Sojourns of a Two-Dimensional Fractional Bronwian Motion Risk Process

Grigori Jasnovidov ${ }^{\text {a,b }}$
${ }^{a}$ Department of Actuarial Science, University of Lausanne, UNIL-Dorigny, 1015 Lausanne, Switzerland
${ }^{b}$ St.Petersburg Departament of Steklov Mathematical Institute of Russian Academy of Sciences

$$
\begin{aligned}
& \text { Abstract. This paper derives the asymptotic behavior of } \\
& \qquad \mathbb{P}\left\{\int_{0}^{\infty} \mathbb{I}\left(B_{H}(s)-c_{1} s>q_{1} u, B_{H}(s)-c_{2} s>q_{2} u\right) d s>T_{u}\right\}, \quad u \rightarrow \infty,
\end{aligned}
$$

where B_{H} is a fractional Brownian motion, $c_{1}, c_{2}, q_{1}, q_{2}>0, H \in(0,1), T_{u} \geq 0$ is a measurable function and $\mathbb{I}(\cdot)$ is the indicator function.

1. Introduction \& Preliminaries

Consider the risk model defined by

$$
\begin{equation*}
R(t)=u+\rho t-X(t), \quad t \geq 0 \tag{1}
\end{equation*}
$$

where $X(t)$ is a centered Gaussian risk process with a.s. continuous sample paths, $\rho>0$ is the net profit rate and $u>0$ is the initial capital. This model is relevant to insurance and financial applications, see, e.g., [1]. A question of numerous investigations (see [2-17]) is the study of the asymptotics of the classical ruin probability

$$
\begin{equation*}
\lambda(u):=\mathbb{P}\{\exists t \geq 0: R(t)<0\} \tag{2}
\end{equation*}
$$

as $u \rightarrow \infty$ under different levels of generality. It turns out, that only for X being a Brownian motion (later on BM) $\lambda(u)$ can be calculated explicitly: if X is a standard BM , then $\lambda(u)=e^{-2 \rho u}, u, \rho>0$, see [18]. Since it seems impossible to find the exact value of $\lambda(u)$ in other cases, the approximations of $\lambda(u)$ as $u \rightarrow \infty$ is dealt with. Some contributions (see, e.g., $[19,20]$), extend the classical ruin problem to the so-called sojourn problem, i.e., approximation of the sojourn probability defined by

$$
\begin{equation*}
\mathbb{P}\left\{\int_{0}^{\infty} \mathbb{I}(R(s)<0) d s>T_{u}\right\}, \tag{3}
\end{equation*}
$$

[^0]where $T_{u} \geq 0$ is a measurable function of u. As in the classical case, only for X being a BM the probability above can be calculated explicitly, see [20]:
$$
\mathbb{P}\left\{\int_{0}^{\infty} \mathbb{I}(B(s)-c s>u) d s>T\right\}=\left(2\left(1+c^{2} T\right) \Psi(c \sqrt{T})-\frac{c \sqrt{2 T}}{\sqrt{\pi}} e^{\frac{-c^{2} T}{2}}\right) e^{-2 c u}, c>0, T, u \geq 0
$$
where Ψ is the survival function of a standard Gaussian random variable, B is a standard BM and $\mathbb{I}(\cdot)$ is the indicator function. Motivated by [21] (see also [5,22,23]), we study a generalization of the main problem in [21] for the sojourn case, i.e., we shall study the asymptotics of
$$
\mathbb{C}_{T_{u}}(u):=\mathbb{P}\left\{\int_{0}^{\infty} \mathbb{I}\left(B_{H}(s)-c_{1} s>q_{1} u, B_{H}(s)-c_{2} s>q_{2} u\right) d s>T_{u}\right\}, \quad u \rightarrow \infty
$$
where B_{H} is a standard fractional Brownian motion (later on fBM), i.e., a Gaussian process with zero expectation and covariance defined by
$$
\operatorname{cov}\left(B_{H}(s), B_{H}(t)\right)=\frac{|t|^{2 H}+|s|^{2 H}-|t-s|^{2 H}}{2}, \quad t, s \in \mathbb{R}
$$

The ruin probability above is of interest for reinsurance models, see [21] and references therein. By the self-similarity of fBM we have

$$
\begin{aligned}
\mathbb{C}_{T_{u}}(u) & =\mathbb{P}\left\{\int_{0}^{\infty} \mathbb{I}\left(B_{H}(s u)>c_{1} s u+q_{1} u, B_{H}(s u)>c_{2} s u+q_{2} u\right) d(s u)>T_{u}\right\} \\
& =\mathbb{P}\left\{\int_{0}^{\infty} \mathbb{I}\left(u^{H} B_{H}(s)>\left(c_{1} s+q_{1}\right) u, u^{H} B_{H}(s)>\left(c_{2} s+q_{2}\right) u\right) d s>T_{u} / u\right\} \\
& =\mathbb{P}\left\{\int_{0}^{\infty} \mathbb{I}\left(\frac{B_{H}(s)}{\max \left(c_{1} s+q_{1}, c_{2} s+q_{2}\right)}>u^{1-H}\right) d s>T_{u} / u\right\} .
\end{aligned}
$$

In order to prevent the problem of degenerating to the one-dimensional sojourn problem discussed in $[19,20]$ (i.e., to impose the denominator in the line above be nonlinear function) we assume that

$$
\begin{equation*}
c_{1}>c_{2}, \quad q_{2}>q_{1} \tag{4}
\end{equation*}
$$

The variance of the process two lines above can achieve its unique maxima only at one of the following points:

$$
\begin{equation*}
t_{*}=\frac{q_{2}-q_{1}}{c_{1}-c_{2}}, \quad t_{1}=\frac{q_{1} H}{(1-H) c_{1}}, \quad t_{2}=\frac{q_{2} H}{(1-H) c_{2}} \tag{5}
\end{equation*}
$$

From (4) it follows that $t_{1}<t_{2}$; as we shall see later, the order between t_{1}, t_{2} and t_{*} determines the asymptotics of $\mathbb{C}_{T_{u}}(u)$ as $u \rightarrow \infty$. As mentioned in [9], for the approximation of the one-dimensional Parisian ruin probability we need to control the growth of T_{u} as $u \rightarrow \infty$. As in [9], we impose the following condition:

$$
\begin{equation*}
\lim _{u \rightarrow \infty} T_{u} u^{1 / H-2}=T \in[0, \infty), H \in(0,1) \tag{6}
\end{equation*}
$$

Note that T_{u} satisfying (6) may go to ∞ for $H>1 / 2$, converges to non-negative limit for $H=1 / 2$ and approaches 0 for $H<1 / 2$ as $u \rightarrow \infty$. We see later on in Proposition 2.2 that the condition above is necessary and it seems very difficult to derive the exact asymptotics of $\mathbb{C}_{T_{u}}(u)$ as $u \rightarrow \infty$ without it.

The rest of the paper is organized in the following way. In the next section we present the main results of the paper, in Section 3 we give all proofs, while technical calculations are deferred to the Appendix.

2. Main Results

Define for some function h and $K \geq 0$ the sojourn Piterbarg constant by

$$
\mathcal{B}_{K}^{h}=\int_{\mathbb{R}} \mathbb{P}\left\{\int_{-\infty}^{\infty} \mathbb{I}(\sqrt{2} B(s)-|s|+h(s)>x) d s>K\right\} e^{x} d x
$$

when the integral above is finite and Berman's constant by

$$
\mathcal{B}_{2 H}(x)=\lim _{S \rightarrow \infty} \frac{1}{S} \int_{\mathbb{R}} \mathbb{P}\left\{\int_{0}^{S} \mathbb{I}\left(\sqrt{2} B_{H}(t)-t^{2 H}+z>0\right) d t>x\right\} e^{-z} d z, \quad x \geq 0
$$

It is known (see, e.g., [20]) that $\mathcal{B}_{2 H}(x) \in(0, \infty)$ for all $x \geq 0$; we refer to [20] and references therein for the properties of relevant Berman's constants. Let for $i=1,2$

$$
\begin{equation*}
\mathbb{D}_{H}=\frac{c_{1} t_{*}+q_{1}}{t_{*}^{H}}, K_{H}=\frac{2^{\frac{1}{2}-\frac{1}{2 H}} \sqrt{\pi}}{\sqrt{H(1-H)}}, \mathbb{C}_{H}^{(i)}=\frac{c_{i}^{H} q_{i}^{1-H}}{H^{H}(1-H)^{1-H}}, D_{i}=\frac{c_{i}^{2}(1-H)^{2-\frac{1}{H}}}{2^{\frac{1}{2 H}} H^{2}} . \tag{7}
\end{equation*}
$$

Now we are ready to give the asymptotics of $\mathbb{C}_{T_{u}}(u)$ as $u \rightarrow \infty$.
Theorem 2.1. Assume that (4) holds and T_{u} satisfies (6).
1)If $t_{*} \notin\left(t_{1}, t_{2}\right)$, then as $u \rightarrow \infty$

$$
\mathbb{C}_{T_{u}}(u) \sim\left(\frac{1}{2}\right)^{\mathbb{I}\left(t_{*}=t_{i}\right)} \times \begin{cases}\left(2\left(1+c_{i}^{2} T\right) \Psi\left(c_{i} \sqrt{T}\right)-\frac{c_{i} \sqrt{2 T}}{\sqrt{\pi}} e^{-\frac{c_{i}^{2} T}{2}}\right) e^{-2 c_{i} q_{i} u}, & H=1 / 2 \tag{8}\\ K_{H} \mathcal{B}_{2 H}\left(T D_{i}\right)\left(\mathbb{C}_{H}^{(i)} u^{1-H}\right)^{\frac{1}{H}-1} \Psi\left(\mathbb{C}_{H}^{(i)} u^{1-H}\right), & H \neq 1 / 2\end{cases}
$$

where $i=1$ if $t_{*} \leq t_{1}$ and $i=2$ if $t_{*} \geq t_{2}$.
2) If $t_{*} \in\left(t_{1}, t_{2}\right)$ and $\lim _{u \rightarrow \infty} T_{u} u^{2-1 / H}=0$ for $H>1 / 2$, then as $u \rightarrow \infty$

$$
\mathbb{C}_{T_{u}}(u) \sim \Psi\left(\mathbb{D}_{H} u^{1-H}\right) \times \begin{cases}1, & H>1 / 2 \tag{9}\\ \mathcal{B}_{T^{\prime}}^{d} & H=1 / 2 \\ \mathcal{B}_{2 H}(\bar{D} T) A u^{(1-H)(1 / H-2)}, & H<1 / 2\end{cases}
$$

where $\mathcal{B}_{T^{\prime}}^{d} \in(0, \infty)$,

$$
\begin{equation*}
T^{\prime}=T \frac{\left(c_{1} q_{2}-q_{1} c_{2}\right)^{2}}{2\left(c_{1}-c_{2}\right)^{2}}, \quad d(s)=s \frac{c_{1} q_{2}+c_{2} q_{1}-2 c_{2} q_{2}}{c_{1} q_{2}-q_{1} c_{2}} \mathbb{I}(s<0)+s \frac{2 c_{1} q_{1}-c_{1} q_{2}-q_{1} c_{2}}{c_{1} q_{2}-q_{1} c_{2}} \mathbb{I}(s \geq 0) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
A=\left(\left|H\left(c_{1} t_{*}+q_{1}\right)-c_{1} t_{*}\right|^{-1}+\left|H\left(c_{2} t_{*}+q_{2}\right)-c_{2} t_{*}\right|^{-1}\right)^{t_{*}^{H} \mathbb{D}_{H}^{\frac{1}{H}-1}} 2^{\frac{1}{2 H}}, \bar{D}=\frac{\left(c_{1} t_{*}+q_{1}\right)^{\frac{1}{H}}}{2^{\frac{1}{2 H}} t_{*}^{2}} . \tag{11}
\end{equation*}
$$

Note that if $T=0$, then the result above reduces to Theorem 3.1 in [21]. As already mentioned in the introduction (6) is a necessary condition for the theorem above. To illustrate situation when it is not satisfied we consider a "simple" scenario with T_{u} being a positive constant.
Proposition 2.2. If $H<1 / 2, T_{u}=T>0$ and $t_{*} \in\left(t_{1}, t_{2}\right)$, then

$$
\begin{aligned}
\bar{C} \Psi\left(\mathbb{D}_{H} u^{1-H}\right) e^{-C_{1, \alpha} u^{2-4 H}-C_{2, \alpha} u^{2(1-3 H)}} & \leq \mathbb{C}_{T_{u}}(u) \\
& \leq(2+o(1)) \Psi\left(\mathbb{D}_{H} u^{1-H}\right) \Psi\left(u^{1-2 H} \frac{T^{H} \mathbb{D}_{H}}{2 t_{*}^{H}}\right), \quad u \rightarrow \infty
\end{aligned}
$$

where $\bar{C} \in(0,1)$ is a fixed constant that does not depend on u and

$$
\alpha=\frac{T^{2 H}}{2 t_{*}^{2 H}}, \quad C_{i, \alpha}=\frac{\alpha^{i}}{i} \mathbb{D}_{H}^{2}, \quad i=1,2 .
$$

Note that instead of the exact asymptotics as in Theorem 2.1 here we observe lower and upper bounds, that decays to zero with different speed as $u \rightarrow \infty$. Moreover, asymptoitcs in (9) is exponentially bigger than the upper bound in Proposition 2.2

3. Proofs

First we give the following auxiliary results. As shown, e.g., in Lemma 2.1 in [24]

$$
\begin{equation*}
\left(1-\frac{1}{u^{2}}\right) \frac{1}{\sqrt{2 \pi} u} e^{-u^{2} / 2} \leq \Psi(u) \leq \frac{1}{\sqrt{2 \pi} u} e^{-u^{2} / 2}, u>0 \tag{12}
\end{equation*}
$$

Recall that K_{H}, D_{1} and $\mathbb{C}_{H}^{(1)}$ are defined in (7). A proof of the proposition below is given in the Appendix.
Proposition 3.1. Assume that T_{u} satisfies (6). Then as $u \rightarrow \infty$

$$
\mathbb{P}\left\{\int_{0}^{\infty} \mathbb{I}\left(B_{H}(t)-c_{1} t>q_{1} u\right) d t>T_{u}\right\} \sim \begin{cases}\left(2\left(1+c_{1}^{2} T\right) \Psi\left(c_{1} \sqrt{T}\right)-\frac{c_{1} \sqrt{2 T}}{\sqrt{\pi}} e^{\frac{-c_{1}^{2} T}{2}}\right) e^{-2 c_{1} q_{1} u,} & H=1 / 2 \\ K_{H} \mathcal{B}_{2 H}\left(T D_{1}\right)\left(\mathbb{C}_{H}^{(1)} u^{1-H}\right)^{\frac{1}{H}-1} \Psi\left(\mathbb{C}_{H}^{(1)} u^{1-H}\right), & H \neq 1 / 2\end{cases}
$$

Now we are ready to perform our proofs.
Proof of Theorem 2.1. Case (1). Assume that $t_{*}<t_{1}$. Let

$$
V_{i}(t)=\frac{B_{H}(t)}{c_{i} t+q_{i}} \quad \text { and } \quad \psi_{i}\left(T_{u}, u\right)=\mathbb{P}\left\{\int_{0}^{\infty} \mathbb{I}\left(B_{H}(t)-c_{i} t>q_{i} u\right) d s>T_{u}\right\}, \quad i=1,2
$$

For $0<\varepsilon<t_{1}-t_{*}$ by the self-similarity of $f B M$ we have

$$
\psi_{1}\left(T_{u}, u\right) \geq \mathbb{C}_{T_{u}}(u) \geq \mathbb{P}\left\{\int_{t_{1}-\varepsilon}^{t_{1}+\varepsilon} \mathbb{I}\left(V_{1}(t)>u^{1-H}, V_{2}(t)>u^{1-H}\right) d t>\frac{T_{u}}{u}\right\}=\mathbb{P}\left\{\int_{t_{1}-\varepsilon}^{t_{1}+\varepsilon} \mathbb{I}\left(V_{1}(t)>u^{1-H}\right) d t>\frac{T_{u}}{u}\right\} .
$$

We have by Borel-TIS inequality, see [14] (details are in the Appendix)

$$
\begin{equation*}
\psi_{1}\left(T_{u}, u\right) \sim \mathbb{P}\left\{\int_{1_{1}-\varepsilon}^{t_{1}+\varepsilon} \mathbb{I}\left(V_{1}(t)>u^{1-H}\right) d s>T_{u} / u\right\}, \quad u \rightarrow \infty \tag{13}
\end{equation*}
$$

implying $\mathbb{C}_{T_{u}}(u) \sim \psi_{1}\left(T_{u}, u\right)$ as $u \rightarrow \infty$. The asymptotics of $\psi_{1}\left(T_{u}, u\right)$ is given in Proposition 3.1, thus the claim follows.

Assume that $t_{*}=t_{1}$. We have

$$
\begin{aligned}
\mathbb{P}\left\{\int_{t_{1}}^{\infty} \mathbb{I}\left(V_{1}(s)>u^{1-H}\right) d s>T_{u}\right\} & \leq \mathbb{C}_{T_{u}}(u) \\
& \leq \mathbb{P}\left\{\int_{t_{1}}^{\infty} \mathbb{I}\left(V_{1}(s)>u^{1-H}\right) d s>T_{u}\right\}+\mathbb{P}\left\{\exists t \in\left[0, t_{1}\right]: V_{2}(t)>u^{1-H}\right\}
\end{aligned}
$$

From the proof of Theorem 3.1, case (4) in [21] it follows that the second term in the last line above is negligible comparing with the final asymptotics of $\mathbb{C}_{T_{u}}(u)$ given in (8), hence

$$
\mathbb{C}_{T_{u}}(u) \sim \mathbb{P}\left\{\int_{t_{1}}^{\infty} \mathbb{I}\left(V_{1}(s)>u^{1-H}\right) d s>T_{u}\right\}, \quad u \rightarrow \infty .
$$

Since t_{1} is the unique maxima of $\operatorname{Var}\left\{V_{1}(t)\right\}$ from the proof of Theorem 2.1, case i) in [20] we have

$$
\begin{aligned}
\mathbb{P}\left\{\int_{t_{1}}^{\infty} \mathbb{I}\left(V_{1}(t)>u^{1-H}\right) d t>T_{u} / u\right\} & \sim \frac{1}{2} \mathbb{P}\left\{\int_{0}^{\infty} \mathbb{I}\left(V_{1}(t)>u^{1-H}\right) d t>T_{u} / u\right\} \\
& =\frac{1}{2} \mathbb{P}\left\{\int_{0}^{\infty} \mathbb{I}\left(B_{H}(t)-c_{1} t>q_{1} u\right) d t>T_{u}\right\}, u \rightarrow \infty .
\end{aligned}
$$

The asymptotics of the last probability above is given in Proposition 3.1 establishing the claim. Case $t_{*} \geq t_{2}$ follows by the same arguments.

Case (2). Assume that $H>1 / 2$. We have by Theorem 2.1 in [22] and Theorem 3.1 in [21] with

$$
\begin{aligned}
& \mathcal{R}_{T_{u}}(u)=\mathbb{P}\left\{\exists t \geq 0: B_{H}(t)-c_{1} t>q_{1} u, B_{H}(t)-c_{2} t>q_{2} u\right\}, \\
& \mathcal{P}_{T_{u}}(u)=\mathbb{P}\left\{\exists t \geq 0: \inf _{s \in\left[t, t+T_{u}\right]}\left(B_{H}(s)-c_{1} s\right)>q_{1} u, \inf _{s \in\left[t, t+T_{u}\right]}\left(B_{H}(s)-c_{2} s\right)>q_{2} u\right\}
\end{aligned}
$$

that

$$
\Psi\left(\mathbb{D}_{H} u^{1-H}\right) \sim \mathcal{P}_{T_{u}}(u) \leq \mathbb{C}_{T_{u}}(u) \leq \mathcal{R}_{T_{u}}(u) \sim \Psi\left(\mathbb{D}_{H} u^{1-H}\right), \quad u \rightarrow \infty,
$$

and the claim follows.
Assume that $H=1 / 2$. First let (6) holds with $T_{u}=T>0$. We have as $u \rightarrow \infty$ and then $S \rightarrow \infty$ (proof is in the Appendix)

$$
\begin{equation*}
\mathbb{C}_{T_{u}}(u) \sim \mathbb{P}\left\{\int_{u t_{*}-S}^{u t_{*}+S} \mathbb{I}\left(B(s)-c_{1} s>q_{1} u, B(s)-c_{2} s>q_{2} u\right) d s>T\right\}=: \kappa_{S}(u) . \tag{14}
\end{equation*}
$$

Next with ϕ_{u} the density of $B\left(u t_{*}\right), \eta=c_{1} t_{*}+q_{1}=c_{2} t_{*}+q_{2}$ and $\eta_{*}=\eta / t_{*}-c_{2}=q_{2} / t_{*}$ we have

$$
\begin{aligned}
\kappa_{S}(u)= & \int_{\mathbb{R}} \mathbb{P}\left\{\int_{u t_{*}-S}^{u t_{*}} \mathbb{I}\left(B(s)-c_{2} s>q_{2} u\right) d s+\int_{u t_{*}}^{u t_{*}+S} \mathbb{I}\left(B(s)-c_{1} s>q_{1} u\right) d s>T \mid B\left(u t_{*}\right)=\eta u-x\right\} \phi_{u}(\eta u-x) d x \\
= & \int_{\mathbb{R}} \mathbb{P}\left\{\int_{u t_{*}-S}^{u t_{*}} \mathbb{I}\left(B(s)-c_{2} s>q_{2} u\right) d s\right. \\
& \left.+\int_{u t_{*}}^{u t_{*}+S} \mathbb{I}\left(B(s)-B\left(u t_{*}\right)-c_{1}\left(s-u t_{*}\right)-c_{1} u t_{*}>q_{1} u-\eta u+x\right) d s>T \mid B\left(u t_{*}\right)=\eta u-x\right\} \phi_{u}(\eta u-x) d x \\
= & \int_{\mathbb{R}} \mathbb{P}\left\{\int_{u t_{*}-S}^{u t_{*}} \mathbb{I}\left(B(s)-c_{2} s>q_{2} u\right) d s+\int_{0}^{S} \mathbb{I}\left(B_{*}(s)-c_{1} s>x\right) d s>T \mid B\left(u t_{*}\right)=\eta u-x\right\} \phi_{u}(\eta u-x) d x \\
= & \frac{e^{-\frac{\eta^{2} u}{2 t_{*}}}}{\sqrt{2 \pi u t_{*}}} \int_{\mathbb{R}} \mathbb{P}\left\{\int_{-S}^{0} \mathbb{I}\left(Z_{u}(s)+\eta_{*} s>x\right) d s+\int_{0}^{S} \mathbb{I}\left(B_{*}(s)-c_{1} s>x\right) d s>T\right\} e^{\frac{\eta x}{\frac{n_{x}}{t_{*}}-\frac{x^{2}}{2 u u_{*}}} d x,}
\end{aligned}
$$

where $Z_{u}(t)$ is a Gaussian process with expectation and covariance defined below:

$$
\begin{equation*}
\mathbb{E}\left\{Z_{u}(t)\right\}=\frac{-x}{u t_{*}} t, \quad \operatorname{cov}\left(Z_{u}(s), Z_{u}(t)\right)=\frac{-s t}{u t_{*}}-t, \quad s \leq t \leq 0 \tag{15}
\end{equation*}
$$

Since $Z_{u}(t)$ converges to BM in the sense of convergence finite-dimensional distributions for any fixed $x \in \mathbb{R}$ as $u \rightarrow \infty$ we have (details are in the Appendix)

$$
\begin{align*}
& \int_{\mathbb{R}} \mathbb{P}\left\{\int_{-S}^{0} \mathbb{I}\left(Z_{u}(s)+\eta_{*} s>x\right) d s+\int_{0}^{S} \mathbb{I}\left(B_{*}(s)-c_{1} s>x\right) d s>T\right\} e^{\frac{\eta x}{t_{*}}-\frac{x^{2}}{2 u_{*}}} d x \\
\sim & \int_{\mathbb{R}} \mathbb{P}\left\{\int_{-S}^{0} \mathbb{I}\left(B(s)+\eta_{*} s>x\right) d s+\int_{0}^{S} \mathbb{I}\left(B_{*}(s)-c_{1} s>x\right) d s>T\right\} e^{\frac{\eta x}{t_{*}}} d x \tag{16}\\
= & K(S) .
\end{align*}
$$

Since $\mathbb{P}\{\exists t \geq 0: B(t)-c t>x\}=e^{-2 c x}, c, x>0$ (see, e.g., [18]) we have

$$
\begin{aligned}
K(S) & \leq \int_{0}^{\infty}\left(\mathbb{P}\left\{\exists s<0: B(s)+\eta_{*} s>x\right\}+\mathbb{P}\left\{\exists s \geq 0: B_{*}(s)-c_{1} s>x\right\}\right) e^{\frac{\eta x}{t_{*}}} d x+\int_{-\infty}^{0} e^{\frac{\eta x}{t_{*}}} d x \\
& =\int_{0}^{\infty}\left(e^{\left(-2 \eta_{*}+\eta / t_{*}\right) x}+e^{\left(-2 c_{1}+\eta / t_{*}\right) x}\right) d x+t_{*} / \eta<\infty
\end{aligned}
$$

provided that $t_{*} \in\left(t_{1}, t_{2}\right)$. Since $K(S)$ is an increasing function and $\lim _{S \rightarrow \infty} K(S)<\infty$ we have as $S \rightarrow \infty$

$$
\begin{aligned}
K(S) & \rightarrow \int_{\mathbb{R}} \mathbb{P}\left\{\int_{0}^{\infty} \mathbb{I}\left(B(s)-\eta_{*} s>x\right) d s+\int_{0}^{\infty} \mathbb{I}\left(B_{*}(s)-c_{1} s>x\right) d s>T\right\} e^{\frac{\eta x}{t_{*}}} d x \\
& =\frac{t_{*}}{\eta} \int_{\mathbb{R}} \mathbb{P}\left\{\int_{0}^{\infty} \mathbb{I}\left(B(s)-\frac{\eta_{*} t_{*}}{\eta} s>x\right) d s+\int_{0}^{\infty} \mathbb{I}\left(B_{*}(s)-\frac{c_{1} t_{*}}{\eta} s>x\right) d s>\frac{\eta^{2} T}{t_{*}^{2}}\right\} e^{x} d x \\
& =\frac{t_{*}}{\eta} \int_{\mathbb{R}} \mathbb{P}\left\{\int_{-\infty}^{\infty} \mathbb{I}(\sqrt{2} B(s)-|s|+d(s)>x) d s>\frac{\eta^{2} T}{2 t_{*}^{2}}\right\} e^{x} d x \\
& =\frac{t_{*}}{\eta} \mathcal{B}_{T^{\prime}}^{d} \in(0, \infty),
\end{aligned}
$$

where T^{\prime} and $d(s)$ are defined in (10). Finally, combining (16) with the line above we have as $u \rightarrow \infty$ and then $S \rightarrow \infty$

$$
\kappa_{S}(u) \sim \mathcal{B}_{T^{\prime}}^{d} \Psi\left(\mathbb{D}_{1 / 2} \sqrt{u}\right)
$$

and by (14) the claim follows. If (6) holds with $T_{u}=0$, then we obtain the claim immediately by Theorem 3.1 in [21] and observation that \mathcal{B}_{0}^{d} coincides with the corresponding Piterbarg constant introduced in [21].

Now assume that (6) holds with any possible T_{u}. If (6) holds with $T>0$, then for large u and any $\varepsilon>0$ it holds, that $\mathbb{C}_{(1+\varepsilon) T}(u) \leq \mathbb{C}_{T_{u}}(u) \leq \mathbb{C}_{(1-\varepsilon) T}(u)$ and hence

$$
(1+o(1)) \mathcal{B}_{T^{\prime}(1+\varepsilon)}^{d} \Psi\left(\mathbb{D}_{1 / 2} \sqrt{u}\right) \leq \mathbb{C}_{T_{u}}(u) \leq \mathcal{B}_{T^{\prime}(1-\varepsilon)}^{d} \Psi\left(\mathbb{D}_{1 / 2} \sqrt{u}\right)(1+o(1)), \quad u \rightarrow \infty
$$

By Lemma 4.1 in [20] \mathcal{B}_{x}^{d} is a continuous function with respect to x and thus letting $\varepsilon \rightarrow 0$ we obtain the claim. If (6) holds with $T=0$, then for large u and any $\varepsilon>0$ we have

$$
\mathcal{B}_{\varepsilon}^{d} \Psi\left(\mathbb{D}_{1 / 2} \sqrt{u}\right) \leq \mathbb{C}_{T_{u}}(u) \leq \mathcal{B}_{0}^{d} \Psi\left(\mathbb{D}_{1 / 2} \sqrt{u}\right)
$$

and again letting $\varepsilon \rightarrow 0$ we obtain the claim by continuity of $\mathcal{B}_{(\cdot)}^{d}$.

Assume that $H<1 / 2$. First we have with $\delta_{u}=u^{2 H-2} \ln ^{2} u$ as $u \rightarrow \infty$ (proof is in Appendix)

$$
\begin{align*}
\mathbb{C}_{T_{u}}(u) & \sim \mathbb{P}\left\{\int_{u t_{*}-u \delta_{u}}^{u t_{*}} \mathbb{I}\left(B_{H}(t)-c_{2} t>q_{2} u\right) d t>T_{u}\right\}+\mathbb{P}\left\{\int_{u t_{*}}^{u t_{*}+u \delta_{u}} \mathbb{I}\left(B_{H}(t)-c_{1} t>q_{1} u\right) d t>T_{u}\right\} \\
& =: g_{1}(u)+g_{2}(u) . \tag{17}
\end{align*}
$$

Assume that (6) holds with $T>0$. Using the approach from [20] we have with $\mathbb{I}_{a}(b)=\mathbb{I}(b>a), a, b \in \mathbb{R}$

$$
\begin{aligned}
g_{2}(u) & =\mathbb{P}\left\{\int_{0}^{\delta_{u} T_{u}^{-1} u} \mathbb{I}_{M(u)}\left(\frac{B_{H}\left(u t_{*}+t T_{u}\right)}{u\left(q_{1}+c_{1} t_{*}\right)+c_{1} t T_{u}} M(u)\right) d t>1\right\} \\
& =\mathbb{P}\left\{\int_{0}^{\delta_{u} T_{u}^{-1} u} \mathbb{I}_{M(u)}\left(Z_{u}^{(1)}(t)\right) d t>1\right\} \\
& =\mathbb{P}\left\{\int_{0}^{\delta_{u} T_{u}^{-1} u K_{1}} \mathbb{I}_{M(u)}\left(Z_{u}^{(1)}\left(t K_{1}^{-1}\right)\right) d t>K_{1}\right\} \\
& =: \mathbb{P}\left\{\int_{0}^{\delta_{u} T_{u}^{T-1} u K_{1}} \mathbb{I}_{M(u)}\left(Z_{u}^{(2)}(t)\right) d t>K_{1}\right\}
\end{aligned}
$$

where

$$
K_{1}=\frac{T D_{H}^{1 / H}}{2 \frac{1}{2 H} t_{*}}, \quad M(u)=\inf _{t \in[t, \infty)} \frac{u\left(c_{1} t+q_{1}\right)}{\operatorname{Var}\left\{B_{H}(u t)\right\}}=\mathbb{D}_{H} u^{1-H}
$$

For variance $\sigma_{Z_{u}^{(2)}}^{2}(t)$ and correlation $r_{Z_{u}^{(2)}}(s, t)$ of $Z_{u}^{(2)}$ for $t, s \in\left[0, \delta_{u} T_{u}^{-1} u K_{1}\right]$ it holds, that as $u \rightarrow \infty$

$$
\begin{aligned}
1-\sigma_{Z_{u}^{(2)}}(t) & =\frac{2^{\frac{1}{2 H} t_{*}^{H} \mathbb{D}_{H}^{1-1 / H}\left|q_{1} H-(1-H) c_{1} t_{*}\right|}\left(q_{1}+c_{1} t_{*}\right)^{2}}{1-1 / H}+O\left(t^{2} u^{2(1-1 / H)}\right), \\
1-r_{Z_{u}^{(2)}(s, t)} & =\mathbb{D}_{H}^{-2} u^{2 H-2}|t-s|^{2 H}+O\left(u^{2 H-2}|t-s|^{2 H} \delta_{u}\right)
\end{aligned}
$$

Now we apply Theorem 2.1 in [20]. All conditions of the theorem are fulfilled with parameters

$$
\begin{aligned}
& \omega(x)=x, \overleftarrow{\omega}(x)=x, \beta=1, g(u)=\frac{2^{\frac{1}{2 H}} t_{*}^{H} \mathbb{D}_{H}^{1-1 / H}\left|q_{1} H-(1-H) c_{1} t_{*}\right|}{\left(q_{1}+c_{1} t_{*}\right)^{2}} u^{1-1 / H}, \\
& \eta_{\varphi}(t)=B_{H}(t), \sigma_{\eta}^{2}(t)=t^{2 H}, \Delta(u)=1, \varphi=1, \\
& n(u)=\mathbb{D}_{H} u^{1-H}, a_{1}(u)=0, a_{2}(u)=\delta_{u} T_{u}^{-1} u K_{1}, \gamma=0, x_{1}=0, x_{2}=\infty, y_{1}=0, y_{2}=\infty, x=K_{1}, \\
& \theta(u)=u^{(1 / H-2)(1-H)} \mathbb{D}_{H}^{-1+1 / H}\left|q_{1} H-(1-H) c_{1} t_{*}\right|^{-1} t_{*}^{H} 2^{-\frac{1}{2 H}},
\end{aligned}
$$

and thus as $u \rightarrow \infty$

$$
g_{2}(u)=\mathbb{P}\left\{\int_{0}^{\delta_{u} T_{u}^{-1} u K_{1}} \mathbb{I}_{M(u)}\left(Z_{u}^{(2)}(t)\right) d t>K_{1}\right\} \sim \mathcal{B}_{2 H}\left(\frac{T \mathbb{D}_{H}^{\frac{1}{H}}}{2^{\frac{1}{2 H}} t_{*}}\right) u^{\left(\frac{1}{H}-2\right)(1-H)} \frac{t_{*}^{H} \mathbb{D}_{H}^{-1+1 / H}}{2^{\frac{1}{2 H}}\left|q_{1} H-(1-H) c_{1} t_{*}\right|} \Psi\left(\mathbb{D}_{H} u^{1-H}\right) .
$$

Similarly we obtain

$$
g_{1}(u) \sim \mathcal{B}_{2 H}\left(\frac{T \mathbb{D}_{H}^{1 / H}}{2^{\frac{1}{2 H}} t_{*}}\right) u^{(1 / H-2)(1-H)} \frac{t_{*}^{H} \mathbb{D}_{H}^{-1+1 / H}}{2^{\frac{1}{2 H}}\left|q_{2} H-(1-H) c_{2} t_{*}\right|} \Psi\left(\mathbb{D}_{H} u^{1-H}\right), \quad u \rightarrow \infty
$$

and the claim follows if in (6) $T>0$. Now let (6) holds with $T=0$. Since $\mathcal{P}_{T_{u}}(u) \leq \mathbb{C}_{T_{u}}(u) \leq \mathcal{R}_{T_{u}}(u)$ we obtain the claim by Theorem 2.1 in [22] and Theorem 3.1 in [21].

Proof of Proposition 2.2. The proof of this proposition is the same as the proof of Proposition 2.2 in [22], thus we refer to [22] for the proof.

4. Appendix

Proof of (13). To establish the claim we need to show that

$$
\mathbb{P}\left\{\int_{(0, \infty) \backslash\left[t_{1}-\varepsilon, t_{1}+\varepsilon\right]} \mathbb{I}\left(V_{1}(s)>u^{1-H}\right) d s>T_{u} / u\right\}=o\left(\psi_{1}\left(T_{u}, u\right)\right), \quad u \rightarrow \infty
$$

Applying Borell-TIS inequality (see, e.g., [14]) we have as $u \rightarrow \infty$

$$
\begin{aligned}
\mathbb{P}\left\{\int_{(0, \infty) \backslash\left[t_{1}-\varepsilon, t_{1}+\varepsilon\right]} \mathbb{I}\left(V_{1}(s)>u^{1-H}\right) d s>T_{u} / u\right\} & \leq \mathbb{P}\left\{\exists t \in[0, \infty) \backslash\left[t_{1}-\varepsilon, t_{1}+\varepsilon\right]: V_{1}(t)>u^{1-H}\right\} \\
& \leq e^{-\frac{\left(u^{1-H-M)^{2}}\right.}{2 m^{2}}},
\end{aligned}
$$

where

$$
M=\mathbb{E}\left\{\sup _{\exists t \in[0, \infty) \backslash\left[t_{1}-\varepsilon, t_{1}+\varepsilon\right]} V_{1}(t)\right\}<\infty, \quad m^{2}=\max _{\exists t \in[0, \infty) \backslash\left[t_{1}-\varepsilon, t_{1}+\varepsilon\right]} \operatorname{Var}\left\{V_{1}(t)\right\}
$$

Since $\operatorname{Var}\left\{V_{1}(t)\right\}$ achieves its unique maxima at t_{1} we obtain by (12) that

$$
e^{-\frac{\left(u^{1-H-M)^{2}}\right.}{2 m^{2}}}=o\left(\mathbb{P}\left\{V_{1}\left(t_{1}\right)>u^{1-H}\right\}\right), \quad u \rightarrow \infty
$$

and the claim follows from the asymptotics of $\psi_{1}\left(T_{u}, u\right)$ given in Proposition 3.1.
Proof of (14). To prove the claim it is enough to show that as $u \rightarrow \infty$ and then $S \rightarrow \infty$

$$
\mathbb{P}\left\{\int_{[0, \infty) \backslash\left[u t_{*}-S, u t_{*}+S\right]} \mathbb{I}\left(B(t)-c_{1} t>q_{1} u, B(t)-c_{2} t>q_{2} u\right) d t>T\right\}=o\left(\mathbb{C}_{T_{u}}(u)\right), \quad u \rightarrow \infty
$$

We have that the probability above does not exceed

$$
\mathbb{P}\left\{\exists t \in[0, \infty) \backslash\left[u t_{*}-S, u t_{*}+S\right]: B(t)-c_{1} t>q_{1} u, B(t)-c_{2} t>q_{2} u\right\}
$$

From the proof of Theorem 3.1 in [21], Case (3) and the final asymptotics of $\mathbb{C}_{T_{u}}(u)$ given in (9) it follows that the expression above equals $o\left(\mathbb{C}_{T_{u}}(u)\right)$, as $u \rightarrow \infty$ and then $S \rightarrow \infty$.

Proof of (16). Define

$$
G(u, x)=\mathbb{P}\left\{\int_{-S}^{0} \mathbb{I}\left(Z_{u}(s)+\eta_{*} s>x\right) d s+\int_{0}^{S} \mathbb{I}\left(B_{*}(s)-c_{1} s>x\right) d s>T\right\}
$$

First we show that

$$
\begin{equation*}
\int_{\mathbb{R}} G(u, x) e^{\frac{n x}{t_{x}}-\frac{x^{2}}{2 u u_{*}}} d x=\int_{-M}^{M} G(u, x) e^{\frac{n x}{x_{x}}} d x+A_{M, u} \tag{18}
\end{equation*}
$$

where $A_{M, u} \rightarrow 0$ as $u \rightarrow \infty$ and then $M \rightarrow \infty$. We have

$$
\begin{aligned}
\left|A_{M, u}\right| & =\left|\int_{\mathbb{R}} G(u, x) e^{\frac{n x}{t_{t}}-\frac{x^{2}}{2 u u_{*}}} d x-\int_{-M}^{M} G(u, x) e^{\frac{n x}{t_{*}}} d x\right| \\
& \leq\left|\int_{-M}^{M} G(u, x)\left(e^{\frac{\eta x}{t_{*}}-\frac{x^{2}}{2 u u_{*}}}-e^{\frac{\eta x}{t_{*}}}\right) d x\right|+\int_{|x|>M} G(u, x) e^{\frac{n x}{t_{*}}} d x=:\left|I_{1}\right|+I_{2}
\end{aligned}
$$

Since the variance of Z_{u} (see (15)) converges to those of BM we have by Borell-TIS inequality for $x>0$, large u and some $C>0$

$$
\begin{align*}
G(u, x) & \leq \mathbb{P}\left\{\exists t \in[-S, 0):\left(Z_{u}(t)+\eta_{*} t\right)>x\right\}+\mathbb{P}\left\{\exists t \in[0, S]:\left(B_{*}(t)-c_{1} t\right)>x\right\} \\
& \leq \mathbb{P}\left\{\exists t \in[-S, 0]:\left(Z_{u}(t)-\mathbb{E}\left\{Z_{u}(t)\right\}\right)>x\right\}+\mathbb{P}\left\{\exists t \in[0, S]: B_{*}(t)>x\right\} \leq e^{-x^{2} / C} \tag{19}
\end{align*}
$$

Let $u>M^{4}$. For $x \in[-M, M]$ it holds, that $1-e^{-\frac{x^{2}}{2 u_{t}}} \leq \frac{x^{2}}{2 u t_{s}} \leq \frac{1}{M}$ and hence for $u>M^{4}$ by (19) we have as $M \rightarrow \infty$

$$
\left|I_{1}\right| \leq \int_{-M}^{0} e^{\frac{\eta x}{t_{x}}}\left(1-e^{-\frac{x^{2}}{2 u_{t}}}\right) d x+\int_{0}^{M} e^{-x^{2} / C+\frac{\eta x}{t_{*}}}\left(1-e^{-\frac{x^{2}}{2 u t_{*}}}\right) d x \leq \frac{1}{M}\left(\int_{-\infty}^{0} e^{\frac{\eta x}{t_{*}}} d x+\int_{0}^{\infty} e^{-x^{2} / C+\frac{\eta x}{t_{*}}} d x\right) \rightarrow 0
$$

For I_{2} we have

$$
I_{2} \leq \int_{-\infty}^{-M} e^{\frac{n x}{\frac{1}{x}}} d x+\int_{M}^{\infty} e^{-x^{2} / C} e^{\frac{n x}{t_{x}}} d x \rightarrow 0, \quad M \rightarrow \infty
$$

hence (18) holds. Next we show that

$$
G(u, x) \rightarrow \mathbb{P}\left\{\int_{-S}^{0} \mathbb{I}\left(B(s)+\eta_{*} s>x\right) d s+\int_{0}^{S} \mathbb{I}\left(B_{*}(s)-c_{1} s>x\right) d s>T\right\}, \quad u \rightarrow \infty
$$

that is equivalent with

$$
\lim _{u \rightarrow \infty} \mathbb{P}\left\{\int_{-S}^{S} \mathbb{I}\left(X_{u}(s)>x\right) d s>T\right\}=\mathbb{P}\left\{\int_{-S}^{S} \mathbb{I}(B(s)+k(s)>x) d s>T\right\}
$$

where $k(s)=\mathbb{I}(s<0) \eta_{*} s-\mathbb{I}(s \geq 0) c_{1} s$ and

$$
X_{u}(t)=\left(Z_{u}(t)+\eta_{*} t\right) \mathbb{I}(t<0)+\left(B_{*}(t)-c_{1} t\right) \mathbb{I}(t \geq 0)
$$

We have for large u

$$
\mathbb{E}\left\{\left(X_{u}(t)-X_{u}(s)\right)^{2}\right\}= \begin{cases}|t-s|+|t-s|^{2} & t, s \geq 0 \\ -\frac{(s-t)^{2}}{u t_{*}}+|t-s|+\frac{x^{2}(t-s)^{2}}{u^{2} t_{*}^{2}}-\frac{2 x(t-s)^{2} \eta_{*}}{u t_{*}}+\eta_{*}^{2}(t-s)^{2} & t, s \leq 0 \\ |t-s|-\frac{s^{2}}{u t_{*}}+\frac{x^{2} s^{2}}{u^{2} t_{*}^{2}}-\frac{2 x\left(\eta_{*} s+c_{1} 1\right)}{u t_{*}}+\left(\eta_{*} s+c_{1} t\right)^{2} & s<0<t\end{cases}
$$

implying for all u large enough, some $C>0$ and $t, s \in[-S, S+T]$ that

$$
\mathbb{E}\left\{\left(X_{u}(t)-X_{u}(s)\right)^{2}\right\} \leq C|t-s|
$$

Next, by Proposition 9.2.4 in [14] the family $X_{u}(t), u>0, t \in[-S, S+T]$ is tight in $\mathcal{B}(C([-S, S+T]))$ (Borell σ-algebra in the space of the continuous functions on $[-S, S+T]$ generated by the cylindric sets).

As follows from (15), $Z_{u}(t)$ converges to $B(t)$ in the sense of convergence finite-dimensional distributions as $u \rightarrow \infty, t \in[-S, S+T]$. Thus, by Theorems 4 and 5 in Chapter 5 in [25] the tightness and convergence of finite-dimensional distributions imply weak convergence

$$
X_{u}(t) \Rightarrow B(t)+k(t)=: W(t), \quad t \in[-S, S+T]
$$

By Skorohod representation theorem (Theorem 11, Chapter 5 in [25]) we can assume that the convergence is almost surely. Thus, we assume that $X_{u}(t) \rightarrow W(t)$ a.s. as $u \rightarrow \infty$ as elements of $C[-S, S]$ space with the uniform metric. We prove that for all $x \in \mathbb{R}$

$$
\begin{equation*}
\mathbb{P}\left\{\lim _{u \rightarrow \infty} \int_{-S}^{S} \mathbb{I}\left(X_{u}(t)>x\right) d t=\int_{-S}^{S} \mathbb{I}(W(t)>x) d t\right\}=1 \tag{20}
\end{equation*}
$$

Fix $x \in \mathbb{R}$. We shall show that as $u \rightarrow \infty$ with probability 1

$$
\begin{equation*}
\mu_{\Lambda}\left\{t \in[-S, S]: X_{u}(\omega, t)>x>W(\omega, t)\right\}+\mu_{\Lambda}\left\{t \in[-S, S]: W(\omega, t)>x>X_{u}(\omega, t)\right\} \rightarrow 0 \tag{21}
\end{equation*}
$$

where μ_{Λ} is the Lebesgue measure. Since for any fixed $\varepsilon>0$ for large u and $t \in[-S, S]$ with probability one $\left|W(t)-X_{u}(t)\right|<\varepsilon$ we have that

$$
\begin{aligned}
& \mu_{\Lambda}\left\{t \in[-S, S]: X_{u}(\omega, t)>x>W(\omega, t)\right\}+\mu_{\Lambda}\left\{t \in[-S, S]: W(\omega, t)>x>X_{u}(\omega, t)\right\} \\
\leq & \mu_{\Lambda}\{t \in[-S, S]: W(\omega, t) \in[-\varepsilon+x, \varepsilon+x]\} .
\end{aligned}
$$

Thus, (21) holds if

$$
\begin{equation*}
\mathbb{P}\left\{\lim _{\varepsilon \rightarrow 0} \mu_{\Lambda}\{t \in[-S, S]: W(t) \in[-\varepsilon+x, x+\varepsilon]\}=0\right\}=1 \tag{22}
\end{equation*}
$$

Consider the subset $\Omega_{*} \subset \Omega$ consisting of all ω_{*} such that

$$
\lim _{\varepsilon \rightarrow 0} \mu_{\Lambda}\left\{t \in[-S, S]: W\left(\omega_{*}, t\right) \in[-\varepsilon+x, x+\varepsilon]\right\}>0
$$

Then for each ω_{*} there exists the set $\mathcal{A}\left(\omega_{*}\right) \subset[-S, S]$ such that $\mu_{\Lambda}\left\{\mathcal{A}\left(\omega_{*}\right)\right\}>0$ and for $t \in \mathcal{A}\left(\omega_{*}\right)$ it holds, that $W\left(\omega_{*}, t\right)=x$. Thus,

$$
\mathbb{P}\left\{\Omega_{*}\right\}=\mathbb{P}\left\{\mu_{\Lambda}\{t \in[-S, S]: W(t)=x\}>0\right\}
$$

the right side of the equation above equals 0 by Lemma 4.2 in [26]. Hence we conclude that (22) holds, consequently (21) and (20) are true. Since convergence almost sure implies convergence in distribution we have by (20) that for any fixed $x \in \mathbb{R}$

$$
\lim _{u \rightarrow \infty} \mathbb{P}\left\{\int_{-S}^{S} \mathbb{I}\left(X_{u}(t)>x\right) d t>T\right\}=\mathbb{P}\left\{\int_{-S}^{S} \mathbb{I}(W(t)>x) d t>T\right\}
$$

By the dominated convergence theorem we obtain

$$
\int_{-M}^{M} G(u, x) e^{\frac{n x}{t_{*}}} d x \rightarrow \int_{-M}^{M} \mathbb{P}\left\{\int_{-S}^{0} \mathbb{I}\left(B(s)+\eta_{*} s>x\right) d s+\int_{0}^{S} \mathbb{I}\left(B_{*}(s)-c_{1} s>x\right) d s>T\right\} e^{\frac{p x}{t_{*}}} d x, \quad u \rightarrow \infty
$$

Thus, the claim follows from the line above and (18).

Proof of (17). We have by the proof of Theorem 3.1 in [21], Case (3) and the final asymptotics of $\mathbb{C}_{T_{u}}(u)$ given in (9)

$$
\begin{aligned}
& \mathbb{P}\left\{\int_{\left([0, \infty) \backslash\left[u t_{*}-u \delta_{u}, u t_{*}+u \delta_{u}\right]\right.} \mathbb{I}\left(B_{H}(t)-c_{1} t>q_{1} u, B_{H}(t)-c_{2} t>q_{2} u\right) d t>T_{u}\right\} \\
& \leq \mathbb{P}\left\{\exists t \in[0, \infty) \backslash\left[u t_{*}-u \delta_{u}, u t_{*}+u \delta_{u}\right]: B_{H}(t)-c_{1} t>q_{1} u, B_{H}(t)-c_{2} t>q_{2} u\right\} \\
& =o\left(\mathbb{C}_{T_{u}}(u)\right), \quad u \rightarrow \infty
\end{aligned}
$$

and hence

$$
\mathbb{P}\left\{\int_{\left[u t_{*}-u \delta_{u}, u t_{*}+u \delta_{u}\right]} \mathbb{I}\left(B_{H}(t)-c_{1} t>q_{1} u, B_{H}(t)-c_{2} t>q_{2} u\right) d t>T_{u}\right\} \sim \mathbb{C}_{T_{u}}(u), \quad u \rightarrow \infty .
$$

The last probability above is equivalent with $g_{1}(u)+g_{2}(u)$ as $u \rightarrow \infty$, this observation follows from the application of the double-sum method, see the proofs of Theorem 3.1, Case (3) $H<1 / 2$ in [21] and Theorem 2.1 in [20] case i).

Proof of Proposition 3.1. If $H=1 / 2$, then an equality takes place, see [20], Eq. [5]. Assume from now on that $H \neq 1 / 2$. First let (6) holds with $T>0$. We have for $c>0$ with $\widetilde{M}(u)=u^{1-H} \frac{c^{H}}{(1-H)^{1-H} H^{H}}$ (recall, $\left.\mathbb{I}_{a}(b)=\mathbb{I}(b>a), a, b \in \mathbb{R}\right)$

$$
\begin{aligned}
h_{T_{u}}(u) & :=\mathbb{P}\left\{\int_{0}^{\infty} \mathbb{I}\left(B_{H}(t)-c t>u\right) d t>T_{u}\right\} \\
& =\mathbb{P}\left\{u\left(u^{\frac{1}{H}-2} \frac{c^{2}(1-H)^{2-\frac{1}{H}}}{2^{\frac{1}{2 H}} H^{2}}\right) \int_{0}^{\infty} \mathbb{I}_{\widetilde{M}(u)}\left(\frac{B_{H}(t u) \widetilde{M}(u)}{u(1+c t)}\right) d t>T \frac{c^{2}(1-H)^{2-\frac{1}{H}}}{2^{\frac{1}{2 H}} H^{2}}\right\} .
\end{aligned}
$$

Next we apply Theorem 3.1 in [20] to calculate the asymptotics of the last probability above as $u \rightarrow \infty$. For the parameters in the notation therein we have

$$
\begin{aligned}
& \alpha_{0}=\alpha_{\infty}=H, \sigma(t)=t^{H}, \overleftarrow{\sigma}(t)=t^{\frac{1}{H}}, t^{*}=\frac{H}{c(1-H)}, A=\frac{c^{H}}{H^{H}(1-H)^{1-H}}, x=T \frac{c^{2}(1-H)^{2-\frac{1}{H}}}{2^{\frac{1}{2 H}} H^{2}} \\
& B=\frac{c^{2+H}(1-H)^{2+H}}{H^{H+1}}, M(u)=u^{1-H} \frac{c^{H}}{(1-H)^{1-H} H^{H}}, v(u)=u^{\frac{1}{H}-2} \frac{c^{2}(1-H)^{2-\frac{1}{H}}}{2^{\frac{1}{2 H}} H^{2}} .
\end{aligned}
$$

and hence we obtain

$$
\begin{equation*}
h_{T_{u}}(u) \sim K_{H} \mathcal{B}_{2 H}(T D)\left(C_{H} u^{1-H}\right)^{\frac{1}{H}-1} \Psi\left(C_{H} u^{1-H}\right), \quad u \rightarrow \infty, \tag{23}
\end{equation*}
$$

where

$$
C_{H}=\frac{c^{H}}{H^{H}(1-H)^{1-H}} \quad \text { and } \quad D=2^{-\frac{1}{2 H}} c^{2} H^{-2}(1-H)^{2-1 / H}
$$

Assume that (6) holds with $T=0$. For $\varepsilon>0$ for all large u we have $h_{\varepsilon u^{1 / H-2}}(u) \leq h_{T_{u}}(u) \leq h_{0}(u)$ and thus

$$
K_{H} \mathcal{B}_{2 H}(\varepsilon D)\left(C_{H} u^{1-H}\right)^{\frac{1}{H}-1} \Psi\left(C_{H} u^{1-H}\right) \leq h_{T_{u}}(u) \leq K_{H} \mathcal{B}_{2 H}(0)\left(C_{H} u^{1-H}\right)^{\frac{1}{H}-1}
$$

Since $\mathcal{B}_{2 H}(\cdot)$ is a continuous function (Lemma 4.1 in [20]) letting $\varepsilon \rightarrow 0$ we obtain (23) for any T_{u} satisfying (6). Replacing in (23) u and c by $q_{1} u$ and c_{1} we obtain the claim.

References

[1] P. Embrechts, C. Klüppelberg, T. Mikosch, Modelling extremal events, Applications of Mathematics 33 volume (New York), Springer-Verlag, 1997.
[2] A. B. Dieker, Extremes of Gaussian processes over an infinite horizon, Stochastic Process. Appl. 115 volume, 2005, 207-248.
[3] G. Jasnovidov, Approximation of ruin probability and ruin time in discrete Brownian risk models, Scandinavian Actuarial Journal, 2020, 718-735.
[4] I. A. Kozik, V. I. Piterbarg, High excursions of Gaussian nonstationary processes in discrete time, Fundamentalnaya i Prikladnaya Matematika volume 22, 2018, 159-169.
[5] G. Jasnovidov, Simultaneous ruin probability for two-dimensional fractional Brownian motion risk process over discrete grid, Lithuanian Mathematical Journal, 2021.
[6] K. Dȩbicki, Krzysztof, P. Liu, Extremes of stationary Gaussian storage models, Extremes 19 volume, 2016, 273-302.
[7] K. Dębicki, Asymptotics of supremum of scaled Brownian motion, Probability and Mathematical Statistics, 2001.
[8] K. Dȩbicki, E. Hashorva, E., P. Liu, Extremes of γ-reflected Gaussian process with stationary increments, ESAIM Probab. Stat. 21 volume, 2017, 495-535.
[9] K. Dębicki, E. Hashorva, L. Ji, Parisian ruin over a finite-time horizon, Science China Mathematics 59 volume, 2016, 557-572.
[10] K. D ȩbicki, G. Sikora, Finite time asymptotics of fluid and ruin models: multiplexed fractional Brownian motions case, Applicationes Mathematicae (Warsaw) volume 33, 2011, 107-116.
[11] K. Dȩbicki, E. Hashorva, L. Ji, T. Rolski, Extremal behaviour of hitting a cone by correlated Brownian motion with drift, Stoch. Proc. Appl., 2018.
[12] B. Long, Asymptotics of Parisian ruin of Brownian motion risk model over an infinite-time horizon, Scandinavian Actuarial Journal, 2018, 514-528.
[13] K. Dębicki, E. Hashorva, L. Ji, Parisian ruin of self-similar Gaussian risk processes, Journal of Applied Probability 52 volume, 2015, 688-702.
[14] V. I. Piterbarg, Twenty lectures about Gaussian processes, Atlantic Financial Press London New York, 2015.
[15] V. I. Piterbarg, Asymptotic methods in the theory of Gaussian processes and fields, American Mathematical Society, Translations of Mathematical Monographs, 1996.
[16] V. I., Piterbarg, V. R. Fatalov, The Laplace method for probability measures in Banach spaces,Uspekhi Matematicheskikh Nauk 50 volume, 1995 57-150.
[17] V. Piterbarg, G. Popivoda and S. Stamatovic, Extremes of Gaussian processes with a smooth random trend, Filomat, University of Nis, Faculty of Sciences and Mathematics, 2017, 2267-2279.
[18] Queues and Lévy fluctuation theory, K. Dȩbicki, M. Mandjes, Springer, 2015.
[19] L. Ji, On the cumulative Parisian ruin of multi-dimensional Brownian motion risk models, Scandinavian Actuarial Journal, 2020, 819-842.
[20] K. Dębicki, P. Liu, Z. Michna, Sojourn times of Gaussian processes with trend, Journal of Theoretical Probability 33 volume, 2020 2119-2166.
[21] L. Ji, S. Robert, Ruin problem of a two-dimensional fractional Brownian motion risk process, Stochastic Models 34 volume, 2018 73-97.
[22] G. Jasnovidov, A. Shemendyuk, Parisian ruin for insurer and reinsurer under quota-Share treaty, arXiv:2103.03213, 2021.
[23] K. Dȩbicki, E. Hashorva, Z.Michna, Simultaneous ruin probability for two-dimensional Brownian risk model, Journal of Applied Probability 57 volume, 2020, 597-612.
[24] III, J. Pickands, Upcrossing probabilities for stationary Gaussian processes, transactions of the American mathematical society 145 volume, 1969, 51-73.
[25] A.V. Bylinskii, A.N. Shiryaev, Theory of stochastic processes (in Russian), M.PHIZMATLIT, 2005.
[26] N. Kriukov, arXiv:2001.09302, Parisian \& cumulative Parisian ruin probability for two-dimensional Brownian risk model, 2020.

[^0]: 2020 Mathematics Subject Classification. Primary 60G15; Secondary 60G70
 Keywords. fractional Brownian motion; simultaneous ruin probability; two-dimensional risk processes; sojourn
 Received: 23 July 2021; Accepted: 22 September 2021
 Communicated by Miljana Jovanović
 Email address: griga1995@yandex.ru (Grigori Jasnovidov)

