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Abstract. In this article the reliability estimation of the generalized half-normal distribution (GHN) is
considered when data are subject to both left truncation and right censoring (LTRC). Since the EM-algorithm
for the generalized gamma distribution (that includes GHN as a special case) based on LTRC data was
developed in Balakrishnan and Mitra [Em-based likelihood inference for some lifetime distributions based
on left truncated and right censored data and associated model discrimination; 2014, South African Statistical
Journal, 48(2), 125–171], the maximum likelihood estimates, as well as asymptotic confidence intervals (CIs)
and bootstrap CIs for the unknown parameters of GHN, are briefly discussed. For further study, we
utilized a hierarchical Bayesian approach and proposed two sampling techniques, the Metropolis-Hastings
algorithm and the slice sampler technique to carry out the Bayesian estimation procedure under squared
error loss function, which can be easily extended to other loss function situations. In addition, the Bayesian
prediction problem concerning the lifetime of a censored unit and the Bayesian estimates of the expected
number of failures in a prefixed interval are investigated. Finally, some simulation studies are carried out
to compare the performance of the proposed procedure with its competitor and data analysis of the electric
power-transformers data is conducted to illustrate the purposes.

1. Introduction

The generalized half-normal (GHN) distribution is a flexible lifetime distribution with decreasing,
increasing, and bathtub shapes of the hazard function proposed by Cooray and Ananda [1] for static
fatigue data. This distribution was largely applied as model lifetimes in various fields of reliability analysis
and lifetime studies. The probability density function (PDF) and the cumulative distribution function (CDF)
of the GHN density function are given by
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The work of Liang Wang is supported by the National Natural Science Foundation of China (No. 12061091) and the Yunnan

Fundamental Research Projects(No. 202101AT070103).
Email addresses: k.ahmadi@sku.ac.ir (Kambiz Ahmadi), m.akbari@umz.ac.ir (Masoumeh Akbari), liang610112@163.com

(Liang Wang)



K. Ahmadi et al. / Filomat 36:14 (2022), 4963–4981 4964

and

F(t;α, θ) = 1 − 2Φ
(
−

( t
θ

)α)
, t ≥ 0,

where α > 0 and θ > 0 are the shape and scale parameters respectively, and Φ(·) is the CDF of the standard
normal distribution. Hereafter, we denote the GHN model with parameters α and θ by GHN(α, θ). It
is noted that the shape parameter α affects the geometric shape of the failure density distribution curve
of the GHN model, and the scale parameter θ not only determines the steepness of the failure density
distribution curve, but also specifically exhibits the length of units lifetime. Its negatively and positively
skewed density shapes make the GHN model a proper alternative to conventional exponential, Weibull and
gamma distributions, among others. Therefore, given its flexible versatility and goodness-of-fit property,
the GHN distribution could be used as a potential model in many reliability and lifetime studies as well as
other application fields.

This distribution has been studied by many authors. For example, inferential issues for GHN distribution
based on various censoring schemes where the focus on estimating the unknown parameters can be found
in [2–6]. In completed data, Wang [7] derived different estimates of the unknown GHN parameters. Other
works on the statistical inference of GHN can be found in [8–12].

In many applied fields such as engineering, economics, medicine, biology, epidemiology, and demog-
raphy, we often encounter failure observations with various data characteristics. One common appeared
phenomenon for observations is truncation including left, right, and double truncation. For left truncation,
it means lifetimes of units exceed the truncation time which, in general, has an unknown distribution
function. Here, we consider lifetime data exceed a threshold. For example, some products are tested for a
predetermined period of time to improve the performance of the product before shipping. The units that
survive are considered to be appropriate for shipping, while failed units are discarded. So, the lifetime of
the survived units has already exceeded the threshold value that the manufacturer decided to be the testing
period. As another example, when the observations are measured by different instruments of unequal
but known accuracy we encounter data that draws from a distribution with left truncation at a constant.
Meanwhile, as another common feature of observations, censoring also appears frequently in many lifetime
experiments due to different reasons such as time and cost limitations, etc. Censoring indicates that there
are portion failure times of the tested units observed in experiments and possible censoring types are right,
progressive and interval censoring. By right censoring, it is meant that the failure time of interest is only
known to exceed the censoring time. Different from the sole data failure feature like truncation and cen-
soring, left truncated and right censored (LTRC) data, as a widespread phenomenon for failure times, are
more general in practical situations. For example, Hong et al. [13] considered the lifetime data of electric
power-transformers in an electrical industry in the US, over a particular interval of time. The failure of a
machine is observed only if it fails after 1980, as detailed record keeping on the lifetime of machines was
started in that year. Complete information on the lifetime of machines installed after 1980 is available,
while for machines installed before 1980, the installation dates are available but no information is available
on machines installed and failed before 1980. For such dataset, it is observed that the associated lifetime
data were left-truncated at the starting date of record keeping and right-censored at the ending date of the
study, and should be appropriately adjusted as LTRC data.

Motivated by such previous reasons and due to the practical applications of GHN distribution, this paper
considers reliability estimation for the GHN model when available observations are LTRC data. Of late, a
lot of attention has been paid to LTRC data and various studies have been discussed by many authors. For
example, Balakrishnan and Mitra [14–16] developed the steps of Expectation-Maximization (EM) algorithm
to estimate the unknown parameters of the lognormal, Weibull, and gamma distributions based on LTRC
data. In Balakrishnan and Mitra [17], the EM-algorithm for generalized gamma (GG) distribution based
on LTRC data was developed. In their study, the GG distribution is a model that includes lognormal,
Weibull, gamma, and the GHN discussed in this paper, as special cases. Kundu and Mitra [18] provided
the Bayesian inference of the unknown parameters of the Weibull distribution based on LTRC data. They
considered fairly flexible priors on the scale and shape parameters and computed the Bayes estimates of
the unknown parameters and the associated credible intervals using Gibbs sampling technique. Kundu
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et al. [19] considered both the classical and Bayesian estimates of the Weibull parameters for the LTRC
competing risks data.

In this paper, different analyzing inferential methods for GHN under LTRC data are compared using
classical and Bayesian perspectives. As mentioned above, GHN is a special case of GG distribution. In
general, the fitting ability of statistical models increases with the number of parameters, thus in order
to select the best model among a certain number of candidates it is necessary to use criteria that allow
balancing fitting ability against model complexity. The GG distribution’s ability to behave like other more
commonly-used life distributions and its mathematical complexity cause this distribution is not often used
to model life data by itself. Due to the reason that the GHN distribution has its own lifetime characteristic
showing flexible and various data fitting ability but less complexity than GG in model structure, which
provides some trade-off between simple and complexity lifetime models in data analysis. Furthermore,
to the best of our knowledge, no theoretical result has been reported for Bayesian inference for the GHN
model in the setting of LTRC data so far.

The outline of the paper is as follows. Section 2 is dedicated to a short description of LTRC data and
some notations. Section 3 gives a brief background of the classical approach to find the point and interval
estimate of the unknown parameters. These are related to MLE, EM algorithm, asymptotic confidence
intervals (ACIs), and bootstrap confidence intervals (BCIs). Bayesian estimates and the associated credible
intervals for the unknown parameters and some Bayesian prediction issues facing LTRC data are discussed
in Section 4. Section 5 presents a simulation study to illustrate the performances of the proposed methods.
Finally, we present a real-life example for illustrating the applications of our results in Section 6 and conclude
this paper in Section 7.

2. Data description and notation

Consider a lifetime experiment with n ∈ N identical units. Its lifetimes are described by independent
and identically distributed (i.i.d.) random variables X1,X2, . . . ,Xn. It is assumed that the lifetimes of the
units being tested have a GHN(α, θ), where parameters α and θ are unknown. Corresponding to i-th unit
we assume that there is a prefixed left truncation point, τi, and a prefixed right censoring point, ci. Each
unit can be placed on the test before or after the corresponding left truncation point. If the i-th unit has
been put on a test before τi and it is failed before τi, i.e. Xi < τi, no information is available about Xi. The
information regarding the i-th unit is available only if it is failed after τi, or it is being censored after ci.

Data from experiment involving left truncation and right censoring can be conveniently represented by
{(Yi, νi, δi); i = 1, 2, . . . ,n}, where the discrete random variable νi denotes truncation indicator; i.e. νi = 0 if the
i-th observation is truncated and 1 if it is not truncated. The discrete random variable δi denotes censoring
indicator, i.e. δi = 0 if the i-th observation is censored and 1 if it is not censored. Yi is equal to Xi if the lifetime
of the i-th unit is observed and to ci if it is right censored, i.e. Yi = min(Xi, ci). Accordingly, we denote
the observed data by {(y1, ν1, δ1), (y2, ν2, δ2), . . . , (yn, νn, δn)}. Now consider the index sets S1,S2,Sc1 ,Sc2 as
follows:
S1 = {i : νi = 1}: i ∈ S1 implies that the lifetime of i-th unit is not left truncated at τi.
S2 = {i : νi = 0}: i ∈ S2 implies that the lifetime of i-th unit is left truncated at τi.
Sc1 = {i : δi = 1}: i ∈ Sc1 implies that the lifetime of i-th unit is not right censored at ci.
Sc2 = {i : δi = 0}: i ∈ Sc2 implies that the lifetime of i-th unit is right censored at ci.
Let m be the number of elements in Sc1 and S = S1 ∪ S2.

3. Frequentist estimation

In this section, statistical inference is based on the maximum likelihood estimation and confidence
intervals for the unknown parameters when the sample consists of LTRC data.
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3.1. Maximum likelihood estimates
Let us denote the unknown parameter vector of the distribution by λ = (α, θ). The likelihood function

of the observed data {(y1, ν1, δ1), (y2, ν2, δ2), . . . , (yn, νn, δn)} is given by

L(λ) =
∏
i∈S

{
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where ui = (yi/θ)α and vi = (τi/θ)α. Therefore, setting the first partial derivatives of the logarithm of
likelihood with respect to α and θ to zero, the MLEs of α and θ, say α̂ and θ̂, can be obtained by solving the
following nonlinear equations:

m
α
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where h(·) is the hazard function of the standard normal distribution. Clearly, the system of nonlinear
equations (2) and (3) cannot be solved analytically and mathematical or statistical software should apply to
get a numerical solution via iterative techniques. Here, R package nleqslv is used to find the roots of these
two non-linear equations by the Broyden method.

3.2. EM algorithm based estimation
The EM algorithm, originally suggested by Dempster et al. [20], is a broadly applicable iterative

algorithm used to find MLEs in the presence of incomplete data, missing data, truncated distributions,
and censored observations; see [21]. Each iteration of the EM algorithm consists of two steps called the
Expectation step (the E-step) and the Maximization step (the M-step). Suppose the complete dataset consists
of X = (Y,Z) where onlyY is observed and Zi = [Xi|δi = 0] for i ∈ Sc2 . The complete data likelihood function
is
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In the E-step of (h + 1)-th iteration, we require to compute the pseudo log-likelihood function Q(λ;λ(h)).
It can be obtained by replacing any function of Zi, say 1(Zi), in the logarithm of Lc with E(1(Zi)|Zi > ci, λ(h))
for i ∈ Sc2 , where λ(h) is a vector of the h-th iteration values of the parameters α and θ. In the M-step,
the expected complete data log-likelihood Q(λ;λ(h)) is maximize with respect to λ to determine λ(h+1). So,
taking the first-order derivatives of the function Qwith respect to α and θ, we obtain, respectively,
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where Ãi = E
(

ln Zi|Zi > ci, λ(h)

)
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(
Z2α
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)
, and C̃i = E

(
Z2α

i ln Zi|Zi > ci, λ(h)

)
. These expectations

can be easily calculated using [3]. We refer to Appendix I for more details. Therefore estimate λ(h+1) is
obtained numerically by solving the system of nonlinear equations (4) and (5). We repeat the two steps as
necessary until convergence is achieved to the desired level of accuracy.
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3.3. Asymptotic variances and covariance of the MLEs
The asymptotic variance-covariance matrix of the MLEs is derived using the missing information prin-

ciple from [22]. Computing inverse observed information matrix, we can obtain asymptotic variances and
covariance of the MLEs, where the observed information matrix, IY(λ) equals the complete information
matrix IX(λ) minus the missing information matrix IZ(λ). The complete information matrix and the missing
information matrix are given by

IX(λ) = −E
[
∂2

∂λ2 log Lc(λ)
]
, IZ(λ) = −

∑
i∈Sc2

E
[ ∂2

∂λ2 log fZi |Ci (zi|zi > ci, λ)
]

So the observed information can be obtained as IY(λ) = IX(λ) − IZ(λ). If we denote V as the asymptotic
variance-covariance matrix for λ̂ = (α̂, θ̂), then the estimate of V can be obtained as

V̂ =
[
V̂11 V̂12

V̂21 V̂22

]
= I−1
Y

(λ̂).

The calculation of V̂ is presented in Appendix II.

3.4. Approximate confidence intervals
There are several ways to construct confidence intervals which vary in ease of calculation and accuracy.

As an application of previous subsections, we can construct ACIs for parameters α and θ using the asymp-
totic normality of the MLEs. Therefore, for 0 < γ < 1, the 100(1 − γ)% ACIs for α and θ are respectively
given by

α̂ ± zγ/2
√

V̂11, and θ̂ ± zγ/2
√

V̂22,

where zγ/2 is the upper γ/2th percentile point of the standard normal distribution.
In addition, the bootstrap technique is an alternative to construct confidence intervals for the unknown

parameters α and θ. In the following, we use the parametric bootstrap method which was used by some
authors such as [23, 24]. Here are the main steps of using the parametric bootstrap to compute confidence
intervals for the parameters α and θ as follows:

Step 1 Given the original LTRC sample of size n, calculate λ̂ = (α̂, θ̂).

Step 2 Using the MLE λ̂ = (α̂, θ̂) as the true value of the parameter, within the same sampling framework
of LTRC data, generate a sample of size n.

Step 3 Based on the bootstrap sample obtained above, calculate λ̂∗ = (α̂∗, θ̂∗), the MLE for λ = (α, θ), in the
same way as described in Subsection 3.1.

Step 4 Repeat Steps 2 and 3 B − 1 times. Then denote the MLEs by λ̂∗1, λ̂
∗

2, . . . , λ̂
∗

B, where λ̂∗i = (α̂∗i , θ̂
∗

i ) is the
MLE of λ based on the i-th bootstrap sample, i = 1, 2, . . . ,B.

Step 5 To construct a bootstrap-p confidence interval(BCI), arrange α̂∗i , i = 1, 2, . . . ,B in an ascending order
to obtain the bootstrap samples as α̂∗(1), α̂

∗

(2), . . . , α̂
∗

(B). Then
(
α̂∗(⌊Bγ/2⌋), α̂

∗

(⌊B−Bγ/2⌋)

)
is a two-sided 100(1−γ)%

BCI for α, where ⌊x⌋ is the largest integer less than or equal to x. The BCI for θ is obtained in an
analogous manner.

To improvement of the precision of the percentile bootstrap confidence interval, we can further use
the following bootstrap bias correction technique. For a model parameter, say α, a two-sided 100(1 − γ)%
parametric bias-corrected bootstrap confidence interval (BCIa) is specified by

α̂ − bα ± zγ/2
√

vα,
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where bα and vα are respectively the bootstrap bias and bootstrap variance for MLE α̂ and are defined as

bα = ¯̂α∗ − α̂ and vα =
1

B − 1

B∑
i=1

(α̂∗i − ¯̂α∗)2,

with ¯̂α∗ =
∑B

i=1 α̂
∗

i/B. The parametric BCIa for θ can be constructed in a similar way.

4. Bayesian inference

The Bayesian approach in statistical inference provides an alternative choice for parameters estimation.
In this section, we first consider the Bayesian estimates and the associated credible intervals of the unknown
parameters of GHN under LTRC data. Then, the Bayesian prediction problem concerning the lifetime of an
individual unit censored at time ci is investigated. Finally, a discussion about how to estimate the expected
number of future failures within a fixed interval is presented.

4.1. Prior information and posterior inference

In this subsection, we provide the necessary assumptions about prior distributions. Recently, the two-
parameter GHN distribution has been studied in different frameworks of data, from a Bayesian viewpoint.
Ahmadi and Yousefzadeh [2], Ahmadi et al. [3] and Abd El-Raheem [4] considered Gamma prior distribu-
tions for the unknown parameters α and θ. Ahmadi and Ghafouri[5] used Gamma and inverse Gamma(IG)
distributions as prior distributions for α and θ respectively.

In this paper, we develop the Bayesian set-up by considering the idea of Kottas [25] regarding the choice
of prior distributions. Our prior knowledge about the true values of α and θ are, respectively, expressed
via Uniform (0, ψ) and IG(a, β) with the PDFs

π(α;ψ) =
1
ψ

I(0,ψ)(α), ψ > 0, (6)

π(θ; a, β) =
βa

Γ(a)

( 1
θ

)a+1
e−β/θ, a, β > 0. (7)

In order to incorporate uncertainty about the prior distributions, the hierarchical Bayesian approach is
utilized as well. This approach models the lack of information on the hyper-parameters of the prior
distributions through other prior distributions on these hyper-parameters. In this regard, it is assumed that
ψ and β have respectively, conjugate priors Pareto(aψ, bψ) and Gamma(aβ, bβ) with the PDFs

ψ ∼ π(ψ; aψ, bψ) =
aψbaψ

ψ

ψaψ+1 I(bψ,∞), β ∼ π(β; aβ, bβ) =
baβ
β

Γ(aβ)
βaβ−1e−bββ. (8)

Utilizing likelihood function (1) and prior distributions (6)-(8), the joint posterior density function of
α, β, θ and ψ given the data {Oi = (yi, νi, δi); i = 1, · · · n} is obtained as

π(α, β, θ, ψ|Oi) ∝
αmβa+aβ−1

ψaψ+2θmα+a+1
exp

{
−

1
2

∑
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u2
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(
bβ +

1
θ
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β

}( ∏
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yαi
)

×

( ∏
i∈Sc2

Φ(−ui)
)(∏

i∈S2

1
Φ(−vi)

)
I(0,ψ)(α)I(bψ,∞)(ψ). (9)

It is obvious that, under the squared error loss function, there is no closed-form for the expression of
Bayesian estimates of α and θ. Numeric computation can be used but are not recommended due to the
large error and sensitivity to the sample. Instead of it, we use Gibbs sampling that is one popular MCMC
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approach. In order to construct a Gibbs sampler for the model (9), we need to calculate the full conditional
distributions. Utilizing (9) the full conditional density function of α is obtained as

π(α|β, θ, ψ,Oi) ∝ αm exp
{
−

∑
i∈Sc1

u2
i /2

}( ∏
i∈Sc1

ui

)( ∏
i∈Sc2

Φ(−ui)
)(∏

i∈S2

1
Φ(−vi)

)
I(0,ψ)(α). (10)

The full conditional distribution of β is

π(β|α, θ, ψ,Oi) ∝ βa+aβ−1e−
(

bβ+ 1
θ

)
β
≡ Gamma(a + aβ, bβ +

1
θ

),

Finally, we can get the full conditional density functions of θ and ψ, respectively, as

π(θ|α, β, ψ,Oi) ∝
1

θmα+a+1 exp
{
−
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2

∑
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u2
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1
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, (11)

and

π(ψ|α, β, θ,Oi) ∝
1

ψaψ+2 I(max(α,bψ),∞)(ψ) ≡ Pareto(aψ + 1,max(α, bψ)).

Note that the full conditional densities (10) and (11) are not in the form of well known distributions. In
the following, we implement the slice sampler to generate a sample from the full conditional distribution
(10). Let ηi = ln

(
yi/θ

)
for i ∈ Sc1 ∪ Sc2 and ξi = ln (τi/θ) for i ∈ S2.

Algorithm 1: slice sampler approach for (10)

Step 1 For each i ∈ Sc1 ,

i) Generate Wi0 from Uniform(0,ui) and Wi1 from Uniform (0, e−u2
i /2).

ii) Set L(1)
i = max

{
0, 1

2ηi
ln

(
− 2 ln(Wi1)

)}
and U(1)

i =
1
ηi

ln(Wi0), if ηi < 0 and L(1)
i = max

{
0, 1

ηi
ln(Wi0)

}
and U(1)

i =
1

2ηi
ln

(
− 2 ln(Wi1)

)
otherwise.

Step 2 For each i ∈ Sc2 ,

i) Generate Wi2 from Uniform(0,Φ(−ui)).

ii) Set L(2)
i = max

{
0, 1

ηi
ln

(
Φ−1(1 −Wi2)

)}
and U(2)

i = ∞, if ηi < 0 and L(2)
i = 0 and U(2)

i =
1
ηi

ln
(
Φ−1(1 −

Wi2)
)

otherwise.

Step 3 For each i ∈ S2,

i) Generate Wi3 from Uniform(0, 1/Φ(−vi)).
ii) For Wi3 ≤ 2, set L(3)

i = 0 and U(3)
i = ∞. For Wi3 > 2, set L(3)

i = 0 and U(3)
i =

1
ξi

ln
(
Φ−1(1 − 1/Wi3)

)
, if

ξi < 0 and L(3)
i = max

{
0, 1

ξi
ln

(
Φ−1(1 − 1/Wi3)

)}
and U(3)

i = ∞ otherwise.

Step 4 Generate W∗ from Uniform(0, 1), and compute α =
[
W∗Um+1

∗ + (1 − W∗)Lm+1
∗

]1/(m+1)
, where L∗ =

max
{
L(k)

i : 1 ≤ i ≤ n, k = 1, 2, 3
}

and U∗ = min
{
U(k)

i : 1 ≤ i ≤ n, k = 1, 2, 3
}
.

Note our objective is to generate a sample from PDF f (α) ∝ αmI(L∗,U∗)(α) in Step 4 of Algorithm 1.
The inverse-transform method has been used in this respect. In order to generate a sample from the
full conditional distribution (11), Metropolis-Hastings (M-H) algorithm can be utilized with the normal
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proposal distribution N(θ,Sθ). In general, Sθ is not known and the choice of it is an important issue. Let
ℓθ = lnπ(θ|α, β, ψ,Oi). The second derivative of ℓθ with respect to θ can be specified as follows:

∂2ℓθ
∂θ2 =

mα + a + 1
θ2 −

2β
θ3 −

α

θ2

[
(1 + 2α)

∑
i∈Sc1

u2
i −

∑
i∈Sc2

uih(ui)
[(

ui − h(ui)
)
αui − α − 1

]
+

∑
i∈S2

vih(vi)
[(

vi − h(vi)
)
αvi − α − 1

]]
. (12)

One choice for Sθ is [− ∂
2ℓθ
∂θ2 ]−1 evaluated at the posterior mode of full condition posterior (11), say θ̃. The

posterior mode θ̃ can be evaluated by usual optimization methods.

Algorithm 2: M-H sampling

Step 1 Set initial values α(0), β(0), θ(0), ψ(0).

Step 2 Calculate the posterior mode θ̃ of π(θ|α(0), β(0), ψ(0),Oi).

Step 3 Using (12), evaluate Sθ at the posterior mode θ̃.

Step 4 For j = 1, 2, ...,N, repeat the following steps:

i) For given α( j−1), β( j−1), θ( j−1) and ψ( j−1), generate α( j) using Algorithm 1.
ii) Generate θ( j) as follows:

• Generate new candidate parameter value η from N(θ( j−1),Sθ).
• Set θ′ = |η|.

• Calculate τ = min
{
1, π(θ′ |α( j),β( j−1),ψ( j−1),Oi)

π(θ|α( j),β( j−1),ψ( j−1),Oi)

}
.

• Set θ( j) = θ′ with probability τ otherwise set θ( j) = θ( j−1).

iii) Generate β( j) from Gamma(a + aβ, bβ + 1
θ( j) ).

iv) Generate ψ( j) from Pareto(aψ + 1,max(α( j), bψ)).

Using the generated random samples from Algorithm 2, the Bayesian estimates of α and θ under the
squared error loss function can be computed as

α̂B =
1

N −M

N∑
j=M

α( j), and θ̂B =
1

N −M

N∑
j=M

θ( j)

respectively, where M is burn-in period.
In addition, to construct the credible interval of α, we sort all the α( j), j = M + 1,M + 2, . . . ,N, in an

ascending sequence, as α(1), α(2), . . . , α(N−M). Then for 0 < γ < 1, a 100(1 − γ)% credible interval of α is
specified by(

α(k), α(k+N−M−⌊(N−M)γ+1⌋)

)
, k = 1, 2, . . . , ⌊(N −M)γ⌋.

Therefore, the 100(1 − γ)% HPD credible interval of α can be obtained as the k∗-th one satisfying

α(k∗+N−M−⌊(N−M)γ+1⌋) − α(k∗) ≤ α(k+N−M−⌊(N−M)γ+1⌋) − α(k)

for all k = 1, 2, . . . , ⌊(N −M)γ⌋. The HPD credible interval of θ can be constructed in a similar way.
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4.2. Prediction for the remaining lifetime of a censored unit
The prediction of lifetime of a censored unit is an important problem in reliability theory and can be

applied in industrial applications. Here, the point and interval predict are of interest. Let Ti be the failure
time of a unit which censored at time ci, i ∈ Sc2 . The conditional survival function of Ti is

S(t|Ti > ci;α, θ) = 1 − F(t|Ti > ci, α, θ) =
Φ

(
−( t

θ )α
)

Φ
(
−( ci

θ )α
) , (13)

The conditional PDF of Ti corresponding to (13) is

f (t|Ti > ci;α, θ) =
ϕ

(
−( t

θ )α
)

Φ
(
−( ci

θ )α
) (
α
t

) ( t
θ

)α
. (14)

Based on the joint posterior distribution (9), the predictive density of Ti and the predictive survival function
given data are as

f ∗(t|ci) = Eposterior

[
f (t|Ti > ci;α, θ)

]
, S∗(t|ci) = Eposterior

[
S(t|Ti > ci;α, θ)

]
,

respectively. Suppose {(α( j), θ( j)), j = M,M + 1, . . . ,N} are samples obtained from posterior distribution (9),
using Algorithm 2, then the simulation consistent estimators of f ∗(t|ci) and S∗(t|ci) can be obtained as

f̂ ∗(t|ci) =
1

N −M

N∑
j=M

f
(
t|Ti > ci;α( j), θ( j)

)
, (15)

Ŝ∗(t|ci) =
1

N −M

N∑
j=M

S
(
t|Ti > ci;α( j), θ( j)

)
, (16)

respectively. Utilizing (14) and (15), the Bayesian point predictor of Ti under the squared error loss function
can be expressed as

T̂iB =

∫
∞

ci

t f̂ ∗(t|ci) dt =
1

N −M

N∑
j=M

2
1

2α( j) −1θ( j)

√
πΦ

(
−( ci

θ( j) )α
( j)
)Γ [ 1

2α( j)
+

1
2
,

1
2

( ci

θ( j)

)2α( j)]
.

From (13) and (16), the Bayesian predictive bounds of a two-sided interval with cover 1 − γ, for the value
of Ti, may be obtained by solving the following two equations for the lower bound, L and upper bound, U:

Ŝ∗(L|ci) = 1 −
γ

2
, Ŝ∗(U|ci) =

γ

2
.

4.3. The cumulitive number of failures in an interval
Let c∗ = max{ci, i ∈ Sc2 }, where ci denotes censored time of the i-th unit, i ∈ Sc2 . For the fixed interval

[L,R], c∗ < L and L < R, we define Zi = 1 if the i-th unit fails in [L,R] and 0 otherwise. Thus the random
variable J =

∑
i∈Sc2

Zi, describes the number of future failures in the interval [L,R], out of m units which
belong to Sc2 . It is immediate that

E(J ;α, θ) =
∑
i∈Sc2

Pr(Zi = 1) =
[
Φ

((R
θ

)α)
−Φ

((L
θ

)α)] ∑
i∈Sc2

1

Φ
(
−

(
ci
θ

)α) .
Therefore using the samples {(α( j), θ( j)), j = M,M + 1, . . . ,N}, the Bayesian estimate of E(J ;α, θ) under the
squared error loss function can be specify by ÊB =

1
N−M

∑N
j=M E(J ;α( j), θ( j)).
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Table 1: MSEs and biases (in parentheses) of ML, EM, and Bayesian estimates of α = 2.17, 5 and θ = 20.

α n
Trunc.

(%)
Cen.
(%) Estimation α Estimation θ

MLE, EM BE 1 BE 2 MLE, EM BE 1 BE 2

2.17 30 20 19.32 0.2044 0.2007 0.1204 2.0557 2.1763 0.7113
(0.1217) (0.1071) (0.0237) (-0.0841) (0.1320) (-0.0189)

40 14.67 0.2117 0.2082 0.1089 2.0377 2.0963 0.6624
(0.1415) (0.1295) (0.0348) (-0.0054) (0.1186) (-0.0029)

60 10.13 0.2566 0.2504 0.1163 2.2389 2.2814 0.6383
(0.1600) (0.1470) (0.0430) (0.0608) (0.0989) (0.0079)

60 20 19.33 0.0875 0.0889 0.0633 1.0541 1.0955 0.5820
(0.0599) (0.0563) (0.0084) (0.0046) (0.1106) (0.0178)

40 14.55 0.0893 0.0909 0.0599 1.0508 1.0715 0.5471
(0.0634) (0.0602) (0.0110) (-0.0342) (0.0300) (-0.0415)

60 9.75 0.0999 0.1021 0.0603 1.2324 1.2585 0.5822
(0.0630) (0.0605) (0.0090) (-0.0217) (0.0019) (-0.0553)

100 20 19.31 0.0472 0.0491 0.0385 0.6229 0.6406 0.4265
(0.0348) (0.0336) (0.0030) (0.0093) (0.0729) (0.0145)

40 14.49 0.0494 0.0515 0.0383 0.6326 0.6422 0.4184
(0.0342) (0.0326) (0.0031) (-0.0345) (0.0036) (-0.0458)

60 9.76 0.0567 0.0594 0.0403 0.7473 0.7676 0.4624
(0.0420) (0.0399) (0.0080) (-0.0069) (0.0060) (-0.0458)

5 30 20 18.44 0.9905 0.9749 0.5968 0.3849 0.3886 0.2911
(0.3036) (0.2751) (0.0576) (-0.0376) (0.0353) (-0.0174)

40 13.87 1.1333 1.1203 0.6570 0.3852 0.3880 0.2852
(0.3279) (0.3023) (0.0668) (-0.0293) (0.0152) (-0.0416)

60 9.54 1.1854 1.1562 0.6475 0.4208 0.4267 0.2978
(0.3411) (0.3095) (0.0629) (-0.0180) (-0.0041) (-0.0619)

60 20 18.43 0.4239 0.4309 0.3153 0.1947 0.1952 0.1695
(0.1628) (0.1525) (0.0403) (-0.0251) (0.0110) (-0.0191)

40 13.77 0.4470 0.4544 0.3282 0.1933 0.1961 0.1660
(0.1525) (0.1438) (0.0265) (-0.0227) (0.0002) (-0.0357)

60 9.18 0.4885 0.4994 0.3478 0.2113 0.2159 0.1782
(0.1578) (0.1502) (0.0173) (-0.0070) (0.0017) (-0.0423)

100 20 18.35 0.2335 0.2407 0.1937 0.1151 0.1161 0.1059
(0.0857) (0.0787) (0.0125) (-0.0144) (0.0068) (-0.0126)

40 13.86 0.2469 0.2565 0.2022 0.1190 0.1210 0.1087
(0.0913) (0.0874) (0.0171) (-0.0199) (0.0038) (-0.0038)

60 9.23 0.2718 0.2843 0.2205 0.1266 0.1295 0.1147
(0.0942) (0.0889) (0.0109) (-0.0099) (-0.0047) (-0.0335)

5. Numerical computations

In this section, a simulation study was mainly performed to compare how the different methods work
for different sample sizes and truncation rates. The performance of all estimates has been compared
numerically in terms of their mean squared errors (MSEs), average biases, and interval estimates in terms
of coverage probabilities and average widths of two-sided confidence intervals. The underlying failure time
was independently generated from a GHN distribution. Two choices of the shape and scale parameters are
made: α = 2.17, as the symmetric density function, and α = 5, as the positively skewed density function as
well as scale parameters θ = 20 and 40.

The total sample size n was chosen to be 30, 60, and 100. For the fixed truncation percentages 20%, 40%
and 60%, we get the censoring rates between 10% and 80%. To form a LTRC data, following Balakrishnan
and Mitra [14], we set the truncation time between the year of installation and the truncation point of
1980, as to mimic the dataset used by Hong et al. [13]. Based on a fixed truncation rate, the installation
years were simulated by unequal probability with-replacement sampling from an arbitrary set of years. As
stated in [14], unequal probabilities were assigned to different years as follows: for the period 1960-1979, a
probability of 0.1 was attached to each of the first six years and a probability of 0.04 was attached to each
of the remaining years of this period; for the period 1980–1995, a probability of 0.15 was attached to each of
the first five years, and the remaining probability was distributed equally over the remaining years of this
period. We also fixed 2008 as the year of censoring. Right censoring occurs when the lifetime exceeds the
censoring time 2008. Censoring rates were computed for all scenarios and different truncation rates.

In order to solve the nonlinear equations and obtain the estimates of the unknown parameters using the
ML method and EM algorithm, the nleqslv package was applied. We employed the moment estimates for
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Table 2: MSEs and biases (in parentheses) of ML, EM, and Bayesian estimates of α = 2.17, 5 and θ = 40.

α n
Trunc.

(%)
Cen.
(%) Estimation α Estimation θ

MLE, EM BE1 BE2 MLE, EM BE1 BE2

2.17 30 20 66.89 0.5888 0.5991 0.2586 19.7219 18.9725 5.2953
(0.2579) (0.2903) (0.1011) (-0.1685) (-0.1271) (-0.2482)

40 56.96 0.4387 0.4356 0.2308 19.8532 18.9389 5.7563
(0.1828) (0.1915) (0.0503) (0.1648) (0.0502) (-0.0893)

60 47.07 0.4088 0.4045 0.2164 14.1672 14.2905 5.2608
(0.1599) (0.1447) (0.0149) (0.0396) (-0.2752) (-0.1625)

60 20 66.87 0.2080 0.2128 0.1268 16.1017 15.4310 5.4166
(0.1045) (0.1293) (0.0441) (0.2012) (0.2779) (0.0642)

40 56.88 0.1719 0.1745 0.1161 8.9498 8.9130 4.5873
(0.0764) (0.0885) (0.0116) (0.0294) (0.0139) (-0.0134)

60 46.98 0.1809 0.1858 0.1230 6.2288 6.3370 3.8035
(0.0802) (0.0830) (0.0062) (0.0509) (-0.0572) (-0.0314)

100 20 66.95 0.1068 0.1102 0.0759 8.8607 8.8626 4.4265
(0.0497) (0.0658) (0.0154) (0.1818) (0.2527) (0.1693)

40 56.85 0.0929 0.0973 0.0708 5.2533 5.2571 3.5090
(0.0501) (0.0604) (0.0092) (0.0143) (0.0158) (0.0269)

60 46.98 0.0985 0.1034 0.0760 3.8116 3.8535 2.8448
(0.0510) (0.0555) (0.0021) (0.0370) (-0.0182) (-0.0051)

5 30 20 78.86 9.2358 9.3042 2.8673 7.6333 8.1385 4.3084
(1.1764) (1.2233) (0.5057) (-0.3052) (0.1019) (-0.0011)

40 63.37 2.6804 2.7278 1.3461 3.6359 3.7574 2.7429
(0.5786) (0.5844) (0.1850) (-0.1965) (-0.0288) (-0.0628)

60 48.09 1.7154 1.7341 0.9771 2.4432 2.5294 2.0279
(0.4012) (0.3840) (0.0761) (-0.1068) (-0.0378) (-0.0623)

60 20 78.79 1.4819 1.5637 0.8826 3.5104 3.6646 2.7087
(0.4257) (0.4660) (0.1937) (-0.1606) (0.0702) (0.0570)

40 56.85 0.9215 0.9468 0.6111 1.7062 1.7498 1.5118
(0.2741) (0.2893) (0.0900) (-0.0305) (0.0617) (0.0447)

60 48.13 0.6423 0.6593 0.4523 1.1634 1.1858 1.0695
(0.1844) (0.1863) (0.0275) (-0.0401) (0.0008) (-0.0181)

100 20 78.71 0.6794 0.7202 0.4784 1.8967 1.9614 1.6582
(0.2355) (0.2627) (0.1088) (-0.0839) (0.0607) (0.0675)

40 63.40 0.4568 0.4753 0.3456 0.9992 1.0145 0.9361
(0.1632) (0.1761) (0.0573) (-0.0343) (0.0224) (0.0160)

60 48.04 0.3539 0.3646 0.2822 0.7207 0.7274 0.6854
(0.0997) (0.1008) (0.0062) (-0.0317) (-0.0062) (-0.0190)

the parameters as starting values. They were obtained from the pseudo-complete data. See [16] for more
details. We stopped iterations in the EM algorithm when the maximum of absolute difference of estimates
in (h+1)-th and h-th iteration was less than 1×10−4. Moreover, to obtain the bootstrap confidence intervals,
we used B = 5000 bootstrap samples and follow the procedure described in Subsection 3.3.

In the Bayesian context, we chose the values of the hyper-parameters as follows. Regarding the prior
for ψ, we simplify by setting aψ = 2, yielding a Pareto distribution with infinite variance for ψ. To choose
bψ we obtain the CDF of the marginal prior distribution of parameter α as follows:

Π∗α(p) =
∫ p

0

∫
ψ
π(α;ψ)π(ψ; 2, bψ) dψ dα

=

∫ p

0

∫
∞

max{α,bψ}

2b2
ψ

ψ4 dψ dα =


2p

3bψ
0 < p < bψ

1 −
b2
ψ

3p2 p ≥ bψ
.

If we assume mα is the median of the marginal prior distribution α, then bψ = 4
3 mα. We substitute mα with

the MLE α̂. The prior distribution of θ is simplified by setting a = 2, resulting in infinite prior variance for θ.
Also, the hyper-parameter β is characterized by improper prior. In this regard we set aβ = 0 and bβ = 0. For
the first prior (Prior 1), we considered aψ = 2, bψ = 4

3 α̂, a = 2, aβ = 0, bβ = 0, where α̂ is the MLE of α based on
current sample. The second prior (Prior 2) is different for the input parameters of GHN distribution. Let a0 be
the considered values 2.17 and 5. Forα = a0 andθ = 20,we consider aψ = 2, bψ = a0, a = 406

3 , aβ = 8060, bβ = 3.
Also, for α = a0 and θ = 40, we set aψ = 2, bψ = a0, a = 204.5

3 , aβ = 8060, bβ = 3.
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Table 3: Coverage probabilities and average widths(in parentheses) of 95% CIs for true values α = 2.17, 5 and θ = 20.

n Trunc.
(%)

α=2.17, θ=20 α=5, θ=20

Cen.
(%) ACL BCL BCLa HPD1 HPD2

Cen.
(%) ACL BCL BCLa HPD1 HPD2

30 20 19.32 94.38 91.22 96.1 92.62 95.62 18.44 95.46 90.84 97.06 93.96 96.74
(1.57) (1.76) (1.77) (1.50) (1.38) (3.49) (3.40) (4.02) (3.37) (3.12)

40 14.67 95.06 90.82 96.78 93.56 96.94 13.87 94.36 90.04 96.72 93.02 96.12
(1.61) (1.83) (1.84) (1.54) (1.37) (3.61) (4.14) (4.17) (3.47) (3.19)

60 10.13 94.92 90.64 96.72 92.74 97.28 9.54 94.96 91.18 96.96 93.68 96.52
(1.72) (1.97) (1.99) (1.63) (1.39) (3.79) (4.34) (4.37) (3.61) (3.29)

60 20 19.33 94.58 92.84 95.80 93.32 95.44 18.43 94.84 92.18 96.34 93.08 95.38
(1.08) (1.14) (1.14) (1.05) (0.97) (2.39) (2.56) (2.57) (2.33) (2.20)

α 40 14.55 94.86 93.18 96.02 92.82 95.72 13.77 95.16 92.62 96.14 93.38 95.30
(1.10) (1.17) (1.17) (1.06) (0.97) (2.47) (2.64) (2.64) (2.39) (2.23)

60 9.75 95.20 93.34 96.20 92.42 96.16 9.18 94.96 93.20 95.90 95.90 95.00
(1.16) (1.25) (1.25) (1.11) (0.99) (2.59) (2.77) (2.78) (2.48) (2.32)

100 20 19.31 94.70 93.64 95.42 92.40 94.32 18.35 95.14 93.44 95.96 92.80 94.04
(0.82) (0.85) (0.85) (0.79) (0.75) (1.83) (1.90) (1.90) (1.74) (1.67)

40 14.49 95.22 93.90 95.62 92.18 94.68 13.86 95.00 93.72 95.68 92.58 94.40
(0.84) (0.87) (0.87) (0.80) (0.75) (1.89) (1.96) (1.97) (1.80) (1.72)

60 9.76 95.14 94.08 95.76 91.92 94.40 9.23 95.52 94.06 96.10 92.08 94.08
(0.89) (0.93) (0.93) (0.84) (0.77) (1.98) (2.06) (2.07) (1.86) (1.77)

30 20 19.32 93.72 93.24 93.60 94.58 98.64 18.44 93.26 93.40 93.18 94.14 96.38
(5.45) (5.45) (5.44) (5.84) (4.31) (2.35) (2.36) (2.36) (2.48) (2.34)

40 14.67 94.02 93.94 93.70 94.84 98.68 13.87 93.52 93.06 93.40 94.44 96.38
(5.55) (5.52) (5.52) (5.81) (4.32) (2.39) (2.39) (2.39) (2.49) (2.34)

60 10.13 93.58 94.08 93.44 93.86 99.00 9.54 93.42 93.16 93.06 93.90 96.48
(5.91) (5.87) (5.86) (6.10) (4.41) (2.08) (2.47) (2.47) (2.57) (2.39)

60 20 19.33 93.66 93.52 93.66 93.82 97.00 18.43 93.94 94.14 94.22 94.16 95.42
(3.90) (3.90) (3.90) (4.00) (3.42) (1.68) (1.69) (1.69) (1.72) (1.67)

θ 40 14.55 94.36 94.20 94.10 94.20 97.48 13.77 94.62 94.38 94.58 94.56 94.68
(3.99) (3.98) (3.98) (4.05) (3.43) (1.71) (1.71) (1.71) (1.74) (1.68)

60 9.75 94.08 94.02 93.88 93.56 97.34 9.18 94.50 94.48 94.32 94.00 95.56
(4.27) (4.25) (4.25) (4.28) (3.55) (1.78) (1.78) (1.78) (1.79) (1.73)

100 20 19.31 94.58 94.40 94.44 94.30 96.22 18.35 94.34 94.16 94.28 94.26 94.92
(3.04) (3.03) (3.03) (3.06) (2.78) (1.32) (1.32) (1.32) (1.32) (1.30)

40 14.49 94.56 94.44 94.38 93.82 96.52 13.86 94.72 94.70 94.66 94.28 95.40
(3.11) (3.11) (3.11) (3.11) (2.81) (1.34) (1.34) (1.34) (1.34) (1.31)

60 9.76 94.42 94.38 94.26 93.74 96.64 9.23 94.88 94.88 94.74 94.14 95.34
(3.32) (3.31) (3.31) (3.28) (2.91) (1.38) (1.38) (1.38) (1.37) (1.34)

It may be noted that the hyper-parameters of the second prior are selected in such a way that the mean
of Uniform(0, ψ) is the same as the true value of α. And the mean of Pareto(2, bψ) is the same as ψ. With
regard to θ, the mean of IG prior is the same as the true value of θ and the mean of Gamma prior is the
same as β. To implement Algorithm 2, we ran the iterative process up to N = 10000 iterations by discarding
the first M = 1000 iterations as burn-in-period. We repeated the whole procedure 10000 times.

Tables 1 and 2 presente the biases and MSEs of the ML, EM, and Bayesian estimates of α and θ. Since
the numbers are reported by four decimal places, MLE and EM estimates have exactly the same results in
terms of biases and MSEs. Hence, one column has been considered in the tables to show the results of these
two methods. We use the notations ”BE 1” and ”BE 2” to refer to the Bayesian estimates under Prior 1 and
Prior 2, respectively. From Tables 1 and 2 it is observed that the biases and MSEs of BE 2 are smaller than
those of MLE, EM, and BE 1. Monte Carlo studies have shown, however, that its finite-sample performance
for θ can be poor when the sample size is low and censoring rate is high. For a fixed truncation rate, the
biases and MSEs decrease with an increase in sample sizes for all cases. Note that by fixing the truncation
rate and increasing sample size, the censoring rate remains approximately constant. According to the
results in columns BE 1 and BE 2, one can deduce that MSEs and biases depend on the choice of priors.

Tables 2 and 3 display coverage probabilities and average widths of 95% intervals for α and θ. The HPD
credible intervals under Prior 1 and Prior 2 are referred to as ”HPD 1” and ”HPD 2”, respectively. Results
for α show that BCIa has higher coverage probability than the other intervals in most cases. Moreover, the
average width of HPD 2 is shorter than the other intervals. For θ, HPD 2 gives better results in terms of
coverage probability and average width. In bootstrap approach, the coverage probability of BCIa is higher,
however, it has a larger average width of confidence interval. In Bayesian approach, HPD 2 has a better
performance than HPD 1, in coverage probability and average width. On the other hand, the performance
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Table 4: Coverage probabilities and average widths(in parentheses) of 95% CIs for true values α = 2.17, 5 and θ = 40.

n Trunc.
(%)

α=2.17, θ=40 α=5, θ=40

Cen.
(%) ACL BCL BCLa HPD1 HPD2

Cen.
(%) ACL BCL BCLa HPD1 HPD2

30 20 66.89 91.78 85.96 95.54 88.96 94.84 78.86 96.62 79.62 98.48 90.72 97.72
(2.39) (3.24) (3.78) (2.12) (1.95) (6.60) (7.40) (7.80) (5.92) (5.28)

40 56.96 94.54 91.16 97.12 92.02 96.68 63.37 94.84 87.02 98.00 91.98 96.64
(2.25) (2.71) (2.78) (2.02) (1.89) (4.96) (6.74) (6.93) (4.62) (4.27)

60 47.07 94.16 92.14 96.24 91.16 95.68 48.09 94.34 89.88 96.98 92.22 96.12
(2.28) (2.58) (2.64) (2.04) (1.90) (4.39) (5.28) (5.34) (4.14) (3.85)

60 20 66.87 94.18 91.56 96.88 92.28 96.08 78.79 94.76 87.62 97.96 92.42 96.34
(1.59) (1.79) (1.80) (1.48) (1.37) (3.84) (5.05) (5.17) (3.69) (3.42)

α 40 56.88 94.38 93.34 95.90 92.80 95.36 56.85 94.76 90.34 96.88 92.78 95.94
(1.52) (1.64) (1.65) (1.43) (1.34) (3.29) (3.76) (3.78) (3.17) (2.96)

60 46.98 94.40 93.40 95.62 92.50 95.38 48.13 95.30 92.78 96.62 93.62 95.76
(1.56) (1.65) (1.66) (1.46) (1.37) (2.97) (3.23) (3.24) (2.88) (2.70)

100 20 66.95 94.16 93.26 95.50 91.94 94.92 78.71 94.26 90.12 97.10 92.74 95.48
(1.20) (1.28) (1.28) (1.13) (1.06) (2.82) (3.27) (3.29) (2.76) (2.58)

40 56.85 95.16 93.94 96.04 92.48 95.01 63.40 94.76 92.70 96.60 93.26 95.32
(1.16) (1.21) (1.21) (1.10) (1.04) (2.48) (2.67) (2.68) (2.41) (2.28)

60 46.98 95.16 93.76 95.72 92.40 94.58 48.04 94.94 93.54 96.04 93.36 94.96
(1.20) (1.23) (2.34) (1.12) (1.06) (2.26) (2.38) (2.38) (2.19) (2.08)

30 20 66.89 86.40 87.62 87.88 84.56 94.26 78.86 86.46 84.26 89.74 82.78 90.22
(20.58) (26.25) (26.84) (16.10) (10.77) (9.15) (10.76) (10.53) (8.01) (7.03)

40 56.96 92.40 91.62 93.42 86.80 94.28 63.37 90.82 89.56 92.72 85.80 89.88
(16.49) (18.89) (22.42) (13.34) (9.71) (6.85) (7.23) (7.25) (5.89) (5.54)

60 47.07 93.94 92.38 94.44 87.38 93.58 48.09 92.24 91.20 93.58 86.12 89.08
(14.16) (15.34) (16.17) (12.05) (9.10) (5.82) (6.01) (6.02) (4.98) (4.78)

60 20 66.87 92.14 92.32 93.42 87.42 94.14 78.79 90.86 89.26 93.24 85.42 88.72
(14.79) (16.54) (17.55) (11.89) (9.08) (6.61) (7.07) (7.05) (5.60) (5.30)

θ 40 56.88 93.84 92.98 94.42 87.20 92.26 56.85 93.24 92.58 93.84 86.56 88.88
(11.34) (11.98) (11.98) (9.17) (7.78) (4.92) (5.05) (5.03) (4.07) (3.99)

60 46.98 95.40 94.80 95.96 88.06 92.98 48.13 94.10 93.62 94.66 87.80 89.14
(9.81) (10.15) (10.16) (8.08) (7.08) (4.16) (4.21) (4.21) (3.43) (3.39)

100 20 66.95 94.58 93.84 94.86 88.74 93.54 78.71 92.68 91.98 94.22 86.54 88.68
(11.32) (12.02) (12.05) (9.02) (7.73) (5.15) (5.37) (5.34) (4.27) (4.16)

40 56.85 94.76 94.10 95.38 87.78 91.36 63.40 93.68 93.18 94.50 86.70 88.18
(8.67 (8.94) (8.92) (6.98) (6.35) (3.81) (3.87) (3.87) (3.10) (3.08)

60 46.98 95.30 94.54 95.76 87.42 90.32 48.04 93.86 93.90 94.48 87.56 88.44
(7.55) (7.69) (7.67) (6.13) (5.70) (3.23) (3.26) (3.26) (2.63) (2.62)

of the BCI is unsatisfactory when sample sizes are small or even moderately large. The simulations also
show, for a fixed truncation rate, the average width decreases with an increase in sample sizes for all
cases. We have also obtained coverage probabilities and average widths of 90% intervals for α and θ under
different truncation and censoring rate, which we don’t report here for reasons of brevity. The results are
similar to those described above.

The summary for the 10000 simulation runs for (α, θ) = (5, 20) is graphically illustrated in Figures 1
and 2. These figures are a confirmation of the above results about point estimation. It is observed that the
medians of the boxplots are close to the input parameters (5, 20). From dispersions of the boxplots shown in
Figures 1 and 2, it is found BE 2 provides the most precise results than the other estimates based on different
methods.

6. Data analysis

To illustrate the practical usefulness of the proposed method, we apply it to the LTRC data from [13].
The dataset includes 710 transformer lifetimes from an energy company with 62 failures. Although the
original data are not available, their article provides a subset of the data containing 286 observations with
39 failures, which is available in Appendix II of [26]. The company’s data records were collected between
1980 and 2008. Those were installed before 1980 must be viewed as transformers sampled from truncated
distribution. Hence, the data are left truncated and right censored. The censoring and truncation rates of
these data are 86.4% and 58.39%, respectively.
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Figure 1: Boxplot for estimates of α under different methods, for (α, θ) = (5, 20).
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Figure 2: Boxplot for estimates of θ under different methods, for (α, θ) = (5, 20).
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Table 5: Estimates of α and θ for the transformer lifetime data.
Method Confidence level α θ
MLE,EM 0.8359 168.3678
BE1 0.8505 174.6761

ACI 90% (0.5986, 1.0730) (96.8764, 239.8593)
95% (0.5532, 1.1184) (83.1806, 253.5551)

BCI 90% (0.6430, 1.1372) (115.1415, 274.2115)
95% (0.6157, 1.2094) (109.0838, 303.6409)

BCIa 90% (0.5564, 1.0614) (76.7201, 245.7937)
95% (0.5080, 1.1098) (60.5251, 261.9887)

HPD1 90% (0.6526, 1.0496) (112.6480, 237.3729)
95% (0.6256, 1.1012) (105.1294, 256.9416)

Table 6: The Bayesian estimates of survival probability of a transformer that will survive till the time point c+k, provided the transform
censored at time c.

c c+10 c+20 c+30 c+40 c+50
35 0.9384(0.91,0.96) 0.8799(0.83,0.92) 0.8243(0.76,0.89) 0.7714(0.68,0.85) 0.7212(0.61,0.82)
40 0.9380(0.91,0.96) 0.8791(0.83,0.92) 0.8231(0.75,0.89) 0.7698(0.68,0.88) 0.7191(0.60,0.82)
44 0.9376(0.91,0.96) 0.8784(0.83,0.92) 0.8219(0.75,0.89) 0.7683(0.67,0.86) 0.7174(0.60,0.83)
48 0.9372(0.91,0.96) 0.8775(0.82,0.93) 0.8207(0.74,0.89) 0.7668(0.66,0.86) 0.7155(0.59,0.83)
57 0.9362(0.91,0.96) 0.8755(0.82,0.93) 0.8178(0.73,0.89) 0.7631(0.65,0.86) 0.7112(0.57,0.83)

Hong et al. [13] have fitted the Weibull distribution to their lifetime data by a graphical method
and Balakrishnan and Mitra [14] have used a lognormal distribution to model these lifetime data. Note
that GHN distribution discussed in the current manuscript is a special case of GG distribution with pdf
f (x) = η

βΓ(r) (x/β)rη−1 exp{−(x/β)η} when r = 1/2, η = 2α, β = 21/(2α)θ. We used the likelihood-ratio test to
choose the best model between two nested models GG and GHN distributions. To obtain the MLEs of the
unknown parameters of GG distribution we follow the estimation procedures in [27, 28]. The MLEs and log-
likelihood value by fitting the GG distribution are (r̂, η̂, β̂) = (10.07, 0.19, 0.0010) and −233.23, respectively.
The log-likelihood value of GHN distribution based on the MLEs given in Table 5 is -234.55. The likelihood-
ratio test yields a p-value of 0.1 by a Chi-squared distribution with one degree of freedom. Hence, for
any usual significance level, this analysis confirms that the extension from the GHN distribution to the GG
distribution is not statistically significant for modeling the given data set. So the GHN distribution is an
appropriate model for the electric power-transformers data.

Table 5 reports point and interval estimates of α and θ using methods discussed in the previous sections.
The approximate and bootstrap confidence intervals as well as the corresponding HPD credible intervals
are computed at levels 90% and 95%. Since the true value of α is unknown, the Bayesian estimates are
obtained only under Prior 1. Note that the determination of the hyper-parameters in prior distributions
(6)-(8) is a separate work that one can consider for a real dataset. Table 5 depicts HPD 1 is shorter than the
other confidence intervals, for both cases α and θ.

For maintenance purposes, the prediction of the remaining lifetime of the censored transformers is an
important issue. We obtain the probability of survival at various times c + k for k > 0, given that the unit
censored at the time point c. Table 6 presents the Bayesian estimates of the conditional survival probabilities
and the associated 95% HPD credible intervals under Prior 1 for k = 10, 20, 30 and 40. It is observed that
for a fixed c, the conditional survival probabilities decrease with increasing k and also the width of HPD
credible intervals increases. For a fixed k, older transformers are less likely to survive than younger ones,
however, their probabilities are close. Moreover, the width of HPD credible intervals increases with c.
These results are depicted in Figure 3 for c = 35 and 48.
We also compute the Bayesian estimates and the associated 95% HPD credible intervals of the expected
number of transformers failing in future fixed intervals as discussed in Subsection 4.2. The results are
presented in Table 7.
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Figure 3: The Bayesian estimates of the conditional survival function and the associated 95% HPD credible intervals for c = 35, 48 and
k = 10, 20, 30, 40.

Table 7: The Bayesian estimates and the associated 95% HPD credible intervals of the expected number of transformers failing in
future fixed interval [L,R] .

[L,R] [70,80] [80-90] [90,100]
ÊB 13 12 11
HPD1(95%) (8, 18) (7, 17) (7, 16)

7. Concluding remarks

In this study, we have considered both frequentist and Bayesian inference of the unknown parameters of
GHN distribution based on LTRC data. In this paper in addition to the classical approaches, we conducted
the analysis based on the hierarchical Bayesian approach that has some advantages to classical Bayes.
The Bayesian estimates and HPD credible intervals of the unknown parameters are obtained using Gibbs
sampling procedure. We have also discussed some other Bayesian scenarios facing LTRC data, namely the
prediction for the remaining lifetime and the Bayesian estimate of the cumulative number of failures during
a specific interval. We have then conducted a simulation study to assess the performance of all the proposed
methods to estimate the unknown parameters α and θ and a real dataset analysis has been presented to
illustrate all the methods of inference developed in this paper. The simulation results demonstrate that the
Bayesian estimates based on Prior 2 perform better than other estimates in terms of bias and MSE. Compared
with confidence intervals, it is observed that the confidence intervals obtained using the parametric bias-
corrected bootstrap method and the HPD credible intervals obtained under Prior 2 are quite satisfactory.
Although in this paper, we have considered lifetime data exceed a threshold, the same approach can be
extended to random left truncation and right censoring and we plan to investigate this problem as our
future work.
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Appendix I

Assuming t(h)
i = (ci/θ(h))α(h) , from the Eqs. (10)-(12) of Ahmadi et al. [3], we have
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where Γ(.) and ψ(.) are gamma and digamma functions, respectively. Also, Γ[a, b] is the upper incomplete
gamma function defined as Γ[a, b] =

∫
∞

b ta−1e−t dt.

Appendix II

Let (l, k)-th element of IX(λ) be alk(α, θ), for l, k = 1, 2, then one has following expressions as
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For i ∈ S1, using Lemma 2.3 from Wang [7], the following expectations can be obtained:
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Moreover, for i ∈ S2, it is easy to see that
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Now, we shall find the elements of the missing information matrix. Denote the 2× 2 matrix IZ(λ) as follows

IZ(λ) =
[
b11(α, θ) b12(α, θ)
b21(α, θ) b22(α, θ)

]
,

then one has

b11(α, θ) =
m
α2 +

n∑
i=1

(1 − δi)
{
2E

((Zi

θ

)2α
ln2

(Zi

θ

)∣∣∣∣Zi > ci

)
+ tih(ti)(ln ti)2 [1 − (ti − h(ti)) ti]

}
, (20)

b22(α, θ) = −
α

θ2

{
m −

n∑
i=1

(1 − δi)
[
(1 + 2α)E

((Zi

θ

)2α∣∣∣∣Zi > ci

)
− tih(ti) [(ti − h(ti))αti − α − 1]

] }
, (21)

b12(α, θ) = b21(α, θ) =
1
θ

{
m −

n∑
i=1

(1 − δi)
[
2αE

((Zi

θ

)2α
ln

(Zi

θ

)∣∣∣∣Zi > ci

)
+ E

((Zi

θ

)2α∣∣∣∣Zi > ci

)
+ tih(ti)

[
1 + [1 − (ti − h(ti))ti] ln ti

]]}
, (22)

where ti = (ci/θ)α. In order to calculate the expectations contained in Eqs.(20)-(22), we can utilize from
Eqs.(17)-(19). They can be calculated by replacing notation vi with ti, for i ∈ Sc2 .


