Filomat 36:14 (2022), 4831–4838 https://doi.org/10.2298/FIL2214831A

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On the Regularity of the Class of Generalized Drazin-Riesz Invertible Operators

Othman Abad^a, Hassane Zguitti^a

^aDepartment of Mathematics, Dhar El Mahraz Faculty of Science, Sidi Mohamed Ben Abdellah University, BO 1796 Fes-Atlas, 30003 Fez Morocco.

Abstract. In this paper, we prove that the class of all generalized Drazin-Riesz invertible operators forms a regularity.

1. Preliminary.

For a complex Banach space *X*, let $\mathcal{L}(X)$ be the algebra of all bounded linear operators on *X* and $\mathcal{K}(X)$ be the ideal of compact operators in $\mathcal{L}(X)$. Let $\pi : \mathcal{L}(X) \longrightarrow \mathcal{L}(X)/\mathcal{K}(X)$ be the canonical projection. For $T \in \mathcal{L}(X)$, let $\sigma(T)$, $\rho(T)$, $\mathcal{N}(T)$ and $\mathcal{R}(T)$ denote the spectrum, the resolvent set, the null space and the range of *T*, respectively. An operator *T* is said to be a *Fredholm* operator if dim $\mathcal{N}(T) < \infty$ and *codim* $\mathcal{R}(T) < \infty$, which is equivalent to say that $\pi(T)$ is invertible in $\mathcal{L}(X)/\mathcal{K}(X)$. The *index* of a Fredholm operator *T* is defined by

$$ind(T) = \dim \mathcal{N}(T) - \operatorname{codim} \mathcal{R}(T).$$

The *essential spectrum* $\sigma_e(T)$ of *T* is defined as the set of all λ in \mathbb{C} for which $T - \lambda I$ is not a Fredholm operator. *T* is said to be *Riesz* if $T - \lambda I$ is Fredholm for every $\lambda \in \mathbb{C} \setminus \{0\}$, i.e., $\sigma_e(T) \subseteq \{0\}$ (see [2]).

We say that *T* admits a complete reduction by the couple (M, N) and we write $(M, N) \in Red(T)$, if *M* and *N* are two closed *T*-invariant subspaces of *X* such that $X = M \oplus N$. In this case, *T* is represented as a direct sum of the restrictions T_M and T_N , $T = T_M \oplus T_N$ [13].

Recall that the *ascent* of an operator *T* is the smallest non-negative integer *p* such that $\mathcal{N}(T^p) = \mathcal{N}(T^{p+1})$. If no such *p* exists we say that *T* is of infinite ascent. Analogously, the *descent* of an operator *T* is the smallest non-negative integer *q* such that $\mathcal{R}(T^q) = \mathcal{R}(T^{q+1})$, and if no such *q* exists we say that *T* is of infinite descent. $T \in \mathcal{L}(X)$ is said to be a *Browder* operator if *T* is Fredholm with finite ascent and descent. The *Browder spectrum* $\sigma_b(T)$ of *T* is defined as the set of all λ in \mathbb{C} for which $T - \lambda I$ is not a Browder operator (see [2, 11]).

For a subset Λ of \mathbb{C} , we denote by *acc* Λ , *iso* Λ and *int* Λ respectively, the accumulation points, the isolated points and the interior of Λ . We denote by $D(\lambda, r)$ the open disc centered at $\lambda \in \mathbb{C}$ and with radius r > 0 and the corresponding closed disc is denoted by $\overline{D}(\lambda, r)$.

²⁰²⁰ Mathematics Subject Classification. Primary 47A10; Secondary 47A53

Keywords. Regularity, generalized Drazin-Riesz invertible operator, Riesz operator, Browder operator

Received: 06 August 2021; Revised: 13 April 2022; Accepted: 22 April 2022

Communicated by Dragan S. Djordjević

Email addresses: othman.abad@usmba.ac.ma (Othman Abad), hassane.zguitti@usmba.ac.ma (Hassane Zguitti)

Let $T \in \mathcal{L}(X)$. A subset σ of $\sigma(T)$ is called a *spectral set* of T if it is a clopen set in the topology of $\sigma(T)$ induced by the usual topology of \mathbb{C} . The *spectral projection* P_{σ} corresponding to σ is

$$P_{\sigma} = \frac{1}{2\pi i} \int_{\Gamma} (\lambda I - T)^{-1} d\lambda,$$

where Γ is a closed contour surrounding σ and its exterior contains $\sigma(T) \setminus \sigma$. It is easy to see that P_{σ} commutes with each element which commutes with *T*.

Following Drazin [4], a bounded linear operator $T \in \mathcal{L}(X)$ is said to be *Drazin invertible* if there exists an $S \in \mathcal{L}(X)$ such that

$$TS = ST, STS = S \text{ and } T - T^2S \text{ is nilpotent.}$$
⁽¹⁾

If such *S* exists then it is unique and it will be denoted by $S = T^D$ and it is called the *Drazin inverse* of *T*.

In [7] Koliha generalized the concept of the Drazin inverse: $T \in \mathcal{L}(X)$ is said to be *generalized Drazin invertible* (or *Koliha-Drazin invertible*) if there exists an $S \in \mathcal{L}(X)$ such that

$$TS = ST, STS = S \text{ and } T - T^2S \text{ is quasinilpotent.}$$
 (2)

If such *S* exists then it is unique and it will be denoted by $S = T^{gD}$ and it is called the *generalized Drazin inverse* of *T*.

Recently, Živković-Zlatanović and Cvetković [13] generalized the concept of generalized Drazin invertible operators:

Definition 1.1. [13] An operator $T \in \mathcal{L}(X)$ is generalized Drazin-Riesz invertible if there exists an $S \in \mathcal{L}(X)$ such that

$$TS = ST$$
, $STS = S$ and $T - T^2S$ is Riesz;

and such S is called a generalized Drazin-Riesz inverse of T.

We point out that I - TS is a projection called the projection associated with the generalized Drazin-Riesz inverse *S* of *T*.

We denote by $\mathcal{L}(X)^{DR}$ the class of all bounded generalized Drazin-Riesz invertible operators, and by $\sigma_{DR}(T)$ the generalized Drazin-Riesz spectrum of *T* defined by

$$\sigma_{DR}(T) = \{\lambda \in \mathbb{C} : (\lambda I - T) \notin \mathcal{L}(X)^{DR}\}.$$

Let $T \in \mathcal{L}(X)^{DR}$ such that $0 \in acc \sigma(T)$ (if $0 \notin acc \sigma(T)$ then *T* is generalized Drazin invertible). By Proposition 2.7 and Corollary 2.4 [13], there exists $(M, N) \in Red(T)$ such that $T = T_M \oplus T_N$, T_M is invertible and T_N is Riesz with infinite spectrum. Hence, $\sigma(T_N) = \{0, \lambda_1, \lambda_2, \lambda_3, ...\}$ where $|\lambda_1| \ge |\lambda_2| \ge |\lambda_3| \ge ...$, and $\lambda_n \to 0$, as $n \to \infty$.

Since $0 \in \rho(T_M)$, there exists $\varepsilon > 0$ such that $D(0, \varepsilon) \subset \rho(T_M)$. As (λ_n) is a sequence which converges to zero, there exists $n_0 \in \mathbb{N}$ such that $(\lambda_n)_{n > n_0} \subset D(0, \varepsilon)$. Consequently, $(\lambda_n)_{n \ge n_0}$ is a sequence of non-zero Riesz points of *T* (see the proof of [13, Proposition 2.7]), and

$$\sigma(T_M) \cap \sigma(T_N) \subseteq (\mathbb{C} \setminus D(0,\varepsilon)) \cap \sigma(T_N) \subseteq \{\lambda_1, \lambda_2, ..., \lambda_{n_0}\}.$$

Now for each $n \ge n_0$, let σ_n and σ'_n be the closed sets defined by

$$\sigma_n = \{0, \lambda_{n+1}, \lambda_{n+2}, \ldots\}$$

and

$$\sigma'_n = (\sigma(T_M) \setminus (\sigma(T_M) \cap \sigma(T_N))) \cup \{\lambda_1, \lambda_2, ..., \lambda_n\} = \sigma(T) \setminus \sigma_n$$

Notice that for all $n \ge n_0$, σ_n and σ'_n are spectral sets and $\sigma_n \cap \sigma(T_M) = \emptyset$. Through all this work, we take σ_n and σ'_n to be of index greater than or equal n_0 .

Definition 1.2. [12, Definition 2.2] Let $T \in \mathcal{L}(X)$ be a non-invertible operator with a bounded spectral set σ containing 0 and let P_{σ} be the corresponding spectral projection. The Drazin inverse of T relative to σ is defined by

$$T^{D,\sigma} := (T - \xi P_{\sigma})^{-1} (I - P_{\sigma}),$$

for some $\xi \in \mathbb{C}$ such that $|\xi| > r$ where $r = \sup_{\lambda \in \sigma} |\lambda|$.

The condition $|\xi| > r$ is required to ensure that $T - \xi P_{\sigma}$ is invertible. It is easy to see that $P_{\sigma} = I - TT^{D,\sigma}$, also $T^{D,\sigma}$ is independent of the value of ξ (see [12]).

Theorem 1.3. [1, Theorem 2.2] Let $T \in \mathcal{L}(X)$ be generalized Drazin-Riesz invertible with $0 \in acc \sigma(T)$. Let n be large enough such that $r_n = \sup_{\lambda \in \sigma_n} |\lambda| < \frac{1}{2}$. Then

$$T^{D,\sigma_n} = (T - P_{\sigma_n})^{-1} (I - P_{\sigma_n})$$

is a generalized Drazin-Riesz inverse for T.

Theorem 1.4. [1, Theorem 2.9] Let $T \in \mathcal{L}(X)$. Then T is generalized Drazin-Riesz invertible if and only if $0 \notin acc \sigma_b(T)$.

Definition 1.5. [11] Let R be a non-empty subset of $\mathcal{L}(X)$. R is called a regularity if it satisfies the following two conditions:

- 1. *if* $n \in \mathbb{N}$ *, then* $A \in R$ *if and only if* $A^n \in R$ *.*
- 2. *if* A, B, C and D are mutually commuting operators in $\mathcal{L}(X)$ such that AC + BD = I, then $AB \in R$ if and only *if* $A \in R$ and $B \in R$.

A regularity $R \subset \mathcal{L}(X)$ assigns to each $T \in \mathcal{L}(X)$ a subset of \mathbb{C} defined by

$$\sigma_R(T) = \{\lambda \in \mathbb{C} : T - \lambda I \notin R\}$$

and called the spectrum of *T* corresponding to the regularity *R*. We notice that every regularity *R* contains all invertible operators, so that $\sigma_R(T) \subseteq \sigma(T)$. In general, $\sigma_R(T)$ is neither compact nor non-empty. However,

$$f(\sigma_R(T)) = \sigma_R(f(T))$$

for every analytic function f on a neighborhood of $\sigma(T)$ which is non-constant on each component of its domain of definition (see [8, 10, 11]).

Let *R* be a regularity in $\mathcal{L}(X)$. We say that *R* (or σ_R) satisfies the property:

- (P1): if $TS \in R \iff T \in R$ and $S \in R$ whenever $T, S \in \mathcal{L}(X)$.
- (P2): if $T_n, T \in \mathcal{L}(X), T_n \to T, \mu_n \in \sigma_R(T_n)$ and $\mu_n \to \mu$, then $\mu \in \sigma_R(T)$ (upper semicontinuity of $\sigma_R(\cdot)$).
- (P3): if T_n , $T \in \mathcal{L}(X)$, $T_n \to T$, $TT_n = T_nT$ for every n, $\mu_n \in \sigma_R(T_n)$ and $\mu_n \to \mu$, then $\mu \in \sigma_R(T)$ (upper semicontinuity on commuting elements in $\mathcal{L}(X)$).
- (P4): $T_n, T \in \mathcal{L}(X), T_n \to T, TT_n = T_nT$ for every *n*, then $\mu \in \sigma_R(T)$ if and only if there exits a sequence $\mu_n \in \sigma_R(T_n)$ such that $\mu_n \to \mu$ (continuity on commuting elements in $\mathcal{L}(X)$).

It is easy to see that (P2) or (P4) implies (P3). If *R* satisfies (P3) then $\sigma_R(T)$ is closed for every $T \in \mathcal{L}(X)$ (see [11]).

Berkani and Sarih [3, Theorem 2.3] proved that the class of all Drazin invertible operators forms a regularity. The result was extended to the class of all generalized Drazin invertible operators by Lubansky [9, Theorem 1.2].

The aim of this paper is to prove that the class $\mathcal{L}(X)^{DR}$ of all bounded generalized Drazin-Riesz invertible operators forms a regularity. Then the spectral mapping theorem for $\sigma_{DR}(T)$ holds. Finally, we investigate $\mathcal{L}(X)^{DR}$ under properties (P*i*), $i \in \{1, 2, 3, 4\}$.

2. Main Results.

We begin by stating the main result of the paper.

Theorem 2.1. The set $\mathcal{L}(X)^{DR}$ of all bounded generalized Drazin-Riesz invertible operators forms a regularity.

To establish the proof of the theorem, we need the following Lemma.

Lemma 2.2. Let A, B, C and D be mutually commuting operators in $\mathcal{L}(X)$ such that AC + BD = I. If $AB \in \mathcal{L}(X)^{DR}$, then $A \in \mathcal{L}(X)^{DR}$.

Proof. Suppose that *AB* is generalized Drazin-Riesz invertible. Then by virtue of Theorem 1.3 there exists $n_0 \in \mathbb{N}$ such that $(AB)^{D,\sigma_{n_0}}$ is a generalized Drazin-Riesz inverse for *AB*. We have $P_{\sigma_{n_0}} = I - (AB)(AB)^{D,\sigma_{n_0}}$ and $ABP_{\sigma_{n_0}}$ is Riesz.

Step 1. We show that $A(I - P_{\sigma_{n_0}}) \in \mathcal{L}(X)^{DR}$.

Set $U = B(AB)^{D,\sigma_{n_0}}$. Since $(AB)^{D,\sigma_{n_0}}P_{\sigma_{n_0}} = 0$ then

$$U(I-P_{\sigma_{n_0}})=U.$$

We have *U* commutes with $A(I - P_{\sigma_{n_0}})$. Indeed, as $P_{\sigma_{n_0}}$ is a spectral projection of *AB* among σ_{n_0} and *A* commutes with *B*, then *A* and *B* commute with $P_{\sigma_{n_0}}$. Hence *U* commutes with $P_{\sigma_{n_0}}$. Therefore *U* commutes with $A(I - P_{\sigma_{n_0}})$. We have

$$UA = AU = AB(AB)^{D,\sigma_{n_0}} = I - P_{\sigma_{n_0}}.$$

Then

$$UA(I - P_{\sigma_{n_0}})U = (I - P_{\sigma_{n_0}})^2 U = U.$$

Also,

$$A(I - P_{\sigma_{n_0}}) - (A(I - P_{\sigma_{n_0}}))^2 U = A(I - P_{\sigma_{n_0}}) - A^2 (I - P_{\sigma_{n_0}})^2 U$$

= $A(I - P_{\sigma_{n_0}}) - A(I - P_{\sigma_{n_0}})^2 A U$
= $A(I - P_{\sigma_{n_0}}) - A(I - P_{\sigma_{n_0}})^3 = 0$ is Riesz

Therefore, $A(I - P_{\sigma_{n_0}})$ is generalized Drazin-Riesz invertible and *U* is a generalized Drazin-Riesz inverse for $A(I - P_{\sigma_{n_0}})$. We notice also that

$$I - UA(I - P_{\sigma_{n_0}}) = P_{\sigma_{n_0}}$$

and then the projection associated with the generalized Drazin-Riesz inverse *U* of $A(I - P_{\sigma_{n_0}})$ coincides with $P_{\sigma_{n_0}}$.

Step 2. We show that $ACP_{\sigma_{n_0}} \in \mathcal{L}(X)^{DR}$. Since

$$ACP_{\sigma_{n_0}} - (ACP_{\sigma_{n_0}})^2 = AC(I - AC)P_{\sigma_{n_0}}$$

= $ACBDP_{\sigma_{n_0}}$
= $(ABP_{\sigma_{n_0}})CD$

and $ABP_{\sigma_{n_0}}$ is a Riesz operator, then by virtue of [2, Theorem 3.112], $ACP_{\sigma_{n_0}} - (ACP_{\sigma_{n_0}})^2$ is a Riesz operator. Also, by considering the analytic function $f(\lambda) = \lambda - \lambda^2$, $\forall \lambda \in \mathbb{C}$, we have

 $f(\sigma(\pi(ACP_{\sigma_{n_0}}))) = \sigma(f(\pi(ACP_{\sigma_{n_0}})))$ $= \sigma(\pi(ACP_{\sigma_{n_0}}) - (\pi(ACP_{\sigma_{n_0}}))^2)$ $= \sigma(\pi(ACP_{\sigma_{n_0}} - (ACP_{\sigma_{n_0}})^2)) = \{0\}.$

Hence $\sigma(\pi(ACP_{\sigma_{n_0}})) \subset \{0, 1\}$. Thus

 $0 \notin acc \sigma_e(ACP_{\sigma_{n_0}})$ and $0 \notin acc \sigma_e(I - ACP_{\sigma_{n_0}})$.

We set $W = ACP_{\sigma_{n_0}}$. Since always $\sigma_b(W) = \sigma_e(W) \cup acc \sigma(W)$, and in order to find that $0 \notin acc \sigma_b(W)$, for the sake of contradiction we suppose that $0 \in acc (acc \sigma(W))$. Consequently, there exists $(\lambda_p)_p \subset acc \sigma(W)$ such that $\lambda_p \to 0$, as $p \to \infty$. Thus for all $p \in \mathbb{N}$ there exists a sequence $(s_{p_k})_k \subset \sigma(W)$ such that $s_{p_k} \to \lambda_p$, as $k \to \infty$. Hence $f(s_{p_k}) \to f(\lambda_p)$, as $k \to \infty$, and using spectral mapping theorem, we get $(f(\lambda_p))_p \subset acc \sigma(f(W))$. Thus $f(\lambda_p) \to 0$, as $p \to \infty$ and so $0 \in acc (acc \sigma(f(W))) \subset acc \sigma_b(W - W^2)$, which is a contradiction. Therefore, we obtain that

$$0 \notin acc \sigma_b(ACP_{\sigma_{n_0}}).$$

Consequently, $ACP_{\sigma_{no}}$ is generalized Drazin-Riesz invertible by Theorem 1.4.

Step 3. We show that $AP_{\sigma_{n_0}} \in \mathcal{L}(X)^{DR}$.

Let Λ_{k_0} be the spectral set associated to the generalized Drazin-Riesz invertible operator $ACP_{\sigma_{n_0}}$ (as defined after Definition 1.1). Let us show that $V = CP_{\sigma_{n_0}}(ACP_{\sigma_{n_0}})^{D,\Lambda_{k_0}}$ is a generalized Drazin-Riesz inverse of $AP_{\sigma_{n_0}}$.

We have V commutes with $AP_{\sigma_{n_0}}$, and

$$V(AP_{\sigma_{n_0}})V = CP_{\sigma_{n_0}}(ACP_{\sigma_{n_0}})^{D,\Lambda_{k_0}}AP_{\sigma_{n_0}}CP_{\sigma_{n_0}}(ACP_{\sigma_{n_0}})^{D,\Lambda_{k_0}}$$
$$= CP_{\sigma_{n_0}}(ACP_{\sigma_{n_0}})^{D,\Lambda_{k_0}} = V.$$

Also

$$\begin{aligned} AP_{\sigma_{n_0}} - (AP_{\sigma_{n_0}})^2 V &= AP_{\sigma_{n_0}} \left(I - AP_{\sigma_{n_0}} CP_{\sigma_{n_0}} (ACP_{\sigma_{n_0}})^{D,\Lambda_{k_0}} \right) \\ &= AP_{\sigma_{n_0}} \left(I - ACP_{\sigma_{n_0}} (ACP_{\sigma_{n_0}})^{D,\Lambda_{k_0}} \right) \\ &= A(AC + BD)P_{\sigma_{n_0}} \left(I - ACP_{\sigma_{n_0}} (ACP_{\sigma_{n_0}})^{D,\Lambda_{k_0}} \right) \\ &= A(ACP_{\sigma_{n_0}}) \left(I - ACP_{\sigma_{n_0}} (ACP_{\sigma_{n_0}})^{D,\Lambda_{k_0}} \right) \\ &+ ABP_{\sigma_{n_0}} \left(D(I - ACP_{\sigma_{n_0}} (ACP_{\sigma_{n_0}})^{D,\Lambda_{k_0}}) \right). \end{aligned}$$

Since $ABP_{\sigma_{n_0}}$ is Riesz then $ABP_{\sigma_{n_0}}(D(I - ACP_{\sigma_{n_0}}(ACP_{\sigma_{n_0}})^{D,\Lambda_{k_0}}))$ is Riesz by [2, Theorem 3.112]. Also, $ACP_{\sigma_{n_0}}(I - ACP_{\sigma_{n_0}}(ACP_{\sigma_{n_0}})^{D,\Lambda_{k_0}}))$ is Riesz since $I - ACP_{\sigma_{n_0}}(ACP_{\sigma_{n_0}})^{D,\Lambda_{k_0}}$ is a spectral projection of $ACP_{\sigma_{n_0}}$ among Λ_{k_0} . Now again by [2, Theorem 3.112], we get

$$A(ACP_{\sigma_{n_0}})\left(I - ACP_{\sigma_{n_0}}(ACP_{\sigma_{n_0}})^{D,\Lambda_{k_0}}\right) + ABP_{\sigma_{n_0}}\left(D(I - ACP_{\sigma_{n_0}}(ACP_{\sigma_{n_0}})^{D,\Lambda_{k_0}})\right)$$

is Riesz. Hence, $AP_{\sigma_{n_0}} - AP_{\sigma_{n_0}}VAP_{\sigma_{n_0}}$ is Riesz. Therefore $AP_{\sigma_{n_0}}$ is generalized Drazin-Riesz invertible and V is a generalized Drazin-Riesz inverse for $AP_{\sigma_{n_0}}$.

Step 4. We show that $A \in \mathcal{L}(X)^{DR}$.

We have $A(I - P_{\sigma_{n_0}})$ and $AP_{\sigma_{n_0}}$ are generalized Drazin-Riesz invertible, and

$$(A(I - P_{\sigma_{n_0}}))(AP_{\sigma_{n_0}}) = (AP_{\sigma_{n_0}})(A(I - P_{\sigma_{n_0}})) = 0,$$

by [6, Proposition 2.8], we obtain that $A(I - P_{\sigma_{n_0}}) + AP_{\sigma_{n_0}} = A$ is generalized Drazin-Riesz invertible.

We are now in a position to prove our main result.

Proof. of Theorem 2.1. Let $A \in \mathcal{L}(X)$. If A is generalized Drazin-Riesz invertible, then A^n is also generalized Drazin-Riesz invertible. Conversely, assume that A^n is generalized Drazin-Riesz invertible. Then $0 \notin acc\sigma_b(A^n)$. As $\sigma_e(A^n) = \{\lambda^n : \lambda \in \sigma_e(A)\}$, and $\sigma(A^n) = \{\lambda^n : \lambda \in \sigma(A)\}$, we conclude immediately that $0 \notin acc \sigma_b(A)$. Finally A is generalized Drazin-Riesz invertible by Theorem 1.4.

Now let *A*, *B*, *C* and *D* be mutually commuting operators in $\mathcal{L}(X)$ such that AC + BD = I. If *A* and *B* are generalized Drazin-Riesz invertible. Then *AB* is also generalized Drazin-Riesz invertible. Indeed, for

$$Q = I - (I - P_{\sigma_{n_0,B}})(I - P_{\sigma_{n_0,A}})$$

let us show that *Q* is a projection satisfying

QAB = ABQ, AB + Q is Browder and ABQ is Riesz.

By Theorem 2.1 [12], $A + P_{\sigma_{n_0,A}}$ and $B + P_{\sigma_{n_0,B}}$ are invertible and so Browder operators. Also $AP_{\sigma_{n_0,A}}$ and $BP_{\sigma_{n_0,B}}$ are Riesz operators. Since $A + P_{\sigma_{n_0,A}}$ and $B + P_{\sigma_{n_0,B}}$ commute, we conclude by [5, Theorem 7.9.2] that $(A + P_{\sigma_{n_0,A}})(B + P_{n_0,B})$ is a Browder operator.

Now we show that *ABQ* is Riesz. Since $Q = P_{\sigma_{n_0,A}} + P_{\sigma_{n_0,B}} - P_{\sigma_{n_0,B}}$, we have

$$ABQ = AP_{\sigma_{n_0,A}}B + ABP_{\sigma_{n_0,B}} - AP_{\sigma_{n_0,A}}BP_{\sigma_{n_0,B}}.$$

 $AP_{\sigma_{n_0,A}}$ and $BP_{\sigma_{n_0,B}}$ are Riesz operators and commute respectively with *B* and *A*, then by [2, Theorem 3.112] $AP_{\sigma_{n_0,A}}B$, $ABP_{\sigma_{n_0,B}}$ and $AP_{\sigma_{n_0,B}}BP_{\sigma_{n_0,B}}$ are Riesz operators. Thus, ABQ is a Riesz operator, again by [2, Theorem 3.112]. Therefore, I + ABQ is a Browder operator by [2, Theorem 3.111].

Since I + ABQ is Browder and $(\mathcal{R}(Q), \mathcal{N}(Q)) \in Red(I + AB)$, we deduce by [13, Lemma 2.1] that $(I + ABQ)_{\mathcal{R}(Q)}$ is a Browder operator. We have

$$(I + ABQ)Q = 0_{\mathcal{N}(Q)} \oplus (I + AB)_{\mathcal{R}(Q)}.$$

Also

$$AB(I - Q) = (A + P_{\sigma_{n_0,A}})(B + P_{\sigma_{n_0,B}})(I - Q)$$

= $((A + P_{\sigma_{n_0,A}})(B + P_{\sigma_{n_0,B}}))_{\mathcal{N}(Q)} \oplus 0_{\mathcal{R}(Q)},$

Now we get

$$AB + Q = ABQ + Q + AB(I - Q)$$

= $(I + ABQ)Q + AB(I - Q)$
= $(0_{\mathcal{N}(Q)} \oplus (I + ABQ)_{\mathcal{R}(Q)}) + (((A + P_{\sigma_{n_0,A}})(B + P_{\sigma_{n_0,B}}))_{\mathcal{N}(Q)} \oplus 0_{\mathcal{R}(Q)})$
= $((A + P_{\sigma_{n_0,A}})(B + P_{\sigma_{n_0,B}}))_{\mathcal{N}(Q)} \oplus (I + ABQ)_{\mathcal{R}(Q)}.$

As $((A + P_{\sigma_{n_0,A}})(B + P_{\sigma_{n_0,B}}))_{N(Q)}$ and $(I + ABQ)_{\mathcal{R}(Q)}$ are Browder, we conclude by [13, Lemma 2.1] that AB + Q is a Browder operator. Finally, [13, Theorem 2.3] leads to conclude that AB is generalized Drazin-Riesz invertible.

Conversely, if *AB* is generalized Drazin-Riesz invertible, then by Lemma 2.2, we conclude that *A* and *B* are generalized Drazin-Riesz invertible. \Box

Combining Theorem 2.1 and [11, Theorem I.6.7], the spectral mapping theorem holds for $\sigma_{DR}(T)$

4836

Theorem 2.3. Let X be a Banach space and $T \in \mathcal{L}(X)$. If f is any function holomorphic in an open neighborhood of $\sigma(T)$ and non-constant on any component of $\sigma(T)$, then

$$f(\sigma_{DR}(T)) = \sigma_{DR}(f(T)).$$

We investigate some topological properties of $\sigma_{DR}(T)$.

Proposition 2.4. Let X be a Banach space and $T \in \mathcal{L}(X)$. We have : 1) $\sigma_{DR}(T) = acc \sigma_b(T)$ and $\sigma_{DR}(T)$ is closed. 2) $\sigma_{DR}(T) \subset \sigma_{KD}(T) \subset \sigma_D(T) \subset \sigma(T)$. 3) $\sigma_{DR}(T) = \emptyset$ if and only if $\sigma_b(T)$ is a finite set.

Proof. 1) By Theorem 1.4, $\sigma_{DR}(T) = acc \sigma_b(T)$. The closure of $\sigma_{DR}(T)$ is assured by $\sigma_{DR}(T) = acc \sigma_b(T)$, $\sigma_b(T)$ being closed, we have $acc \sigma_b(T) = \sigma_{DR}(T)$ is closed. 2) The inclusions are obvious.

3) If $\sigma_h(T)$ is finite, its every point is isolated in $\sigma_h(T)$, therefore not in *acc* $\sigma_h(T)$.

Conversely, suppose that $\sigma_{DR}(T) = \emptyset$. By way of contradiction, suppose that $\sigma_b(T)$ is infinite. As $\sigma_b(T)$ is a compact set (closed in the compact set $\sigma(T)$), it has an accumulation point μ , so $\mu \in acc \sigma_b(T) = \sigma_{DR}(T)$, which is a contradiction. \Box

In general the class of generalized Drazin-Riesz invertible operators does not satisfy the property (P1).

Example 2.5. Let *S* be the right shift operator defined on $\ell_2(\mathbb{N})$ by

$$S(x_0, x_1, ...) = (0, x_0, x_1, ...), \ \forall (x_0, x_1, ...).$$

Set $T_1 = S \oplus 0$ and $T_2 = 0 \oplus S$ on $X = \ell_2(\mathbb{N}) \oplus \ell_2(\mathbb{N})$. Since

$$\sigma(S) = \sigma_b(S) = \{\lambda \in \mathbb{C} : |\lambda| \le 1\},\$$

then

$$\sigma(T_i) = \sigma_b(T_i) = \{\lambda \in \mathbb{C} : |\lambda| \le 1\}, \text{ for } i = 1, 2.$$

We have $T_1T_2 = 0 \in \mathcal{L}(X)^{DR}$. But $0 \in acc \sigma_b(T_i)$, i = 1, 2. Thus T_1 and T_2 do not belong to $\mathcal{L}(X)^{DR}$.

However, the class of generalized Drazin-Riesz invertible operators satisfies property (P1) in a very special case.

Theorem 2.6. Let X be a Banach space. Then the following conditions are equivalent:

i) $\mathcal{L}(X)^{DR}$ has property (P1);

ii) $\mathcal{L}(X)^{DR} = \mathcal{L}(X);$

- iii) $\sigma_{DR}(T) = \emptyset$ for all $T \in \mathcal{L}(X)$;
- iv) Each bounded operator has a finite Browder spectrum.

Proof. i) \Rightarrow ii): Suppose that $\mathcal{L}(X)^{DR}$ satisfies (P_1). As 0 belongs to $\mathcal{L}(X)^{DR}$ and commutes with all elements, for any $A \in \mathcal{L}(X)$ the product $0 = 0A \in \mathcal{L}(X)^{DR}$; and so $A \in \mathcal{L}(X)^{DR}$ for all $A \in \mathcal{L}(X)$, hence $\mathcal{L}(X) = \mathcal{L}(X)^{DR}$. ii) \Rightarrow iii): It is obvious.

iii) \Rightarrow iv): follows at once from Proposition 2.4.

iv) \Rightarrow i): If each element *T* of $\mathcal{L}(X)$ has a finite Browder spectrum, then all elements of $\sigma_b(T)$ are isolated for all $T \in \mathcal{L}(X)$. Hence by Theorem 1.4, *T* is generalized Drazin-Riesz invertible. Trivially we have $\mathcal{L}(X)^{DR}$ satisfies property (P1). \Box

The class $\mathcal{L}(X)^{DR}$ is not necessarily open in $\mathcal{L}(X)$ as shown by the following example.

Example 2.7. For a nonzero positive integer *n*, let S_n be the weighted right shift operator defined on $\ell^2(\mathbb{N})$ by

$$S_n x = (x_1, x_2, ...) = (0, \frac{1}{n} x_1, \frac{1}{n} x_2, ...)$$

Then $||S_n|| = \frac{1}{n}$. Let $V(0, \eta)$ be the open disk in $\mathcal{L}(\ell^2(\mathbb{N}))$ centered at 0 and with radius $\eta > 0$. Then for *n* large enough we have $S_n \in D(0, \eta)$. Since

$$\sigma(S_n) = \sigma_b(S_n) = \{\lambda \in \mathbb{C} : |\lambda| \le \frac{1}{n}\},\$$

then for each *n*, *S_n* is not generalized Drazin-Riesz invertible and the sequence (*S_n*) converges to 0 which is generalized Drazin-invertible operator with a generalized Drazin-Riesz inverse 0. Therefore, $\mathcal{L}(\ell^2(\mathbb{N}))^{DR}$ is not open in $\mathcal{L}(\ell^2(\mathbb{N}))$.

By virtue of [11, Proposition I.6.9], a regularity *R* is an open set of $\mathcal{L}(X)$ if and only if *R* satisfies (P2). The previous example shows that $\mathcal{L}(X)^{DR}$ does not satisfy (P2) in general. The special case when $\mathcal{L}(X)^{DR}$ satisfies (P2) is the following

Theorem 2.8. $\mathcal{L}(X)^{DR}$ satisfies properties (P2), (P3), and (P4) if and only if $\mathcal{L}(X)^{DR} = \mathcal{L}(X)$.

Proof. If $\mathcal{L}(X)^{DR} = \mathcal{L}(X)$, then properties (P2), (P3), and (P4) are obviously satisfied. Conversely, suppose that there exists $T \in \mathcal{L}(X) \setminus \mathcal{L}(X)^{DR}$. Then $0 \in \sigma_{DR}(T) = acc \sigma_b(T)$, set $T_n = \frac{1}{n}T$ for all $n \in \mathbb{N}$. Thus $0 \in acc \sigma_b(T_n) = \sigma_{DR}(T_n)$, and $T_n \longrightarrow 0$, as $n \longrightarrow \infty$. However, $0 \notin \sigma_{DR}(0)$, then property (P3) does not hold, and therefore neither (P2) nor (P4). \Box

Acknowledgments. The authors are grateful to the referee for her/his constructive comments and remarks, especially her/his detailed suggestion on the proof of Theorem 2.1.

References

- [1] O. Abad, H. Zguitti, A note on the generalized Drazin-Riesz invertible operators. Annals of Functional Analysis 12, 55 (2021).
- [2] P. Aiena, Fredholm and Local Spectral Theory, with Applications to Multipliers. Springer, Berlin, 2004.
- [3] M. Berkani, M. Sarih, An Atkinson-type theorem for B-Fredholm operators, Studia Mathematica 148 (3) (2001), 251–7.
- [4] M. P. Drazin, Pseudo-inverse in associative rings and semigroups, American Mathematical Monthly 65 (1958), 506–514.
- [5] R. Harte, Invertibility and Singularity for Bounded Linear Operators, vol. 109, Marcel Dekker, New York, 1988.
- [6] M. Karmouni, A. Tajmouati, A Cline's formula for the generalized Drazin-Riesz inverses, Functional Analysis, Approximation and Computation 10 (1) (2018), 35–39.
- [7] J. J. Koliha, A generalized Drazin inverse, Glasgow Mathematical Journal 38 (3) (1996), 367–381.
- [8] V. Kordula, V. Müller, On the axiomatic theory of spectrum, Studia Mathematica 119 (2) (1996), 109–128.
- [9] R. A. Lubansky, Koliha-Drazin invertibles form a regularity, Mathematical Proceedings of Royal Irish Academy 107 (2) (2007), 137–141.
- [10] M. Mbekhta, V. Müller, On the axiomatic theory of spectrum II, Studia Mathematica 119 (2) (1996), 129–147.
- [11] V. Müller, Spectral theory of linear operators and spectral systems in Banach algebras, Birkhäuser, Basel, Boston, Berlin, 2007.
- [12] T. D. Tran, Spectral sets and the Drazin inverse with applications to second order differential equations, Applications of Mathematics 47 (1) (2002), 1–8.
- [13] S. C. Živković-Zlatanović, M. D. Cvetković, Generalized Kato-Riesz decomposition and generalized Drazin-Riesz invertible operators, Linear Multilinear Algebra 65 (6) (2017), 1171–1193.