in $H,\left\|\Psi_{\mathbf{P}}(s)\right\|=1$, and the equality

$$
\begin{equation*}
\mathbf{P}(\Delta)=\int_{\Delta} \Psi_{\mathbf{P}}(s) d \rho_{\mathbf{P}} \tag{2}
\end{equation*}
$$

holds for each Borel set $\Delta \subset[a, b]$. The function $\Psi_{\mathbf{P}}$ is uniquely determined up to values on a set of zero ρ_{P}-measure. Integral (2) converges with respect to the usual operator norm ([4, ch. 5]).

Further, $\int_{t_{0}}^{t}$ stands for $\int_{\left[t_{0} t\right)}$ if $t_{0}<t$, for $-\int_{\left[t, t_{0}\right)}$ if $t_{0}>t$, and for 0 if $t_{0}=t$. This implies that $y(a)=x_{0}$ in equation (1). A function h is integrable with respect to the measure \mathbf{P} on a set Δ if there exists the Bochner integral $\int_{\Delta} \Psi_{\mathbf{P}}(t) h(t) d \rho_{\mathbf{P}}=\int_{\Delta}(d \mathbf{P}) h(t)$. Then the function $y(t)=\int_{t_{0}}^{t}(d \mathbf{P}) h(s)$ is continuous from the left.

By $\mathcal{S}_{\mathbf{P}}$ denote a set of single-point atoms of the measure \mathbf{P} (i.e., a set $t \in[a, b]$ such that $\left.\mathbf{P}(\{t\}) \neq 0\right)$. The set $\mathcal{S}_{\mathbf{P}}$ is at most countable. The measure \mathbf{P} is continuous if $\mathcal{S}_{\mathbf{P}}=\varnothing$, it is self-adjoint if $(\mathbf{P}(\Delta))^{*}=\mathbf{P}(\Delta)$ for each Borel set $\Delta \subset[a, b]$, it is non-negative if $(\mathbf{P}(\Delta) x, x) \geqslant 0$ for all Borel sets $\Delta \subset[a, b]$ and for all elements $x \in H$.

In following Lemma 2.1, $\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{q}$ are operator measures having bounded variations on $[a, b]$ and taking values in the set of linear bounded operators acting in H. Suppose that the measure \mathbf{q} is self-adjoint. We assume that these measures are extended on the segment $\left[a, b_{0}\right] \supset\left[a, b_{0}\right) \supset[a, b]$ in the manner described above.

Lemma 2.1. [13] Let f, g be functions integrable on $\left[a, b_{0}\right]$ with respect to the measure \mathbf{q} and $y_{0}, z_{0} \in H$. Then any functions

$$
y(t)=y_{0}-i J \int_{t_{0}}^{t} d \mathbf{p}_{1}(s) y(s)-i J \int_{t_{0}}^{t} d \mathbf{q}(s) f(s), \quad z(t)=z_{0}-i J \int_{t_{0}}^{t} d \mathbf{p}_{2}(s) z(s)-i J \int_{t_{0}}^{t} d \mathbf{q}(s) g(s) \quad\left(a \leqslant t_{0}<b_{0}, t_{0} \leqslant t \leqslant b_{0}\right)
$$

satisfy the following formula (analogous to the Lagrange one):

$$
\begin{align*}
& \int_{c_{1}}^{c_{2}}(d \mathbf{q}(t) f(t), z(t))-\int_{\mathcal{c}_{1}}^{c_{2}}(y(t), d \mathbf{q}(t) g(t))=\left(i J y\left(c_{2}\right), z\left(c_{2}\right)\right)-\left(i J y\left(c_{1}\right), z\left(c_{1}\right)\right)+\int_{c_{1}}^{c_{2}}\left(y(t), d \mathbf{p}_{2}(t) z(t)\right)- \\
& -\int_{\mathcal{C}_{1}}^{c_{2}}\left(d \mathbf{p}_{1}(t) y(t), z(t)\right)-\sum_{t \in \mathcal{S}_{\mathbf{p}_{1}} \cap \mathcal{S}_{\mathbf{p}_{2}} \cap\left[c_{1}, c_{2}\right)}\left(i J \mathbf{p}_{1}(\{t\}) y(t), \mathbf{p}_{2}(\{t\}) z(t)\right)-\sum_{t \in \mathcal{S}_{\mathbf{q}} \cap \mathcal{S}_{\mathbf{p}_{2}} \cap\left[c_{1}, c_{2}\right)}\left(i J \mathbf{q}(\{t\}) f(t), \mathbf{p}_{2}(\{t\}) z(t)\right)- \\
& \quad-\sum_{t \in \mathcal{S}_{\mathbf{p}_{1}} \cap \mathcal{S}_{\mathbf{q}} \cap\left[c_{1}, c_{2}\right)}\left(i J \mathbf{p}_{1}(\{t\}) y(t), \mathbf{q}(\{t\}) g(t)\right)-\sum_{t \in \mathcal{S}_{\mathbf{q}} \cap\left[c_{1}, c_{2}\right)}(i J \mathbf{q}(\{t\}) f(t), \mathbf{q}(\{t\}) g(t)), \quad t_{0} \leqslant c_{1}<c_{2} \leqslant b_{0} . \tag{3}
\end{align*}
$$

Further we assume that measures \mathbf{p}, \mathbf{m} have bounded variations and \mathbf{p} is self-adjoint, \mathbf{m} is non-negative. We consider equation (1), where $x_{0} \in H, f$ is integrable with respect to the measure \mathbf{m} on $[a, b], a \leqslant t \leqslant b_{0}$. We construct a continuous measure \mathbf{p}_{0} from the measure \mathbf{p} in the following way. We set $\mathbf{p}_{0}\left(\left\{t_{k}\right\}\right)=0$ for $t_{k} \in \mathcal{S}_{\mathbf{p}}$ and we set $\mathbf{p}_{0}(\Delta)=\mathbf{p}(\Delta)$ for all Borel sets such that $\Delta \cap \mathcal{S}_{\mathbf{p}}=\varnothing$. Similarly, we construct a continuous measure \mathbf{m}_{0} from the measure \mathbf{m}. We denote $\widehat{\mathbf{p}}=\mathbf{p}-\mathbf{p}_{0}, \widehat{\mathbf{m}}=\mathbf{m}-\mathbf{m}_{0}$. Then $\widehat{\mathbf{p}}\left(\left\{t_{k}\right\}\right)=\mathbf{p}\left(\left\{t_{k}\right\}\right)$ for all $t_{k} \in \mathcal{S}_{\mathbf{p}}$ and $\widehat{\mathbf{p}}(\Delta)=0$ for all Borel sets Δ such that $\Delta \cap \mathcal{S}_{\mathrm{p}}=\varnothing$. The similar equalities hold for the measure $\widehat{\mathbf{m}}$. The measures $\mathbf{p}_{0}, \widehat{\mathbf{p}}, \mathbf{m}_{0}, \widehat{\mathbf{m}}$ are self-adjoint and the measures $\mathbf{m}_{0}, \widehat{\mathbf{m}}$ are non-negative.

We replace \mathbf{p} by \mathbf{p}_{0} and \mathbf{m} by \mathbf{m}_{0} in (1). Then we obtain the equation

$$
\begin{equation*}
y(t)=x_{0}-i J \int_{a}^{t} d \mathbf{p}_{0}(s) y(s)-i J \int_{a}^{t} d \mathbf{m}_{0}(s) f(s) \tag{4}
\end{equation*}
$$

Equations (1), (4) have unique solutions (see [12]).
By $W(t, \lambda)$ denote an operator solution of the equation

$$
\begin{equation*}
W(t, \lambda) x_{0}=x_{0}-i J \int_{a}^{t} d \mathbf{p}_{0}(s) W(s, \lambda) x_{0}-i J \lambda \int_{a}^{t} d \mathbf{m}_{0}(s) W(s, \lambda) x_{0} \tag{5}
\end{equation*}
$$

where $x_{0} \in H, \lambda \in \mathbb{C}\left(\mathbb{C}\right.$ is the set of complex numbers). It follows from Lemma 2.1 that $W^{*}(t, \bar{\lambda}) J W(t, \lambda)=J$. The functions $t \rightarrow W(t, \lambda)$ and $t \rightarrow W^{-1}(t, \lambda)=J W^{*}(t, \bar{\lambda}) J$ are continuous with respect to the uniform operator topology. Consequently there exist constants $\varepsilon_{1}>0, \varepsilon_{2}>0$ such that the inequality $\varepsilon_{1}\|x\|^{2} \leqslant\|W(t, \lambda) x\|^{2} \leqslant$ $\varepsilon_{2}\|x\|^{2}$ holds for all $x \in H, t \in\left[a, b_{0}\right], \lambda \in C \subset \mathbb{C}(C$ is a compact set $)$.

Lemma 2.2. [17]. Suppose that a function f is integrable with respect to the measure \mathbf{m}. A function y is a solution of the equation

$$
\begin{equation*}
y(t)=x_{0}-i J \int_{a}^{t} d \mathbf{p}_{0}(s) y(s)-i J \lambda \int_{a}^{t} d \mathbf{m}_{0}(s) y(s)-i J \int_{a}^{t} d \mathbf{m}(s) f(s), \quad x_{0} \in H, \quad a \leqslant t \leqslant b_{0} \tag{6}
\end{equation*}
$$

if and only if y has the form

$$
y(t)=W(t, \lambda) x_{0}-W(t, \lambda) i J \int_{a}^{t} W^{*}(\xi, \bar{\lambda}) d \mathbf{m}(\xi) f(\xi)
$$

3. Linear relations generated by the integral equation

This article is a continuation of the work [17]. In this section, we provide definitions and statements from [17] that are used in this article.

Let B be a Hilbert space. A linear relation T is understood as any linear manifold $T \subset \mathbf{B} \times \mathbf{B}$. The terminology on the linear relations can be found, for example, in [19], [25], [2]. In what follows we make use of the following notations: $\{\cdot, \cdot\}$ is an ordered pair; $\mathcal{D}(T)$ is the domain of $T ; \mathcal{R}(T)$ is the range of T; ker T is a set of elements $x \in \mathbf{B}$ such that $\{x, 0\} \in T ; T^{-1}$ is the relation inverse for T, i.e., the relation formed by the
pairs $\left\{x^{\prime}, x\right\}$, where $\left\{x, x^{\prime}\right\} \in T$. A relation T is called surjective if $\mathcal{R}(T)=\mathbf{B}$. A relation T is called invertible or injective if $\operatorname{ker} T=\{0\}$ (i.e., the relation T^{-1} is an operator); it is called continuously invertible if it is closed, invertible, and surjective (i.e., T^{-1} is a bounded everywhere defined operator). A relation T^{*} is called adjoint for T if T^{*} consists of all pairs $\left\{y_{1}, y_{2}\right\}$ such that equality $\left(x_{2}, y_{1}\right)=\left(x_{1}, y_{2}\right)$ holds for all pairs $\left\{x_{1}, x_{2}\right\} \in T$. A relation T is called symmetric if $T \subset T^{*}$ and self-adjoint if $T=T^{*}$.

It is known (see, for example, [20, ch.3], [19, ch.1]) that the graph of an operator $T: \mathcal{D}(T) \rightarrow \mathbf{B}$ is the set of pairs $\{x, T x\} \in \mathbf{B} \times \mathbf{B}$, where $x \in \mathcal{D}(T) \subset \mathbf{B}$. Consequently, the linear operators can be treated as linear relations; this is why the notation $\left\{x_{1}, x_{2}\right\} \in T$ is used also for the operator T. Since all considered relations are linear, we shall often omit the word "linear".

Let \mathbf{m} is a non-negative operator measure defined on Borel sets $\Delta \subset[a, b]$ and taking values in the set of linear bounded operators acting in the space H. The measure \mathbf{m} is assumed to have a bounded variation on $[a, b]$. We introduce the quasi-scalar product $(x, y)_{\mathrm{m}}=\int_{a}^{b_{0}}((d \mathbf{m}) x(t), y(t))$ on a set of step-like functions with values in H defined on the segment $\left[a, b_{0}\right]$. Identifying with zero functions y obeying $(y, y)_{\mathrm{m}}=0$ and making the completion, we arrive at the Hilbert space denoted by $L_{2}(H, d \mathbf{m} ; a, b)=\mathfrak{H}$. The elements of \mathfrak{H} are the classes of functions identified with respect to the norm $\|y\|_{\mathrm{m}}=(y, y)_{\mathrm{m}}^{1 / 2}$. In order not to complicate the terminology, the class of functions with a representative y is indicated by the same symbol and we write $y \in \mathfrak{H}$. The equality of functions in \mathfrak{H} is understood as the equality for associated equivalence classes.

Let us define a minimal relation L_{0} in the following way. The relation L_{0} consists of all pairs $\left\{\widetilde{y}, \widetilde{f_{0}}\right\} \in \mathfrak{H} \times \mathfrak{H}$ satisfying the condition: for each pair $\left\{\widetilde{y}, \widetilde{f_{0}}\right\}$ there exists a pair $\left\{y, f_{0}\right\}$ such that the pairs $\left\{\widetilde{y}, \widetilde{f_{0}}\right\},\left\{y, f_{0}\right\}$ are identical in $\mathfrak{H} \times \mathfrak{H}$ and $\left\{y, f_{0}\right\}$ satisfies equation (1) and the equalities

$$
\begin{equation*}
y(a)=y\left(b_{0}\right)=y(\alpha)=0, \quad \alpha \in \mathcal{S}_{\mathbf{p}} ; \quad \mathbf{m}(\{\beta\}) f_{0}(\beta)=0, \quad \beta \in \mathcal{S}_{\mathbf{m}} \tag{7}
\end{equation*}
$$

Further, without loss of generality it can be assumed that if $\left\{y, f_{0}\right\} \in L_{0}$, then equalities (1), (7) hold for this pair. In general, the relation L_{0} is not an operator since a function y can happen to be identified with zero in \mathfrak{G}, while f is non-zero. The relation L_{0} is symmetric and closed. We note that if $y \in \mathcal{D}\left(L_{0}\right)$, then y is continuous and $y(b)=0$ (see[16], [17]).

By $\mathfrak{X}_{A}=\mathfrak{X}_{A}(t)$ denote an operator characteristic function of a set A, i.e., $\mathfrak{X}_{A}(t)=E$ if $t \in A$ and $\mathfrak{X}_{A}(t)=0$ if $t \notin A$. We shall often omit the argument t in the notation \mathfrak{X}_{A}. By $\overline{\mathcal{S}}_{\mathrm{p}}$ denote the closure of the set \mathcal{S}_{p}. Let \mathcal{S}_{0} be the set $t \in[a, b]$ such that $y(t)=0$ for all $y \in \mathcal{D}\left(L_{0}\right)$. The set \mathcal{S}_{0} is closed and $\overline{\mathcal{S}}_{\mathrm{p}} \cup\{a\} \cup\{b\} \subset \mathcal{S}_{0}$ (see[17]).
Lemma 3.1. [17]. Suppose $\{y, f\} \in L_{0}$. Then $f(t)=0$ for \mathbf{m}-almost all $t \in \mathcal{S}_{0}$.
By \mathfrak{Y}_{0} (by \mathfrak{Y}_{1}) denote a subspace of functions that vanish on $[a, b] \backslash \mathcal{S}_{0}$ (on \mathcal{S}_{0}, respectively) with respect to the norm in \mathfrak{H}. The subspaces $\mathfrak{S}_{0}, \mathfrak{G}_{1}$ are orthogonal and $\mathfrak{H}=\mathfrak{H}_{0} \oplus \mathfrak{G}_{1}$. We note that $\mathfrak{S}_{0}=\{0\}$ if and only if $\mathbf{m}\left(\mathcal{S}_{0}\right)=0$. We denote $L_{10}=L_{0} \cap\left(\mathfrak{G}_{1} \times \mathfrak{Y}_{1}\right)$. Then $\mathcal{D}\left(L_{10}\right) \subset \mathfrak{G}_{1}, \mathcal{R}\left(L_{10}\right) \subset \mathfrak{G}_{1}$. It follows from Lemma 3.1 that

$$
\begin{equation*}
L_{0}^{*}=\left(\mathfrak{H}_{0} \times \mathfrak{H}_{0}\right) \oplus L_{10}^{*} \tag{8}
\end{equation*}
$$

i.e., the relation L_{0}^{*} consists of all pairs $\{y, f\} \in \mathfrak{S}$ of the form $\{y, f\}=\{u, v\}+\{z, g\}=\{u+z, v+g\}$, where $u, v \in \mathfrak{G}_{0},\{z, g\} \in L_{10}^{*}$.

The set $\mathcal{T}_{\mathbf{p}}=(a, b) \backslash \mathcal{S}_{0}$ is open and it is the union of at most a countable number of disjoint open intervals \mathcal{J}_{k}, i.e., $\mathcal{T}_{\mathbf{p}}=\bigcup_{k=1}^{\mathbb{k}_{1}} \mathcal{J}_{k}$ and $\mathcal{J}_{k} \cap \mathcal{J}_{j}=\varnothing$ for $k \neq j$, where \mathbb{k}_{1} is a natural number (equal to the number of intervals if this number is finite) or the symbol ∞ (if the number of intervals is infinite). By \mathbb{J} denote the set of these intervals \mathcal{J}_{k}. We note that the boundaries α_{k}, β_{k} of any interval $\mathcal{J}_{k}=\left(\alpha_{k}, \beta_{k}\right) \in \mathbb{J}$ belong to \mathcal{S}_{0}.

We denote

$$
\begin{equation*}
w_{k}(t, \lambda)=\mathfrak{X}_{\left[\alpha_{k}, \beta_{k}\right)} W(t, \lambda) W^{-1}\left(\alpha_{k}, \lambda\right), \tag{9}
\end{equation*}
$$

where $\left(\alpha_{k}, \beta_{k}\right)=\mathcal{J}_{k} \in \mathbb{J}$. Then (see[17])

$$
\begin{equation*}
w_{k}^{*}(t, \bar{\lambda}) J w_{k}(t, \lambda)=J, \quad \alpha_{k} \leqslant t<\beta_{k} \tag{10}
\end{equation*}
$$

By \mathfrak{H}_{10} (by \mathfrak{G}_{11}) denote a subspace of functions that belong to \mathfrak{H}_{1} and vanish on \mathcal{S}_{m} (on $[a, b] \backslash \mathcal{S}_{\mathrm{m}}$, respectively) with respect to the norm in \mathfrak{G}. So, $\mathfrak{Y}_{10}\left(\mathfrak{H}_{11}\right)$ consists of functions of the form $\mathfrak{X}_{[a, b] \backslash\left(\mathcal{S}_{0} \cup \mathcal{S}_{\mathrm{m}}\right)} h$ (of the form $\mathfrak{X}_{\mathcal{S}_{\mathrm{m}} \backslash \mathcal{S}_{0}} h$, respectively), where $h \in \mathfrak{G}$ is an arbitrary function. Therefore,

$$
\mathfrak{H}_{1}=\mathfrak{G}_{10} \oplus \mathfrak{G}_{11}, \quad \mathfrak{H}=\mathfrak{H}_{0} \oplus \mathfrak{H}_{10} \oplus \mathfrak{H}_{11}
$$

Obviously, the space \mathfrak{S}_{11} is the closure in \mathfrak{H} of the linear span of functions that have the form $\mathfrak{X}_{\{\tau\}}(\cdot) x$, where $x \in H, \tau \in \mathcal{S}_{\mathrm{m}} \backslash \mathcal{S}_{0}$. By (7), it follows that $\mathfrak{G}_{11} \subset \operatorname{ker} L_{10}^{*}$.

Let $u_{k}(t, \lambda, \tau): H \rightarrow \mathfrak{G}_{1}$ be an operator acting by the formula

$$
\begin{equation*}
u_{k}(t, \lambda, \tau) x=-\mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathbf{m}}} w_{k}(t, \lambda) i J \int_{a}^{t} w_{k}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) \lambda \mathfrak{X}_{\{\tau\}}(s) x, \tag{11}
\end{equation*}
$$

where $x \in H, \tau \in\left(\alpha_{k}, \beta_{k}\right) \cap \mathcal{S}_{\mathbf{m}},\left(\alpha_{k}, \beta_{k}\right)=\mathcal{J}_{k} \in \mathbb{J}$. Then (see[17]) for any $x \in H$ the function

$$
u_{k}(\cdot, \lambda, \tau) x+\mathfrak{X}_{\{\tau\}}(\cdot) x \in \operatorname{ker}\left(L_{10}^{*}-\lambda E\right)
$$

Lemma 3.2. [17]. The linear span of functions of the form $\mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathrm{m}}} w_{k}(\cdot, \lambda) x_{0}$ and $u_{k}(\cdot, \lambda, \tau) B_{k} x_{j}+\mathfrak{X}_{\{\tau\}}(\cdot) B_{k} x_{j}$ is dense in $\operatorname{ker}\left(L_{10}^{*}-\lambda E\right)$. Here $x_{j}, x_{0} \in H ; \tau \in\left(\alpha_{k}, \beta_{k}\right) \cap \mathcal{S}_{\mathbf{m}} ; B_{k}: H \rightarrow H$ is a bounded continuously invertible operator; $k=1, \ldots, \mathbb{k}_{1}$ if \mathbb{k}_{1} is finite and k is any natural number if \mathbb{k}_{1} is infinite.

Let \mathbb{M} be a set consisting of intervals $\mathcal{J} \in \mathbb{J}$ and single-point sets $\{\tau\}$, where $\tau \in \mathcal{S}_{\mathbf{m}} \backslash \mathcal{S}_{0}$. The set \mathbb{M} is at most countable. Let \mathbb{k} be the number of elements in \mathbb{M}. We arrange the elements of \mathbb{M} in the form of a finite or infinite sequence and denote these elements by \mathcal{E}_{k}, where k is any natural number if the number of elements in \mathbb{M} is infinite, and $1 \leqslant k \leqslant \mathbb{k}$ if the number of elements in \mathbb{M} is finite.

To each element $\mathcal{E}_{k} \in \mathbb{M}$ assign an operator function v_{k} in the following way. If \mathcal{E}_{k} is the interval, $\mathcal{E}_{k}=\mathcal{J}_{k}=\left(\alpha_{k}, \beta_{k}\right) \in \mathbb{J}$, then

$$
\begin{equation*}
v_{k}(t, \lambda)=\mathfrak{X}_{\left[\alpha_{k}, \beta_{k}\right) \backslash \mathcal{S}_{\mathrm{m}}} w_{k}(t, \lambda) . \tag{12}
\end{equation*}
$$

If \mathcal{E}_{k} is a single-point set, $\mathcal{E}_{k}=\left\{\tau_{k}\right\}, \tau_{k} \in \mathcal{S}_{\mathbf{m}} \backslash \mathcal{S}_{0}$, and $\tau_{k} \in \mathcal{J}_{n}=\left(\alpha_{n}, \beta_{n}\right) \in \mathbb{J}$, then

$$
\begin{equation*}
v_{k}(t, \lambda)=u_{n}\left(t, \lambda, \tau_{k}\right) w_{n}\left(\tau_{k}, \lambda\right)+\mathfrak{X}_{\left\{\tau_{k}\right\}}(t) w_{n}\left(\tau_{k}, \lambda\right) . \tag{13}
\end{equation*}
$$

Further, we denote $v_{k}(t, 0)=v_{k}(t)$. We note that $u_{k}(t, 0, \tau)=0$ (see equality (11)).
Let $Q_{k, 0}$ be a set $x \in H$ such that the functions $t \rightarrow v_{k}(t) x$ are identical with zero in \mathfrak{H}. We put $Q_{k}=H \ominus Q_{k, 0}$. On the linear space Q_{k} we introduce a norm $\|\cdot\|_{-}$by the equality

$$
\begin{equation*}
\left\|\xi_{k}\right\|_{-}=\left\|v_{k}(\cdot) \xi_{k}\right\|_{\mathfrak{S}}, \quad \xi_{k} \in Q_{k} \tag{14}
\end{equation*}
$$

By Q_{k}^{-}denote the completion of Q_{k} with respect to norm (14). The space Q_{k}^{-}can be treated as a space with a negative norm with respect to $Q_{k}([4, \mathrm{ch} .1],[19, \mathrm{ch} .2])$. By Q_{k}^{+}denote the associated space with a positive norm. The definition of spaces with positive and negative norms implies that $Q_{k}^{+} \subset Q_{k} \subset Q_{k}^{-}$. By $(\cdot, \cdot)_{+}$and $\|\cdot\|_{+}$we denote the scalar product and the norm in Q_{k}^{+}, respectively.

Remark 3.3. The set $Q_{k, 0}$ will not change if the function $v_{k}(\cdot)=v_{k}(\cdot, 0)$ is replaced by $v_{k}(\cdot, \lambda)$ in the definition of $Q_{k, 0}$. Moreover, with such replacement, the space Q_{k}^{-}will not change in the following sense: the set Q_{k}^{-}will not change, and the norm in it will be replaced by the equivalent one. The similar statement holds for the space Q_{k}^{+}(see [17]).

Suppose that a sequence $\left\{x_{k n}\right\}, x_{k n} \in Q_{k}$, converges in the space Q_{k}^{-}to $x_{0} \in Q_{k}^{-}$as $n \rightarrow \infty$. Then the sequence $\left\{v_{k}(\cdot, \lambda) x_{k n}\right\}$ is fundamental in \mathfrak{H}. Therefore this sequence converges to some element in \mathfrak{H}. By $v_{k}(\cdot, \lambda) x_{0}$ we denote this element.

Let $\widetilde{Q}_{N}^{-}=Q_{1}^{-} \times \ldots \times Q_{N}^{-}\left(\widetilde{Q}_{N}^{+}=Q_{1}^{+} \times \ldots \times Q_{N}^{+}\right)$be the Cartesian product of the first N sets Q_{k}^{-}(Q_{k}^{+}, respectively) and let $V_{N}(t, \lambda)=\left(v_{1}(t, \lambda), \ldots, v_{N}(t, \lambda)\right)$ be the operator one-row matrix. It is convenient to treat elements from \widetilde{Q}_{N}^{-}as one-column matrices, and to assume that $V_{N}(t, \lambda) \widetilde{\xi}_{N}=\sum_{k=1}^{N} v_{k}(t, \lambda) \xi_{k}$, where we denote $\widetilde{\xi}_{N}=$
$\operatorname{col}\left(\xi_{1}, \ldots, \xi_{N}\right) \in \widetilde{Q}_{N}^{-}, \xi_{k} \in Q_{k}^{-}$. Let $\operatorname{ker}_{k}(\lambda)$ be a linear space of functions $t \rightarrow v_{k}(t, \lambda) \xi_{k}, \xi_{k} \in Q_{k}^{-}$. The space $\operatorname{ker}_{k}(\lambda)$ is closed in \mathfrak{H}. We denote $\mathcal{K}_{N}(\lambda)=\operatorname{ker}_{1}(\lambda) \dot{+} \ldots+\operatorname{ker}_{N}(\lambda)$. Obviously, $\mathcal{K}_{N_{1}}(\lambda) \subset \mathcal{K}_{N_{2}}(\lambda)$ for $N_{1}<N_{2}$. By $\mathcal{V}_{N}(\lambda)$ denote the operator $\widetilde{\xi}_{N} \rightarrow V_{N}(\cdot, \lambda) \widetilde{\xi}_{N}$, where $\widetilde{\xi}_{N} \in \widetilde{Q}_{N}^{-}$. The operator $\mathcal{V}_{N}(\lambda)$ maps continuously and one-to-one \widetilde{Q}_{N}^{-}onto $\mathcal{K}_{N}(\lambda) \subset \mathfrak{H}_{1} \subset \mathfrak{H}$.

Let Q_{-}, Q_{+}, Q be linear spaces of sequences, respectively, $\widetilde{\eta}=\left\{\eta_{k}\right\}, \widetilde{\varphi}=\left\{\varphi_{k}\right\}, \widetilde{\xi}=\left\{\xi_{k}\right\}$, where $\eta_{k} \in Q_{k}^{-}$, $\varphi_{k} \in Q_{k}^{+}, \xi_{k} \in Q_{k} ; k \in \mathbb{N}$ if $\mathbb{k}=\infty$, and $1 \leqslant k \leqslant \mathbb{k}$ if \mathbb{k} is finite; \mathbb{k} is the number of elements in \mathbb{M}. We assume that the series $\sum_{k=1}^{\infty}\left\|\eta_{k}\right\|_{-}^{2}, \sum_{k=1}^{\infty}\left\|\varphi_{k}\right\|_{+}^{2}, \sum_{k=1}^{\infty}\left\|\xi_{k}\right\|^{2}$ converge if $\mathbb{k}=\infty$. These spaces become Hilbert spaces if we introduce scalar products by the formulas

$$
(\widetilde{\eta}, \widetilde{\zeta})_{-}=\sum_{k=1}^{\mathbb{k}}\left(\eta_{k}, \zeta_{k}\right)_{-}, \quad \widetilde{\eta}, \widetilde{\zeta} \in Q_{-} ; \quad(\widetilde{\varphi}, \widetilde{\psi})_{+}=\sum_{k=1}^{\mathbb{k}}\left(\varphi_{k}, \psi_{k}\right)_{+}, \quad \widetilde{\varphi}, \widetilde{\psi} \in Q_{+} ; \quad(\widetilde{\xi}, \widetilde{\sigma})=\sum_{k=1}^{\mathbb{k}}\left(\xi_{k}, \sigma_{k}\right), \quad \widetilde{\xi}, \widetilde{\sigma} \in Q
$$

The spaces Q_{+}, Q_{-}can be treated as spaces with positive and negative norms with respect to Q ([4, ch.1], [19, ch.2]). So $Q_{+} \subset Q \subset Q_{-}$and $\gamma_{1}\|\widetilde{\varphi}\|_{-} \leqslant\|\widetilde{\varphi}\| \leqslant \gamma_{2}\|\widetilde{\varphi}\|_{+}$, where $\widetilde{\varphi} \in Q_{+}, \gamma_{1}, \gamma_{2}>0$. The "scalar product" $(\tilde{\eta}, \widetilde{\varphi})$ is defined for all $\widetilde{\varphi} \in Q_{+}, \widetilde{\eta} \in Q_{-}$. If $\widetilde{\eta} \in Q$, then $(\widetilde{\eta}, \widetilde{\varphi})$ coincides with the scalar product in Q.

Let $\mathcal{M} \subset Q_{-}$be a set of sequences vanishing starting from a certain number (its own for each sequence). The set \mathcal{M} is dense in the space Q_{-}. The operator $\mathcal{V}_{N}(\lambda)$ is the restriction of $\mathcal{V}_{N+1}(\lambda)$ to \widetilde{Q}_{N}^{-}. By $\mathcal{V}^{\prime}(\lambda)$ denote an operator in \mathcal{M} such that $\mathcal{V}^{\prime}(\lambda) \widetilde{\eta}=\mathcal{V}_{N}(\lambda) \widetilde{\eta}_{N}$ for all $N \in \mathbb{N}$, where $\widetilde{\eta}=\left(\widetilde{\eta}_{N}, 0, \ldots\right), \widetilde{\eta}_{N} \in \widetilde{Q}_{N}^{-}$. The operator $\mathcal{V}^{\prime}(\lambda)$ admits an extension by continuity to the space Q_{-}. By $\mathcal{V}(\lambda)$ denote the extended operator. This operator maps continuously and one-to-one Q_{-}onto $\operatorname{ker}\left(L_{10}^{*}-\lambda E\right) \subset \mathfrak{H}_{1} \subset \mathfrak{H}$. Moreover, we denote $\widetilde{V}(t, \lambda) \widetilde{\eta}=(\mathcal{V}(\lambda) \widetilde{\eta})(t)$, where $\widetilde{\eta}=\left\{\eta_{k}\right\} \in Q_{-}$.

The adjoint operator $\mathcal{V}^{*}(\lambda)$ maps continuously \mathfrak{H} onto Q_{+}and

$$
\begin{equation*}
\mathcal{V}^{*}(\lambda) f=\int_{a}^{b_{0}} \widetilde{V}^{*}(t, \lambda) d \mathbf{m}(t) f(t) \tag{15}
\end{equation*}
$$

Lemma 3.4. [17]. The operator $\mathcal{V}(\lambda)$ maps Q_{-}onto $\operatorname{ker}\left(L_{10}^{*}-\lambda E\right)$ continuously and one to one. A function z belongs to $\operatorname{ker}\left(L_{10}^{*}-\lambda E\right)$ if and only if there exists an element $\widetilde{\eta}=\left\{\eta_{k}\right\} \in Q_{-}$such that $z(t)=(\mathcal{V}(\lambda) \widetilde{\eta})(t)=\widetilde{V}(t, \lambda) \widetilde{\eta}$. The operator $\mathcal{V}^{*}(\lambda)$ maps \mathfrak{H} onto Q_{+}continuously, and acts by formula (15), and $\operatorname{ker} \mathcal{V}^{*}(\lambda)=\mathfrak{H}_{0} \oplus \mathcal{R}\left(L_{10}-\bar{\lambda} E\right)$. Moreover, $\mathcal{V}^{*}(\lambda)$ maps $\operatorname{ker}\left(L_{10}^{*}-\lambda E\right)$ onto Q_{+}one to one.

The following theorem is proved in [17]. We have changed some designations from [17] to shorten the record.
Theorem 3.5. A pair $\{\widetilde{y}, \widetilde{f}\} \in \mathfrak{G} \times \mathfrak{G}$ belongs to $L_{0}^{*}-\lambda E$ if and only if there exist a pair $\{\widehat{y}, \widehat{f}\} \in \mathfrak{H} \times \mathfrak{H}$, functions $y_{0}, y_{0}^{\prime} \in \mathfrak{H}_{0}, y, f \in \mathfrak{H}_{1}$, and an element $\widetilde{\eta} \in Q_{-}$such that the pairs $\{\widetilde{y}, \widetilde{f}\},\{\widehat{y}, \widehat{f}\}$ are identical in $\mathfrak{H} \times \mathfrak{H}$ and the equalities

$$
\begin{align*}
& \widehat{y}=y_{0}+y, \widehat{f}=y_{0}^{\prime}+f, \\
& y(t)=\widetilde{V}(t, \lambda) \widetilde{\eta}-\sum_{k=1}^{\mathfrak{k}_{1}} \mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathbf{m}}} w_{k}(t, \lambda) i J \int_{a}^{t} w_{k}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) f(s) \tag{16}
\end{align*}
$$

hold, where the series in (16) converges in $\mathfrak{G}, \mathbb{k}_{1}$ is the number of intervals $\mathcal{J}_{k} \in \mathbb{J}$.

4. The description of generalized resolvents

Let T be a symmetric relation, $T \subset \mathbf{B} \times \mathbf{B}$ (\mathbf{B} is a Hilbert space), and let \widetilde{T} be a self-adjoint extension of T to $\widetilde{\mathbf{B}}$, where $\widetilde{\mathbf{B}}$ is a Hilbert space, $\widetilde{\mathbf{B}} \supset \mathbf{B}$, and scalar products coincide in \mathbf{B} and $\widetilde{\mathbf{B}}$. By P denote an orthogonal projection of $\widetilde{\mathbf{B}}$ onto \mathbf{B}. The function $\lambda \rightarrow R_{\lambda}$ defined by the formula $R_{\lambda}=\left.P(\widetilde{T}-\lambda E)^{-1}\right|_{\mathbf{B}}, \operatorname{Im} \lambda \neq 0$, is called the generalized resolvent of the relation T (see, for example, [1, ch.9]).
A.V. Straus (see [26]) obtained a formula for all generalized resolvents of a symmetric operator. It is shown in [18] that this formula remains true for symmetric relations also. By \mathfrak{N}_{λ} denote a defect subspace of the symmetric relation T, i.e., the orthogonal complement in \mathbf{B} of the range of the relation $T-\lambda E$. We fix some number $\lambda_{0}\left(\operatorname{Im} \lambda_{0} \neq 0\right)$. Let $\lambda \rightarrow \mathcal{F}(\lambda)$ be a holomorphic operator function, where $\mathcal{F}(\lambda): \mathfrak{N}_{\lambda_{0}} \rightarrow \mathfrak{N}_{\bar{\lambda}_{0}}$ is a bounded operator, $\|\mathcal{F}(\lambda)\| \leqslant 1, \operatorname{Im} \lambda \cdot \operatorname{Im} \lambda_{0}>0$. Let $T_{\mathcal{F}(\lambda)}$ be the relation consisting of all pairs of the form $\left\{y_{0}+\mathcal{F}(\lambda) z-z, y_{1}+\lambda_{0} \mathcal{F}(\lambda) z-\bar{\lambda}_{0} z\right\}$, where $\left\{y_{0}, y_{1}\right\} \in T, z \in \mathfrak{N}_{\lambda_{0}}$. Then (see [26], [18]) the family of operators R_{λ} is a generalized resolvent of T if and only if R_{λ} can be represented in the form

$$
\begin{equation*}
R_{\lambda}=\left(T_{\mathcal{F}(\lambda)}-\lambda E\right)^{-1}, \quad \operatorname{Im} \lambda \cdot \operatorname{Im} \lambda_{0}>0 \tag{17}
\end{equation*}
$$

Theorem 4.1. Let $R_{\lambda}(\operatorname{Im} \lambda \neq 0)$ be a generalized resolvent of the relation L_{10} and $y=R_{\lambda} f$. Then

$$
\begin{align*}
& y(t)=\int_{a}^{b} \widetilde{V}(t, \lambda) M(\lambda) \widetilde{V}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) f(s)+ \\
& +2^{-1} \sum_{n=1}^{\mathbf{k}_{1}} \int_{a}^{b} \mathfrak{X}_{\left[\alpha_{n}, \beta_{n}\right) \mid \mathcal{S}_{\mathbf{m}}}(t) w_{n}(t, \lambda) \operatorname{sgn}(s-t) i j w_{n}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) \mathfrak{X}_{[a, b] \mathcal{S}_{\mathbf{m}}}(s) f(s)-\lambda^{-1} \sum_{n=1}^{\mathbf{k}_{1}} \mathfrak{X}_{\mathcal{S}_{\mathbf{m}} \cap\left(\alpha_{n}, \beta_{n}\right)}(t) f(t), \tag{18}
\end{align*}
$$

where $M(\lambda): Q_{+} \rightarrow Q_{-}$is the bounded operator such that $M(\bar{\lambda})=M^{*}(\lambda), \operatorname{Im} \lambda \neq 0$. The function $\lambda \rightarrow M(\lambda) \bar{x}$ is holomorphic for every $\tilde{x} \in Q_{+}$in the half-planes $\operatorname{Im} \lambda \neq 0$. If $\mathcal{S}_{\mathrm{m}}=\varnothing$, then

$$
\begin{equation*}
(\operatorname{Im} \lambda)^{-1} \operatorname{Im}(M(\lambda) \widetilde{x}, \widetilde{x}) \geqslant 0 \tag{19}
\end{equation*}
$$

for every $\lambda(\operatorname{Im} \lambda \neq 0)$ and for every $\tilde{x} \in Q_{+}$.
Proof. Suppose $y=R_{\lambda} f$. By (17), it follows that the pair $\{y, f\} \in L_{10}^{*}-\lambda E$. Equality (18) follows from (17) and [17, Theorem 4.3]. Using (18), we get

$$
\begin{align*}
& y(t)=\widetilde{V}(t, \lambda) M(\lambda) \int_{a}^{b} \widetilde{V}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) f(s)+\sum_{n=1}^{\mathbb{k}_{1}}\left(-2^{-1} \mathfrak{X}_{\left[\alpha_{n}, \beta_{n}\right) \backslash \mathcal{S}_{\mathbf{m}}}(t) w_{n}(t, \lambda) i J \int_{\alpha_{n}}^{t} w_{n}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) \mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathbf{m}}}(s) f(s)+\right. \\
&\left.+2^{-1} \mathfrak{X}_{\left[\alpha_{n}, \beta_{n}\right) \backslash \mathcal{S}_{\mathbf{m}}}(t) w_{n}(t, \lambda) i J \int_{t}^{\beta_{n}} w_{n}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) \mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathbf{m}}}(s) f(s)\right)-\lambda^{-1} \sum_{n=1}^{\mathbb{k}_{1}} \mathfrak{X}_{\mathcal{S}_{\mathbf{m}} \cap\left(\alpha_{n}, \beta_{n}\right)}(t) f(t) . \tag{20}
\end{align*}
$$

Let us prove that the function $\lambda \rightarrow M(\lambda) \widetilde{x}$ is holomorphic for every $\widetilde{x} \in Q_{+}(\operatorname{Im} \lambda \neq 0)$. We denote $S(\lambda)=$ $M(\lambda) \mathcal{V}^{*}(\bar{\lambda})$. It follows from (18) and the holomorphicity of the function $\lambda \rightarrow R_{\lambda}$ that the function $\lambda \rightarrow$ $\mathcal{V}(\lambda) S(\lambda) f$ is holomorphic. Using (10), we obtain that the function $\lambda \rightarrow S(\lambda) f$ is holomorphic. Now the holomorphicity of the function $\lambda \rightarrow M(\lambda)$ follows from Lemma 4.2. This Lemma is formulated after the proof of the Theorem. In Lemma 4.2 it should be taken that $\mathcal{B}_{1}=\mathfrak{H}_{1}, \mathcal{B}_{2}=Q_{+}, \mathcal{B}_{3}=Q_{-}, T_{1}(\lambda)=\mathcal{V}^{*}(\bar{\lambda})$, $T_{2}(\lambda)=M(\lambda), T_{3}(\lambda)=S(\lambda)$.

We note that the equality $R_{\lambda}^{*}=R_{\bar{\lambda}}$ implies $M(\bar{\lambda})=M^{*}(\lambda)$.
Let us prove that (19) holds under the condition $\mathcal{S}_{\mathbf{m}}=\varnothing$. Then $\mathbf{m}=\mathbf{m}_{0}$. It follows from Lemma 3.4 that there exists a function $f \in \mathfrak{G}$ such that $\widetilde{x}=\mathcal{V}^{*}(\bar{\lambda}) f$. Let $p_{n}: Q_{-} \rightarrow Q_{n}^{-}$be the operator defined by the formula $p_{n} \widetilde{\xi}=\xi_{n}$, where $\widetilde{\xi}=\left\{\xi_{n}\right\} \in Q_{-}$. We denote $M_{n}(\lambda)=p_{n} M(\lambda), x_{n}=p_{n} \widetilde{x}$. Since $\mathcal{S}_{\mathbf{m}}=\varnothing$, we obtain from (20)

$$
\begin{align*}
& y(t)=\sum_{n=1}^{\mathbf{k}_{1}} \mathfrak{X}_{\left[\alpha_{n}, \beta_{n}\right)}(t) w_{n}(t, \lambda) M_{n}(\lambda) \widetilde{x}+2^{-1} \sum_{n=1}^{\mathbf{k}_{1}}\left(-\mathfrak{X}_{\left[\alpha_{n}, \beta_{n}\right)}(t) w_{n}(t, \lambda) i J \int_{\alpha_{n}}^{t} w_{n}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) f(s)+\right. \\
&\left.+\mathfrak{X}_{\left[\alpha_{n}, \beta_{n}\right)}(t) w_{n}(t, \lambda) i J \int_{t}^{\beta_{n}} w_{n}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) f(s)\right) . \tag{21}
\end{align*}
$$

We denote

$$
z(t)=\widetilde{V}(t, \lambda)\left(M(\lambda) \widetilde{x}-2^{-1} \widetilde{J} \widetilde{J}\right)=\sum_{n=1}^{\mathbf{k}_{1}} z_{n}(t), \quad z_{n}(t)=\mathfrak{X}_{\left[\alpha_{n}, \beta_{n}\right)} z=w_{n}(t, \lambda)\left(M_{n}(\lambda) \widetilde{x}-2^{-1} i J x_{n}\right)
$$

where \widetilde{J} is the operator in Q acting as $\widetilde{J} \widetilde{\xi}=\left\{J \xi_{k}\right\}, \widetilde{\xi}=\left\{\xi_{k}\right\} \in Q$. Using (9), (10), (21), we get

$$
\begin{align*}
& y\left(\alpha_{n}\right)=M_{n}(\lambda) \widetilde{x}+2^{-1} i J x_{n}, \quad z_{n}\left(\alpha_{n}\right)=M_{n}(\lambda) \widetilde{x}-2^{-1} i J x_{n}, \tag{22}\\
& \lim _{t \rightarrow \beta_{n}-0} y(t)=\lim _{t \rightarrow \beta_{n}-0} z_{n}(t)=W\left(\beta_{n}, \lambda\right) W^{-1}\left(\alpha_{n}, \lambda\right)\left(M_{n}(\lambda) \widetilde{x}-2^{-1} i J x_{n}\right) . \tag{23}
\end{align*}
$$

It follows from Lemmas 3.2, 3.4 that $z \in \operatorname{ker} L_{10}^{*}-\lambda E$. Consequently, $\{y-z, f\} \in L_{10}^{*}-\lambda E,\{y+z, f\} \in L_{10}^{*}-\lambda E$. Then the pairs $\left\{y-z, g_{1}\right\} \in L_{10}^{*},\left\{y+z, g_{2}\right\} \in L_{10}^{*}$, where

$$
\begin{equation*}
g_{1}=f+\lambda(y-z), \quad g_{2}=f+\lambda(y+z) . \tag{24}
\end{equation*}
$$

We denote $y_{n}=\mathfrak{X}_{\left[\alpha_{n}, \beta_{n}\right)} y, g_{1 n}=\mathfrak{X}_{\left[\alpha_{n}, \beta_{n}\right)} g_{1}, g_{2 n}=\mathfrak{X}_{\left[\alpha_{n}, \beta_{n}\right)} g_{2}, f_{n}=\mathfrak{X}_{\left[\alpha_{n}, \beta_{n}\right)} f$. Then $\left\{y_{n}-z_{n}, g_{1 n}\right\} \in L_{10}^{*},\left\{y_{n}+z_{n}, g_{2 n}\right\} \in$ L_{10}^{*}. Taking into account Theorem 3.5 (for $\lambda=0$) and (22), we obtain

$$
\begin{aligned}
& y_{n}(t)-z_{n}(t)=w_{n}(t, 0) i j x_{n}-w_{n}(t, 0) i J \int_{\alpha_{n}}^{t} w_{n}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) g_{1 n}(s) \\
& y_{n}(t)+z_{n}(t)=2 w_{n}(t, 0) M_{n}(\lambda) \widetilde{x}-w_{n}(t, 0) i J \int_{\alpha_{n}}^{t} w_{n}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) g_{2 n}(s) .
\end{aligned}
$$

It follows from Lemma 2.2 that formula (3) can be applied to the functions $y_{n}-z_{n}, y_{n}+z_{n}$ on the interval $\left[\alpha_{n}, \beta\right]\left(\alpha_{n}<\beta<\beta_{n}\right)$. Using (3), we get

$$
\begin{align*}
& \int_{\alpha_{n}}^{\beta}\left(d \mathbf{m}(t) g_{1 n}(t), y_{n}(t)+z_{n}(t)\right)-\int_{\alpha_{n}}^{\beta}\left(y_{n}(t)-z_{n}(t), d \mathbf{m}(t) g_{2 n}\right)= \\
&=\left(i J\left(y_{n}(\beta)-z_{n}(\beta)\right), y_{n}(\beta)+z_{n}(\beta)\right)-\left(i J\left(y_{n}\left(\alpha_{n}\right)-z_{n}\left(\alpha_{n}\right)\right), y_{n}\left(\alpha_{n}\right)+z_{n}\left(\alpha_{n}\right)\right) . \tag{25}
\end{align*}
$$

Passing to the limit as $\beta \rightarrow \beta_{n}-0$ in (25) and taking into account (22), (23), we obtain

$$
\begin{equation*}
\int_{\alpha_{n}}^{\beta_{n}}\left(d \mathbf{m}(t) g_{1 n}(t), y_{n}(t)+z_{n}(t)\right)-\int_{\alpha_{n}}^{\beta_{n}}\left(y_{n}(t)-z_{n}(t), d \mathbf{m}(t) g_{2 n}\right)=2\left(x_{n}, M_{n}(\lambda) \widetilde{x}\right) \tag{26}
\end{equation*}
$$

On the other hand, using (24), we get

$$
\begin{align*}
\left(f_{n}, y_{n}+z_{n}\right)_{\mathfrak{H}}-\left(y_{n}-z_{n}, f_{n}\right)_{\mathfrak{H}}=\left(g_{1 n}\right. & \left.-\lambda\left(y_{n}-z_{n}\right), y_{n}+z_{n}\right)_{\mathfrak{H}}-\left(y_{n}-z_{n}, g_{2 n}-\lambda\left(y_{n}+z_{n}\right)\right)_{\mathfrak{H}}= \\
& =\left(g_{1 n}, y_{n}+z_{n}\right)_{\mathfrak{H}}-\left(y_{n}-z_{n}, g_{2 n}\right)_{\mathfrak{H}}-(\lambda-\bar{\lambda})\left(y_{n}-z_{n}, y_{n}+z_{n}\right)_{\mathfrak{H}} . \tag{27}
\end{align*}
$$

Combining (26) and (27), we obtain

$$
\left(f_{n}, y_{n}+z_{n}\right)_{\mathfrak{5}}-\left(y_{n}-z_{n}, f_{n}\right)_{\mathfrak{H}}=2\left(x_{n}, M_{n}(\lambda) \widetilde{x}\right)-(\lambda-\bar{\lambda})\left(y_{n}-z_{n}, y_{n}+z_{n}\right)_{\mathfrak{y}}
$$

Therefore,

$$
\begin{equation*}
(f, y+z)_{\mathfrak{H}}-(y-z, f)_{\mathfrak{H}}=2(\widetilde{x}, M(\lambda) \widetilde{x})-(\lambda-\bar{\lambda})(y-z, y+z)_{\mathfrak{H}} . \tag{28}
\end{equation*}
$$

Equation (28) implies that

$$
\operatorname{Im}\left[(f, y+z)_{\mathfrak{H}}-(y-z, f)_{\mathfrak{H}}\right]=2 \operatorname{Im}(\widetilde{x}, M(\lambda) \widetilde{x})-\operatorname{Im}\left[(\lambda-\bar{\lambda})\left((y, y)_{\mathfrak{H}}-(z, y)_{\mathfrak{H}}+(y, z)_{\mathfrak{H}}-(z, z)_{\mathfrak{H}}\right)\right]
$$

Therefore,

$$
\operatorname{Im}\left[(f, y)_{\mathfrak{H}}-(y, f)_{\mathfrak{H}}\right]=2 \operatorname{Im}(\widetilde{x}, M(\lambda) \widetilde{x})-\operatorname{Im}\left[(\lambda-\bar{\lambda})\left((y, y)_{\mathfrak{H}}-(z, z)_{\mathfrak{H}}\right)\right]
$$

Consequently,

$$
(\operatorname{Im} \lambda)^{-1} \operatorname{Im}(M(\lambda) \widetilde{x}, \widetilde{x})=\|z\|_{\mathfrak{5}}^{2}+(\operatorname{Im} \lambda)^{-1} \operatorname{Im}\left(R_{\lambda} f, f\right)_{\mathfrak{5}}-\left(R_{\lambda} f, R_{\lambda} f\right)_{\mathfrak{5}}
$$

Since $(\operatorname{Im} \lambda)^{-1} \operatorname{Im}\left(R_{\lambda} f, f\right)_{\mathfrak{V}}-\left(R_{\lambda} f, R_{\lambda} f\right)_{\mathfrak{5}} \geqslant 0$, we see that (19) holds. The theorem is proved.
Lemma 4.2. [10]. Let $\mathcal{B}_{1}, \mathcal{B}_{2}, \mathcal{B}_{3}$ be Banach spaces. Suppose bounded operators $T_{3}(\lambda): \mathcal{B}_{1} \rightarrow \mathcal{B}_{3}, T_{1}(\lambda): \mathcal{B}_{1} \rightarrow \mathcal{B}_{2}$, $T_{2}(\lambda): \mathcal{B}_{2} \rightarrow \mathcal{B}_{3}$ satisfy the equality $T_{3}(\lambda)=T_{2}(\lambda) T_{1}(\lambda)$ for every fixed λ belonging to some neighborhood of a point λ_{1} and suppose the range of operator $T_{1}\left(\lambda_{1}\right)$ coincides with \mathcal{B}_{2}. If functions $T_{1}(\lambda), T_{3}(\lambda)$ are strongly differentiable at the point λ_{1}, then function $T_{2}(\lambda)$ is strongly differentiable at λ_{1}.

Remark 4.3. It follows from Lemma 3.1 and (8) that $L_{0} \cap \mathfrak{S}_{0} \times \mathfrak{S}_{0}=\{0,0\}$. Therefore any generalized resolvent \widetilde{R}_{λ} of the relation L_{0} has the form $\widetilde{R}_{\lambda}=R_{0 \lambda} \oplus R_{\lambda}$, where R_{λ} is some generalized resolvent of L_{10} and $R_{0 \lambda}$ is a generalized resolvent of the relation $\{0,0\}$, i.e., $R_{0 \lambda}=\left(T_{\mathcal{F}(\lambda)}-\lambda E\right)^{-1}\left(\right.$ see (17)), $T_{\mathcal{F}(\lambda)}$ is the relation consisting of pairs of the form $\left\{\mathcal{F}(\lambda) z-z, \lambda_{0} \mathcal{F}(\lambda) z-\bar{\lambda}_{0} z\right\}$ (here $\mathcal{F}(\lambda): \mathfrak{H}_{0} \rightarrow \mathfrak{S}_{0}$ is a bounded operator, $\|\mathcal{F}(\lambda)\| \leqslant 1, z \in \mathfrak{Y}_{0}$, the operator function $\lambda \rightarrow \mathcal{F}(\lambda)$ is holomorphic, $\left.\operatorname{Im} \lambda \cdot \operatorname{Im} \lambda_{0}>0\right)$.

Remark 4.4. In general, if $\mathcal{S}_{\mathrm{m}} \neq \varnothing$, then the inequality $(\operatorname{Im} \lambda)^{-1} \operatorname{Im}(M(\lambda) \widetilde{x}, \widetilde{x})<0$ is possible (see Remark 6.1).

5. Boundary value problems connected with generalized resolvents

To shorten the notation, we denote $w_{k}(t, 0)=w_{k}(t), \widetilde{V}(t, 0)=\widetilde{V}(t), \mathcal{V}(0)=\mathcal{V}$. It follows from Lemma 3.4 (for $\lambda=0$) that $\mathcal{V}^{*} f(f \in \mathfrak{H})$ is an element of the space $Q_{+} \subset Q$, i.e., a sequence with elements of the form

$$
\begin{align*}
& \mathfrak{X}_{\left[\alpha_{n}, \beta_{n}\right) \backslash \mathcal{S}_{\mathbf{m}}} \int_{\alpha_{n}}^{\beta_{n}} w_{n}^{*}(t) d \mathbf{m}(t) f(t), \tag{29}\\
& w_{n}^{*}\left(\tau_{n k}\right) \mathbf{m}\left(\left\{\tau_{n k}\right\}\right) f\left(\tau_{n k}\right) \tag{30}
\end{align*}
$$

(and possibly with zeros), where $\tau_{n k} \in\left(\mathcal{S}_{\mathrm{m}} \backslash \mathcal{S}_{0}\right) \cap \mathcal{J}_{n} ;\left(\alpha_{n}, \beta_{n}\right)=\mathcal{J}_{n} ; \mathcal{J}_{n} \in \mathbb{J} ; 1 \leqslant n \leqslant \mathbb{k}_{1}$ if the number \mathbb{k}_{1} of intervals $\mathcal{J}_{n} \in \mathbb{J}$ is finite, and n is any natural number if $\mathbb{k}_{1}=\infty$. We replace elements (29) by zeros in $\mathcal{V}^{*} f$. By $\mathcal{V}_{0}^{*} f$ denote the resulting sequence. So, $\mathcal{V}_{0}^{*} f$ is a sequence with elements of form (30) (and possibly with zeros). Further, we replace each element (29) and (30) in $\mathcal{V}^{*} f$ by the element

$$
\begin{equation*}
\sigma_{n}=\int_{\alpha_{n}}^{\beta_{n}} w_{n}^{*}(t) d \mathbf{m}(t) f(t)=\int_{\alpha_{n}}^{\beta_{n}} \mathfrak{X}_{\left[\alpha_{n}, \beta_{n}\right) \backslash \mathcal{S}_{\mathbf{m}}} w_{n}^{*}(t) d \mathbf{m}(t) f(t)+\sum_{\tau_{n k} \in \mathcal{S}_{\mathbf{m}} \cap\left(\alpha_{n}, \beta_{n}\right)} w_{n}^{*}\left(\tau_{n k}\right) \mathbf{m}\left(\left\{\tau_{n k}\right\}\right) f\left(\tau_{n k}\right) . \tag{31}
\end{equation*}
$$

By $\mathcal{V}_{*} f$ denote the resulting sequence. We claim that $\mathcal{V}_{*} f \in Q_{-}$. Indeed, let $\mathcal{V}_{*} f=\widetilde{\sigma}=\left\{\sigma_{n}\right\}$. It follows from (9), (10), (31) that $\left\|\sigma_{n}\right\|<\varepsilon_{1}\|f\|_{\mathfrak{5}}=\varepsilon_{2}$, where $\varepsilon_{1}>0, \varepsilon_{1}$ is independent of n. Then

$$
\mathcal{V} \widetilde{\sigma}=\mathcal{V}(0) \widetilde{\sigma}=\sum_{n=1}^{\mathbb{k}_{1}}\left(\mathfrak{X}_{\left[\alpha_{n}, \beta_{n}\right) \backslash \mathcal{S}_{\mathbf{m}}} w_{n}(t) \sigma_{n}+\sum_{\tau_{n k} \in \mathcal{S}_{\mathbf{m}} \cap\left(\alpha_{n}, \beta_{n}\right)} \mathfrak{X}_{\left\{\tau_{n k}\right\}} w_{n}\left(\tau_{n k}\right) \sigma_{n}\right),
$$

and

$$
\begin{equation*}
\|\mathcal{V} \widetilde{\sigma}\|_{\mathfrak{H}}^{2}=\sum_{n=1}^{\mathbb{k}_{1}}\left(\left\|\mathfrak{x}_{\left[\alpha_{n}, \beta_{n}\right) \backslash \mathcal{S}_{\mathbf{m}}} w_{n}(t) \sigma_{n}\right\|_{\mathfrak{H}}^{2}+\sum_{\tau_{n k} \in \mathcal{S}_{\mathbf{m}} \cap\left(\alpha_{n}, \beta_{n}\right)}\left\|\mathfrak{X}_{\left\{\tau_{n k}\right\}} z_{n}\left(\tau_{n k}\right) \sigma_{n}\right\|_{\mathfrak{S}}^{2}\right)=\sum_{n=1}^{\mathbb{k}_{1}}\left\|w_{n}(t) \sigma_{n}\right\|_{\mathfrak{H}}^{2} \leqslant \varepsilon_{3}, \quad \varepsilon_{3}>0 \tag{32}
\end{equation*}
$$

By (14), (15), (32), and the definition of Q_{-}, it follows that $\widetilde{\sigma} \in Q_{-}$. We note that this proof uses only the boundedness of the sequence $\left\{\sigma_{n}\right\}$ in H.

Further, we replace each element (30) in $\mathcal{V}_{0}^{*} f$ by the element $\int_{\alpha_{n}}^{\tau_{n k}} w^{*}(s) d \mathbf{m}(s) f(s)$. By $\mathcal{V}_{* \tau} f$ denote the resulting sequence. Then $\mathcal{V}_{* \tau} f \in Q_{-}$(the proof is the same as for $\mathcal{V}_{*} f$). It follows from the definition $\mathcal{V}^{*} f$, $\mathcal{V}_{0}^{*} f, \mathcal{V}_{*} f \mathcal{V}_{* \tau} f$ that the equalities

$$
\begin{align*}
& \left(\mathcal{V}^{*} f, \mathcal{V}_{0}^{*} g\right)=\left(\mathcal{V}_{0}^{*} f, \mathcal{V} g\right)=\left(\mathcal{V}_{0}^{*} f, \mathcal{V}_{0}^{*} g\right), \quad\left(\mathcal{V}_{* \tau} f, \mathcal{V}^{*} g\right)=\left(\mathcal{V}_{* \tau} f, \mathcal{V}_{0}^{*} g\right), \quad f, g \in \mathfrak{H}, \tag{33}\\
& \sum_{n=1}^{\mathbb{k}_{1}}\left(i J \int_{\alpha_{n}}^{\beta_{n}} w_{n}^{*}(s) d \mathbf{m}(s) f(s), \int_{\alpha_{n}}^{\beta_{n}} w_{n}^{*}(s) d \mathbf{m}(s) g(s)\right)=\left(\widetilde{i J} \mathcal{V}_{*} f, \mathcal{V}^{*} g\right)=\left(\widetilde{J} \mathcal{V}^{*} f, \mathcal{V}_{*} g\right), \quad f, g \in \mathfrak{H} \tag{34}
\end{align*}
$$

hold. Using (10), we obtain

$$
\left(i J w_{n}^{*}\left(\tau_{n k}\right) \mathbf{m}\left(\left\{\tau_{n k}\right\}\right) f\left(\tau_{n k}\right), w_{n}^{*}\left(\tau_{n k}\right) \mathbf{m}\left(\left\{\tau_{n k}\right\}\right) g\left(\tau_{n k}\right)\right)=\left(i J \mathbf{m}\left(\left\{\tau_{n k}\right\}\right) f\left(\tau_{n k}\right), \mathbf{m}\left(\left\{\tau_{n k}\right\}\right) g\left(\tau_{n k}\right)\right), \quad f, g \in \mathfrak{H} .
$$

Therefore,

$$
\begin{equation*}
\sum_{n=1}^{\mathbf{k}_{1}}\left(i J w_{n}^{*}\left(\tau_{n k}\right) \mathbf{m}\left(\left\{\tau_{n k}\right\}\right) f\left(\tau_{n k}\right), w_{n}^{*}\left(\tau_{n k}\right) \mathbf{m}\left(\left\{\tau_{n k}\right\}\right) g\left(\tau_{n k}\right)\right)=\sum_{n=1}^{\mathbf{k}_{1}}\left(i j \mathbf{m}\left(\left\{\tau_{n k}\right\}\right) f\left(\tau_{n k}\right), \mathbf{m}\left(\left\{\tau_{n k}\right\}\right) g\left(\tau_{n k}\right)\right)=\left(\widetilde{i J} \mathcal{V}_{0}^{*} f, \mathcal{V}_{0}^{*} g\right) \tag{35}
\end{equation*}
$$

We denote $\mathbf{H}_{-}=\mathfrak{H}_{0} \times Q_{-}, \mathbf{H}_{+}=\mathfrak{H}_{0} \times Q_{+}$. Suppose a pair $\{\widetilde{y}, \widetilde{f}\} \in L_{0}^{*}$. By Theorem 3.5 (for $\lambda=0$), there exists a pair $\{\widehat{y}, \widehat{f}\}$ such that the pairs $\{\widetilde{y}, \widehat{f}\},\{\widehat{y}, \widehat{f}\}$ are identical in $\mathfrak{H} \times \mathfrak{H}$ and equalities

$$
\begin{equation*}
\widehat{y}=y_{0}+y, \widehat{f}=y_{0}^{\prime}+f, y(t)=\widetilde{V}(t) \widetilde{\eta}-\sum_{n=1}^{\mathfrak{k}_{1}} \mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathbf{m}}}(t) w_{n}(t) i J \int_{a}^{t} w_{n}^{*}(s) d \mathbf{m}(s) f(s) \tag{36}
\end{equation*}
$$

hold, where $y_{0}, y_{0}^{\prime} \in \mathfrak{H}_{0},\{y, f\} \in L_{10}^{*}, \widetilde{\eta} \in Q_{-}$, the series in (36) converges in $\mathfrak{H}^{\prime}, \mathbb{k}_{1}$ is the number of intervals $\mathcal{J}_{n} \in \mathbb{J}$. With each such pair $\{\widehat{y}, \widehat{f}\}$ we associate a pair of boundary values $\left\{Y, Y^{\prime}\right\} \in \mathbf{H}_{-} \times \mathbf{H}_{+}$by formulas

$$
\begin{equation*}
Y=\left\{y_{0}, Y_{10}\right\} \in \mathbf{H}_{-}=\mathfrak{H}_{0} \times Q_{-}, \quad Y^{\prime}=\left\{y_{0}^{\prime}, Y_{10}^{\prime}\right\} \in \mathbf{H}_{+}=\mathfrak{G}_{0} \times Q_{+} \tag{37}
\end{equation*}
$$

where

$$
\begin{equation*}
Y_{10}=\widetilde{\eta}-2^{-1} \widetilde{\mathcal{J}} \mathcal{V}_{*} f+2^{-1} \widetilde{\tilde{J}} \mathcal{V}_{0}^{*} f+\widetilde{J} \mathcal{V}_{* \tau} f, \quad Y_{10}^{\prime}=\mathcal{V}^{*} f \tag{38}
\end{equation*}
$$

Let Γ denote the operator that takes each pair $\{\widehat{y}, \widehat{f}\} \in L_{0}^{*}$ to the ordered pair $\left\{Y, Y^{\prime}\right\}$ of boundary values Y, Y^{\prime}, i.e., $\Gamma\{\widehat{y}, \widehat{f}\}=\left\{Y, Y^{\prime}\right\}$. We put $\Gamma_{1}\{\widehat{y}, \widehat{f}\}=Y, \Gamma_{2}\{\widehat{y}, \widehat{f\}}\}=Y^{\prime}$. It follows from Lemma 3.4 that if pairs $\left\{\widehat{y}_{1}, \widehat{f_{1}}\right\}$, $\{\widehat{y}, \widehat{f}\}$ are identical in $\mathfrak{H} \times \mathfrak{H}$, then their boundary values coincide.

Theorem 5.1. The range $\mathcal{R}(\Gamma)$ of the operator Γ coincides with $\mathbf{H}_{-} \times \mathbf{H}_{+}$and "the Green formula"

$$
\begin{equation*}
(\widehat{f}, \widehat{z})_{\mathfrak{H}}-(\widehat{y}, \widehat{g})_{\mathfrak{H}}=\left(Y^{\prime}, Z\right)-\left(Y, Z^{\prime}\right) \tag{39}
\end{equation*}
$$

holds, where $\{\widehat{y}, \widehat{f}\},\{\widehat{z}, \widehat{g}\} \in L_{0^{\prime}}^{*}, \Gamma\{\widehat{y}, \widehat{f}\}=\left\{Y, Y^{\prime}\right\}, \Gamma\{\widehat{z}, \widehat{g}\}=\left\{Z, Z^{\prime}\right\}$.
Proof. The equality $\mathcal{R}(\Gamma)=\mathbf{H}_{-} \times \mathbf{H}_{+}$follows from Lemma 3.4 and formulas (8), (36)-(38). Let us prove (39). Suppose that a pair $\{y, f\}$ has form (36) and a pair $\{\widehat{z}, \widehat{g}\}$ has the form $\widehat{z}=z_{0}+z, \widehat{g}=z_{0}^{\prime}+g$, where $\{z, g\} \in L_{10}^{*}$, $z_{0}, z_{0}^{\prime} \in \mathfrak{H}_{0}$, and

$$
\begin{equation*}
z(t)=\widetilde{V}(t) \widetilde{\zeta}-\sum_{n=1}^{\mathbb{k}_{1}} \mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathbf{m}}}(t) w_{n}(t) i J \int_{\alpha_{n}}^{\beta_{n}} w_{n}^{*}(s) d \mathbf{m}(s) g(s), \quad \widetilde{\zeta} \in Q_{-} \tag{40}
\end{equation*}
$$

Then

$$
(\widehat{f}, \widehat{z})_{\mathfrak{F}}-(\widehat{y}, \widehat{g})_{\mathfrak{S}}=\left(y_{0}^{\prime}, z_{0}\right)_{\mathfrak{j}}-\left(y_{0}, z_{0}^{\prime}\right)_{\mathfrak{H}}+(f, z)_{\mathfrak{j}}-(y, g)_{\mathfrak{F}} .
$$

Thus, it is enough to prove the equality

$$
(f, z)_{\mathfrak{5}}-(y, g)_{\mathfrak{5}}=\left(Y_{10}^{\prime}, Z_{10}\right)-\left(Y_{10}, Z_{10}^{\prime}\right) .
$$

We define the functions $F_{n}, G_{n}, \widetilde{F}, \widetilde{G}$ by the equalities

$$
\begin{equation*}
F_{n}(t)=-w_{n}(t) i \iint_{\alpha_{n}}^{t} w_{n}^{*}(s) d \mathbf{m}(s) f(s), \quad G_{n}(t)=-w_{n}(t) i J \int_{\alpha_{n}}^{t} w_{n}^{*}(s) d \mathbf{m}(s) g(s), \widetilde{F}(t)=\sum_{n=1}^{\mathbb{k}_{1}} F_{n}(t), \quad \widetilde{G}(t)=\sum_{n=1}^{\mathbb{k}_{1}} G_{n}(t) \tag{41}
\end{equation*}
$$

It follows from Lemma 2.2 that the functions F_{n}, G_{n} are solutions of equation (6) on $\left[\alpha_{n}, \beta_{n}\right)$ for $x_{0}=0\left(G_{n}\right.$ is the solution if f, y are replaced by g, z, respectively, in (6)). Using (10) and Lemma 2.1 for $\mathbf{p}_{1}=\mathbf{p}_{2}=\mathbf{p}_{0}$, $\mathbf{q}=\mathbf{m}, c_{1}=\alpha_{n}, c_{2}=\beta<\beta_{n}$, we obtain

$$
\begin{gather*}
\int_{\alpha_{n}}^{\beta}\left(f(s), d \mathbf{m}(s) G_{n}(s)\right)-\int_{\alpha_{n}}^{\beta}\left(F_{n}(s), d \mathbf{m}(s) g(s)\right)=\left(i J w_{n}(\beta) i J \int_{\alpha_{n}}^{\beta} w_{n}^{*}(s) d \mathbf{m}(s) f(s), w_{n}(\beta) i J \int_{\alpha_{n}}^{\beta} w_{n}^{*}(s) d \mathbf{m}(s) g(s)\right)- \\
-\sum_{\tau \in S_{\mathbf{m}} \cap\left[\alpha_{n}, \beta\right)}(i J \mathbf{m}(\{\tau\}) f(\tau), \mathbf{m}(\{\tau\}) g(\tau))=\left(i J \int_{\alpha_{n}}^{\beta} w_{n}^{*}(s) d \mathbf{m}(s) f(s), \int_{\alpha_{n}}^{\beta} w_{n}^{*}(s) d \mathbf{m}(s) g(s)\right)- \\
-\sum_{\tau \in S_{\mathbf{m}} \cap\left[\alpha_{n}, \beta\right)}(i J \mathbf{m}(\{\tau\}) f(\tau), \mathbf{m}(\{\tau\}) g(\tau)) . \tag{42}
\end{gather*}
$$

Passing to the limit as $\beta \rightarrow \beta_{n}-0$ in (42), we obtain that (42) will remain true if β is replaced by β_{n}. Therefore,

$$
\begin{align*}
\int_{\alpha_{n}}^{\beta_{n}}\left(f(s), d \mathbf{m}(s) G_{n}(s)\right)-\int_{\alpha_{n}}^{\beta_{n}}\left(F_{n}(s), d \mathbf{m}(s) g(s)\right)=\left(i J \int_{\alpha_{n}}^{\beta_{n}} w_{n}^{*}(s) d \mathbf{m}(s) f(s),\right. & \left.\int_{\alpha_{n}}^{\beta_{n}} w_{n}^{*}(s) d \mathbf{m}(s) g(s)\right)- \\
& \left.-\sum_{\tau \in \mathcal{S}_{\mathbf{m}} \cap\left[a_{n}, \beta_{n}\right)}(i J \mathbf{m}(i \tau\}) f(\tau), \mathbf{m}(\{\tau\}) g(\tau)\right) . \tag{43}
\end{align*}
$$

Taking into account (41), (43), and (35), we obtain

$$
\begin{equation*}
(f, G)_{\mathfrak{H}}-(F, g)_{\mathfrak{F}}=\sum_{n=1}^{\mathbb{k}_{1}}\left(i J \int_{\alpha_{n}}^{\beta_{n}} w_{n}^{*}(s) d \mathbf{m}(s) f(s), \int_{\alpha_{n}}^{\beta_{n}} w_{n}^{*}(s) d \mathbf{m}(s) g(s)\right)-\left(i \widetilde{J} \mathcal{V}_{0}^{*} f, \mathcal{V}_{0}^{*} g\right) . \tag{44}
\end{equation*}
$$

Further, we define the functions $F_{n 0}, G_{n 0}, \widetilde{F}_{0}, \widetilde{G}_{0}$ by the equalities

$$
\begin{equation*}
F_{n 0}(t)=\mathfrak{X}_{\left[\alpha_{n}, \beta_{n}\right) \mathcal{S}_{\mathrm{m}}} F_{n}(t), \quad G_{n 0}(t)=\mathfrak{X}_{\left[\alpha_{n} \beta_{n}\right) \backslash \mathcal{S}_{\mathrm{m}}} G_{n}(t), \quad \widetilde{F}_{0}=\sum_{n=1}^{\mathfrak{k}_{1}} F_{n 0}, \quad \widetilde{G}_{0}=\sum_{n=1}^{\mathfrak{k}_{1}} G_{n 0} . \tag{45}
\end{equation*}
$$

Using (43), we get

$$
\begin{align*}
& \left(f, G_{n 0}\right)_{\mathfrak{S}}-\left(F_{n 0}, g\right)_{\mathfrak{5}}=\left(f, G_{n}\right)_{\mathfrak{j}}-\left(F_{n}, g\right)_{\mathfrak{j}}+ \\
& +\left(f, \mathfrak{X}_{\mathcal{S}_{\mathbf{m}}} w_{n}(t) i J \int_{\alpha_{n}}^{t} w_{n}^{*}(s) d \mathbf{m}(s) g(s)\right)_{\mathfrak{F}}-\left(\mathfrak{X}_{\mathcal{S}_{\mathbf{m}}} w_{n}(t) i J \int_{\alpha_{n}}^{t} w_{n}^{*}(s) d \mathbf{m}(s) f(s), g(s)\right)_{\mathfrak{s}}= \\
& \left.=\left(i J \int_{\alpha_{n}}^{\beta_{n}} w_{n}^{*}(s) d \mathbf{m}(s) f(s), \int_{\alpha_{n}}^{\beta_{n}} w_{n}^{*}(s) d \mathbf{m}(s) g(s)\right)-\sum_{\tau \in \mathcal{S}_{\mathbf{m}} \cap\left[\alpha_{n}, \beta_{n}\right)}(i] \mathbf{m}(\{\tau\}) f(\tau), \mathbf{m}(\{\tau\}) g(\tau)\right)- \\
& -\sum_{\tau \in \mathcal{S} m \cap\left[\alpha_{n}, \beta_{n}\right)}\left(i J w_{n}^{*}(\tau) f(\tau), \int_{\alpha_{n}}^{\tau} w_{n}^{*}(s) d \mathbf{m}(s) g(s)\right)-\sum_{\tau \in \mathcal{S}_{\mathbf{m}} \cap\left[\alpha_{n}, \beta_{n}\right)}\left(i J \int_{\alpha_{n}}^{\tau} w_{n}^{*}(s) d \mathbf{m}(s) f(s), w_{n}^{*}(\tau) g(\tau)\right) . \tag{46}
\end{align*}
$$

By (35), (45), (46), we obtain

$$
\begin{align*}
\left(f, G_{0}\right)_{\mathfrak{H}}-\left(F_{0}, g\right)_{\mathfrak{G}}=\sum_{n=1}^{\mathbb{k}_{1}}\left(i J \int_{\alpha_{n}}^{\beta_{n}} w_{n}^{*}(s) d \mathbf{m}(s) f(s),\right. & \left.\int_{\alpha_{n}}^{\beta_{n}} w_{n}^{*}(s) d \mathbf{m}(s) g(s)\right)- \\
& -\left(i \widetilde{J} \mathcal{V}_{0}^{*} f, \mathcal{V}_{0}^{*} g\right)-\left(i \widetilde{J} \mathcal{V}_{0}^{*} f, \mathcal{V}_{* \tau} g\right)-\left(i \widetilde{J} \mathcal{V}_{* \tau} f, \mathcal{V}_{0}^{*} g\right) . \tag{47}
\end{align*}
$$

It follows from (38), (40) that the equalities

$$
\begin{align*}
& (f, \mathcal{V} \widetilde{\zeta})_{\mathfrak{H}}=\left(\mathcal{V}^{*} f, \widetilde{\zeta}\right)=\left(\mathcal{V}^{*} f, Z_{10}+2^{-1} \widetilde{i J} \mathcal{V}_{*} g-2^{-1} \widetilde{\mathcal{J}} \mathcal{V}_{0}^{*} g-\widetilde{\mathcal{J}} \mathcal{V}_{* \tau} g\right), \tag{48}\\
& (\mathcal{V}, g)_{\mathfrak{j}}=\left(\widetilde{\eta}, \mathcal{V}^{*} g\right)=\left(Y_{10}+2^{-1} \widetilde{i \mathcal{J}} \mathcal{V}_{*} f-2^{-1} \widetilde{i J} \mathcal{V}_{0}^{*} f-\widetilde{i J} \mathcal{V}_{* \tau} f, \mathcal{V}^{*} g\right) \tag{49}
\end{align*}
$$

hold. Using (33), (34), (47), (48), (49), we get

$$
\begin{aligned}
& (f, z)_{\mathfrak{G}}-(y, g)_{\mathfrak{g}}=\left(f, \mathcal{V} \zeta+G_{0}\right)_{\mathfrak{G}}-\left(\mathcal{V} \eta+F_{0}, g\right)_{\mathfrak{G}}=\left(\mathcal{V}^{*} f, \zeta\right)-\left(\eta, \mathcal{V}^{*} g\right)+\left(f, G_{0}\right)_{\mathfrak{G}}-\left(F_{0}, g\right)_{\mathfrak{g}}= \\
& =\left(\mathcal{V}^{*} f, Z_{10}+2^{-1} i \widetilde{J} \mathcal{V}_{*} g-2^{-1} i \widetilde{J} \mathcal{V}_{0}^{*} g-i \widetilde{J} \mathcal{V}_{* \tau} g\right)-\left(Y_{10}+2^{-1} i \widetilde{J} \mathcal{V}_{*} f-2^{-1} i \widetilde{J} \mathcal{V}_{0}^{*} f-i \widetilde{J} \mathcal{V}_{* \tau} g, \mathcal{V}^{*} g\right)+\left(f, G_{0}\right)_{\mathfrak{j}}-\left(F_{0}, g\right)_{\mathfrak{j}}= \\
& =\left(Y_{10}^{\prime}, Z_{10}\right)-2^{-1}\left(\widetilde{J} \mathcal{V}^{*} f, \mathcal{V}_{*} g\right)+2^{-1}\left(\tilde{J} \widetilde{J} \mathcal{V}^{*} f, \mathcal{V}_{0}^{*} g\right)+\left(i \widetilde{J} \mathcal{V}^{*} f, \mathcal{V}_{* \tau} g\right)- \\
& -\left(Y_{10}, Z_{10}^{\prime}\right)-2^{-1}\left(\widetilde{J} \widetilde{J} \mathcal{V}_{*} f, \mathcal{V}^{*} g\right)+2^{-1}\left(\tilde{J} \widetilde{V_{0}^{*}} f, \mathcal{V}^{*} g\right)+\left(i \widetilde{J} \mathcal{V}_{* \tau} f, \mathcal{V}^{*} g\right)+ \\
& +\left(i \widetilde{J} \mathcal{V}_{*}, \mathcal{V}^{*} g\right)-\left(i \widetilde{J} \mathcal{V}_{0}^{*} f, \mathcal{V}_{0}^{*} g\right)-\left(i \widetilde{J} \mathcal{V}_{0}^{*} f, \mathcal{V}_{* \tau} g\right)-\left(\widetilde{J} \mathcal{V}_{* \tau} f, \mathcal{V}_{0}^{*} g\right)=\left(Y_{10}^{\prime}, Z_{10}\right)-\left(Y_{10}, Z_{10}^{\prime}\right) .
\end{aligned}
$$

The theorem is proved.
By Lemma 3.2 (for $\lambda=0$), it follows that functions $\mathfrak{X}_{\{\tau\rangle}(\cdot) x\left(x \in H, \tau \in \mathcal{S}_{\mathbf{m}}\right)$ belong to $\operatorname{ker} L_{10}^{*}$. Consequently equality (36) is reduced to the form

$$
\begin{equation*}
\widehat{y}=y_{0}+y, \widehat{f}=y_{0}^{\prime}+f, y(t)=\widetilde{V}(t) \widetilde{\xi}-\sum_{n=1}^{\mathbf{k}_{1}} w_{n}(t) i J \int_{a}^{t} w_{n}^{*}(s) d \mathbf{m}(s) f(s), \tag{50}
\end{equation*}
$$

where $\widetilde{\xi}=\left\{\xi_{k}\right\} \in Q_{-}, \xi_{k}=\eta_{k}\left(\right.$ see (36)) if v_{k} has form (12) and

$$
\begin{equation*}
\xi_{k}=\eta_{k}+i J \int_{\alpha_{n}}^{\tau_{k}} w_{n}^{*}(s) d \mathbf{m}(s) f(s) \tag{51}
\end{equation*}
$$

if v_{k} has form (13) for $\lambda=0$.
Corollary 5.2. If the pair $\{y, f\}$ has form (50), then

$$
\begin{equation*}
Y_{10}=\widetilde{\xi}-2^{-1} \tilde{i} \widetilde{V_{*}} f+2^{-1} \tilde{J} \mathcal{V}_{0}^{*} f, \quad Y_{10}^{\prime}=\mathcal{V}^{*} f \tag{52}
\end{equation*}
$$

Proof. Equality (52) follows from (38) and (51).
We note that the case where functions y, f have form (50) was considered in [16]. Equality (44) is proved in [16]; however, in [16], there is a mistake in formula (52): \mathcal{V}^{*} is written in the first equality instead of \mathcal{V}_{*}.

From the theory of spaces with positive and negative norms (see [4, ch.1], [19, ch.2]), it follows that there exist isometric operators $\delta_{-}: Q_{-} \rightarrow Q_{,} \delta_{+}: Q_{+} \rightarrow Q$ such that the equality $(\bar{\eta}, \widetilde{\varphi})=\left(\delta_{-} \widetilde{\eta}, \delta_{+} \widetilde{\varphi}\right)$ holds for all $\widetilde{\eta} \in Q_{-}, \widetilde{\varphi} \in Q_{+}$. We denote $\mathcal{H}=\mathfrak{G}_{0} \times Q$. Suppose $\{\widetilde{y}, \widetilde{f}\} \in L_{0}^{*}$. According to Theorem 3.5 (for $\lambda=0$), there exists a pair $\{\widehat{y}, \widehat{f}\}$ such that the pairs $\{\bar{y}, \widehat{f}\},\{\widehat{y}, \widehat{f\}}$ are identical in $\mathfrak{H} \times \mathfrak{H}$ and equalities (36) hold. To each such pair $\{\widehat{y}, \widehat{f}\}$ assign a pair of boundary values $\gamma\{\widehat{y}, \widehat{f}\}=\left\{y, y^{\prime}\right\} \in \mathcal{H} \times \mathcal{H}$ by the formulas

$$
\boldsymbol{y}=\gamma_{1}\{\widehat{y}, \widehat{f}\}=\left\{y_{0}, \delta_{-} Y_{10}\right\}, \quad \boldsymbol{y}^{\prime}=\gamma_{2}\{\widehat{y}, \widehat{f}\}=\left\{y_{0}^{\prime}, \delta_{+} Y_{10}^{\prime}\right\} .
$$

By Theorem 5.1, it follows that the operator γ maps L_{0}^{*} onto $\mathcal{H} \times \mathcal{H}$ and equality

$$
\begin{equation*}
(\widehat{f}, \widehat{z})_{\mathfrak{H}}-(\widehat{y}, \widehat{g})_{\mathfrak{H}}=\left(\boldsymbol{y}^{\prime}, \mathcal{Z}\right)-\left(\boldsymbol{y}, \mathcal{Z}^{\prime}\right) \tag{53}
\end{equation*}
$$

holds, where $\{\widehat{y}, \widehat{f}\},\{\widehat{z}, \widehat{g}\} \in L_{0^{\prime}}^{*} \gamma\{\widehat{y}, \widehat{f}\}=\left\{\boldsymbol{y}, \boldsymbol{y}^{\prime}\right\}, \gamma\{\widehat{z}, \widehat{g}\}=\left\{\mathcal{Z}, \mathcal{Z}^{\prime}\right\}$. This implies that the ordered triple $\left(\mathcal{H}, \gamma_{1}, \gamma_{2}\right)$ is the space of boundary values (a boundary triplet in another terminology) for L_{0} in the sense of papers [22], [7], [8] (see also [19, ch.3]). It was established in the articles [22], [7], [8] that for the space of boundary values, formula (53) implies the following statement.

Corollary 5.3. If U is a unitary operator on \mathcal{H}, then the restriction of the relation L_{0}^{*} to the set of pairs $\{\widehat{y}, \widehat{f}\} \in L_{0}^{*}$ satisfying the condition

$$
\begin{equation*}
(U-E) \boldsymbol{Y}^{\prime}-(U+E) \boldsymbol{y}=0 \tag{54}
\end{equation*}
$$

is a self-adjoint extension of L_{0}. Conversely, any self-adjoint extension of L_{0} is the restriction of L_{0}^{*} to the set of pairs $\{\widehat{y}, \widehat{f}\} \in L_{0}^{*}$ satisfying (54), where a unitary operator U is uniquely determined by an extension.

This statement is proved in [16] for the boundary values (52). It is established in [15] provided that \mathbf{m} is the usual Lebesque measure on $[a, b]$ (i.e., $\mathbf{m}([\alpha, \beta))=\beta-\alpha$, where $a \leqslant \alpha<\beta \leqslant b$). We note that F.S. RofeBeketov [24] first applied linear relations to describe self-adjoint extensions of differential operators.

We consider boundary value problem

$$
\begin{equation*}
\widehat{f}=\lambda \widehat{y}+h, \quad(K(\lambda)-E) y^{\prime}-i(K(\lambda)+E) y=0 \tag{55}
\end{equation*}
$$

where $\left\{\boldsymbol{y}, \boldsymbol{y}^{\prime}\right\}=\gamma\{\widehat{y}, \widehat{f}\} ; h \in \mathfrak{H} ; \lambda \rightarrow K(\lambda)$ is a holomorphic operator function in \mathcal{H} such that $\|K(\lambda)\| \leqslant 1$; $\operatorname{Im} \lambda>0$.

From (53) and [7], [8] we obtain the following statement.
Theorem 5.4. There exists a one-to-one mapping between boundary problems (55) and generalized resolvents of the operator L_{0}. Every solution y of problem (55) determines a generalized resolvent \widetilde{R}_{λ} by the formula $y=\widetilde{R}_{\lambda} h$ and, conversely, for any generalized resolvent \widetilde{R}_{λ} there exists a function $K(\lambda)$ such that the function $y=\widetilde{R}_{\lambda}$ h is the solution of (55).

6. The example

We consider equation (1) on a segment $[0, b]$ and assume that $H=\mathbb{C}, J=E=1, \mathbf{p}=0, \mathbf{m}=\mathbf{m}_{0}+\widehat{\mathbf{m}}$, where \mathbf{m}_{0} is the usual Lebesque measure (we write $d s$ instead of $\left.d \mathbf{m}_{0}(s)\right), 0<\tau<b, \widehat{\mathbf{m}}(\{\tau\})=1$ and $\widehat{\mathbf{m}}(\Delta)=0$ for all Borel sets such that $\tau \notin \Delta$. So, $\mathcal{S}_{\mathrm{m}}=\{\tau\}$. Thus, equation (1) has the form

$$
\begin{equation*}
y(t)=x_{0}-i \int_{0}^{t} d \mathbf{m}(s) f(s) \tag{56}
\end{equation*}
$$

It follows from the definition of L_{0} and (7), (56) that L_{0} is an operator and if $y=L_{0} f$, then

$$
y(t)=-i \int_{0}^{t} f(s) d s, \quad y(b)=0, \quad f(\tau)=0 \quad \Leftrightarrow \quad y^{\prime}(t)=-i f(t), \quad y(0)=y(b)=0, \quad f(\tau)=0
$$

Since $\mathcal{S}_{0}=\{0, b\}$ and $\mathbf{m}\left(\mathcal{S}_{0}\right)=0$, we have $\mathfrak{H}_{0}=\{0\}$ and $L_{10}^{*}=L_{0}^{*}$ in equality (8).
Equation (5) (for $x_{0}=1$) takes the form

$$
W(t, \lambda)=1-i \lambda \int_{0}^{t} W(s, \lambda) d s, \quad \lambda \in \mathbb{C}
$$

Therefore, $W(t, \lambda)=e^{-i \lambda t}$. Obviously, if $\lambda=0$, then $W(t, 0)=1$. The number of intervals $\mathcal{J}_{k} \in \mathbb{J}$ is $\mathbb{k}_{1}=1$. We write $w(t, \lambda)$ instead of $w_{1}(t, \lambda)$. Then $w(t, \lambda)=\mathfrak{X}_{[0, b)} W(t, \lambda)$. Without loss of generality it can be assumed that $w(t, \lambda)=W(t, \lambda)=e^{-i \lambda t}$.

The set \mathbb{M} consists of the interval $(0, b)$ and the single-point set $\{\tau\}$. Hence the number of elements of \mathbb{M} is $\mathbb{k}=2$. Using (12), (13), and the equality $\mathbf{m}(\{\tau\})=1$, we get

$$
v_{1}(t, \lambda)=\mathfrak{X}_{[0, b] \backslash\{\tau\}} w(t, \lambda)=\mathfrak{X}_{[0, b] \backslash \tau\}} e^{-i \lambda t}=\left\{\begin{array}{l}
e^{-i \lambda t} \text { for } t \neq \tau \tag{57}\\
0 \text { for } t=\tau
\end{array}\right.
$$

$v_{2}(t, \lambda)=u_{1}(t, \lambda, \tau) e^{-i \lambda \tau}+\mathfrak{X}_{\{\tau\}}(t) e^{-i \lambda \tau}=-\mathfrak{X}_{[0, b] \backslash\{\tau\}} e^{-i \lambda t} i \int_{0}^{t} e^{i \lambda s} d \mathbf{m}(s) \lambda \mathfrak{X}_{\{\tau\}}(s) e^{-i \lambda \tau}+\mathfrak{X}_{\{\tau\}}(t) e^{-i \lambda \tau}=\left\{\begin{array}{l}0 \text { for } t<\tau, \\ e^{-i \lambda \tau} \text { for } t=\tau, \\ -\lambda i e^{-i \lambda t} \text { for } t>\tau .\end{array}\right.$

Therefore,

$$
v_{1}^{*}(t, \bar{\lambda})=\mathfrak{X}_{[0, b] \backslash\{\tau]} e^{i \lambda t}=\left\{\begin{array}{l}
e^{i \lambda t} \text { for } t \neq \tau, \tag{59}\\
0 \text { for } t=\tau
\end{array} ; \quad v_{2}^{*}(t, \bar{\lambda})=\left\{\begin{array}{l}
0 \text { for } t<\tau \\
e^{i \lambda \tau} \text { for } t=\tau, \\
\lambda i e^{i \lambda t} \text { for } t>\tau
\end{array}\right.\right.
$$

If $\lambda=0$, then equalities (58), (59) imply that

$$
v_{1}(t)=v_{1}(t, 0)=\mathfrak{X}_{[0, b] \backslash \tau\}}(t)=\left\{\begin{array}{l}
1 \text { for } t \neq \tau, \tag{60}\\
0 \text { for } t=\tau
\end{array} ; v_{2}(t)=v_{2}(t, 0)=\mathfrak{X}_{\{\tau\}}(t)=\left\{\begin{array}{l}
0 \text { for } t \neq \tau \\
1 \text { for } t=\tau
\end{array}\right.\right.
$$

By (14), (60), it follows that $Q_{10}=Q_{20}=\{0\}$ and $Q_{1}=Q_{1}^{-}=Q_{1}^{+}=Q_{2}=Q_{2}^{-}=Q_{2}^{+}=H=\mathbb{C}$. Therefore, $Q=Q_{-}=Q_{+}=\mathbb{C}^{2}$.

The domain $\mathcal{D}\left(L_{0}\right)$ of L_{0} is dense in $\mathfrak{H}=L_{2}(\mathbb{C}, d \mathbf{m} ; 0, b)$. This yields that L_{0}^{*} is an operator. Using Theorem 3.5, we obtain

$$
\begin{equation*}
y(t)=v_{1}(t, \lambda) \eta_{1}+v_{2}(t, \lambda) \eta_{2}-\mathfrak{X}_{[0, b] \backslash\{\tau\}}(t) e^{-i \lambda t} i \int_{0}^{t} e^{i \lambda s} d \mathbf{m}(s) f(s) \tag{61}
\end{equation*}
$$

for all $y \in \mathcal{D}\left(L_{0}^{*}-\lambda E\right)$, where $\eta_{1}, \eta_{2} \in \mathbb{C}, f=\left(L_{0}^{*}-\lambda E\right) y$. For $\lambda=0$, it follows from (61) that

$$
\begin{equation*}
y(t)=\mathfrak{X}_{[0, b] \backslash\{\tau\}}(t) \eta_{1}+\mathfrak{X}_{\{\tau\}}(t) \eta_{2}-\mathfrak{X}_{[0, b] \backslash\{ \}}(t) i \int_{0}^{t} d \mathbf{m}(s) u(s), \tag{62}
\end{equation*}
$$

where $u=L_{0}^{*} y$. Since $\mathfrak{X}_{\{\tau\}} \xi \in \operatorname{ker} L_{0}^{*}$ for all $\xi \in \mathbb{C}$, we obtain

$$
y(t)=\xi_{1}+\mathfrak{X}_{\{\tau\}}(t) \xi_{2}-i \int_{0}^{t} d \mathbf{m}(s) u(s), \quad \xi_{1}, \xi_{2} \in \mathbb{C}
$$

Taking into account (37), (38), (62), and the equality $\mathbf{m}(\{\tau\})=1$, we see that the boundary values $Y=\boldsymbol{y}$, $Y^{\prime}=y^{\prime}$ are calculated by the formulas

$$
\begin{equation*}
Y=\binom{\eta_{1}}{\eta_{2}}-2^{-1} i\binom{\int_{0}^{b} d \mathbf{m}(s) u(s)}{\int_{0}^{b} d \mathbf{m}(s) u(s)}+2^{-1} i\binom{0}{u(\tau)}+i\binom{0}{\int_{0}^{\tau} d \mathbf{m}(s) u(s)}, \quad Y^{\prime}=\binom{\int_{0}^{b} u(s) d s}{u(\tau)} \tag{63}
\end{equation*}
$$

where y has form (62), $u=L_{0}^{*} y$.

Let \mathcal{L} be an operator such that $L_{0} \subset \mathcal{L} \subset L_{0}^{*}$. Suppose that \mathcal{L} is the restriction of L_{0}^{*} to a set of functions satisfying the condition $Y=0$. It follows from Corollary 5.3 that \mathcal{L} is the self-adjoint operator. Let us find the function

$$
M(\lambda)=\left(\begin{array}{ll}
M_{11}(\lambda) & M_{12}(\lambda) \tag{64}\\
M_{21}(\lambda) & M_{22}(\lambda)
\end{array}\right): \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}
$$

that corresponds to the resolvent $R_{\lambda}=(\mathcal{L}-\lambda E)^{-1}$. We denote

$$
\begin{align*}
& x_{1}=x_{1}(f, \lambda)=\int_{0}^{b} v_{1}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) f(s)=\int_{0}^{b} e^{i \lambda s} f(s) d s \tag{65}\\
& x_{2}=x_{2}(f, \lambda)=\int_{0}^{b} v_{2}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) f(s)=e^{i \lambda \tau} f(\tau)+\int_{\tau}^{b} i \lambda e^{i \lambda s} f(s) d s . \tag{66}
\end{align*}
$$

Then equality (20) takes the form

$$
\begin{align*}
& y(t)=v_{1}(t, \lambda)\left(M_{11}(\lambda) x_{1}+M_{12}(\lambda) x_{2}\right)+v_{2}(t, \lambda)\left(M_{21}(\lambda) x_{1}+M_{22}(\lambda) x_{2}\right)- \\
& \quad-2^{-1} \mathfrak{X}_{[0, b] \backslash\{\tau\}} e^{-i \lambda t} i \int_{0}^{t} e^{i \lambda s} f(s) d s+2^{-1} \mathfrak{X}_{[0, b] \backslash \tau\}} e^{-i \lambda t} i \int_{t}^{b} e^{i \lambda s} f(s) d s-\lambda^{-1} \mathfrak{X}_{\{\tau\}}(t) f(\tau) . \tag{67}
\end{align*}
$$

By elementary transformations, equality (67) is converted to the following form

$$
\begin{align*}
& y(t)=v_{1}(t, \lambda)\left(M_{11}(\lambda) x_{1}+M_{12}(\lambda) x_{2}\right)+v_{2}(t, \lambda)\left(M_{21}(\lambda) x_{1}+M_{22}(\lambda) x_{2}\right)- \\
& -\mathfrak{X}_{[0, b] \backslash\{\tau\}} e^{-i \lambda t} i \int_{0}^{t} e^{i \lambda s} f(s) d s+2^{-1} \mathfrak{X}_{[0, b] \backslash\{\tau\}} e^{-i \lambda t} i \int_{0}^{b} e^{i \lambda s} f(s) d s-\lambda^{-1} \mathfrak{X}_{\{\tau\}}(t) f(\tau) . \tag{68}
\end{align*}
$$

Using (57), (58), we obtain that in equality (68)

$$
\begin{aligned}
& v_{1}(t, \lambda)\left(M_{11}(\lambda) x_{1}+M_{12}(\lambda) x_{2}\right)=\mathfrak{X}_{[0, b] \backslash\{ \}} e^{-i \lambda t}\left(M_{11}(\lambda) x_{1}+M_{12}(\lambda) x_{2}\right), \\
& v_{2}(t, \lambda)\left(M_{21}(\lambda) x_{1}+M_{22}(\lambda) x_{2}\right)=\left\{\begin{array}{l}
0 \text { for } t<\tau, \\
e^{-i \lambda \tau}\left(M_{21}(\lambda) x_{1}+M_{22}(\lambda) x_{2}\right) \text { for } t=\tau, \\
-\lambda i e^{-i \lambda t}\left(M_{21}(\lambda) x_{1}+M_{22}(\lambda) x_{2}\right) \text { for } t>\tau .
\end{array}\right.
\end{aligned}
$$

To find $M_{12}(\lambda), M_{22}(\lambda)$, we take the function $f_{1}(t)=\mathfrak{X}_{\{\tau\}}(t)$, i.e., $f_{1}(t)=1$ if $t=\tau$ and $f_{1}(t)=0$ if $t \neq \tau$ (by $\left\{Y_{1}, Y_{1}^{\prime}\right\}$ denote the corresponding pair of boundary values). It follows from (59), (65), (66) that $x_{1}=0$, $x_{2}=e^{i \lambda \tau}$. We denote $y_{1}=R_{\lambda} f_{1}$. Using (68), we obtain

$$
\begin{equation*}
y_{1}(t)=v_{1}(t, \lambda) M_{12}(\lambda) e^{i \lambda \tau}+v_{2}(t, \lambda) M_{22}(\lambda) e^{i \lambda \tau}-\lambda^{-1} \mathfrak{X}_{\{\tau\}}(t) \tag{69}
\end{equation*}
$$

We denote $u_{1}=L_{0}^{*} y_{1}=\lambda y_{1}+f_{1}$. Then using (69), we get

$$
\begin{equation*}
u_{1}(t)=\lambda v_{1}(t, \lambda) M_{12}(\lambda) e^{i \lambda \tau}+\lambda v_{2}(t, \lambda) M_{22}(\lambda) e^{i \lambda \tau} \tag{70}
\end{equation*}
$$

By (60), (62), (69), it follows that

$$
\begin{equation*}
y_{1}(t)=\mathfrak{X}_{[0, b] \backslash \tau\}}(t) M_{12}(\lambda) e^{i \lambda \tau}+\mathfrak{X}_{\{\tau\}}(t)\left(M_{22}(\lambda)-\lambda^{-1}\right)-\mathfrak{X}_{[0, b] \backslash\{\tau\}}(t) i \int_{0}^{t} d \mathbf{m}(s) u_{1}(s) . \tag{71}
\end{equation*}
$$

Using (70) by direct calculations, we obtain

$$
\begin{equation*}
\int_{0}^{b} d \mathbf{m}(s) u_{1}(s)=i\left(e^{-i \lambda b}-1\right) M_{12}(\lambda) e^{i \lambda \tau}+\lambda e^{-i \lambda b} M_{22}(\lambda) e^{i \lambda \tau} ; \quad \int_{0}^{\tau} d \mathbf{m}(s) u_{1}(s)=i\left(1-e^{i \lambda \tau}\right) M_{12}(\lambda) \tag{72}
\end{equation*}
$$

By (63), (71), (72), so that

$$
Y_{1}=\binom{M_{12}(\lambda) e^{i \lambda \tau}}{M_{22}(\lambda)-\lambda^{-1}}-2^{-1} i\binom{i\left(e^{-i \lambda b}-1\right) M_{12}(\lambda) e^{i \lambda \tau}+\lambda e^{-i \lambda b} M_{22}(\lambda) e^{i \lambda \tau}}{i\left(e^{-i \lambda b}-1\right) M_{12}(\lambda) e^{i \lambda \tau}+\lambda e^{-i \lambda b} M_{22}(\lambda) e^{i \lambda \tau}}+2^{-1} i\binom{0}{\lambda M_{22}(\lambda)}+i\binom{0}{i\left(1-e^{i \lambda \tau}\right) M_{12}(\lambda)}
$$

The equality $Y_{1}=0$ is equivalent to two equalities

$$
\left\{\begin{array}{l}
M_{12}(\lambda) e^{i \lambda \tau}+2^{-1}\left(e^{-i \lambda b}-1\right) M_{12}(\lambda) e^{i \lambda \tau}-2^{-1} \lambda i e^{-i \lambda b} M_{22}(\lambda) e^{i \lambda \tau}=0 \tag{73}\\
M_{22}(\lambda)-\lambda^{-1}+2^{-1}\left(e^{-i \lambda b}-1\right) M_{12}(\lambda) e^{i \lambda \tau}-2^{-1} \lambda i e^{-i \lambda b} M_{22}(\lambda) e^{i \lambda \tau}+2^{-1} \lambda i M_{22}(\lambda)-\left(1-e^{i \lambda \tau}\right) M_{12}(\lambda)=0
\end{array}\right.
$$

Solving the system of equations (73), we get

$$
\begin{equation*}
M_{12}(\lambda)=\frac{2 i e^{-i \lambda b}}{2\left(e^{-i \lambda b}+1\right)-i \lambda\left(e^{-i \lambda b}-1\right)} ; \quad M_{22}(\lambda)=\frac{2\left(e^{-i \lambda b}+1\right)}{\lambda\left(2\left(e^{-i \lambda b}+1\right)-i \lambda\left(e^{-i \lambda b}-1\right)\right)} \tag{74}
\end{equation*}
$$

To find $M_{11}(\lambda), M_{21}(\lambda)$, we take the function $f_{2}(t)=\mathfrak{X}_{[0, \tau)}(t)$, i.e., $f_{2}(t)=1$ if $t<\tau$ and $f_{2}(t)=0$ if $t \geqslant \tau$ (by $\left\{Y_{2}, Y_{2}^{\prime}\right\}$ denote the corresponding pair of boundary values). It follows from (65) that $x_{1}=i \lambda^{-1}\left(1-e^{i \lambda \tau}\right)$, $x_{2}=0$. We denote $y_{2}=R_{\lambda} f_{2}$. Using (68), we obtain

$$
\begin{equation*}
y_{2}(t)=v_{1}(t, \lambda) M_{11}(\lambda) x_{1}+v_{2}(t, \lambda) M_{21}(\lambda) x_{1}-\mathfrak{X}_{[0, b] \backslash \tau\}} e^{-i \lambda t} i \int_{0}^{t} e^{i \lambda s} f_{2}(s) d s+2^{-1} \mathfrak{X}_{[0, b] \backslash \tau]} e^{-i \lambda t} i \int_{0}^{b} e^{i \lambda s} f_{2}(s) d s \tag{75}
\end{equation*}
$$

The equality $f_{2}(t)=\mathfrak{X}_{[0, \tau)}(t)$ implies

$$
\begin{align*}
& -\mathfrak{X}_{[0, b] \backslash \tau\}} e^{-i \lambda t} i \int_{0}^{t} e^{i \lambda s} f_{2}(s) d s=\left\{\begin{array}{l}
\lambda^{-1}\left(e^{-i \lambda t}-1\right) \text { for } t<\tau, \\
0 \text { for } t=\tau, \\
\lambda^{-1} e^{-i \lambda t}\left(1-e^{i \lambda \tau}\right) \text { for } t>\tau ;
\end{array}\right. \tag{76}\\
& 2^{-1} \mathfrak{X}_{[0, b] \backslash \tau]} e^{-i \lambda t} i \int_{0}^{b} e^{i \lambda s} f_{2}(s) d s=\left\{\begin{array}{l}
2^{-1} i e^{-i \lambda t} x_{1} \text { for } t \neq \tau, \\
0 \text { for } t=\tau .
\end{array}\right. \tag{77}
\end{align*}
$$

By (62), (75)-(77), it follows that

$$
\begin{equation*}
y_{2}(t)=\mathfrak{X}_{[0, b] \backslash\{\tau\}}\left(M_{11}(\lambda) x_{1}+2^{-1} i x_{1}\right)+\mathfrak{X}_{\{\tau\}}(t) e^{-i \lambda \tau} M_{21}(\lambda) x_{1}-\mathfrak{X}_{[0, b] \backslash \tau\}}(t) i \int_{0}^{t} d \mathbf{m}(s) u_{2}(s), \tag{78}
\end{equation*}
$$

where $u_{2}=L_{0}^{*} y_{2}=\lambda y_{2}+f_{2}$. Equalities (57), (58), (75)-(77) imply that $u_{2}(t)=u_{21}(t)+u_{22}(t)+u_{23}(t)+u_{24}(t)$, where

$$
\begin{align*}
& u_{21}(t)=\mathfrak{X}_{[0, b] \backslash\{\tau\}} \lambda e^{-i \lambda t} M_{11}(\lambda) x_{1} ; \quad u_{22}(t)=\left\{\begin{array}{l}
0 \text { for } t<\tau, \\
\lambda e^{-i \lambda \tau} M_{21}(\lambda) x_{1} \text { for } t=\tau, \\
-\lambda^{2} i e^{-i \lambda t} M_{21}(\lambda) x_{1} \text { for } t>\tau ;
\end{array}\right. \tag{79}\\
& u_{23}(t)=\left\{\begin{array}{l}
e^{-i \lambda t} \text { for } t<\tau, \\
0 \text { for } t=\tau, \\
e^{-i \lambda t}\left(1-e^{i \lambda \tau}\right) \text { for } t>\tau ;
\end{array} \quad u_{24}(t)=\left\{\begin{array}{l}
2^{-1} \lambda i e^{-i \lambda t} x_{1} \text { for } t \neq \tau, \\
0 \text { for } t=\tau .
\end{array}\right.\right. \tag{80}
\end{align*}
$$

Using (79), (80), and equality $x_{1}=i \lambda^{-1}\left(1-e^{i \lambda \tau}\right)$, by direct calculations, we obtain

$$
\begin{equation*}
\int_{0}^{b} d \mathbf{m}(s) u_{2}(s)=i\left(e^{-i \lambda b}-1\right) M_{11}(\lambda) x_{1}+\lambda e^{-i \lambda b} M_{21}(\lambda) x_{1}+i \lambda^{-1}\left(e^{-i \lambda \tau}-1\right)+\left(e^{-i \lambda b}-e^{-i \lambda \tau}\right) x_{1}-2^{-1}\left(e^{-i \lambda b}-1\right) x_{1} \tag{81}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{\tau} d \mathbf{m}(s) u_{2}(s)=i\left(e^{-i \lambda \tau}-1\right) M_{11} x_{1}+i \lambda^{-1}\left(e^{-i \lambda \tau}-1\right)-2^{-1}\left(e^{-i \lambda \tau}-1\right) x_{1} \tag{82}
\end{equation*}
$$

By (63), (78), so that

$$
Y_{2}=\binom{M_{11}(\lambda) x_{1}+2^{-1} i x_{1}}{e^{-i \lambda \tau} M_{21}(\lambda) x_{1}}-2^{-1} i\binom{\int_{0}^{b} d \mathbf{m}(s) u_{2}(s)}{\int_{0}^{b} d \mathbf{m}(s) u_{2}(s)}+2^{-1} i\binom{0}{\lambda e^{-i \lambda \tau} M_{21}(\lambda) x_{1}}+i\binom{0}{\int_{0}^{\tau} d \mathbf{m}(s) u_{2}(s)}
$$

where the integrals $\int_{0}^{b} d \mathbf{m}(s) u_{2}(s), \int_{0}^{\tau} d \mathbf{m}(s) u_{2}(s)$ are calculated by formulas (81), (82), respectively.
The equality $Y_{2}=0$ is equivalent to two equalities

$$
\left\{\begin{array}{l}
M_{11}(\lambda) x_{1}+2^{-1} i x_{1}-2^{-1} i \int_{0}^{b} d \mathbf{m}(s) u_{2}(s)=0 \tag{83}\\
e^{-i \lambda \tau} M_{21}(\lambda) x_{1}-2^{-1} i \int_{0}^{b} d \mathbf{m}(s) u_{2}(s)+2^{-1} \lambda i e^{-i \lambda \tau} M_{21}(\lambda) x_{1}+i \int_{0}^{\tau} d \mathbf{m}(s) u_{2}(s)=0
\end{array}\right.
$$

Solving the system of equations (83), we obtain

$$
\begin{equation*}
M_{11}(\lambda)=i \frac{(2-i \lambda) e^{-i \lambda b}-(2+i \lambda)}{2\left((2-i \lambda) e^{-i \lambda b}+(2+i \lambda)\right)} ; \quad M_{21}(\lambda)=i \frac{-2}{(2-i \lambda) e^{-i \lambda b}+(2+i \lambda)} \tag{84}
\end{equation*}
$$

Thus the matrix $M(\lambda)$ (64) is calculated by equalities (84), (74).
Remark 6.1. It follows from (84), (74) that

$$
M_{11}(i)=\frac{3 e^{b}-1}{2\left(3 e^{b}+1\right)} i ; \quad M_{21}(i)=\frac{-2}{3 e^{b}+1} i ; \quad M_{12}(i)=\frac{2 e^{b}}{3 e^{b}+1} i ; \quad M_{22}(i)=\frac{-2\left(e^{b}+1\right)}{3 e^{b}+1} i .
$$

Suppose that $f_{1}(t)=\mathfrak{X}_{\{\tau\}}(t)$. Then $x_{1}=x_{1}\left(f_{1}, i\right)=0, x_{2}=x_{2}\left(f_{1}, i\right)=e^{-\tau}($ see (59), (65), (66)). We denote $\tilde{x}=$ $\operatorname{col}\left(x_{1}, x_{2}\right)$. Therefore, $(M(i) \widetilde{x}, \tilde{x})=M_{22}(i) e^{-2 \tau}$. Thus, $\operatorname{Im}(M(i) \widetilde{x}, \tilde{x})=\operatorname{Im} M_{22}(i) e^{-2 \tau}=-2\left(e^{b}+1\right) e^{-2 \tau} /\left(3 e^{b}+1\right)<0$.

References

[1] N. I. Akhiezer, I. M. Glazman, Theory of Linear Operators in Hilbert Space. New York: Dover Publications Inc., 2013. [Russian edition: Vishcha Shkola, Kharkiv, 1978.]
[2] A. G. Baskakov, Analysis of Linear Differential Equations by Methods of the Spectral Theory of Difference Operators and Linear Relations, Uspekhi Mat. Nauk 68 (2013), No.1, 77-128; Engl. transl.: Russian Mathematical Surveys 68 (2013), No.1, 69-116.
[3] J.Behrndt, S.Hassi, H.Snoo, R.Wietsma, Square-Integrable Solutions and Weil functions for Singular Canonical Systems, Math. Nachr. 284 (2011), No.11-12, 1334-1384.
[4] Yu. M. Berezanski, Expansions in Eigenfunctions of Selfadjoint Operators, Naukova Dumka, Kiev, 1965; Engl. transl.: Amer. Math. Soc., Providence, RI, 1968.
[5] V. M. Bruk, On Generalized Resolvents and Spectral Functions of Differential Operators of Even Order in a Space of Vector Functions, Mat. Zametki 15 (1974), No. 6, 945-954; Engl. transl.: Mathematical Notes 15 (1974), No.6, 563-568.
[6] V. M. Bruk, On a Number of Linearly Independent Square-Integrable Solutions of Systems of Differential Equations, Functional Analysis 5 (1975), Uljanovsk, 25-33.
[7] V. M. Bruk, On a Class of Boundary Value Problems with Spectral Parameter in the Boundary Condition, Mat. Sbornik 100 (1976), No.2, 210-216; Engl. transl.: Math. USSR-Sbornik 29 (1976), No.2, 186-192.
[8] V.M. Bruk, Extensions of Symmetric Relations, Mat. Zametki 22 (1977), No. 6, 825-834; Engl. transl.: Mathematical Notes 22 (1977), No. 6, 953-958.
[9] V. M. Bruk, Linear Relations in a Space of Vector Functions, Mat. Zametki 24 (1978), No.4, 499-511; Engl. transl.: Mathematical Notes 24 (1978), No.4, 767-773.
[10] V.M. Bruk, On Boundary Value Problems Associated with Holomorphic Families of Operators. Functional Analysis 29 (1989), Uljanovsk, 32-42.
[11] V. M. Bruk, On the Characteristic Operator of an Integral Equation with a Nevanlinna Measure in the Infinite-Dimensional Case, Journal of Math. Physics, Analysis, Geometry 10 (2014), No.2, 163-188.
[12] V. M. Bruk, Boundary Value Problems for Integral Equations with Operator Measures, Probl. Anal. Issues Anal. 6(24) (2017), No.1, 19-40.
[13] V.M. Bruk, On Self-adjoint Extensions of Operators Generated by Integral Equations, Taurida Journal of Computer Science Theory and Mathematics (2017), No.1(34), 17-31.
[14] V. M. Bruk, Generalized Resolvents of Operators Generated by Integral Equations, Probl. Anal. Issues Anal 7(25) (2018), No. 2, 20-38.
[15] V. M. Bruk, On Self-adjoint and Invertible Linear Relations Generated by Integral Equations, Buletinul Academiei de Stiinte a Republicii Moldova. Matematica (2020), No. 1 (92), 106-121.
[16] V. M. Bruk, Dissipative Extensions of Linear Relations Generated by Integral Equations with Operator Measures, Journal of Math. Physics, Analysis, Geometry 16 (2020), No.4, 281-401.
[17] V.M. Bruk, Invertible Linear Relations Generated by Integral Equations with Operator Measures, Filomat, 35 (2021), No. 5, 1589-1607.
[18] A. Dijksma, H. S. V. de Snoo, Self-adjoint Extensions of Symmetric Subspaces, Pac. J. Math., 54 (1974), No.1, 71-100.
[19] V.I. Gorbachuk, M. L. Gorbachuk, Boundary Value Problems for Differential-Operator Equations, Naukova Dumka, Kiev, 1984; Engl. transl.: Kluver Acad. Publ., Dordrecht-Boston-London, 1991.
[20] T.Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, Heidelberg, New York, 1966.
[21] V. Khrabustovskyi, Analogs of Generalized Resolvents for Relations Generated by a Pair of Differential Operator Expressions One of which Depends on Spectral Parameter in Nonlinear Manner, Journal of Math. Physics, Analysis, Geometry 9 (2013), No.4, 496-535.
[22] A. N. Kochubei, Extensions of Symmetric Operators and Symmetric Binary Relations, Mat. Zametki 17 (1975), No.1, 41-48; Engl. transl.: Mathematical Notes 17 (1975), No.1, 25-28.
[23] B. C. Orcutt, Canonical Differential Equations, Dissertation, University of Virginia, 1969.
[24] F. S. Rofe-Beketov, Selfadjoint Extensions of Differential Operators in a Space of Vector Functions. Dokl. Akad. Nauk USSR 184 (1969), No.5, 1034-1037; Engl. transl.: Soviet Math. Dokl. 10 (1969), No.1, 188-192.
[25] F. S. Rofe-Beketov, A.M. Kholkin, Spectral Analysis of Differential Operators. World Scientific Monograph Series in Mathematics, vol. 7, Singapure, 2005.
[26] A. V. Straus, Generalized Resolvents of Symmetric Operators, Izv. Akad. Nauk SSSR, Ser, Mat., 18 (1954), No.1, 51-86.
[27] A. V. Straus, On Generalized Resolvents and Spectral Functions of Differential Operators of Even Order, Izv. Akad. Nauk SSSR, Ser. Mat., 21 (1957), No. 6, 785-808.

[^0]: 2020 Mathematics Subject Classification. 47A10; 46G12; 45N05
 Keywords. Hilbert space, integral equation, operator measure, linear relation, symmetric relation, generalized resolvent
 Received: 04 August 2021; Accepted: 20 June 2022
 Communicated by Dragan S. Djordjević
 Email address: vladislavbruk@mail.ru (Vladislav M. Bruk)

