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Abstract. In this article, we introduce a new concept of admissible contraction and prove fixed point
theorems which generalize Banach contraction principle in a different way more than in the known results
from the literature. The article includes an example which shows the validity of our results, and additionally
we obtain a solution of integral equation by admissible contraction mapping in the setting of b-metric spaces.

1. Introduction

Ciric [10] introduced the quasi-contractivity and multivalued quasi-contractions and established fixed
point results under these contractions. In 1989, Bakhtin [7] introduced the concept of b-metric space.
Czerwik [12] first presented a generalization of the Banach fixed point theorem in b-metric spaces, which
is a problem of the convergence of measurable functions concerning measure.

Using this idea, many researchers presented a generalization of the renowned Banach fixed point
theorem in the b-metric space. Czerwik’s [13], Audi, Bota and Karapinar [6], Sintunavaat, Plibtieng, and
Katchang [34], Kir and Kiziltunc [22], Dubey, Shukla, and Dubey [14] extended the fixed point theorem in
b-metric space. Latif et al. [23] explained Suzuki type theorems for nonlinear contraction conditions in the
b-metric space configuration. Pant and Panicker [28] obtained some fixed point theorems for admissible
mappings in b-metric space and also discussed an application to a nonlinear quadratic integral equation.

Many fixed point theorems, such as the well-known Geraghty and Ciric theorems on b-metric spaces by
Mlaiki [27], were improved by his results. In recent years, many fixed point results for single-valued and
multivalued operators in b-metric spaces have been extensively studied in [1, 4, 8, 15, 18, 19, 24, 25, 29, 32]
and elsewhere. Alghamdi [2] was the first to talk about b-metric-like space as well as in a partially ordered
b-metric-like space. Shukla [33] generalized both the concepts of b-metric and partial metric spaces by
introducing the partial b-metric space and an analogy of the Banach contraction principle, as well as the
Kannan type fixed point theorem in partial b-metric spaces, which he also proved. Chen, Dong, and Zhu
[9] introduced the concept of quasi-b-metric-like spaces and some fixed point results are investigated in
quasi-b-metric-like spaces. Many papers have dealt with fixed point for single and multivalued in b-metric-
like spaces (see [20, 31]). In 2012, Samet et al. [30] initiated the concepts of α-admissible mappings and
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established many fixed point results for such mappings defined on complete metric spaces. Afterward,
Alsulami et al. [3] and Karapinar et al. [21] modified the notion of admissible mapping with contractions
and integral types of generalized metric spaces. The idea of α-admissible has been utilized by many
researchers (see, [5, 11, 16, 17, 26, 35]).

In this article, using a mapping ζ : R+0
ω
→ R+0 , we introduce a new type of contraction called α − ζ-

contraction and prove a new fixed point theorem concerning α − ζ-contraction. The article includes the
examples of α − ζ-contractions and give an integral equation application support by the nature of α − ζ-
contractions.

2. Preliminaries

In this paper, we use the following notations. The sets of natural numbers, non-negative reals, and real
numbers are denoted byN, R+0 and R, respectively. Czerwik [7] formally defined the notion of a b-metric
space as follows:

Definition 2.1. ([7]) Let P , ∅. We say that a mapping ⅁ : P × P → R+0 is a b-metric if there exists a positive
number η such that ∀ϑ, ς, ϱ ∈ P,

(⅁1) ⅁(ϑ, ς) = 0⇐⇒ ϑ = ς;
(⅁2) ⅁(ϑ, ς) = ⅁(ς, ϑ);
(⅁3) ⅁(ϑ, ϱ) ≤ η(⅁(ϑ, ς) +⅁(ς, ϱ)).

Then triplet (P,⅁, η) is called a b-MS(shortly, b-MS).

The following is the main result in Aleksic [1].

Theorem 2.2. ([1]) Let (P,⅁) be a complete b-MS with a constant η ≥ 1. If G : P→ P satisfies the inequality:

⅁(Gϑ,Gς) ≤ τ1⅁(ϑ, ς) + τ2⅁(ϑ,Gϑ) + τ3⅁(ς,Gς) + τ4⅁(ϑ,Gς) +⅁(Gϑ, ς),

where τκ ≥ 0, ∀ κ = 1, 2, 3, 4 and τ1+τ2+τ3+2τ4 < 1 for η ∈ [1, 2] and 2
η < τ1+τ2+τ3+2τ4 < 1, ∀ η ∈ [3,+∞),

then G has a unique fixed point.

Kirk [22] initiated the following concepts as follows.

Definition 2.3. ([22]) Let {ϑυ} be a sequence in b-MS (P,⅁, η ≥ 1).
(i) If for any positive number ξ, there exists υ0 ∈N such that ⅁(ϑυ, ϑω) < ξ, ∀υ,ω ≥ υ0. Then the sequence {ϑυ} is
called Cauchy sequence.
(ii) If there exists ℏ ∈ P such that any positive number ξ, there exists υ0 ∈N such that⅁(ϑυ, ℏ) < ξ, ∀υ ≥ υ0. Then,
we say that the sequence {ϑυ} converges to ℏ.

Definition 2.4. ([22]) We say that a b-MS (P,⅁, η ≥ 1) is complete if every Cauchy sequence is convergent.

To prove our main results, we will use the following lemma in Latif [23], since b-metric is not continuous.

Lemma 2.5. ([23]) Suppose that any two sequences {ϑυ} and {ςυ} in (P,⅁, η ≥ 1) converge to ϑ and ς ∈ P. Then

η2⅁(ϑ, ς) ≥ lim
υ→+∞

sup⅁(ϑυ, ςυ) ≥ lim
υ→+∞

inf⅁(ϑυ, ςυ) ≥
1
η2⅁(ϑ, ς).

Particularly, if ϑ = ς, then lim
υ→+∞

⅁(ϑυ, ςυ) = 0. Moreover, for any ϱ ∈ P, we obtain

η⅁(ϑ, ϱ) ≥ lim
υ→+∞

sup⅁(ϑυ, ϱ) ≥ lim
υ→+∞

inf⅁(ϑυ, ϱ) ≥
1
η
⅁(ϑ, ϱ).
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In [25], Miculescu proved the following interesting results.

Lemma 2.6. ([25]) For each sequence {ϑυ} of b-MS (P,⅁, η ≥ 1) is Cauchy if there exists τ ∈ [0, 1) such that
⅁(ϑυ, ϑυ+1) ≤ τ⅁(ϑυ−1, ϑυ), ∀υ ∈N.

In [20], Jain introduced the following notion of new contractive mapping.

Definition 2.7. ([20]) For any ω ∈N, Eω denote the family of all functions ζ : R+0
ω
→ R+0 such that

(i) ζ(ϖ1, ϖ2, ϖ3, ....., ϖω) < max{ϖ1, ϖ2, ϖ3, ....., ϖω} if (ϖ1, ϖ2, ϖ3, ....., ϖω) , (0, 0, 0, ......., 0);
(ii) if {ϖκυ}υ∈N, 1 ≤ κ ≤ ω are ω sequences in R+0 such that

lim
υ→+∞

supϖ(υ)
κ = ϖκ < +∞,∀κ = 1 to ω,

then
lim
υ→+∞

inf ζ(ϖυ1 , ϖ
υ
2 , ϖ

υ
3 , ...., ϖ

υ
ω) ≤ ζ(ϖ1, ϖ2, ϖ3, ...., ϖω).

The following α-admissible mapping was first initiated by Samet et al. [30].

Definition 2.8. Let P , ∅ and a mapping α : P ×P→ R+0 . Then G is said to be α-admissible if (ϑ, ς) ∈ P ×P,

α(ϑ, ς) ≥ 1 implies α(Gϑ,Gς) ≥ 1. (1)

In this paper, we present the notion of admissible ζ- contraction mapping of types, which includes the
ζ-contraction (resp. ζ-contraction of types) of Jain et al. [20]. Utilizing this class of mapping, we establish
approximate fixed point and fixed point theorems in the setting of b-metric and b-metric-like spaces.

3. Main Results

We introduce α-admissible ζ-contraction map of type-I motivated by Jain et al. [20] as follows.

Definition 3.1. Let G be a self-map on b-MS (P,⅁, η ≥ 1) and a mapping α : P × P → R+0 . We say that G is
ζ-contractive map of type-I if there exists ζ ∈ E4 and ∀ϑ, ς ∈ P,

α(ϑ, ς)⅁(Gϑ,Gς) ≤
1
η
ζ(ϑ, ς), (2)

where
ζ(ϑ, ς) = max

(
⅁(ϑ, ς),⅁(ϑ,Gϑ),⅁(ς,Gς),

⅁(ϑ,Gς) +⅁(Gϑ, ς)
2η

)
.

In the following main theorem, Jain et al. [20] proved fixed point theorems in ζ-contraction in b-metric
space, we extend this our initiated admissible ζ-contractive mapping of type - I in the setting of b-metric
space.

Theorem 3.2. Let G be a self-map on complete b-MS (P,⅁, η ≥ 1) and let α : P ×P→ R+0 be a function. Assume
that the following conditions are true:

(i) G is α-admissible.
(ii) ∃ ϑ1 ∈ P such that α(ϑ1,Gϑ1) ≥ 1 and α(ϑ1,G2ϑ1) ≥ 1.

(iii)

α(ϑ, ς)⅁(Gϑ,Gς) ≤
1
η
ζ(ϑ, ς),

where ζ(ϑ, ς) = max
(
⅁(ϑ, ς),⅁(ϑ,Gϑ),⅁(ς,Gς), ⅁(ϑ,Gς)+⅁(Gϑ,ς)

2η

)
, ∀ϑ, ς ∈ P.
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Then, G has a unique fixed point.

Proof. Let ϑ1 ∈ P be such that α(ϑ1,Gϑ1) ≥ 1 and α(ϑ1,G2ϑ1) ≥ 1. Since Banach abstracted the fixed
point theorem from the result of Picard, we define the Picard’s iterative sequence {ϑυ} in P by the rule
ϑυ = Gϑυ−1 = Gυϑ1, ∀ υ ≥ 1. Obviously, if there exists υ0 ≥ 1 for which Gυ0ϑ1 = Gυ0+1ϑ1 then Gυ0ϑ1 has a
fixed point of G. Thus, we suppose that Gυϑ1 , Gυ+1ϑ1 for every υ ≥ 1.

Since G is α-admissible, the condition (ii) implies

α(ϑ1, ϑ2) = α(ϑ1,Gϑ1) ≥ 1 =⇒ α(Gϑ1,Gϑ2) = α(ϑ2, ϑ3) ≥ 1,

continuing in this way,
α(ϑυ, ϑυ+1) ≥ 1, ∀υ ∈N.

In a similar way, starting with

α(ϑ1, ϑ3) = α(ϑ1,G
2ϑ1) ≥ 1 =⇒ α(Gϑ1,Gϑ3) = α(ϑ2, ϑ4) ≥ 1,

we deduce
α(ϑυ, ϑυ+2) ≥ 1,∀υ ∈N.

Assume that ϑυ , ϑυ+1 ∀υ ∈N. Now, we prove {ϑυ} is a Cauchy sequence. Let υ ∈N. Consider

⅁(ϑυ, ϑυ+1) = ⅁(Gυϑ1,G
υ+1ϑ1)

≤ α(Gυ−1ϑ1,G
υϑ1)⅁(Gυ−1ϑ1,G

υϑ1)

≤
1
η

max
(
⅁(Gυ−1ϑ1,G

υϑ1),⅁(Gυ−1ϑ1,G
υϑ1),⅁(Gυϑ1,G

υ+1ϑ1),

⅁(Gυ−1ϑ1,Gυ+1ϑ1) +⅁(Gυϑ1,Gυϑ1)
2η

)
=

1
η

max
(
⅁(Gυ−1ϑ1,G

υϑ1),
⅁(Gυ−1ϑ1,Gυ+1ϑ1)

2η

)
≤

1
η

max
(
⅁(Gυ−1ϑ1,G

υϑ1),
⅁(Gυ−1ϑ1,Gυϑ1) +⅁(Gυϑ1,Gυ+1ϑ1)

2

)
≤

1
η

max
(
⅁(ϑυ−1, ϑυ),

⅁(ϑυ−1, ϑυ) +⅁(ϑυ, ϑυ+1)
2

)
, (3)

by (3) implies that

⅁(ϑυ, ϑυ+1) <
1
η
⅁(ϑυ−1, ϑυ), ∀υ ≥ 1. (4)

Case 1: If η > 1, then, the sequence {ϑυ} is Cauchy, by Lemma 2.6 in view of equation (4).
Case 2: If η = 1, then, by equation (4), we get monotonically decreasing and bounded below sequence
{⅁(ϑυ, ϑυ+1)}. Now, we obtain, ⅁(ϑυ, ϑυ+1)→ ♭ for some ♭ ≥ 0. Suppose that ♭ > 0 now, taking lim

υ→+∞
in (3),

we have ♭ ≤ ζ(♭, ♭, ♭, ♭
′

), where

♭
′

= lim
υ→+∞

sup
⅁(ϑυ−1, ϑυ+1)

2
≤ lim
υ→+∞

sup
⅁(ϑυ−1, ϑυ) +⅁(ϑυ, ϑυ+1)

2
.

Now, ♭ ≤ ζ(♭, ♭, ♭, ♭
′

) < max (♭, ♭, ♭, ♭
′

) = ♭, which is a contradiction, therefore,

lim
υ→+∞

⅁(ϑυ, ϑυ+1) = 0. (5)
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On contrary, we assume that the sequence {ϑυ} is not Cauchy, then ∃ ξ > 0 and sequences {ωn}, {υn};ωn >
υn ≥ n such that

⅁(ϑωn , ϑυn ) ≥ ξ. (6)

Now, take ωn > υn such that equation (6) holds. Then,

ξ ≤ ⅁(ϑωn , ϑυn )
≤ ⅁(ϑωn , ϑωn−1 ) +⅁(ϑωn−1 , ϑυn )

< ⅁(ϑωn , ϑυn−1 ) + ξ

< ⅁(ϑn, ϑn−1) + ξ,

thus, taking lim n→ +∞ and by (4), we get

lim
n→+∞

⅁(ϑωn , ϑυ) = ξ. (7)

Now, consider

⅁(ϑωn+1, ϑυn+1) ≤ α(ϑωn , ϑυn )⅁(Gϑωn ,Gϑυn )

≤ max
(
⅁(ϑωn , ϑυn ),⅁(ϑωn , ϑωn+1),⅁(ϑυn , ϑυn+1),

⅁(ϑωn , ϑυn+1) +⅁(ϑωn+1, ϑυn )
2

)
.

Therefore, we have

⅁(ϑωn , ϑυn ) ≤ ⅁(ϑωn , ϑωn+1) +⅁(ϑωn+1, ϑυn+1) +⅁(ϑυn+1, ϑυn )
≤ ⅁(ϑωn , ϑωn+1) +⅁(ϑυn+1, ϑυn )

+max
(
⅁(ϑωn , ϑυn ),⅁(ϑωn , ϑωn+1),⅁(ϑυn , ϑυn+1),

⅁(ϑωn , ϑυn+1) +⅁(ϑωn+1, ϑυn )
2

)
.

From the above, setting lim infn→+∞ and using equations (5) and (7). Thus, we get ξ ≤ 0 + 0 + ζ(ξ, 0, 0, ξ′),
where

ξ′ = lim
n→+∞

sup
⅁(ϑωn , ϑυn+1) +⅁(ϑωn+1, ϑυn )

2

≤ lim
n→+∞

sup
⅁(ϑωn , ϑυn ) +⅁(ϑωn , ϑυn+1) +⅁(ϑωn+1, ϑωn ) +⅁(ϑωn , ϑυn )

2

=
ξ + 0 + 0 + ξ

2
= ξ.

Thus, ξ ≤ ζ(ξ, 0, 0, ξ′) < max{ξ, 0, 0, ξ′} = ξ, a contradiction. Thus, the Cauchy sequence {ϑυ} in b-MS
(P,⅁, η ≥ 1) is complete. Therefore, ∃ ϑ ∈ P such that ϑυ → ϑ.

Consider

⅁(Gϑυ,Gϑ) ≤ α(ϑυ, ϑ)⅁(Gϑυ,Gϑ)

≤
1
η

max
(
⅁(ϑυ, ϑ),⅁(ϑυ,Gϑυ),⅁(ϑ,Gϑ),

⅁(ϑυ,Gϑ) +⅁(ϑ,Gϑυ)
2η

)
,

which implies that

⅁(ϑυ+1,Gϑ) = ⅁(Gϑυ,Gϑ)
≤ α(ϑυ, ϑ)⅁(Gϑυ,Gϑ)

≤
1
η

max
(
⅁(ϑυ, ϑ),⅁(ϑυ,Gϑυ+1),⅁(ϑ,Gϑ),

⅁(ϑυ,Gϑ) +⅁(ϑ,Gϑυ)
2η

)
.
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From the above inequality taking lim inf υ→ +∞ and by Lemma 2.5, we get

1
η
⅁(ϑ,Gϑ) ≤

1
η

max(0, 0,⅁(ϑ,Gϑ), ℏ),

i.e.,
⅁(ϑ,Gϑ) ≤ max(0, 0,⅁(ϑ,Gϑ), ℏ),

where

ℏ = lim
υ→+∞

sup
⅁(ϑυ,Gϑ) +⅁(ϑ,Gϑυ)

2η
≤ lim
υ→+∞

sup
s⅁(ϑ,Gϑ) + 0

2η
=
⅁(ϑ,Gϑ)

2
.

Thus
⅁(ϑ,Gϑ) ≤ ζ(0, 0,⅁(ϑ,Gϑ), ℏ) < max{0, 0,⅁(ϑ,Gϑ), ℏ} = ⅁(ϑ,Gϑ),

which is a contradiction. Hence Gϑ = ϑ.
Suppose that ϑ, ς are two fixed points of G such that Gϑ = ϑ , ς = Gς. Then, for all ϑ, ς ∈ P such that

α(ϑ, ς) ≥ 1. If ⅁(ϑ, ς) > 0 then, by the contractive condition (iii) with the fixed points ϑ and ς yields

⅁(ϑ, ς) = α(ϑ, ς)⅁(Gϑ,Gς) ≤
1
η

max
(
⅁(ϑ, ς),⅁(ϑ,Gϑ),⅁(ς,Gς),

⅁(ϑ,Gς) +⅁(ς,Gϑ)
2η

)
≤

1
η

max
(
⅁(ϑ, ς), 0, 0,

⅁(ϑ, ς)
η

)
<

1
η

max
{
(⅁(ϑ, ς), 0, 0,

⅁(ϑ, ς)
η

}
=
⅁(ϑ, ς)
η

,

which is a contradiction. Therefore, ϑ = ς.

Now, the following corollary is an extension of Theorem 3.2.

Corollary 3.3. Let G be a self-map on complete b-MS (P,⅁, η ≥ 1) and let α : P×P→ R+0 be a function. Suppose
that there exists q ∈ [0, 1

η ) such that the following assumptions are true:

(i) G is α-admissible;
(ii) ∃ ϑ1 ∈ P such that α(ϑ1,Gϑ1) ≥ 1 and α(ϑ1,G2ϑ1) ≥ 1;

(iii)

α(ϑ, ς)⅁(Gϑ,Gς) ≤ q max
{
⅁(ϑ, ς),⅁(ϑ,Gϑ),⅁(ς,Gς),

⅁(ϑ,Gς) +⅁(Gϑ, ς)
2η

}
, ∀ ϑ, ς ∈ P (8)

Then, G has a unique fixed point.

Proof. Let ζ ∈ E4 be defined by ζ(ϖ1, ϖ2, ϖ3, ϖ4) = ςηmax{ϖ1, ϖ2, ϖ3, ϖ4}. Then G has a unique fixed point
by Theorem 3.2.

We see that all conditions are satisfied in Theorem 3.2, but it is not applicable in Corollary 3.3.

Example 3.4. LetP =
{

1
√
υ

: υ ∈N∪ {0}
}
. Define ⅁ : P×P→ R+0 by ⅁(ϑ, ς) = |ϑ− ς|2, ∀ϑ, ς ∈ P. Then ⅁ is a

b-metric on P with η = 2. A self-map G on P defined by

G(
1
√
υ

) =
1√

2(υ + 1)
, ∀υ ∈N and G(0) = 0.
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Define

ζ(ϖ1, ϖ2, ϖ3, ϖ4) =

max{ϖ1,ϖ2,ϖ3,ϖ4}

1+ϖ1
, if ϖ1 > 0,

1
2 max{ϖ1, ϖ2, ϖ3, ϖ4}, otherwise.

and define α : P ×P→ R+0 by

α(ϑ, ς) =

1, if ϑ ≤ ς or ς ≤ ϑ,
0, if otherwise.

Now, for all ϑ, ς ∈ P, condition (iii) of Theorem 3.2 is satisfied, and all conditions of Theorem 3.2 are satisfied.
However, if (8) is satisfied, then, we have

α(ϑ, ς)⅁(Gϑ,Gς) ≤ qN(ϑ, ς), ∀ϑ, ς ∈ P,

whereN(ϑ, ς) = max{⅁(ϑ, ς),⅁(ϑ,Gϑ),⅁(ς,Gς), ⅁(ϑ,Gς)+⅁(Gϑ,ς)
2η }. So, in particular, we have

α

(
1
√
υ
,

1
√
ω

)
⅁

(
1√

2(υ + 1)
,

1√
2(ω + 1)

)
≤ qN

(
1
√
υ
,

1
√
ω

)
, ∀ω, υ ∈N, ω , υ,

i.e., ∣∣∣∣∣∣ 1√
2(υ+1)

, 1√
2(ω+1)

∣∣∣∣∣∣
2

N

(
1
√
υ
, 1
√
ω

) ≤ 2q, ∀ω, υ ∈N, ω , υ.

In the above inequality, take lim υ,ω→ +∞, we have 2q ≥ 1, a contradiction. Thus, this example is not applied for
Corollary 3.3.

3.1. Second Main Result
We introduce the another concept of α-admissible ζ-contraction mapping of type-II motivated by Jain

et al. [20] as follows.

Definition 3.5. Let G be a self-map on b-MS (P,⅁, η ≥ 1) and a mapping α : P × P → R+0 . We say that G is
ζ-contractive map of type-II if there exists ζ ∈ E5,

α(ϑ, ς)⅁(Gϑ,Gς) ≤
1
η
ζ(ϑ, ς), ∀ϑ, ς ∈ P, (9)

where ζ(ϑ, ς) = max
(
⅁(ϑ, ς),⅁(ϑ,Gϑ),⅁(ς,Gς), ⅁(ϑ,Gς)

2η ,⅁(Gϑ, ς)
)
.

In a similar way, the proof of our succeeding results proceeds as the proof of Theorem 3.2.

Theorem 3.6. LetG be a self-map on complete b-MS (P,⅁, η ≥ 1) and α : P×P→ R+0 be a function. Assume that
the following conditions are true:

(i) G is α-admissible;
(ii) ∃ ϑ1 ∈ P such that α(ϑ1,Gϑ1) ≥ 1 and α(ϑ1,G2ϑ1) ≥ 1;

(iii)

α(ϑ, ς)⅁(Gϑ,Gς) ≤
1
η
ζ(ϑ, ς), ∀ϑ, ς ∈ P,

where ζ(ϑ, ς) = max
(
⅁(ϑ, ς),⅁(ϑ,Gϑ),⅁(ς,Gς), ⅁(ϑ,Gς)

2η ,⅁(Gϑ, ς)
)
.
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Then, G has a unique fixed point.

Corollary 3.7. Let G be a self-map on complete b-MS (P,⅁, η ≥ 1) and α : P × P → R+0 be a function. Assume
that there exists q ∈ [0, 1

η ) such that the following results are true:

(i) G is α-admissible;
(ii) ∃ ϑ1 ∈ P such that α(ϑ1,Gϑ1) ≥ 1 and α(ϑ1,G2ϑ1) ≥ 1;

(iii)

α(ϑ, ς)⅁(Gϑ,Gς) ≤ q max
(
⅁(ϑ, ς),⅁(ϑ,Gϑ),⅁(ς,Gς),

⅁(ϑ,Gς)
2η

,⅁(Gϑ, ς)
)
,∀ϑ, ς ∈ P.

Then, G has a unique fixed point.

Proof. Let ζ in E5 defined by ζ(ϖ1, ϖ2, ϖ3, ϖ4, ϖ5) = ςηmax{ϖ1, ϖ2, ϖ3, ϖ4, ϖ5}. Then, by Theorem 3.6, G has
a unique fixed point.

Corollary 3.8. Let G be a self-map on complete b-MS (P,⅁, η ≥ 1) and α : P×P→ R+0 be a function. Assume the
following conditions are true:

(i) G is α-admissible;
(ii) ∃ ϑ1 ∈ P such that α(ϑ1,Gϑ1) ≥ 1 and α(ϑ1,G2ϑ1) ≥ 1;

(iii) ∀ ϑ, ς ∈ P,

α(ϑ, ς)⅁(Gϑ,Gς) ≤ τ1⅁(ϑ, ς) + τ2⅁(ϑ,Gϑ) + τ3⅁(ς,Gς) + τ4⅁(ϑ,Gς) + τ5⅁(Gϑ, ς), (10)

where τ1 + τ2 + τ3 + δητ4 + τ5 < 1
η and τκ ≥ 0, ∀κ = 1 to 5.

Then, G has a unique fixed point.

Proof. Let ζ in E5 defined by ζ(ϖ1, ϖ2, ϖ3, ϖ4, ϖ5) = η(τ1⅁(ϑ, ς) + τ2⅁(ϑ,Gϑ) + τ3⅁(ς,Gς) + τ4⅁(ϑ,Gς) +
τ5⅁(Gϑ, ς)). Then, by Theorem 3.6, G has a unique fixed point.

We prove some fixed point results for α-admissible ζ-contractive mappings in b-metric-like spaces,
inspired by the work in [18,19].

4. Fixed Point Results in b-MLSs

In 2014, Shukla [33] initiated the partial b-metric.

Definition 4.1. [33] Let P , ∅. Then, we say that a mapping ⅁ : P ×P → R+0 is partial b-metric if there exists a
positive number η such that ∀ ϑ, ς, ϱ ∈ P,

(pb1) ⅁(ϑ, ς) = 0⇐⇒ ⅁(ϑ, ϑ) = ⅁(ϑ, ς) = ⅁(ς, ς);
(pb2) ⅁(ϑ, ϑ) ≤ ⅁(ϑ, ς);
(pb3) ⅁(ϑ, ς) = ⅁(ς, ϑ);
(pb4) ⅁(ϑ, ϱ) ≤ η(⅁(ϑ, ς) +⅁(ς, ϱ)) −⅁(ς, ς).

Then, the triplet (P,⅁, η) is said to be a partial b-MS.

In 2013, Alghamdi [2] initiated the concept of b-metric-like space.

Definition 4.2. [2] Let P , ∅. Then, we say that a mapping ⅁ : P × P → R+0 is b-metric-like if there exists a
positive number η such that ∀ ϑ, ς, ϱ ∈ P,

(bml1) ⅁(ϑ, ς) = 0⇐⇒ ϑ = ς;
(bml2) ⅁(ϑ, ς) = ⅁(ς, ϑ);
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(bml3) ⅁(ϑ, ϱ) ≤ η(⅁(ϑ, ς) +⅁(ς, ϱ)).

Then, the triplet (P,⅁, η) is called a b-metric-like space (shortly, b-MLS).

Definition 4.3. [9] Let {ϑυ} be a sequence in b-MLS (P,⅁, η ≥ 1). We say that a point ϑ ∈ P is the limit point of
{ϑυ} if lim

υ→+∞
⅁(ϑ, ϑυ) = ⅁(ϑ, ϑ), and the sequence {ϑυ} is said to be convergent to ϑ and it is denoted ϑυ → ϑ as

υ→ +∞.

Definition 4.4. [9]

(i) A sequence {ϑυ} in a b-MLS (P,⅁, η ≥ 1) is said to be Cauchy sequence if lim
υ,ω→+∞

⅁(ϑυ, ϑω) exists and is finite.

(ii) A b-MLS (P,⅁, η ≥ 1) is called complete if for each Cauchy sequence {ϑυ} in P converges to ϑ ∈ P. i.e.,

lim
υ,ω→+∞

⅁(ϑυ, ϑω) = ⅁(ϑ, ϑ) = lim
υ→+∞

⅁(ϑυ, , ϑ).

The following proposition used by Alghamdi [2] for proving fixed point result.

Proposition 4.5. [2] A sequence {ϑυ} in b-MLS (P,⅁, η ≥ 1) such that lim
υ→+∞

⅁(ϑυ, ϑ) = 0, for some ϑ ∈ P. Then,

(i) ϑ is unique.
(ii) 1

η⅁(ϑ, ς) ≤ lim
υ→+∞

⅁(ϑυ, ς) ≤ η⅁(ϑ, ς) for all ς ∈ P.

In 2019, Sen [31] introduced the following lemma.

Lemma 4.6. [31] A sequence {ϑυ} in b-MLS (P,⅁, η ≥ 1) such that for some τ ∈ [0, 1),

⅁(ϑυ, ϑυ+1) ≤ τ⅁(ϑυ−1, ϑυ), ∀ υ ∈N.

Then, the sequence {ϑυ} is Cauchy with lim
υ,ω→+∞

⅁(ϑυ, ϑω) = 0.

Now, we extend Theorem 3.2 in the framework of admissible ζ-contraction in b-metric-like space and
provide a supporting example at the end of the proof.

Theorem 4.7. Let G be a self-map on complete b-MS (P,⅁, η ≥ 1) and α : P × P → R+0 be a mapping. Assume
that there exists ζ ∈ E4 such that the following assumptions are true:

(i) G is α-admissible;
(ii) ∃ ϑ1 ∈ P such that α(ϑ1,Gϑ1) ≥ 1 and α(ϑ1,G2ϑ1) ≥ 1;

(iii)

α(ϑ, ς)⅁(Gϑ,Gς) ≤
1
η
ζ(ϑ, ς), ∀ϑ, ς ∈ P,

where
ζ(ϑ, ς) = max

(
⅁(ϑ, ς),⅁(ϑ,Gϑ),⅁(ς,Gς),

⅁(ϑ,Gς) +⅁(Gϑ, ς) −⅁(ς, ς)
2η

)
Then, G has a unique fixed point.

Proof. Let ϑ1 ∈ P be such that α(ϑ1,Gϑ1) ≥ 1 and α(ϑ1,G2ϑ1) ≥ 1. We define the iterative sequence {ϑυ} in
P by the rule ϑυ = Gϑυ−1 = Gυϑ1, ∀υ ≥ 1. Obviously, if there exists υ0 ≥ 1 for which Gυ0ϑ1 = Gυ0+1ϑ1, then
Gυ0ϑ1 has a fixed point of G. Thus, suppose Gυϑ1 , Gυ+1ϑ1 for every υ ≥ 1.

Since G is α-admissible, the condition (ii) implies

α(ϑ1, ϑ2) = α(ϑ1,Gϑ1) ≥ 1 =⇒ α(Gϑ1,Gϑ2) = α(ϑ2, ϑ3) ≥ 1,
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continuing in this way,
α(ϑυ, ϑυ+1) ≥ 1, ∀υ ∈N.

In a similar way, starting with

α(ϑ1, ϑ3) = α(ϑ1,G
2ϑ1) ≥ 1 =⇒ α(Gϑ1,Gϑ3) = α(ϑ2, ϑ4) ≥ 1,

we deduce
α(ϑυ, ϑυ+2) ≥ 1, ∀υ ∈N.

Assume that ϑυ , ϑυ+1 ∀υ ∈N. Now, we prove the sequence {ϑυ} is Cauchy. Let υ ∈N. Now,

⅁(ϑυ−1,Gϑυ) +⅁(Gϑυ−1, ϑυ) = ⅁(ϑυ−1, ϑυ+1) +⅁(ϑυ, ϑυ) ≥ ⅁(ϑυ, ϑυ);

therefore, using (12), we have

⅁(ϑυ, ϑυ+1) = ⅁(Gυϑ1,G
υ+1ϑ1)

≤ α(Gυ−1ϑ1,G
υϑ1)⅁(Gυ−1ϑ1,G

υϑ1)

≤
1
η

max
{
⅁(ϑυ−1, ϑυ),⅁(ϑυ−1, ϑυ),⅁(ϑυ, ϑυ+1),

⅁(ϑυ−1, ϑυ+1) +⅁(ϑυ, ϑυ) −⅁(ϑυ, ϑυ)
2η

}
<

1
η

max
{
⅁(ϑυ−1, ϑυ),⅁(ϑυ−1, ϑυ),⅁(ϑυ, ϑυ+1),

⅁(ϑυ−1, ϑυ+1)
2η

)
}

=
1
η

max
{
⅁(ϑυ−1, ϑυ),

⅁(ϑυ−1, ϑυ+1)
2η

}
≤

1
η

max
{
⅁(ϑυ−1, ϑυ),

⅁(ϑυ−1, ϑυ) +⅁(ϑυ, ϑυ+1)
2

}
, (11)

which implies that

⅁(ϑυ, ϑυ+1) <
1
η
⅁(ϑυ−1, ϑυ), ∀υ ≥ 1. (12)

Case 1: If η > 1, then the sequence {ϑυ} is Cauchy, by Lemma 4.6 in view of equation (12).
Case 2: If η = 1, then by equation (12) we get monotonically decreasing and bounded below the sequence
{⅁(ϑυ, ϑυ+1)}. Here, we obtain ⅁(ϑυ, ϑυ+1) → k for some ♭ ≥ 0. Suppose that ♭ > 0; now, taking lim inf υ →
+∞ in (11), we have ♭ ≤ ζ(♭, ♭, ♭, ♭

′

) where

♭′ = lim
n→+∞

sup
⅁(ϑυ−1, ϑυ+1)

2
≤ lim
υ→+∞

⅁(ϑυ−1, ϑυ) +⅁(ϑυ, ϑυ+1)
2

= ♭.

Now,
♭ ≤ ζ(♭, ♭, ♭, ♭

′

) < max{♭, ♭, ♭, ♭
′

} = ♭,

which is a contradiction; so

lim
υ→+∞

⅁(ϑυ, ϑυ+1) = 0. (13)

Furthermore,
⅁(ϑυ, ϑυ) ≤ ⅁(ϑυ, ϑυ+1) +⅁(ϑυ+1, ϑυ),

taking lim sup υ→ +∞, and using (13), we find

lim
υ→+∞

⅁(ϑυ, ϑυ+1) = 0. (14)
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Suppose that
lim
υ→+∞

⅁(ϑυ, ϑυ+1) , 0.

On contrary, we assume that the sequence {ϑυ} is not Cauchy, then ∃ ξ > 0 and sequences {ωn}, {υn};ωn >
υn ≥ n such that

⅁(ϑωn , ϑυn ) ≥ ξ. (15)

Now, take ωn > υn such that equation (15) holds. Then,

ξ ≤ ⅁(ϑωn , ϑυn )
≤ ⅁(ϑωn , ϑωn−1) +⅁(ϑωn−1, ϑυn )
< ⅁(ϑωn−1, ϑωn ) + ξ
< ⅁(ϑr, ϑn−1) + ξ.

Thus, taking lim n→ +∞ and by (13), we get

lim
n→+∞

⅁(ϑωn , ϑυn ) = ξ. (16)

Now, assume that there exist infinitely large n such that

⅁(ϑωn ,Gϑυn ) +⅁(Gϑωn , ϑυn ) < ⅁(ϑυn , ϑυn ).

Setting lim sup
n→+∞, and by (14), we get

lim
n→+∞

⅁(ϑωn ,Gϑυn ) +⅁(Gϑωn , ϑυn ) = 0,

which means that
lim
n→+∞

⅁(ϑωn ,Gϑυn+1) = lim
n→+∞

⅁(Gϑωn+1, ϑυn ) = 0.

Now,
ξ = lim

n→+∞
⅁(ϑωn , ϑυn ) ≤ lim

n→+∞
sup(⅁(ϑωn , ϑυn+1) +⅁(ϑυn+1, ϑυn )) = 0,

a contradiction. Therefore, there exists n0 ∈N such that

∀ n ≥ n0,⅁(ϑωn ,Gϑυn ) +⅁(Gϑωn , ϑυn ) ≥ ⅁(ϑυn , ϑυn ).

Thus, for all n ≥ n0, using (12),

⅁(ϑωn+1, ϑυn+1) ≤ α(ϑωn , ϑυn )⅁(Gϑωn ,Gϑυn )

≤ max
(
⅁(ϑωn , ϑυn ),⅁(ϑωn , ϑωn+1),⅁(ϑυn , ϑυn+1),

⅁(ϑωn , ϑυn+1) +⅁(ϑωn+1, ϑυn ) −⅁(ϑυn , ϑυn )
2

)
.

Now,

⅁(ϑωn , ϑυn ) ≤ ⅁(ϑωn , ϑωn+1) +⅁(ϑωn+1, ϑυn+1) +⅁(ϑυn+1, ϑυn )

≤ ⅁(ϑωn , ϑωn+1) +⅁(ϑυn+1, ϑυn ) +max
(
⅁(ϑωn , ϑυn ),⅁(ϑωn , ϑωn+1),⅁(ϑυn , ϑυn+1),

⅁(ϑωn , ϑυn+1) +⅁(ϑωn+1, ϑυn ) −⅁(ϑυn , ϑυn )
2

)
.
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From the above, setting lim infn→+∞ and by equations (13) and (16). Thus, we get ξ ≤ 0 + 0 + ζ(ξ, 0, 0, ξ′),
where

ξ′ = lim
n→+∞

sup
⅁(ϑωn , ϑυn+1) +⅁(ϑωn+1, ϑυn ) −⅁(ϑυn , ϑυn )

2

≤ lim
n→+∞

sup
⅁(ϑωn , ϑυn ) +⅁(ϑωn , ϑυn+1) +⅁(ϑωn+1, ϑωn ) +⅁(ϑωn , ϑυn ) − 0

2

=
ξ + 0 + 0 + ξ

2
= ξ.

Thus, ξ ≤ ζ(ξ, 0, 0, ξ′) < max{ξ, 0, 0, ξ′} = ξ, a contradiction. Thus, {ϑυ} is a Cauchy sequence. Since
(P,⅁, η ≥ 1) is complete b-MLS, there exists ϑ ∈ P such that ϑυ → ϑ

⅁(ϑ, ϑ) = lim
υ→+∞

⅁(ϑυ, ϑ) = lim
υ,ω→+∞

⅁(ϑυ, ϑω) = 0.

Moreover, by Proposition 4.5, ϑ is unique. Assume that Gϑ , ϑ. Consider

⅁(Gϑυ,Gϑ) ≤ α(ϑυ, ϑ)⅁(Gϑυ,Gϑ)

≤
1
η

max
(
⅁(ϑυ, ϑ),⅁(ϑυ,Gϑυ),⅁(ϑ,Gϑ),

⅁(ϑυ,Gϑ) +⅁(ϑ,Gϑυ) −⅁(ϑ, ϑ)
2η

)
,

which implies that

⅁(ϑυ+1,Gϑ) = ⅁(Gϑυ,Gϑ)
≤ α(ϑυ, ϑ)⅁(Gϑυ,Gϑ)

≤
1
η

max
(
⅁(ϑυ, ϑ),⅁(ϑυ,Gϑυ+1),⅁(ϑ,Gϑ),

⅁(ϑυ,Gϑ) +⅁(ϑ, ϑυ+1)
2η

)
.

From the above inequality taking lim inf υ→ +∞ and by Proposition 4.5, we get

1
η
⅁(ϑ,Gϑ) ≤

1
η
ζ(0, 0,⅁(ϑ,Gϑ), ℏ),

i.e.,

⅁(ϑ,Gϑ) ≤ ζ(0, 0,⅁(ϑ,Gϑ), ℏ),

where

ℏ = lim
υ→+∞

sup
⅁(ϑυ,Gϑ) +⅁(ϑ, ϑυ+1)

2η
≤ lim
υ→+∞

sup
η⅁(ϑ,Gϑ) + 0

2η
=
⅁(ϑ,Gϑ)

2
.

Thus

⅁(ϑ,Gϑ) ≤ ζ(0, 0,⅁(ϑ,Gϑ), ℏ) < max{0, 0,⅁(ϑ,Gϑ), ℏ} = ⅁(ϑ,Gϑ),

which is a contradiction. Therefore, Gϑ = ϑ.
Suppose that ϑ, ς are two fixed points of G such that Gϑ = ϑ , ς = Gς. Then, for all ϑ, ς ∈ P such that



G. Nallaselli et al. / Filomat 36:14 (2022), 4947–4961 4959

α(ϑ, ς) ≥ 1. If ⅁(ϑ, ς) > 0 then, by the contractive condition (iii) with the fixed points ϑ and ς yields

⅁(ϑ, ς) = α(ϑ, ς)⅁(Gϑ,Gς) ≤
1
η

max
(
⅁(ϑ, ς),⅁(ϑ,Gϑ),⅁(ς,Gς),

⅁(ϑ,Gς) +⅁(ς,Gϑ) −⅁(ϑ, ϑ)
2η

)
=

1
η

max
(
⅁(ϑ, ς),⅁(ϑ,Gϑ),⅁(ς,Gς),

⅁(ϑ,Gς) +⅁(ς,Gϑ)
2η

)
≤

1
η

max
(
⅁(ϑ, ς), 0, 0,

⅁(ϑ, ς)
η

)
<

1
η

max
{
(⅁(ϑ, ς), 0, 0,

⅁(ϑ, ς)
η

}
=
⅁(ϑ, ς)
η

,

which is a contradiction. Therefore, ϑ = ς.

Example 4.8. Let P = R+0 . Define ⅁ : P × P → R+0 by ⅁(ϑ, ς) = (ϑ + ς)2, ∀ϑ, ς ∈ P. Then, ⅁ is b-ML
on P with η = 2, but ⅁ is not b-metric on P. A mapping G : P → P defined by G = ϑ

2 . In addition, define
ℑ(ϖ1, ϖ2, ϖ3, ϖ4) = ϑ

2 max{ϖ1, ϖ2, ϖ3, ϖ4} and define α : P ×P→ R+0 by

α(ϑ, ς) =

1, if ϑ ≤ ς or ς ≤ ϑ,
0, if otherwise.

Now, ∀ ϑ, ς ∈ P with ⅁(ϑ,Gς) + ⅁(Gϑ, ς) ≥ ⅁(ς, ς), condition (iii) of Theorem 4.7 is fulfilled and hence, 0 is the
unique fixed point of G.

5. Application

In this section, we arise an integral equation application of our main results. Consider the following
integral equation:

u(n) = v(n) + ρ
∫ b

a

H(n, ϱ)f(ϱ, u(ϱ))⅁ϱ, n ∈ I = [a, b], (17)

where ρ is a constant such that ρ ≥ 0 and v : [a, b]→ R,H : [a, b]× [a, b]→ R and f : [a, b]×R→ R are given
continuous functions.

The set of all real valued continuous functionsP defined on [a, b]. Define the b-metric by the following:

⅁(u, v) =
1
η

sup
n∈I

|u(n) − v(n)|, ∀a, b ∈ P. (18)

Consider η > 1. Then, (P,⅁) is a complete b-MS. Now, a self-map G defined on P by

Gu(n) = v(n) + ρ
∫ b

a

H(n, ϱ)f(ϱ, u(ϱ))⅁ϱ, n ∈ [a, b]. (19)

Assume that the following to prove the existence of a solution of Equation (17):

(a) ρ ≤ 1
η

(b) sup
n∈[a,b]

∫ b
a
H(n, ϱ)⅁ϱ ≤ 1

b−a

(c) ∀ u, v ∈ R, |f(ϱ, u) − f(ϱ, v)| ≤ |u − v|
(d) There exists a mapping ζ : P ×P→ R+0 such that ∀ n ∈ [a, b] and ∀ a, b ∈ Pwith ζ(a, b) ≥ 0.
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A solution to Equation (17) is equal to the existence of a fixed point ofG. We will now present the following
results.

Theorem 5.1. Equation (17) has a unique solution in P, under the above assumptions (a) - (d).

Proof.

⅁(Gu1,Gu2) =
1
η

sup
n∈I

|Gu1(n) −Gu2(n)|

=
1
η

sup
n∈I

∣∣∣∣∣(v(n) + ρ∫ b

a

H(n, ϱ)f(ϱ, u1(ϱ))⅁ϱ
)
−

(
v(n) + ρ

∫ b

a

H(n, ϱ)f(ϱ, u2(ϱ))⅁ϱ
)∣∣∣∣∣

=
1
η

sup
n∈I

∣∣∣∣∣ρ∫ b

a

H(n, ϱ)[f(ϱ, u1(ϱ)) − f(ϱ, u2(ϱ))]⅁ϱ
∣∣∣∣∣

≤
1
η2 {sup

n∈I

∫ b

a

H(n, ϱ)}
( ∫ b

a

∣∣∣∣∣f(ϱ, u1(ϱ)) − f(ϱ, u2(ϱ))
∣∣∣∣∣⅁ϱ)

≤
1
η2 {sup

n∈I

∫ b

a

H(n, ϱ)}
∫ b

a

|u1 − u2|⅁ϱ

≤
1
η2 |u1 − u2|(

1
b − a

)
∫ b

a

⅁ϱ

=
1
η
⅁(u1, u2). (20)

So, Equation (17) has a solution in P, which means that G has a fixed point.

6. Conclusion

In this study, we introduce the notion of admissible ζ-contraction mapping of types, which includes the
admissible ζ-contraction of Jain et al. [20] and the α-admissible mapping of Samet et al. [30]. Utilizing this
class of mappings, we establish approximate fixed point and fixed point theorems in the setting of b-metric
and b-metric-like spaces. Finally, we use some examples to prove the established theorems and our results
can be used to solve an integral equation.
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