Solving Integral Equations via Admissible Contraction Mappings

Gunasekaran Nallaselli ${ }^{\text {a }}$, Arul Joseph Gnanaprakasam ${ }^{\text {a }}$, Gunaseelan Mani ${ }^{\text {b }}$, Ozgur Ege ${ }^{\text {c }}$
${ }^{a}$ Department of Mathematics, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur - 603203, Kanchipuram, Chennai, Tamil Nadu, India.
${ }^{b}$ Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602 105, Tamil Nadu, India.
${ }^{c}$ Department of Mathematics, Ege University, Bornova, Izmir, 35100, Turkey.

Abstract

In this article, we introduce a new concept of admissible contraction and prove fixed point theorems which generalize Banach contraction principle in a different way more than in the known results from the literature. The article includes an example which shows the validity of our results, and additionally we obtain a solution of integral equation by admissible contraction mapping in the setting of b-metric spaces.

1. Introduction

Ciric [10] introduced the quasi-contractivity and multivalued quasi-contractions and established fixed point results under these contractions. In 1989, Bakhtin [7] introduced the concept of b-metric space. Czerwik [12] first presented a generalization of the Banach fixed point theorem in b-metric spaces, which is a problem of the convergence of measurable functions concerning measure.

Using this idea, many researchers presented a generalization of the renowned Banach fixed point theorem in the b-metric space. Czerwik's [13], Audi, Bota and Karapinar [6], Sintunavaat, Plibtieng, and Katchang [34], Kir and Kiziltunc [22], Dubey, Shukla, and Dubey [14] extended the fixed point theorem in b-metric space. Latif et al. [23] explained Suzuki type theorems for nonlinear contraction conditions in the b-metric space configuration. Pant and Panicker [28] obtained some fixed point theorems for admissible mappings in b-metric space and also discussed an application to a nonlinear quadratic integral equation.

Many fixed point theorems, such as the well-known Geraghty and Ciric theorems on b-metric spaces by Mlaiki [27], were improved by his results. In recent years, many fixed point results for single-valued and multivalued operators in b-metric spaces have been extensively studied in $[1,4,8,15,18,19,24,25,29,32]$ and elsewhere. Alghamdi [2] was the first to talk about b-metric-like space as well as in a partially ordered b-metric-like space. Shukla [33] generalized both the concepts of b-metric and partial metric spaces by introducing the partial b-metric space and an analogy of the Banach contraction principle, as well as the Kannan type fixed point theorem in partial b-metric spaces, which he also proved. Chen, Dong, and Zhu [9] introduced the concept of quasi-b-metric-like spaces and some fixed point results are investigated in quasi-b-metric-like spaces. Many papers have dealt with fixed point for single and multivalued in b-metriclike spaces (see [20,31]). In 2012, Samet et al. [30] initiated the concepts of α-admissible mappings and

[^0]established many fixed point results for such mappings defined on complete metric spaces. Afterward, Alsulami et al. [3] and Karapinar et al. [21] modified the notion of admissible mapping with contractions and integral types of generalized metric spaces. The idea of α-admissible has been utilized by many researchers (see, $[5,11,16,17,26,35]$).

In this article, using a mapping $\zeta: \mathbf{R}_{0}^{+\omega} \rightarrow \mathbf{R}_{0}^{+}$, we introduce a new type of contraction called $\alpha-\zeta$ contraction and prove a new fixed point theorem concerning $\alpha-\zeta$-contraction. The article includes the examples of $\alpha-\zeta$-contractions and give an integral equation application support by the nature of $\alpha-\zeta$ contractions.

2. Preliminaries

In this paper, we use the following notations. The sets of natural numbers, non-negative reals, and real numbers are denoted by $\mathbb{N}, \mathbf{R}_{0}^{+}$and \mathbf{R}, respectively. Czerwik [7] formally defined the notion of a b-metric space as follows:
Definition 2.1. ([7]) Let $\mathfrak{B} \neq \emptyset$. We say that a mapping $\mathrm{D}: \mathfrak{B} \times \mathfrak{B} \rightarrow \mathbf{R}_{0}^{+}$is a \mathfrak{b}-metric if there exists a positive number η such that $\forall \vartheta, \varsigma, \varrho \in \mathfrak{P}$,
$\left(\rho_{1}\right) \partial(\vartheta, \varsigma)=0 \Longleftrightarrow \vartheta=\varsigma ;$
$\left(\rho_{2}\right) \partial(\vartheta, \varsigma)=\partial(\varsigma, \vartheta) ;$
$\left(\partial_{3}\right) \partial(\vartheta, \varrho) \leq \eta(\partial(\vartheta, \varsigma)+\partial(\varsigma, \varrho))$.
Then triplet $(\mathfrak{F}, \mathrm{D}, \eta)$ is called a $\mathfrak{b}-M S(s h o r t l y, ~ \mathrm{~b}-\mathrm{MS})$.
The following is the main result in Aleksic [1].
Theorem 2.2. ([1]) Let $(\mathfrak{F}, \mathrm{D})$ be a complete $\mathrm{b}-\mathrm{MS}$ with a constant $\eta \geq 1$. If $\mathrm{G}: \mathfrak{B} \rightarrow \mathfrak{B}$ satisfies the inequality:

$$
\partial(\mathbf{G} \vartheta, \mathbf{G} \varsigma) \leq \tau_{1} \partial(\vartheta, \varsigma)+\tau_{2} \partial(\vartheta, G \vartheta)+\tau_{3} \partial(\varsigma, \mathbf{G} \varsigma)+\tau_{4} \partial(\vartheta, G \varsigma)+\partial(G \vartheta, \varsigma),
$$

where $\tau_{\kappa} \geq 0, \forall \kappa=1,2,3,4$ and $\tau_{1}+\tau_{2}+\tau_{3}+2 \tau_{4}<1$ for $\eta \in[1,2]$ and $\frac{2}{\eta}<\tau_{1}+\tau_{2}+\tau_{3}+2 \tau_{4}<1, \forall \eta \in[3,+\infty)$, then G has a unique fixed point.

Kirk [22] initiated the following concepts as follows.
Definition 2.3. ([22]) Let $\left\{\vartheta_{v}\right\}$ be a sequence in $\mathfrak{b}-M S(\mathfrak{P}, \mathrm{D}, \eta \geq 1)$.
(i) If for any positive number ξ, there exists $v_{0} \in \mathbb{N}$ such that $\partial\left(\vartheta_{v}, \vartheta_{\omega}\right)<\xi, \forall v, \omega \geq v_{0}$. Then the sequence $\left\{\vartheta_{v}\right\}$ is called Cauchy sequence.
(ii) If there exists $\hbar \in \mathfrak{P}$ such that any positive number ξ, there exists $v_{0} \in \mathbb{N}$ such that $\partial\left(\vartheta_{v}, \hbar\right)<\xi, \forall v \geq v_{0}$. Then, we say that the sequence $\left\{\vartheta_{v}\right\}$ converges to \hbar.

Definition 2.4. ([22]) We say that $a \mathfrak{b}-M S(\mathfrak{P}, \mathrm{D}, \eta \geq 1)$ is complete if every Cauchy sequence is convergent.
To prove our main results, we will use the following lemma in Latif [23], since b-metric is not continuous.
Lemma 2.5. ([23]) Suppose that any two sequences $\left\{\vartheta_{v}\right\}$ and $\left\{\varsigma_{v}\right\}$ in $(\mathfrak{P}, \mathcal{D}, \eta \geq 1)$ converge to ϑ and $\varsigma \in \mathfrak{P}$. Then

$$
\eta^{2} \partial(\vartheta, \varsigma) \geq \lim _{v \rightarrow+\infty} \sup \partial\left(\vartheta_{v}, \varsigma_{v}\right) \geq \lim _{v \rightarrow+\infty} \inf \partial\left(\vartheta_{v}, \varsigma_{v}\right) \geq \frac{1}{\eta^{2}} \partial(\vartheta, \varsigma) .
$$

Particularly, if $\vartheta=\varsigma$, then $\lim _{v \rightarrow+\infty} \supset\left(\vartheta_{v}, \varsigma_{v}\right)=0$. Moreover, for any $\varrho \in \mathfrak{P}$, we obtain

$$
\eta \partial(\vartheta, \varrho) \geq \lim _{v \rightarrow+\infty} \sup \partial\left(\vartheta_{v}, \varrho\right) \geq \lim _{v \rightarrow+\infty} \inf \partial\left(\vartheta_{v}, \varrho\right) \geq \frac{1}{\eta} \partial(\vartheta, \varrho) .
$$

In [25], Miculescu proved the following interesting results.
Lemma 2.6. ([25]) For each sequence $\left\{\vartheta_{v}\right\}$ of $\mathfrak{b}-M S(\mathfrak{P}, \mathrm{D}, \eta \geq 1)$ is Cauchy if there exists $\tau \in[0,1)$ such that $\partial\left(\vartheta_{v}, \vartheta_{v+g}\right) \leq \tau \partial\left(\vartheta_{v-g}, \vartheta_{v}\right), \forall v \in \mathbb{N}$.

In [20], Jain introduced the following notion of new contractive mapping.
Definition 2.7. ([20]) For any $\omega \in \mathbb{N}, \mathbb{E}_{\omega}$ denote the family of all functions $\zeta: \mathbf{R}_{0}^{+\omega} \rightarrow \mathbf{R}_{0}^{+}$such that
(i) $\zeta\left(\omega_{1}, \omega_{2}, \omega_{3}, \ldots . ., \omega_{\omega}\right)<\max \left\{\omega_{1}, \omega_{2}, \omega_{3}, \ldots . ., \omega_{\omega}\right\}$ if $\left(\omega_{1}, \omega_{2}, \omega_{3}, \ldots . ., \omega_{\omega}\right) \neq(0,0,0, \ldots \ldots ., 0)$;
(ii) if $\left\{\omega_{\kappa}{ }^{v}\right\}_{v \in \mathbb{N}}, 1 \leq \kappa \leq \omega$ are ω sequences in \mathbf{R}_{0}^{+}such that

$$
\lim _{v \rightarrow+\infty} \sup \omega_{\kappa}^{(v)}=\omega_{\kappa}<+\infty, \forall \kappa=1 \text { to } \omega,
$$

then

$$
\lim _{v \rightarrow+\infty} \inf \zeta\left(\omega_{1}^{v}, \omega_{2}^{v}, \omega_{3}^{v}, \ldots ., \omega_{\omega}^{v}\right) \leq \zeta\left(\omega_{1}, \omega_{2}, \omega_{3}, \ldots ., \omega_{\omega}\right) .
$$

The following α-admissible mapping was first initiated by Samet et al. [30].
Definition 2.8. Let $\mathfrak{B} \neq \emptyset$ and a mapping $\alpha: \mathfrak{P} \times \mathfrak{B} \rightarrow \mathbf{R}_{0}^{+}$. Then \mathbb{G} is said to be α-admissible if $(\vartheta, \varsigma) \in \mathfrak{P} \times \mathfrak{B}$,

$$
\begin{equation*}
\alpha(\vartheta, \varsigma) \geq 1 \text { implies } \alpha(\mathbb{G} \vartheta, \mathbb{G} \varsigma) \geq 1 \tag{1}
\end{equation*}
$$

In this paper, we present the notion of admissible ζ - contraction mapping of types, which includes the ζ-contraction (resp. ζ-contraction of types) of Jain et al. [20]. Utilizing this class of mapping, we establish approximate fixed point and fixed point theorems in the setting of b-metric and b-metric-like spaces.

3. Main Results

We introduce α-admissible ζ-contraction map of type-I motivated by Jain et al. [20] as follows.
Definition 3.1. Let \mathbb{G} be a self-map on $\mathfrak{b}-M S(\mathfrak{P}, \mathrm{D}, \eta \geq 1)$ and a mapping $\alpha: \mathfrak{P} \times \mathfrak{P} \rightarrow \mathbf{R}_{0}^{+}$. We say that \mathbb{G} is ζ-contractive map of type-I if there exists $\zeta \in \mathbb{E}_{4}$ and $\forall \vartheta, \varsigma \in \mathfrak{P}$,

$$
\begin{equation*}
\alpha(\vartheta, \varsigma) \supset(\mathbb{G} \vartheta, \mathrm{G} \varsigma) \leq \frac{1}{\eta} \zeta(\vartheta, \varsigma) \tag{2}
\end{equation*}
$$

where

$$
\zeta(\vartheta, \varsigma)=\max \left(\partial(\vartheta, \varsigma), \partial(\vartheta, G \vartheta), \partial(\varsigma, G \varsigma), \frac{\partial(\vartheta, G \varsigma)+\partial(G \vartheta, \varsigma)}{2 \eta}\right)
$$

In the following main theorem, Jain et al. [20] proved fixed point theorems in ζ-contraction in b-metric space, we extend this our initiated admissible ζ-contractive mapping of type - I in the setting of b-metric space.

Theorem 3.2. Let \mathbb{G} be a self-map on complete $\mathfrak{b}-M S(\mathfrak{P}, D, \eta \geq 1)$ and let $\alpha: \mathfrak{P} \times \mathfrak{P} \rightarrow \mathbf{R}_{0}^{+}$be a function. Assume that the following conditions are true:
(i) G is α-admissible.
(ii) $\exists \vartheta_{1} \in \mathfrak{P}$ such that $\alpha\left(\vartheta_{1}, G \vartheta_{1}\right) \geq 1$ and $\alpha\left(\vartheta_{1}, \mathbb{G}^{2} \vartheta_{1}\right) \geq 1$.
(iii)

$$
\begin{gathered}
\alpha(\vartheta, \varsigma) \supset(\mathrm{G} \vartheta, \mathrm{G} \varsigma) \leq \frac{1}{\eta} \zeta(\vartheta, \varsigma) \\
\text { where } \zeta(\vartheta, \varsigma)=\max \left(\partial(\vartheta, \varsigma), \partial(\vartheta, \mathrm{G} \vartheta), \partial(\varsigma, G \varsigma), \frac{\partial(\vartheta, \mathrm{G} \varsigma)+\partial(\mathrm{G} \vartheta, \varsigma)}{2 \eta}\right), \forall \vartheta, \varsigma \in \mathfrak{P} .
\end{gathered}
$$

Then, G has a unique fixed point.
Proof. Let $\vartheta_{1} \in \mathfrak{P}$ be such that $\alpha\left(\vartheta_{1}, \mathrm{G} \vartheta_{1}\right) \geq 1$ and $\alpha\left(\vartheta_{1}, \mathrm{G}^{2} \vartheta_{1}\right) \geq 1$. Since Banach abstracted the fixed point theorem from the result of Picard, we define the Picard's iterative sequence $\left\{\vartheta_{v}\right\}$ in \mathfrak{B} by the rule $\vartheta_{v}=\mathbb{G} \vartheta_{v-1}=\mathbb{G}^{v} \vartheta_{1}, \forall v \geq 1$. Obviously, if there exists $v_{0} \geq 1$ for which $\mathbb{G}^{v_{0}} \vartheta_{1}=\mathbb{G}^{v_{0}+1} \vartheta_{1}$ then $\mathbb{G}^{v_{0}} \vartheta_{1}$ has a fixed point of G . Thus, we suppose that $\mathbb{G}^{v} \vartheta_{1} \neq \mathbb{G}^{v+1} \vartheta_{1}$ for every $v \geq 1$.

Since \mathbb{G} is α-admissible, the condition (ii) implies

$$
\alpha\left(\vartheta_{1}, \vartheta_{2}\right)=\alpha\left(\vartheta_{1}, \mathbf{G} \vartheta_{1}\right) \geq 1 \Longrightarrow \alpha\left(\mathbb{G} \vartheta_{1}, \mathbf{G} \vartheta_{2}\right)=\alpha\left(\vartheta_{2}, \vartheta_{3}\right) \geq 1
$$

continuing in this way,

$$
\alpha\left(\vartheta_{v}, \vartheta_{v+1}\right) \geq 1, \forall v \in \mathbb{N}
$$

In a similar way, starting with

$$
\alpha\left(\vartheta_{1}, \vartheta_{3}\right)=\alpha\left(\vartheta_{1}, \mathbb{G}^{2} \vartheta_{1}\right) \geq 1 \Longrightarrow \alpha\left(\mathbb{G} \vartheta_{1}, \mathbb{G} \vartheta_{3}\right)=\alpha\left(\vartheta_{2}, \vartheta_{4}\right) \geq 1
$$

we deduce

$$
\alpha\left(\vartheta_{v}, \vartheta_{v+2}\right) \geq 1, \forall v \in \mathbb{N} .
$$

Assume that $\vartheta_{v} \neq \vartheta_{v+1} \forall v \in \mathbb{N}$. Now, we prove $\left\{\vartheta_{v}\right\}$ is a Cauchy sequence. Let $v \in \mathbb{N}$. Consider

$$
\begin{align*}
\partial\left(\vartheta_{v}, \vartheta_{v+g}\right)= & \partial\left(G^{v} \vartheta_{1}, G^{v+1} \vartheta_{1}\right) \\
\leq & \alpha\left(G^{v-1} \vartheta_{1}, G^{v} \vartheta_{1}\right) \partial\left(G^{v-1} \vartheta_{1}, G^{v} \vartheta_{1}\right) \\
\leq & \frac{1}{\eta} \max \left(\partial\left(\mathbb{G}^{v-1} \vartheta_{1}, G^{v} \vartheta_{1}\right), \partial\left(G^{v-1} \vartheta_{1}, G^{v} \vartheta_{1}\right), \partial\left(G^{v} \vartheta_{1}, \mathbb{G}^{v+1} \vartheta_{1}\right),\right. \\
& \left.\frac{\partial\left(G^{v-1} \vartheta_{1}, \mathbb{G}^{v+1} \vartheta_{1}\right)+\partial\left(G^{v} \vartheta_{1}, G^{v} \vartheta_{1}\right)}{2 \eta}\right) \\
= & \frac{1}{\eta} \max \left(\partial\left(G^{v-1} \vartheta_{1}, G^{v} \vartheta_{1}\right), \frac{\partial\left(G^{v-1} \vartheta_{1}, G^{v+1} \vartheta_{1}\right)}{2 \eta}\right) \\
\leq & \frac{1}{\eta} \max \left(\partial\left(G^{v-1} \vartheta_{1}, G^{v} \vartheta_{1}\right), \frac{\partial\left(G^{v-1} \vartheta_{1}, G^{v} \vartheta_{1}\right)+\partial\left(G^{v} \vartheta_{1}, G^{v+1} \vartheta_{1}\right)}{2}\right) \\
\leq & \frac{1}{\eta} \max \left(\partial\left(\vartheta_{v-1}, \vartheta_{v}\right), \frac{\partial\left(\vartheta_{v-1}, \vartheta_{v}\right)+\partial\left(\vartheta_{v}, \vartheta_{v+1}\right)}{2}\right), \tag{3}
\end{align*}
$$

by (3) implies that

$$
\begin{equation*}
\partial\left(\vartheta_{v}, \vartheta_{v+g}\right)<\frac{1}{\eta} \partial\left(\vartheta_{v-g}, \vartheta_{v}\right), \forall v \geq 1 . \tag{4}
\end{equation*}
$$

Case 1: If $\eta>1$, then, the sequence $\left\{\mathcal{\vartheta}_{v}\right\}$ is Cauchy, by Lemma 2.6 in view of equation (4).
Case 2: If $\eta=1$, then, by equation (4), we get monotonically decreasing and bounded below sequence $\left\{\partial\left(\vartheta_{v}, \vartheta_{v+g}\right)\right\}$. Now, we obtain, $\partial\left(\vartheta_{v}, \vartheta_{v+g}\right) \rightarrow b$ for some $b \geq 0$. Suppose that $b>0$ now, taking $\lim _{v \rightarrow+\infty}$ in (3), we have $b \leq \zeta\left(b, b, b, b^{\prime}\right)$, where

$$
\mathrm{b}^{\prime}=\lim _{v \rightarrow+\infty} \sup \frac{\partial\left(\vartheta_{v-g}, \vartheta_{v+g}\right)}{2} \leq \lim _{v \rightarrow+\infty} \sup \frac{\partial\left(\vartheta_{v-g}, \vartheta_{v}\right)+\partial\left(\vartheta_{v}, \vartheta_{v+g}\right)}{2} .
$$

Now, $b \leq \zeta\left(b, b, b, b^{\prime}\right)<\max \left(b, b, b, b^{\prime}\right)=b$, which is a contradiction, therefore,

$$
\begin{equation*}
\lim _{v \rightarrow+\infty} \partial\left(\vartheta_{v}, \vartheta_{v+g}\right)=0 \tag{5}
\end{equation*}
$$

On contrary, we assume that the sequence $\left\{\vartheta_{v}\right\}$ is not Cauchy, then $\exists \xi>0$ and sequences $\left\{\omega_{\mathfrak{n}}\right\},\left\{v_{n}\right\} ; \omega_{\mathfrak{n}}>$ $v_{\mathfrak{n}} \geq \mathfrak{n}$ such that

$$
\begin{equation*}
\partial\left(\vartheta_{\omega_{n}}, \vartheta_{v_{n}}\right) \geq \xi \tag{6}
\end{equation*}
$$

Now, take $\omega_{\mathfrak{n}}>v_{\mathfrak{n}}$ such that equation (6) holds. Then,

$$
\begin{aligned}
\xi & \leq \partial\left(\vartheta_{\omega_{n}}, \vartheta_{v_{n}}\right) \\
& \leq \partial\left(\vartheta_{\omega_{n}}, \vartheta_{\omega_{n-g}}\right)+\supset\left(\vartheta_{\omega_{n-g}}, \vartheta_{v_{n}}\right) \\
& <\partial\left(\vartheta_{\omega_{n}}, \vartheta_{v_{n-g}}\right)+\xi \\
& <\partial\left(\vartheta_{n}, \vartheta_{n-g}\right)+\xi
\end{aligned}
$$

thus, taking $\lim \mathfrak{n} \rightarrow+\infty$ and by (4), we get

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \partial\left(\vartheta_{\omega_{n}}, \vartheta_{v}\right)=\xi \tag{7}
\end{equation*}
$$

Now, consider

$$
\begin{aligned}
\partial\left(\vartheta_{\omega_{n}+1}, \vartheta_{v_{n}+1}\right) & \leq \alpha\left(\vartheta_{\omega_{n}}, \vartheta_{v_{n}}\right) \partial\left(G \vartheta_{\omega_{n}}, G \vartheta_{v_{n}}\right) \\
& \leq \max \left(\partial\left(\vartheta_{\omega_{n}}, \vartheta_{v_{n}}\right), \partial\left(\vartheta_{\omega_{n}}, \vartheta_{\omega_{n}+1}\right), \partial\left(\vartheta_{v_{n}}, \vartheta_{v_{n}+1}\right), \frac{\partial\left(\vartheta_{\omega_{n}}, \vartheta_{v_{n}+1}\right)+\partial\left(\vartheta_{\omega_{n}+1}, \vartheta_{v_{n}}\right)}{2}\right)
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
\partial\left(\vartheta_{\omega_{n}}, \vartheta_{v_{n}}\right) & \leq \partial\left(\vartheta_{\omega_{n}}, \vartheta_{\omega_{n}+1}\right)+\partial\left(\vartheta_{\omega_{n}+1}, \vartheta_{v_{n}+1}\right)+\partial\left(\vartheta_{v_{n}+1}, \vartheta_{v_{n}}\right) \\
& \leq \partial\left(\vartheta_{\omega_{n}}, \vartheta_{\omega_{n}+1}\right)+\partial\left(\vartheta_{v_{n}+1}, \vartheta_{v_{n}}\right) \\
& +\max \left(\partial\left(\vartheta_{\omega_{n}}, \vartheta_{v_{n}}\right), \partial\left(\vartheta_{\omega_{n}}, \vartheta_{\omega_{n}+1}\right), \partial\left(\vartheta_{v_{n}}, \vartheta_{v_{n}+1}\right), \frac{\partial\left(\vartheta_{\omega_{n}}, \vartheta_{v_{n}+1}\right)+\partial\left(\vartheta_{\omega_{n}+1}, \vartheta_{v_{n}}\right)}{2}\right) .
\end{aligned}
$$

From the above, setting liminf $\lim _{\mathfrak{n}}$ and using equations (5) and (7). Thus, we get $\xi \leq 0+0+\zeta\left(\xi, 0,0, \xi^{\prime}\right)$, where

$$
\begin{aligned}
\xi^{\prime} & =\lim _{n \rightarrow+\infty} \sup \frac{\partial\left(\vartheta_{\omega_{n}}, \vartheta_{v_{n}+1}\right)+\partial\left(\vartheta_{\omega_{n}+1}, \vartheta_{v_{n}}\right)}{2} \\
& \leq \lim _{n \rightarrow+\infty} \sup \frac{\partial\left(\vartheta_{\omega_{n}}, \vartheta_{v_{n}}\right)+\partial\left(\vartheta_{\omega_{n}}, \vartheta_{v_{n}+1}\right)+\partial\left(\vartheta_{\omega_{n}+1}, \vartheta_{\omega_{n}}\right)+\partial\left(\vartheta_{\omega_{n}}, \vartheta_{v_{n}}\right)}{2} \\
& =\frac{\xi+0+0+\xi}{2} \\
& =\xi .
\end{aligned}
$$

Thus, $\xi \leq \zeta\left(\xi, 0,0, \xi^{\prime}\right)<\max \left\{\xi, 0,0, \xi^{\prime}\right\}=\xi$, a contradiction. Thus, the Cauchy sequence $\left\{\vartheta_{v}\right\}$ in $\mathfrak{b}-\mathrm{MS}$ $\left(\mathfrak{P}, \supset, \eta \geq 1\right.$) is complete. Therefore, $\exists \vartheta \in \mathfrak{P}$ such that $\vartheta_{v} \rightarrow \vartheta$.

Consider

$$
\begin{aligned}
\partial\left(\mathrm{G} \vartheta_{v}, \mathrm{G} \vartheta\right) & \leq \alpha\left(\vartheta_{v}, \vartheta\right) \partial\left(\mathrm{G} \vartheta_{v}, \mathrm{G} \vartheta\right) \\
& \leq \frac{1}{\eta} \max \left(\partial\left(\vartheta_{v}, \vartheta\right), \partial\left(\vartheta_{v}, \mathrm{G} \vartheta_{v}\right), \partial(\vartheta, \mathrm{G} \vartheta), \frac{\partial\left(\vartheta_{v}, \mathrm{G} \vartheta\right)+\partial\left(\vartheta, \mathrm{G} \vartheta_{v}\right)}{2 \eta}\right)
\end{aligned}
$$

which implies that

$$
\begin{aligned}
\partial\left(\vartheta_{v+1}, \mathrm{G} \vartheta\right) & =\partial\left(\mathrm{G} \vartheta_{v}, \mathrm{G} \vartheta\right) \\
& \leq \alpha\left(\vartheta_{v}, \vartheta\right) \partial\left(\mathrm{G} \vartheta_{v}, \mathrm{G} \vartheta\right) \\
& \leq \frac{1}{\eta} \max \left(\partial\left(\vartheta_{v}, \vartheta\right), \partial\left(\vartheta_{v}, \mathrm{G} \vartheta_{v+1}\right), \partial(\vartheta, \mathrm{G} \vartheta), \frac{\partial\left(\vartheta_{v}, \mathrm{G} \vartheta\right)+\partial\left(\vartheta, \mathrm{G} \vartheta_{v}\right)}{2 \eta}\right) .
\end{aligned}
$$

From the above inequality taking $\lim \inf v \rightarrow+\infty$ and by Lemma 2.5, we get

$$
\frac{1}{\eta} \partial(\vartheta, G \vartheta) \leq \frac{1}{\eta} \max (0,0, \partial(\vartheta, G \vartheta), \hbar),
$$

i.e.,

$$
\partial(\vartheta, G \vartheta) \leq \max (0,0, \partial(\vartheta, G \vartheta), \hbar),
$$

where

$$
\hbar=\lim _{v \rightarrow+\infty} \sup \frac{\partial\left(\vartheta_{v}, \mathrm{G} \vartheta\right)+\partial(\vartheta, \mathrm{G} \vartheta v)}{2 \eta} \leq \lim _{v \rightarrow+\infty} \sup \frac{\operatorname{s\partial }(\vartheta, \mathrm{G} \vartheta)+0}{2 \eta}=\frac{\partial(\vartheta, \mathrm{G} \vartheta)}{2}
$$

Thus

$$
\partial(\vartheta, G \vartheta) \leq \zeta(0,0, \partial(\vartheta, G \vartheta), \hbar)<\max \{0,0, \partial(\vartheta, G \vartheta), \hbar\}=\partial(\vartheta, G \vartheta),
$$

which is a contradiction. Hence $G \vartheta=\vartheta$.
Suppose that ϑ, ς are two fixed points of G such that $G \vartheta=\vartheta \neq \varsigma=G \varsigma$. Then, for all $\vartheta, \varsigma \in \mathfrak{B}$ such that $\alpha(\vartheta, \varsigma) \geq 1$. If $\partial(\vartheta, \varsigma)>0$ then, by the contractive condition (iii) with the fixed points ϑ and ς yields

$$
\begin{aligned}
\partial(\vartheta, \varsigma)=\alpha(\vartheta, \varsigma) \partial(G \vartheta, G \varsigma) & \leq \frac{1}{\eta} \max \left(\partial(\vartheta, \varsigma), \partial(\vartheta, G \vartheta), \partial(\varsigma, G \varsigma), \frac{\partial(\vartheta, G \varsigma)+\partial(\varsigma, G \vartheta)}{2 \eta}\right) \\
& \leq \frac{1}{\eta} \max \left(\partial(\vartheta, \varsigma), 0,0, \frac{\partial(\vartheta, \varsigma)}{\eta}\right) \\
& <\frac{1}{\eta} \max \left\{\left(\partial(\vartheta, \varsigma), 0,0, \frac{\partial(\vartheta, \varsigma)}{\eta}\right\}\right. \\
& =\frac{\partial(\vartheta, \varsigma)}{\eta},
\end{aligned}
$$

which is a contradiction. Therefore, $\vartheta=\varsigma$.
Now, the following corollary is an extension of Theorem 3.2.
Corollary 3.3. Let \mathbb{G} be a self-map on complete $\mathfrak{b}-M S(\mathfrak{P}, \mathrm{D}, \eta \geq 1)$ and let $\alpha: \mathfrak{P} \times \mathfrak{P} \rightarrow \mathbf{R}_{0}^{+}$be a function. Suppose that there exists $\mathrm{q} \in\left[0, \frac{1}{\eta}\right.$) such that the following assumptions are true:
(i) \mathbb{G} is α-admissible;
(ii) $\exists \vartheta_{1} \in \mathfrak{P}$ such that $\alpha\left(\vartheta_{1}, G \vartheta_{1}\right) \geq 1$ and $\alpha\left(\vartheta_{1}, \mathbb{G}^{2} \vartheta_{1}\right) \geq 1$;
(iii)

$$
\begin{equation*}
\alpha(\vartheta, \varsigma) \partial(G \vartheta, G \varsigma) \leq q \max \left\{\partial(\vartheta, \varsigma), \partial(\vartheta, G \vartheta), \partial(\varsigma, G \varsigma), \frac{\partial(\vartheta, G \varsigma)+\supset(G \vartheta, \varsigma)}{2 \eta}\right\}, \quad \forall \vartheta, \varsigma \in \mathfrak{P} \tag{8}
\end{equation*}
$$

Then, G has a unique fixed point.
Proof. Let $\zeta \in \mathbb{E}_{4}$ be defined by $\zeta\left(\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right)=\varsigma \eta \max \left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}$. Then G has a unique fixed point by Theorem 3.2.

We see that all conditions are satisfied in Theorem 3.2, but it is not applicable in Corollary 3.3.
Example 3.4. Let $\mathfrak{P}=\left\{\frac{1}{\sqrt{v}}: v \in \mathbb{N} \cup\{0\}\right\}$. Define $\partial: \mathfrak{P} \times \mathfrak{P} \rightarrow \mathbf{R}_{0}^{+}$by $\partial(\vartheta, \varsigma)=|\vartheta-\varsigma|^{2}, \forall \vartheta, \varsigma \in \mathfrak{P}$. Then ∂ is a \mathfrak{b}-metric on \mathfrak{P} with $\eta=2$. A self-map \mathfrak{G} on \mathfrak{P} defined by

$$
\mathrm{G}\left(\frac{1}{\sqrt{v}}\right)=\frac{1}{\sqrt{2(v+1)}}, \forall v \in \mathbb{N} \text { and } \mathrm{G}(0)=0
$$

Define

$$
\zeta\left(\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right)= \begin{cases}\frac{\max \left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}}{1+\omega_{1},}, & \text { if } \omega_{1}>0 \\ \frac{1}{2} \max \left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}, & \text { otherwise } .\end{cases}
$$

and define $\alpha: \mathfrak{P} \times \mathfrak{P} \rightarrow \mathbf{R}_{0}^{+}$by

$$
\alpha(\vartheta, \varsigma)= \begin{cases}1, & \text { if } \vartheta \leq \varsigma \text { or } \varsigma \leq \vartheta \\ 0, & \text { if otherwise }\end{cases}
$$

Now, for all $\vartheta, \varsigma \in \mathfrak{P}$, condition (iii) of Theorem 3.2 is satisfied, and all conditions of Theorem 3.2 are satisfied. However, if (8) is satisfied, then, we have

$$
\alpha(\vartheta, \varsigma) \supset(\mathbb{G} \vartheta, \mathbb{G} \varsigma) \leq \mathrm{q} \mathbb{N}(\vartheta, \varsigma), \forall \vartheta, \varsigma \in \mathfrak{P},
$$

where $\mathbb{N}(\vartheta, \varsigma)=\max \left\{\partial(\vartheta, \varsigma), \partial(\vartheta, G \vartheta), \partial(\varsigma, G \varsigma), \frac{\partial(\vartheta, G \varsigma)+\partial(G \vartheta, \varsigma)}{2 \eta}\right\}$. So, in particular, we have

$$
\alpha\left(\frac{1}{\sqrt{v}}, \frac{1}{\sqrt{\omega}}\right) \supset\left(\frac{1}{\sqrt{2(v+1)}}, \frac{1}{\sqrt{2(\omega+1)}}\right) \leq \mathrm{q} \mathbb{N}\left(\frac{1}{\sqrt{v}}, \frac{1}{\sqrt{\omega}}\right), \forall \omega, v \in \mathbb{N}, \omega \neq v
$$

i.e.,

$$
\frac{\left|\frac{1}{\sqrt{2(v+1)}}, \frac{1}{\sqrt{2(\omega+1)}}\right|^{2}}{\mathbb{N}\left(\frac{1}{\sqrt{v}}, \frac{1}{\sqrt{\omega}}\right)} \leq 2 \mathrm{q}, \forall \omega, v \in \mathbb{N}, \omega \neq v
$$

In the above inequality, take $\lim v, \omega \rightarrow+\infty$, we have $2 \mathrm{q} \geq 1$, a contradiction. Thus, this example is not applied for Corollary 3.3.

3.1. Second Main Result

We introduce the another concept of α-admissible ζ-contraction mapping of type-II motivated by Jain et al. [20] as follows.

Definition 3.5. Let \mathbb{G} be a self-map on $\mathfrak{b}-M S(\mathfrak{P}, \mathcal{D}, \eta \geq 1)$ and a mapping $\alpha: \mathfrak{P} \times \mathfrak{P} \rightarrow \mathbf{R}_{0}^{+}$. We say that \mathbb{G} is ζ-contractive map of type-II if there exists $\zeta \in \mathbb{E}_{5}$,

$$
\begin{equation*}
\alpha(\vartheta, \varsigma) \supset(\mathrm{G} \vartheta, \mathrm{G} \varsigma) \leq \frac{1}{\eta} \zeta(\vartheta, \varsigma), \forall \vartheta, \varsigma \in \mathfrak{P}, \tag{9}
\end{equation*}
$$

where $\zeta(\vartheta, \varsigma)=\max \left(\partial(\vartheta, \varsigma), \partial(\vartheta, G \vartheta), \partial(\varsigma, G \varsigma), \frac{\partial(\vartheta, G \varsigma)}{2 \eta}, \partial(G \vartheta, \varsigma)\right)$.
In a similar way, the proof of our succeeding results proceeds as the proof of Theorem 3.2.
Theorem 3.6. Let \mathfrak{G} be a self-map on complete $\mathfrak{b}-M S(\mathfrak{P}, \supset, \eta \geq 1)$ and $\alpha: \mathfrak{P} \times \mathfrak{P} \rightarrow \mathbf{R}_{0}^{+}$be a function. Assume that the following conditions are true:
(i) G is α-admissible;
(ii) $\exists \vartheta_{1} \in \mathfrak{P}$ such that $\alpha\left(\vartheta_{1}, \mathbb{G} \vartheta_{1}\right) \geq 1$ and $\alpha\left(\vartheta_{1}, \mathbb{G}^{2} \vartheta_{1}\right) \geq 1$;
(iii)

$$
\begin{gathered}
\alpha(\vartheta, \varsigma) \partial(G \vartheta, G \varsigma) \leq \frac{1}{\eta} \zeta(\vartheta, \varsigma), \forall \vartheta, \varsigma \in \mathfrak{P} \\
\text { where } \zeta(\vartheta, \varsigma)=\max \left(\partial(\vartheta, \varsigma), \partial(\vartheta, G \vartheta), \partial(\varsigma, G \varsigma), \frac{\partial(\vartheta, G \varsigma)}{2 \eta}, \partial(G \vartheta, \varsigma)\right)
\end{gathered}
$$

Then, G has a unique fixed point.
Corollary 3.7. Let \mathfrak{G} be a self-map on complete $\mathfrak{b}-M S(\mathfrak{P}, \mathrm{D}, \eta \geq 1)$ and $\alpha: \mathfrak{P} \times \mathfrak{P} \rightarrow \mathbf{R}_{0}^{+}$be a function. Assume that there exists $\mathrm{q} \in\left[0, \frac{1}{\eta}\right.$) such that the following results are true:
(i) G is α-admissible;
(ii) $\exists \vartheta_{1} \in \mathfrak{P}$ such that $\alpha\left(\vartheta_{1}, \mathrm{G} \vartheta_{1}\right) \geq 1$ and $\alpha\left(\vartheta_{1}, \mathrm{G}^{2} \vartheta_{1}\right) \geq 1$;
(iii)

$$
\alpha(\vartheta, \varsigma) \partial(G \vartheta, G \varsigma) \leq q \max \left(\partial(\vartheta, \varsigma), \partial(\vartheta, G \vartheta), \partial(\varsigma, G \varsigma), \frac{\partial(\vartheta, G \varsigma)}{2 \eta}, \partial(G \vartheta, \varsigma)\right), \forall \vartheta, \varsigma \in \mathfrak{P} .
$$

Then, G has a unique fixed point.
Proof. Let ζ in \mathbb{E}_{5} defined by $\zeta\left(\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}, \omega_{5}\right)=\varsigma \eta \max \left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}, \omega_{5}\right\}$. Then, by Theorem 3.6, G has a unique fixed point.

Corollary 3.8. Let \mathfrak{G} be a self-map on complete $\mathfrak{b}-M S(\mathfrak{P}, \supset, \eta \geq 1)$ and $\alpha: \mathfrak{P} \times \mathfrak{P} \rightarrow \mathbf{R}_{0}^{+}$be a function. Assume the following conditions are true:
(i) \mathfrak{G} is α-admissible;
(ii) $\exists \vartheta_{1} \in \mathfrak{P}$ such that $\alpha\left(\vartheta_{1}, \mathbb{G} \vartheta_{1}\right) \geq 1$ and $\alpha\left(\vartheta_{1}, \mathbb{G}^{2} \vartheta_{1}\right) \geq 1$;
(iii) $\forall \vartheta, \varsigma \in \mathfrak{P}$,

$$
\begin{equation*}
\alpha(\vartheta, \varsigma) \supset(G \vartheta, G \varsigma) \leq \tau_{1} \partial(\vartheta, \varsigma)+\tau_{2} \partial(\vartheta, G \vartheta)+\tau_{3} \supset(\varsigma, G \varsigma)+\tau_{4} \partial(\vartheta, G \varsigma)+\tau_{5} \supset(G \vartheta, \varsigma), \tag{10}
\end{equation*}
$$

where $\tau_{1}+\tau_{2}+\tau_{3}+\delta \eta \tau_{4}+\tau_{5}<\frac{1}{\eta}$ and $\tau_{\kappa} \geq 0, \forall \kappa=1$ to 5 .
Then, G has a unique fixed point.
Proof. Let ζ in \mathbb{E}_{5} defined by $\zeta\left(\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}, \omega_{5}\right)=\eta\left(\tau_{1} \partial(\vartheta, \varsigma)+\tau_{2} \partial(\vartheta, G \vartheta)+\tau_{3} \partial(\varsigma, \mathbb{G} \varsigma)+\tau_{4} \partial(\vartheta, G()+\right.$ $\left.\tau_{5} \partial(G \vartheta, \varsigma)\right)$. Then, by Theorem 3.6, G has a unique fixed point.

We prove some fixed point results for α-admissible ζ-contractive mappings in \mathfrak{b}-metric-like spaces, inspired by the work in $[18,19]$.

4. Fixed Point Results in b-MLSs

In 2014, Shukla [33] initiated the partial b-metric.
Definition 4.1. [33] Let $\mathfrak{P} \neq \emptyset$. Then, we say that a mapping $\supset: \mathfrak{P} \times \mathfrak{P} \rightarrow \mathbf{R}_{0}^{+}$is partial b-metric if there exists a positive number η such that $\forall \vartheta, \varsigma, \varrho \in \mathfrak{P}$,
$\left(p b_{1}\right) \partial(\vartheta, \varsigma)=0 \Longleftrightarrow \partial(\vartheta, \vartheta)=\partial(\vartheta, \varsigma)=\partial(\varsigma, \varsigma) ;$
$\left(p b_{2}\right) \partial(\vartheta, \vartheta) \leq \partial(\vartheta, \varsigma) ;$
$\left(p b_{3}\right) \partial(\vartheta, \varsigma)=\partial(\varsigma, \vartheta)$;
$\left(p b_{4}\right) \partial(\vartheta, \varrho) \leq \eta(\supset(\vartheta, \varsigma)+\partial(\varsigma, \varrho))-\supset(\varsigma, \varsigma)$.
Then, the triplet $(\mathfrak{P}, \mathrm{D}, \eta)$ is said to be a partial $\mathfrak{b}-M S$.
In 2013, Alghamdi [2] initiated the concept of b-metric-like space.
Definition 4.2. [2] Let $\mathfrak{P} \neq \emptyset$. Then, we say that a mapping $\supset: \mathfrak{P} \times \mathfrak{P} \rightarrow \mathbf{R}_{0}^{+}$is \mathfrak{b}-metric-like if there exists a positive number η such that $\forall \vartheta, \varsigma, \varrho \in \mathfrak{P}$,
$\left(b m l_{1}\right) \partial(\vartheta, \varsigma)=0 \Longleftrightarrow \vartheta=\varsigma ;$
$\left(b m l_{2}\right) \partial(\vartheta, \varsigma)=\rho(\varsigma, \vartheta)$;
$\left(b m l_{3}\right) \partial(\vartheta, \varrho) \leq \eta(\supset(\vartheta, \varsigma)+\supset(\varsigma, \varrho))$.
Then, the triplet $(\mathfrak{B}, \mathrm{D}, \eta)$ is called a \mathfrak{b}-metric-like space (shortly, $\mathfrak{b}-M L S$).
Definition 4.3. [9] Let $\left\{\vartheta_{v}\right\}$ be a sequence in $\mathfrak{b}-M L S(\mathfrak{P}, \supset, \eta \geq 1)$. We say that a point $\vartheta \in \mathfrak{P}$ is the limit point of $\left\{\vartheta_{v}\right\}$ if $\lim _{v \rightarrow+\infty} \supset\left(\vartheta, \vartheta_{v}\right)=\supset(\vartheta, \vartheta)$, and the sequence $\left\{\vartheta_{v}\right\}$ is said to be convergent to ϑ and it is denoted $\vartheta_{v} \rightarrow \vartheta$ as $v \rightarrow+\infty$.

Definition 4.4. [9]
(i) A sequence $\left\{\vartheta_{v}\right\}$ in a b-MLS $(\mathfrak{P}, \supset, \eta \geq 1)$ is said to be Cauchy sequence if $\lim _{v, \omega \rightarrow+\infty} \partial\left(\vartheta_{v}, \vartheta_{\omega}\right)$ exists and is finite.
(ii) A $\mathfrak{b}-M L S(\mathfrak{B}, \supset, \eta \geq 1)$ is called complete if for each Cauchy sequence $\left\{\vartheta_{v}\right\}$ in \mathfrak{P} converges to $\vartheta \in \mathfrak{P}$. i.e.,

$$
\lim _{v, \omega \rightarrow+\infty} \partial\left(\vartheta_{v}, \vartheta_{\omega}\right)=\partial(\vartheta, \vartheta)=\lim _{v \rightarrow+\infty} \partial\left(\vartheta_{v}, \vartheta\right)
$$

The following proposition used by Alghamdi [2] for proving fixed point result.
Proposition 4.5. [2] A sequence $\left\{\vartheta_{v}\right\}$ in $\mathfrak{b}-\operatorname{MLS}(\mathfrak{P}, \supset, \eta \geq 1)$ such that $\lim _{v \rightarrow+\infty} \partial\left(\vartheta_{v}, \vartheta\right)=0$, for some $\vartheta \in \mathfrak{P}$. Then,
(i) ϑ is unique.
(ii) $\frac{1}{\eta} \partial(\vartheta, \varsigma) \leq \lim _{v \rightarrow+\infty} \partial\left(\vartheta_{v}, \varsigma\right) \leq \eta \partial(\vartheta, \varsigma)$ for all $\varsigma \in \mathfrak{P}$.

In 2019, Sen [31] introduced the following lemma.
Lemma 4.6. [31] A sequence $\left\{\vartheta_{v}\right\}$ in $\mathfrak{b}-M L S(\mathfrak{P}, \mathrm{D}, \eta \geq 1)$ such that for some $\tau \in[0,1)$,

$$
\partial\left(\vartheta_{v}, \vartheta_{v+1}\right) \leq \tau \partial\left(\vartheta_{v-1}, \vartheta_{v}\right), \forall v \in \mathbb{N} .
$$

Then, the sequence $\left\{\vartheta_{v}\right\}$ is Cauchy with $\lim _{v, \omega \rightarrow+\infty} \supset\left(\vartheta_{v}, \vartheta_{\omega}\right)=0$.
Now, we extend Theorem 3.2 in the framework of admissible ζ-contraction in b-metric-like space and provide a supporting example at the end of the proof.

Theorem 4.7. Let \mathfrak{G} be a self-map on complete $\mathfrak{b}-M S(\mathfrak{P}, \mathrm{D}, \eta \geq 1)$ and $\alpha: \mathfrak{P} \times \mathfrak{P} \rightarrow \mathbf{R}_{0}^{+}$be a mapping. Assume that there exists $\zeta \in \mathbb{E}_{4}$ such that the following assumptions are true:
(i) \mathfrak{G} is α-admissible;
(ii) $\exists \vartheta_{1} \in \mathfrak{P}$ such that $\alpha\left(\vartheta_{1}, \mathbb{G} \vartheta_{1}\right) \geq 1$ and $\alpha\left(\vartheta_{1}, \mathbb{G}^{2} \vartheta_{1}\right) \geq 1$;
(iii)

$$
\alpha(\vartheta, \varsigma) \supset(\mathbb{G} \vartheta, G \varsigma) \leq \frac{1}{\eta} \zeta(\vartheta, \varsigma), \forall \vartheta, \varsigma \in \mathfrak{P}
$$

where

$$
\zeta(\vartheta, \varsigma)=\max \left(\partial(\vartheta, \varsigma), \partial(\vartheta, G \vartheta), \partial(\varsigma, G \varsigma), \frac{\partial(\vartheta, G \varsigma)+\partial(G \vartheta, \varsigma)-\partial(\varsigma, \varsigma)}{2 \eta}\right)
$$

Then, G has a unique fixed point.
Proof. Let $\vartheta_{1} \in \mathfrak{P}$ be such that $\alpha\left(\vartheta_{1}, \mathrm{G} \vartheta_{1}\right) \geq 1$ and $\alpha\left(\vartheta_{1}, \mathrm{G}^{2} \vartheta_{1}\right) \geq 1$. We define the iterative sequence $\left\{\vartheta_{v}\right\}$ in \mathfrak{P} by the rule $\vartheta_{v}=\mathbb{G} \vartheta_{v-1}=\mathbb{G}^{v} \vartheta_{1}, \forall v \geq 1$. Obviously, if there exists $v_{0} \geq 1$ for which $\mathbb{G}^{v_{0}} \vartheta_{1}=\mathbb{G}^{v_{0}+1} \vartheta_{1}$, then $\mathbb{G}^{v_{0}} \vartheta_{1}$ has a fixed point of \mathbb{G}. Thus, suppose $\mathbb{G}^{v} \vartheta_{1} \neq \mathbb{G}^{v+1} \vartheta_{1}$ for every $v \geq 1$.

Since \mathbb{G} is α-admissible, the condition (ii) implies

$$
\alpha\left(\vartheta_{1}, \vartheta_{2}\right)=\alpha\left(\vartheta_{1}, \mathrm{G} \vartheta_{1}\right) \geq 1 \Longrightarrow \alpha\left(\mathrm{G} \vartheta_{1}, \mathrm{G} \vartheta_{2}\right)=\alpha\left(\vartheta_{2}, \vartheta_{3}\right) \geq 1,
$$

continuing in this way,

$$
\alpha\left(\vartheta_{v}, \vartheta_{v+1}\right) \geq 1, \forall v \in \mathbb{N} .
$$

In a similar way, starting with

$$
\alpha\left(\vartheta_{1}, \vartheta_{3}\right)=\alpha\left(\vartheta_{1}, \mathbb{G}^{2} \vartheta_{1}\right) \geq 1 \Longrightarrow \alpha\left(\mathbb{G} \vartheta_{1}, \mathbb{G} \vartheta_{3}\right)=\alpha\left(\vartheta_{2}, \vartheta_{4}\right) \geq 1,
$$

we deduce

$$
\alpha\left(\vartheta_{v}, \vartheta_{v+2}\right) \geq 1, \forall v \in \mathbb{N} .
$$

Assume that $\vartheta_{v} \neq \vartheta_{v+1} \forall v \in \mathbb{N}$. Now, we prove the sequence $\left\{\vartheta_{v}\right\}$ is Cauchy. Let $v \in \mathbb{N}$. Now,

$$
\supset\left(\vartheta_{v-1}, G \vartheta_{v}\right)+\supset\left(G \vartheta_{v-1}, \vartheta_{v}\right)=\partial\left(\vartheta_{v-1}, \vartheta_{v+1}\right)+\supset\left(\vartheta_{v}, \vartheta_{v}\right) \geq \supset\left(\vartheta_{v}, \vartheta_{v}\right) ;
$$

therefore, using (12), we have

$$
\begin{align*}
\partial\left(\vartheta_{v}, \vartheta_{v+g}\right) & =\partial\left(G^{v} \vartheta_{1}, G^{v+1} \vartheta_{1}\right) \\
& \leq \alpha\left(G^{v-1} \vartheta_{1}, G^{v} \vartheta_{1}\right) \partial\left(\mathbb{G}^{v-1} \vartheta_{1}, G^{v} \vartheta_{1}\right) \\
& \leq \frac{1}{\eta} \max \left\{\partial\left(\vartheta_{v-1}, \vartheta_{v}\right), \partial\left(\vartheta_{v-1}, \vartheta_{v}\right), \partial\left(\vartheta_{v}, \vartheta_{v+1}\right), \frac{\partial\left(\vartheta_{v-1}, \vartheta_{v+1}\right)+\partial\left(\vartheta_{v}, \vartheta_{v}\right)-\partial\left(\vartheta_{v}, \vartheta_{v}\right)}{2 \eta}\right\} \\
& \left.<\frac{1}{\eta} \max \left\{\partial\left(\vartheta_{v-1}, \vartheta_{v}\right), \partial\left(\vartheta_{v-1}, \vartheta_{v}\right), \partial\left(\vartheta_{v}, \vartheta_{v+1}\right), \frac{\partial\left(\vartheta_{v-1}, \vartheta_{v+1}\right)}{2 \eta}\right)\right\} \\
& =\frac{1}{\eta} \max \left\{\partial\left(\vartheta_{v-1}, \vartheta_{v}\right), \frac{\partial\left(\vartheta_{v-1}, \vartheta_{v+1}\right)}{2 \eta}\right\} \\
& \leq \frac{1}{\eta} \max \left\{\partial\left(\vartheta_{v-1}, \vartheta_{v}\right), \frac{\partial\left(\vartheta_{v-1}, \vartheta_{v}\right)+\partial\left(\vartheta_{v}, \vartheta_{v+1}\right)}{2}\right\} \tag{11}
\end{align*}
$$

which implies that

$$
\begin{equation*}
\partial\left(\vartheta_{v}, \vartheta_{v+1}\right)<\frac{1}{\eta} \partial\left(\vartheta_{v-1}, \vartheta_{v}\right), \forall v \geq 1 \tag{12}
\end{equation*}
$$

Case 1: If $\eta>1$, then the sequence $\left\{\vartheta_{v}\right\}$ is Cauchy, by Lemma 4.6 in view of equation (12).
Case 2: If $\eta=1$, then by equation (12) we get monotonically decreasing and bounded below the sequence $\left\{\partial\left(\vartheta_{v}, \vartheta_{v+1}\right)\right\}$. Here, we obtain $\partial\left(\vartheta_{v}, \vartheta_{v+1}\right) \rightarrow k$ for some $b \geq 0$. Suppose that $b>0$; now, taking liminf $v \rightarrow$ $+\infty$ in (11), we have $b \leq \zeta\left(b, b, b, b^{\prime}\right)$ where

$$
b^{\prime}=\lim _{n \rightarrow+\infty} \sup \frac{\partial\left(\vartheta_{v-1}, \vartheta_{v+1}\right)}{2} \leq \lim _{v \rightarrow+\infty} \frac{\partial\left(\vartheta_{v-1}, \vartheta_{v}\right)+\partial\left(\vartheta_{v}, \vartheta_{v+1}\right)}{2}=b
$$

Now,

$$
b \leq \zeta\left(b, b, b, b^{\prime}\right)<\max \left\{b, b, b, b^{\prime}\right\}=b,
$$

which is a contradiction; so

$$
\begin{equation*}
\lim _{v \rightarrow+\infty} \partial\left(\vartheta_{v}, \vartheta_{v+1}\right)=0 \tag{13}
\end{equation*}
$$

Furthermore,

$$
\partial\left(\vartheta_{v}, \vartheta_{v}\right) \leq \partial\left(\vartheta_{v}, \vartheta_{v+1}\right)+\partial\left(\vartheta_{v+1}, \vartheta_{v}\right)
$$

taking $\lim \sup v \rightarrow+\infty$, and using (13), we find

$$
\begin{equation*}
\lim _{v \rightarrow+\infty} \supset\left(\vartheta_{v}, \vartheta_{v+1}\right)=0 \tag{14}
\end{equation*}
$$

Suppose that

$$
\lim _{v \rightarrow+\infty} \partial\left(\vartheta_{v}, \vartheta_{v+1}\right) \neq 0
$$

On contrary, we assume that the sequence $\left\{\vartheta_{v}\right\}$ is not Cauchy, then $\exists \xi>0$ and sequences $\left\{\omega_{\mathfrak{n}}\right\},\left\{v_{n}\right\} ; \omega_{\mathfrak{n}}>$ $v_{\mathfrak{n}} \geq \mathfrak{n}$ such that

$$
\begin{equation*}
\partial\left(\vartheta_{\omega_{n}}, \vartheta_{v_{n}}\right) \geq \xi . \tag{15}
\end{equation*}
$$

Now, take $\omega_{\mathfrak{n}}>v_{\mathfrak{n}}$ such that equation (15) holds. Then,

$$
\begin{aligned}
\xi & \leq \partial\left(\vartheta_{\omega_{n}}, \vartheta_{v_{n}}\right) \\
& \leq \partial\left(\vartheta_{\omega_{n}}, \vartheta_{\omega_{n}-1}\right)+\partial\left(\vartheta_{\omega_{n}-1}, \vartheta_{v_{n}}\right) \\
& <\partial\left(\vartheta_{\omega_{n}-1}, \vartheta_{\omega_{n}}\right)+\xi \\
& <\partial\left(\vartheta_{r}, \vartheta_{n-1}\right)+\xi .
\end{aligned}
$$

Thus, taking $\lim \mathfrak{n} \rightarrow+\infty$ and by (13), we get

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \partial\left(\vartheta_{\omega_{n}}, \vartheta_{v_{n}}\right)=\xi \tag{16}
\end{equation*}
$$

Now, assume that there exist infinitely large \mathfrak{n} such that

$$
\partial\left(\vartheta_{\omega_{n}}, G \vartheta_{v_{n}}\right)+\partial\left(\mathbb{G} \vartheta_{\omega_{n}}, \vartheta_{v_{n}}\right)<\partial\left(\vartheta_{v_{n}}, \vartheta_{v_{n}}\right)
$$

Setting limsup $\sin _{\mathfrak{n} \rightarrow+\infty}$, and by (14), we get

$$
\lim _{n \rightarrow+\infty} \partial\left(\vartheta_{\omega_{n}}, G \vartheta_{v_{n}}\right)+\supset\left(\mathbb{G} \vartheta_{\omega_{n}}, \vartheta_{v_{n}}\right)=0
$$

which means that

$$
\lim _{n \rightarrow+\infty} \partial\left(\vartheta_{\omega_{n}}, G \vartheta_{v_{n}+1}\right)=\lim _{n \rightarrow+\infty} \partial\left(G \vartheta_{\omega_{n}+1}, \vartheta_{v_{n}}\right)=0
$$

Now,

$$
\xi=\lim _{n \rightarrow+\infty} \partial\left(\vartheta_{\omega_{n}}, \vartheta_{v_{n}}\right) \leq \lim _{n \rightarrow+\infty} \sup \left(\partial\left(\vartheta_{\omega_{n}}, \vartheta_{v_{n}+1}\right)+\partial\left(\vartheta_{v_{n}+1}, \vartheta_{v_{n}}\right)\right)=0,
$$

a contradiction. Therefore, there exists $\mathfrak{n}_{0} \in \mathbb{N}$ such that

$$
\forall \mathfrak{n} \geq \mathfrak{n}_{0}, \partial\left(\vartheta_{\omega_{n}}, G \vartheta_{v_{n}}\right)+\partial\left(G \vartheta_{\omega_{n}}, \vartheta_{v_{n}}\right) \geq \partial\left(\vartheta_{v_{n}}, \vartheta_{v_{n}}\right)
$$

Thus, for all $\mathfrak{n} \geq \mathfrak{n}_{0}$, using (12),

$$
\begin{aligned}
\partial\left(\vartheta_{\omega_{n}+1}, \vartheta_{v_{n}+1}\right) \leq & \alpha\left(\vartheta_{\omega_{n}}, \vartheta_{v_{n}}\right) \partial\left(G \vartheta_{\omega_{n}}, G \vartheta_{v_{n}}\right) \\
\leq & \max \left(\partial\left(\vartheta_{\omega_{n}}, \vartheta_{v_{n}}\right), \partial\left(\vartheta_{\omega_{n}}, \vartheta_{\omega_{n}+1}\right), \partial\left(\vartheta_{v_{n}}, \vartheta_{v_{n}+1}\right)\right. \\
& \left.\frac{\partial\left(\vartheta_{\omega_{n}}, \vartheta_{v_{n}+1}\right)+\partial\left(\vartheta_{\omega_{n}+1}, \vartheta_{v_{n}}\right)-\partial\left(\vartheta_{v_{n}}, \vartheta_{v_{n}}\right)}{2}\right) .
\end{aligned}
$$

Now,

$$
\begin{aligned}
\partial\left(\vartheta_{\omega_{n}}, \vartheta_{v_{n}}\right) & \leq \partial\left(\vartheta_{\omega_{n}}, \vartheta_{\omega_{n}+1}\right)+\partial\left(\vartheta_{\omega_{n}+1}, \vartheta_{v_{n}+1}\right)+\partial\left(\vartheta_{v_{n}+1}, \vartheta_{v_{n}}\right) \\
& \leq \partial\left(\vartheta_{\omega_{n}}, \vartheta_{\omega_{n}+1}\right)+\partial\left(\vartheta_{v_{n}+1}, \vartheta_{v_{n}}\right)+\max \left(\partial\left(\vartheta_{\omega_{n}}, \vartheta_{v_{n}}\right), \partial\left(\vartheta_{\omega_{n}}, \vartheta_{\omega_{n}+1}\right), \partial\left(\vartheta_{v_{n}}, \vartheta_{v_{n}+1}\right)\right. \\
& \left.\frac{\partial\left(\vartheta_{\omega_{n}}, \vartheta_{v_{n}+1}\right)+\partial\left(\vartheta_{\omega_{n}+1}, \vartheta_{v_{n}}\right)-\partial\left(\vartheta_{v_{n}}, \vartheta_{v_{n}}\right)}{2}\right)
\end{aligned}
$$

From the above, setting $\liminf _{n \rightarrow+\infty}$ and by equations (13) and (16). Thus, we get $\xi \leq 0+0+\zeta\left(\xi, 0,0, \xi^{\prime}\right)$, where

$$
\begin{aligned}
\xi^{\prime} & =\lim _{n \rightarrow+\infty} \sup \frac{\partial\left(\vartheta_{\omega_{n}}, \vartheta_{v_{n}+1}\right)+\partial\left(\vartheta_{\omega_{n}+1}, \vartheta_{v_{n}}\right)-\partial\left(\vartheta_{v_{n}}, \vartheta_{v_{n}}\right)}{2} \\
& \leq \lim _{n \rightarrow+\infty} \sup \frac{\partial\left(\vartheta_{\omega_{n}}, \vartheta_{v_{n}}\right)+\partial\left(\vartheta_{\omega_{n}}, \vartheta_{v_{n}+1}\right)+\partial\left(\vartheta_{\omega_{n}+1}, \vartheta_{\omega_{n}}\right)+\partial\left(\vartheta_{\omega_{n}}, \vartheta_{v_{n}}\right)-0}{2} \\
& =\frac{\xi+0+0+\xi}{2} \\
& =\xi .
\end{aligned}
$$

Thus, $\xi \leq \zeta\left(\xi, 0,0, \xi^{\prime}\right)<\max \left\{\xi, 0,0, \xi^{\prime}\right\}=\xi$, a contradiction. Thus, $\left\{\vartheta_{v}\right\}$ is a Cauchy sequence. Since $(\mathfrak{P}, \supset, \eta \geq 1)$ is complete \mathfrak{b}-MLS, there exists $\vartheta \in \mathfrak{P}$ such that $\vartheta_{v} \rightarrow \vartheta$

$$
\partial(\vartheta, \vartheta)=\lim _{v \rightarrow+\infty} \partial\left(\vartheta_{v}, \vartheta\right)=\lim _{v, \omega \rightarrow+\infty} \partial\left(\vartheta_{v}, \vartheta_{\omega}\right)=0 .
$$

Moreover, by Proposition $4.5, \vartheta$ is unique. Assume that $G \vartheta \neq \vartheta$. Consider

$$
\begin{aligned}
\partial\left(\mathrm{G} \vartheta_{v}, \mathrm{G} \vartheta\right) & \leq \alpha\left(\vartheta_{v}, \vartheta\right) \partial\left(\mathrm{G} \vartheta_{v}, \mathrm{G} \vartheta\right) \\
& \leq \frac{1}{\eta} \max \left(\partial\left(\vartheta_{v}, \vartheta\right), \partial\left(\vartheta_{v}, \mathrm{G} \vartheta_{v}\right), \partial(\vartheta, \mathrm{G} \vartheta), \frac{\partial\left(\vartheta_{v}, \mathrm{G} \vartheta\right)+\partial\left(\vartheta, \mathrm{G} \vartheta_{v}\right)-\partial(\vartheta, \vartheta)}{2 \eta}\right),
\end{aligned}
$$

which implies that

$$
\begin{aligned}
\partial\left(\vartheta_{v+1}, \mathrm{G} \vartheta\right) & =\partial\left(G \vartheta_{v}, \mathrm{G} \vartheta\right) \\
& \leq \alpha\left(\vartheta_{v}, \vartheta\right) \partial\left(\mathrm{G} \vartheta_{v}, \mathrm{G} \vartheta\right) \\
& \leq \frac{1}{\eta} \max \left(\partial\left(\vartheta_{v}, \vartheta\right), \partial\left(\vartheta_{v}, \mathrm{G} \vartheta_{v+1}\right), \partial(\vartheta, \mathrm{G} \vartheta), \frac{\partial\left(\vartheta_{v}, \mathrm{G} \vartheta\right)+\partial\left(\vartheta, \vartheta_{v+1}\right)}{2 \eta}\right) .
\end{aligned}
$$

From the above inequality taking $\lim \inf v \rightarrow+\infty$ and by Proposition 4.5, we get

$$
\frac{1}{\eta} \partial(\vartheta, \mathrm{G} \vartheta) \leq \frac{1}{\eta} \zeta(0,0, \partial(\vartheta, \mathrm{G} \vartheta), \hbar)
$$

i.e.,

$$
\partial(\vartheta, G \vartheta) \leq \zeta(0,0, \partial(\vartheta, G \vartheta), \hbar)
$$

where

$$
\hbar=\lim _{v \rightarrow+\infty} \sup \frac{\partial\left(\vartheta_{v}, \mathrm{G} \vartheta\right)+\partial\left(\vartheta, \vartheta_{v+1}\right)}{2 \eta} \leq \lim _{v \rightarrow+\infty} \sup \frac{\eta(\vartheta, \mathrm{G} \vartheta)+0}{2 \eta}=\frac{\partial(\vartheta, \mathrm{G} \vartheta)}{2}
$$

Thus

$$
\partial(\vartheta, G \vartheta) \leq \zeta(0,0, \supset(\vartheta, G \vartheta), \hbar)<\max \{0,0, \partial(\vartheta, G \vartheta), \hbar\}=\supset(\vartheta, G \vartheta),
$$

which is a contradiction. Therefore, $G \vartheta=\vartheta$.
Suppose that ϑ, ς are two fixed points of G such that $G \vartheta=\vartheta \neq \varsigma=G \varsigma$. Then, for all $\vartheta, \varsigma \in \mathfrak{P}$ such that
$\alpha(\vartheta, \varsigma) \geq 1$. If $\partial(\vartheta, \varsigma)>0$ then, by the contractive condition (iii) with the fixed points ϑ and ς yields

$$
\begin{aligned}
\partial(\vartheta, \varsigma)=\alpha(\vartheta, \varsigma) \partial(G \vartheta, G \varsigma) & \leq \frac{1}{\eta} \max \left(\partial(\vartheta, \varsigma), \partial(\vartheta, G \vartheta), \partial(\varsigma, G \varsigma), \frac{\partial(\vartheta, G \varsigma)+\partial(\varsigma, G \vartheta)-\partial(\vartheta, \vartheta)}{2 \eta}\right) \\
& =\frac{1}{\eta} \max \left(\partial(\vartheta, \varsigma), \partial(\vartheta, G \vartheta), \partial(\varsigma, G \varsigma), \frac{\partial(\vartheta, G \varsigma)+\partial(\varsigma, G \vartheta)}{2 \eta}\right) \\
& \leq \frac{1}{\eta} \max \left(\partial(\vartheta, \varsigma), 0,0, \frac{\partial(\vartheta, \varsigma)}{\eta}\right) \\
& <\frac{1}{\eta} \max \left\{\left(\partial(\vartheta, \varsigma), 0,0, \frac{\partial(\vartheta, \varsigma)}{\eta}\right\}\right. \\
& =\frac{\partial(\vartheta, \varsigma)}{\eta},
\end{aligned}
$$

which is a contradiction. Therefore, $\vartheta=\varsigma$.
Example 4.8. Let $\mathfrak{P}=\mathbf{R}_{0}^{+}$. Define $\supset: \mathfrak{P} \times \mathfrak{P} \rightarrow \mathbf{R}_{0}^{+}$by $\partial(\vartheta, \varsigma)=(\vartheta+\varsigma)^{2}, \forall \vartheta, \varsigma \in \mathfrak{P}$. Then, ∂ is $b-M L$ on \mathfrak{P} with $\eta=2$, but \supset is not b-metric on \mathfrak{P}. A mapping $\mathfrak{G}: \mathfrak{P} \rightarrow \mathfrak{P}$ defined by $\mathfrak{G}=\frac{\vartheta}{2}$. In addition, define $\mathfrak{J}\left(\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right)=\frac{\vartheta}{2} \max \left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}$ and define $\alpha: \mathfrak{P} \times \mathfrak{P} \rightarrow \mathbf{R}_{0}^{+}$by

$$
\alpha(\vartheta, \varsigma)= \begin{cases}1, & \text { if } \vartheta \leq \varsigma \text { or } \varsigma \leq \vartheta \\ 0, & \text { if otherwise }\end{cases}
$$

Now, $\forall \vartheta, \varsigma \in \mathfrak{P}$ with $\partial(\vartheta, G \varsigma)+\supset(G \vartheta, \varsigma) \geq \supset(\varsigma, \varsigma)$, condition (iii) of Theorem 4.7 is fulfilled and hence, 0 is the unique fixed point of \mathbb{G}.

5. Application

In this section, we arise an integral equation application of our main results. Consider the following integral equation:

$$
\begin{equation*}
\mathfrak{u}(\mathfrak{n})=\mathfrak{v}(\mathfrak{n})+\rho \int_{\mathfrak{a}}^{\mathfrak{b}} \mathbb{H}(\mathfrak{n}, \varrho) \mathfrak{f}(\varrho, \mathfrak{u}(\varrho)) \partial \varrho, \mathfrak{n} \in \mathbb{I}=[\mathfrak{a}, \mathfrak{b}] \tag{17}
\end{equation*}
$$

where ρ is a constant such that $\rho \geq 0$ and $\mathfrak{v}:[\mathfrak{a}, \mathfrak{b}] \rightarrow \mathbf{R}, \mathbb{H}:[\mathfrak{a}, \mathfrak{b}] \times[\mathfrak{a}, \mathfrak{b}] \rightarrow \mathbf{R}$ and $\mathfrak{f}:[\mathfrak{a}, \mathfrak{b}] \times \mathbf{R} \rightarrow \mathbf{R}$ are given continuous functions.

The set of all real valued continuous functions \mathfrak{P} defined on $[\mathfrak{a}, \mathfrak{b}]$. Define the \mathfrak{b}-metric by the following:

$$
\begin{equation*}
\partial(\mathfrak{u}, \mathfrak{v})=\frac{1}{\eta} \sup _{\mathfrak{n} \in \mathbb{I}}|\mathfrak{u}(\mathfrak{n})-\mathfrak{v}(\mathfrak{n})|, \forall \mathfrak{a}, \mathfrak{b} \in \mathfrak{P} . \tag{18}
\end{equation*}
$$

Consider $\eta>1$. Then, (\mathfrak{P}, ∂) is a complete \mathfrak{b}-MS. Now, a self-map \mathbb{G} defined on \mathfrak{P} by

$$
\begin{equation*}
\mathfrak{G u}(\mathfrak{n})=\mathfrak{v}(\mathfrak{n})+\rho \int_{\mathfrak{a}}^{\mathfrak{b}} \mathbb{H}(\mathfrak{n}, \varrho) \mathfrak{f}(\varrho, \mathfrak{u}(\varrho)) \supseteq \varrho, \mathfrak{n} \in[\mathfrak{a}, \mathfrak{b}] . \tag{19}
\end{equation*}
$$

Assume that the following to prove the existence of a solution of Equation (17):
(a) $\rho \leq \frac{1}{\eta}$
(b) $\sup _{n \in[\mathfrak{a}, \mathfrak{b}]} \int_{\mathfrak{a}}^{\mathfrak{b}} \mathbb{H}(\mathfrak{n}, \varrho) \mathrm{D} \varrho \leq \frac{1}{\mathfrak{b}-\mathfrak{a}}$
(c) $\forall \mathfrak{u}, \mathfrak{v} \in \mathbf{R},|\mathfrak{f}(\varrho, \mathfrak{u})-\mathfrak{f}(\varrho, \mathfrak{v})| \leq|\mathfrak{u}-\mathfrak{v}|$
(d) There exists a mapping $\zeta: \mathfrak{P} \times \mathfrak{P} \rightarrow \mathbf{R}_{0}^{+}$such that $\forall \mathfrak{n} \in[\mathfrak{a}, \mathfrak{b}]$ and $\forall \mathfrak{a}, \mathfrak{b} \in \mathfrak{P}$ with $\zeta(\mathfrak{a}, \mathfrak{b}) \geq 0$.

A solution to Equation (17) is equal to the existence of a fixed point of \mathbb{G}. We will now present the following results.

Theorem 5.1. Equation (17) has a unique solution in \mathfrak{B}, under the above assumptions (a) - (d).
Proof.

$$
\begin{align*}
\partial\left(\mathrm{Gu}_{1}, G \mathfrak{u}_{2}\right) & \left.=\frac{1}{\eta} \sup _{\mathfrak{n} \in \mathbb{I}} \right\rvert\, G_{u_{1}(\mathfrak{n})-G \mathfrak{u}_{2}(\mathfrak{n}) \mid} \\
& =\frac{1}{\eta} \sup _{\mathfrak{n} \in \mathbb{I}}\left|\left(\mathfrak{v}(\mathfrak{n})+\rho \int_{\mathfrak{a}}^{\mathfrak{b}} \mathbb{H}(\mathfrak{n}, \varrho) \mathfrak{f}\left(\varrho, \mathfrak{u}_{1}(\varrho)\right) \partial \varrho\right)-\left(\mathfrak{v}(\mathfrak{n})+\rho \int_{\mathfrak{a}}^{\mathfrak{b}} \mathbb{H}(\mathfrak{n}, \varrho) \tilde{f}\left(\varrho, \mathfrak{u}_{2}(\varrho)\right) \partial \varrho\right)\right| \\
& =\frac{1}{\eta} \sup _{\mathfrak{n} \in \mathbb{I}}\left|\rho \int_{\mathfrak{a}}^{\mathfrak{b}} \mathbb{H}(\mathfrak{n}, \varrho)\left[\mathfrak{f}\left(\varrho, \mathfrak{u}_{1}(\varrho)\right)-\mathfrak{f}\left(\varrho, \mathfrak{u}_{2}(\varrho)\right)\right] \partial \varrho\right| \\
& \leq \frac{1}{\eta^{2}}\left\{\sup _{\mathfrak{n} \in \mathbb{I}} \int_{\mathfrak{a}}^{\mathfrak{b}} \mathbb{H}(\mathfrak{n}, \varrho)\right\}\left(\int_{\mathfrak{a}}^{\mathfrak{b}}\left|\mathfrak{f}\left(\varrho, \mathfrak{u}_{1}(\varrho)\right)-\mathfrak{f}\left(\varrho, \mathfrak{u}_{2}(\varrho)\right)\right| \partial \varrho\right) \\
& \leq \frac{1}{\eta^{2}}\left\{\sup _{\mathfrak{n} \in \mathbb{I}} \int_{\mathfrak{a}}^{\mathfrak{b}} \mathbb{H}(\mathfrak{n}, \varrho)\right\} \int_{\mathfrak{a}}^{\mathfrak{b}}\left|\mathfrak{u}_{1}-\mathfrak{u}_{2}\right| \partial \varrho \\
& \leq \frac{1}{\eta^{2}}\left|\mathfrak{u}_{1}-\mathfrak{u}_{2}\right|\left(\frac{1}{b-a}\right) \int_{\mathfrak{a}}^{\mathfrak{b}} \partial \varrho \\
& =\frac{1}{\eta} \partial\left(\mathfrak{u}_{1}, \mathfrak{u}_{2}\right) . \tag{20}
\end{align*}
$$

So, Equation (17) has a solution in \mathfrak{P}, which means that \mathbb{G} has a fixed point.

6. Conclusion

In this study, we introduce the notion of admissible ζ-contraction mapping of types, which includes the admissible ζ-contraction of Jain et al. [20] and the α-admissible mapping of Samet et al. [30]. Utilizing this class of mappings, we establish approximate fixed point and fixed point theorems in the setting of b-metric and b-metric-like spaces. Finally, we use some examples to prove the established theorems and our results can be used to solve an integral equation.

7. Acknowledgements

The authors express their gratitude to the anonymous referees for their helpful suggestions and corrections.

References

[1] S. Aleksic, Z.D. Mitrovic, S. Radenovic, On some recent fixed point results for single and multivalued mappings in b-metric spaces, Fasc. Math. 61 (2018) 5-16.
[2] M.A. Alghamdi, N. Hussain, P. Salimi, Fixed point and coupled fixed point theorems on b-metric-like spaces, J. Inequal. Appl. 402 (2013) 1-25.
[3] H. H. Alsulami, S. Gulyaz, E. Karapinar, I.M. Erhan, Fixed point theorems for a class of α-admissible contractions and applications to boundary value problem, Abstr. Appl. Anal. 187031 (2014) 1-10.
[4] A.H. Ansari, O. Ege, S. Radenovic, Some fixed point results on complex valued G_{b}-metric spaces, RACSAM Rev. R. Acad. Cienc. Exactas F'is. Nat. Ser. A Mat. 112(2) (2018) 463-472.
[5] M. Arshad, M. Mudhesh, A. Hussain, E. Ameer, Recent thought of α_{*}-Geraghty F-contraction with application, J. Math. Extension 16(7) (2022) 1-28.
[6] H. Aydi, M.F. Bota, E. Karapinar, S. Mitrovic, A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl. 88 (2012) 1-8.
[7] I.A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal. 30 (1989) 26-37.
[8] M. Bousselsal, On the solvability of some nonlinear functional integral equations on $L^{p}\left(\mathbb{R}_{+}\right)$, Filomat 35(6) (2021) 1841-1850.
[9] C. Chen, J. Dong, C. Zhu, Some fixed point theorems in b-metric-like spaces, Fixed Point Theory Appl. 122 (2015).
[10] Lj.B. Ciric, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45 (1974) 267-273.
[11] Lj. Ciric, V. Parvaneh, N. Hussain, Fixed point results for weakly α-admissible pairs, Filomat 30(14) (2016) 3697-3713.
[12] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav. 30 (1993) 5-11.
[13] S. Czerwik, Nonlinear set-valued contraction mapping in b-metric spaces, Atti Semin. Mat. Fis. Univ. Modena Reeggio Emilia 46 (1998) 263-276.
[14] A.K. Dubey, R. Shukla, R. Dubey, Some fixed point results in b-metric spaces, Asian J. Math. Appl. ama0147 (2014) 1-6.
[15] A. Gholidahneh, S. Sedghi, O. Ege, Z. D. Mitrovic, M. de la Sen, The Meir-Keeler type contractions in extended modular b-metric spaces with an application, AIMS Math. 6(2) (2021) 1781-1799.
[16] I. Hashimoto, H.A. Kudo, Unified concept of admissibility of statistical decision functions, Osaka J. Math. 5 (1968) 137-150.
[17] N. Hussain, E. Karapinar, P. Salimi, F. Akbar, α-admissible mappings and related fixed point theorems, J. Inequal. Appl. 114 (2013) 1-11.
[18] M. Iqbal, A. Batool, O. Ege, M. de la Sen, Fixed point of almost contraction in b-metric spaces, J. Math. 3218134 (2020) 1-6.
[19] M. Iqbal, A. Batool, O. Ege, M. de la Sen, Fixed point of generalized weak contraction in b-metric spaces, J. Funct. Spaces 2042162 (2021) 1-8.
[20] K. Jain, J. Kaur, Some fixed point results in b-metric spaces and b-metric-like spaces with new contractive mappings, Axioms 10 (2021) 55.
[21] E. Karapinar, Fixed points results for α-admissible mapping of integral type on generalized metric spaces, Abstr. Appl. Anal. 141409 (2015) 1-11.
[22] M. Kir, H. Kiziltunc, On some well known fixed point theorems in b-MSs, Turk. J. Anal. Number Theory, 1 (2013) 13-16.
[23] A. Latif, V. Parvaneh, P. Salimi, A.E. Al-Mazrooei, Various Suzuki type theorems in b-metric spaces, J. Nonlinear Sci. Appl. 8 (2015) 363-377.
[24] G. Mani, A.J. Gnanaprakasam, A. Haq, F. Jarad, I.A. Baloch, Solving an integral equation by using fixed point approach in fuzzy bipolar metric spaces, J. Funct. Spaces 9129992 (2021) 1-7.
[25] R. Miculescu, A. Mihail, New fixed point theorems for set-valued contractions in b-metric spaces, J. Fixed Point Theory Appl. 19 (2017) 2153-2163.
[26] S. Mishra, A. K. Dubey, U. Mishra, R.P. Dubey, On some fixed point results for cyclic (α, β)-admissible almost Z-contraction in metric-like space with simulation function, Comm. Math. Appl. 13(1) (2022) 223-233.
[27] N. Mlaiki, N. Dedovic, H. Aydi, M.G. Filipovic, B.B. Mohsin, S. Radenovic, Some new observations on Geraghty and Ciric type results in b-metric spaces, Mathematics 7 (2019) 643.
[28] R. Pant, R. Panicker, Geraghty and Ciric type fixed point theorems in b-metric spaces, J. Nonlinear Sci. Appl. 9 (2016) $5741-5755$.
[29] M.A. Ragusa, Parabolic Herz spaces and their applications, Appl. Math. Lett. 25(10) (2012) 1270-1273.
[30] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha-\psi$ contractive type mappings, Nonlinear Anal. 75 (2012) 2154-2165
[31] M. de la Sen, N. Nicolic, T. Dosenovic, M. Pavlovic, S. Radenovic, Some results on $(s-q)$-graphic contraction mapping in b-metric-like spaces, Mathematics 7 (2019) 1190.
[32] T.L. Shateri, O. Ege, M. de la Sen, Common fixed point on the $b_{v}(s)$-metric space of function-valued mappings, AIMS Math. 6(1) (2021) 1065-1074.
[33] S. Shukla, Partial b-metric spaces and fixed point theorems, Mediterr. J. Math. 11(2) (2014) 703-711.
[34] W. Sintunavaat, S. Plubtieng, P. Katchang, Fixed point results and applications on b-metric space endowed with an arbitrary binary relation, Fixed Point Theory Appl. 296 (2013) 1-13.
[35] J. Vujakovic, S. Mitrovic, Z.D. Mitrovic, S. Radenovic, On F-contractions for weak α-admissible mappings in metric-like spaces, Mathematics 8 (2020) 1629.

[^0]: 2020 Mathematics Subject Classification. Primary 47H10; Secondary 54H25
 Keywords. Fixed point, b-metric spaces, b-metric-like spaces, α-admissible, applications.
 Received: 04 September 2022; Revised: 18 September 2022; Accepted: 29 September 2022
 Communicated by Maria Alessandra Ragusa
 Email addresses: gn4255@srmist.edu.in (Gunasekaran Nallaselli), aruljoseph.alex@gmail.com (Arul Joseph Gnanaprakasam), mathsguna@yahoo.com (Gunaseelan Mani), ozgur.ege@ege.edu.tr (Ozgur Ege)

