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Abstract. The aim of this paper is to establish some integral inequalities for convex stochastic processes in
a form of Riesz fractional integrals. These results allow us to obtain a new class of functional inequalities
which generalizes known ones.

1. Introduction

In the stochastic context, a stochastic process is a temporal parameterized family of random variables
on a probability space. In other words, if (Ω,F ,P) be a probability space, a function X : Ω→ R is called a
random variable, if it is F -measurable. Correspondingly, X : [a, b]×Ω→ R is called a stochastic process, if
the function X(t, .) is a random variable for all t ∈ [a, b].
Let P-lim and E[X(t, .)] denote the limit in probability and the expectation value of random variable X(t, .)
respectively. Then, a stochastic process X : [a, b] ×Ω→ R is

(i) continuous in probability in [a, b], if for all t0 ∈ [a, b],

P − lim
t7→t0

X(t, .) = X(t0, .).

(ii) mean-square continuous in [a, b], if for all t0 ∈ [a, b]

lim
t7→t0

E[(X(t, .) − X(t0, .))2] = 0.

(iii) increasing (resp. decreasing) if for all t1, t2 ∈ [a, b] such that t1 < t2 (resp. t1 > t2), X(t1, .) ≤ X(t2, .)
(resp. X(t1, ) ≥ X(t2, .)), (a.e).

(iv) monotonic if it is increasing or decreasing.
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(v) mean-square differentiable at a point t ∈ [a, b], if there is a random variable X′

(t, .) : [a, b] × Ω → R
such that

X
′

(t, .) = P − lim
t 7→t0

X(t, .) − X(t0, .)
t − t0

.

Note that if the stochastic process X : [a, b]×Ω→ R has mean-square continuity, then it has continuity
in probability, but the converse is not true.

(vi) mean-square integrable on [a, b] if

lim
n7→∞

E
[( n∑

k=1

X(Tk, .) · (tk − tk−1) − Y(t, .)
)2]
= 0,

with E[X(t)2] < ∞ for all t ∈ [a, b] and Tk ∈ [tk − 1, tk], k = 1, ...,n and a = t0 < t1 < ... < tn = b is a
partition of [a, b]. Then almost everywhere, it can be sometimes showed with∫ t

a
X(s, .)ds = Y(t, .).

In 1980, Nikodem [1] introduced the notion of convex stochastic processes and proposed the following
definition: a stochastic process X : [a, b] ×Ω→ R is said to be convex if

X(λx + (1 − λ)y, .) ≤ λX(x, .) + (1 − λ)X(y, .),

holds almost everywhere for all x, y ∈ [a, b] and λ ∈ [0, 1]. For example the stochastic process defined by
X(t, .) = θ(.)eρt where θ(.) is a random variable, is convex since the exponential function is convex.
If we put λ = 1

2 in the above inequality, then the process X is Jensen-convex or 1
2 -convex. A stochastic

process X is termed concave if −X is convex.
In 1992, Skowronski [2] obtained some further results on convex stochastic processes which generalize
some known properties of convex functions.
Integral inequalities play an important role in the theory of differential equations, functional analysis, linear
programming, extreme and optimization problems. They are also useful to show uniqueness of solutions
for differential equations, and to estimate integral meanings of real valued functions. For a stochastic
process, several integral inequalities with convexity exist in the literature, the most important and well
known ones are:
• The Hermite-Hadamard inequality [3, 4]: If X : [a, b] ×Ω→ R be a convex and mean square continuous
stochastic process, then

X
(a + b

2
, .
)
≤

1
b − a

∫ b

a
X(t, .)dt ≤

X(a, .) + X(b, .)
2

, (a.e). (1)

• The Hermite-Hadamard-Fejér inequality [5]: If X : [a, b] × Ω → R be a convex stochastic process and
Y : [a, b]×Ω→ R is a non-negative and mean square integrable stochastic process, symmetric with respect
to a+b

2 , then

X
(a + b

2
, .
) ∫ b

a
Y(t, .)dt ≤

∫ b

a
(XY)(t, .)dt ≤

X(a, .) + X(b, .)
2

∫ b

a
Y(t, .)dt (a.e). (2)

• The Gonzalez-Merentes-Lopez’s first inequality [6]: If X : [a, b] ×Ω → R is a mean-square differentiable
stochastic process on [a, b] with |X′

| is convex on [a, b], then∣∣∣∣∣X(a, .) + X(b, .)
2

−
1

b − a

∫ b

a
X(t, .)dt

∣∣∣∣∣ ≤ b − a
8

[
|X
′

(a, .)| + |X
′

(b, .)|
]
, (a.e). (3)
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• The Gonzalez-Merentes-Lopez’s second inequality [6]: Let X : [a, b] × Ω → R be a mean-square differ-
entiable stochastic process and X(t, .) ∈ L1[a, b]. If |X|q is convex on [a, b], p > 1 such that q = p

p−1 , then

∣∣∣∣∣X(a, .) + X(b, .)
2

−
1

b − a

∫ b

a
X(t, .)dt

∣∣∣∣∣ ≤ b − a

2(1 + p)
1
p

[
|X′

(a, .)|q + |X′

(b, .)|q

2

] 1
q

, (a.e). (4)

In the last decades, fractional calculus has attracted the attention of many researchers in different areas
of science, such as mathematical modelling, physics, biology, and engineering [7]. In the literature, the
definition of fractional integral has been treated using different approaches such as Riemann-Liouville,
Caputo, Weyl, among others [8].
Many authors have explored certain extensions and generalizations of these inequalities by involving
different approaches of fractional operators [9–18]. In [19], Agahi et. al. represented Hermite-Hadamard
inequalities in Riemann-Liouville fractional integral as follows:
If X : [a, b] ×Ω→ R is a mean-square continuous convex stochastic process, then

X
(a + b

2
, .
)
≤
Γ(α + 1)
2(b − a)α

[
RLJαa+X(b, .) +RL Jαb−X(a, .)

]
≤

X(a, .) + X(b, .)
2

, (a.e), (5)

with RLJαa+X (resp. RLJαb−X) is the left Riemann-Liouville integral (resp. right Riemann-Liouville integral)
which are given by [20]

RLJαa+X(t, .) =
1
Γ(α)

∫ t

a
(t − s)α−1X(s, .)ds,

RLJαb−X(t, .) =
1
Γ(α)

∫ b

t
(s − t)α−1X(s, .)ds.

By using the last definitions of fractional integration and the Hermite-Hadamard-Fejér inequality (2), we
can obtain the generalized property: If X : [a, b]×Ω→ R is a convex stochastic process with X(t, .) ∈ L1[a, b]
and Y(t, .) ∈ L1(a, b) be a non-negative and symmetric stochastic process with respect to a+b

2 , then

X
(a + b

2
, .
)
(RLJαa+Y(b, .) +RL Jαb−Y(a, .)) ≤ RLJαa+(XY)(b, .) +RL Jαb−(XY)(a, .)

≤
X(a, .) + X(b, .)

2
(RLJαa+Y(b, .) +RL Jαb−Y(a, .)), (a.e). (6)

Moreover, loads of papers appeared in the literature to generalize some inequalities of some fractional
integrals, see for example [21–23].
The α-th order Riesz derivative [24] of a suitably mean square differentiable stochastic process X is given
by

RZDα[a,b]X(t, .) = −
1

2 cos (απ/2)
(RLDαa+ +

RL Dαb−)X(t, .), 0 < α < 1.

The α-th Riesz fractional integral (usually called Riesz potential) of a stochastic process X(t, .) ∈ L1
loc([a, b])

be locally integrable is defined as the linear combination

RZJα[a,b]X(t, .) =
1

2Γ(α) cos (απ/2)

∫ b

a

X(s, .)
|t − s|1−α

ds

=
1

2 cos (απ/2)
(RLJαa+ +

RL Jαb−)X(t, .).

We note that, at variance with the Riemann-Liouville integral, the Riesz fractional integral has the semigroup
property only in restricted range, e.g.

RZJα[a,b] ◦
RZ J

β
[a,b] =

RZ J
α+β
[a,b] if α + β < 1.
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The aim of this paper is to establish generalization of these type integral inequalities by using Riesz fractional
integral.

2. Main results

Here, we present our main results that are a generalization of (1), (2), (3) and (4) inequalities correspond-
ing to Riesz fractional integral. Then we have the following theorems:

Theorem 2.1. If X is a convex stochastic process on [a, b], then

RZJα[a,b]X(t, .) ≤
1 + X(b,.)−X(a,.)

Γ(α+2)

2 cos (απ/2)

{
(t − a)α + (b − t)α

}
, (a.e). (7)

Proof. The convexity of X means that, for all t ∈ [a, b],

X(t, .) ≤ X(a, .) +
X(b, .) − X(a, .)

b − a
(t − a), (a.e).

By applying the Riesz fractional operator of integration on both sides of the preceding inequality and by
using

RZJα[a,b][C] =
C

2Γ(α + 1) cos (απ/2)

{
(t − a)α + (b − t)α

}
, for C = cte,

RZJα[a,b][t − a] =
b − a

2Γ(α + 2) cos (απ/2)

{
(t − a)α + (b − t)α

}
,

we find the result.

Example 2.2. We consider the convex stochastic process defined by X(t, ω) = t, for (t, ω) ∈ [a, b] ×R, and such as

RLJαa+[t] =
1

Γ(α + 2)
(t + αa)(t − a)α,

RLJαb−[t] =
1

Γ(α + 2)
(t + αb)(b − t)α,

and by applying (7) we get

(t + αa)(t − a)α + (t + αb)(b − t)α ≤
(
b − a + Γ(α + 2)

){
(t − a)α + (b − t)α

}
. (8)

Theorem 2.3. Let X ∈ L1
loc([a, b]). If X is convex on [a, b], then the Hermite-Hadamard inequalities for Riesz

fractional integral hold almost everywhere

X
(a + b

2
, .
)
≤

C(α)
(b − a)α

[RZJα[a,b]X(a, .) +RZ Jα[a,b]X(b, .)] ≤
X(a, .) + X(b, .)

2
, (9)

where C(α) = Γ(α + 1) cos (απ/2).

Proof. Such as RLJαa+X(a, .) = RLJαb−X(b, .) = 0, then

RZJα[a,b]X(a, .) +RZ Jα[a,b]X(b, .) =
1

2 cos (απ/2)
[RLJαa+X(b, .) +RL Jαb−X(a, .)].

Using inequality (5) completes the proof.
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Remark 2.4. If we let α→ 1, (9) becomes (1).

Theorem 2.5. Let X,Y : [a, b]×Ω→ R be two convex stochastic processes with X ∈ L1
loc([a, b]). If Y is non negative,

integrable and symmetric with respect to a+b
2 , then the Hermite-Hadamard-Fejér inequalities for Riesz fractional

integral operator hold almost everywhere

X
(a + b

2
, .
)(RZ
Jα[a,b]Y(b, .) +RZ Jα[a,b]Y(a, .)

)
≤

RZ Jα[a,b](XY)(b, .) +RZ Jα[a,b](XY)(a, .)

≤
X(a, .) + X(b, .)

2

(RZ
Jα[a,b]Y(b, .) +RZ Jα[a,b]Y(a, .)

)
. (10)

Proof. For the right inequality, using (6) we have

RZJα[a,b](XY)(b, .) +RZ Jα[a,b](XY)(a, .) =
1

2 cos (απ/2)

[
RLJαa+(XY)(b, .) +RL Jαb−(XY)(a, .)

]
≤

X(a, .) + X(b, .)
4 cos (απ/2)

[
RLJαa+Y(b, .) +RL Jαb−Y(a, .)

]
≤

X(a, .) + X(b, .)
2

[
RZJα[a,b]Y(b, .) +RZ Jα[a,b]Y(a, .)

]
.

In the same way, using (6) we obtain the left inequality

RZJα[a,b](XY)(b, .) +RZ Jα[a,b](XY)(a, .) ≥
1

2 cos (απ/2)
X
(a + b

2
, .
)[

RLJαa+Y(b, .) +RL Jαb−Y(a, .)
]

= X
(a + b

2
, .
)[

RZJαa+Y(b, .) +RZ Jαb−Y(a, .)
]
.

Remark 2.6. If we let α→ 1, (10) becomes (2).

Lemma 2.7. [25] Let X : [a, b]→ R be a mean-square differentiable stochastic process on (a, b)×Ω. If X′

∈ L1[a, b],
then the following equality for fractional Riemann-Liouville integrals holds almost everywhere

X(a, .) + X(b, .)
2

−
Γ(α + 1)
2(b − a)α

[
RLJαa+X(b, .) +RL Jαb−X(a, .)

]
=

b − a
2

∫ 1

0
[(1 − t)α − tα]X

′

(ta + (1 − t)b, .)dt. (11)

Lemma 2.8. Let X : [a, b]→ R be a mean-square differentiable stochastic process on (a, b) ×Ω with X ∈ L1
loc([a, b]).

If X′

∈ L1[a, b], then the following equality for Riesz fractional integral holds almost everywhere

RZ∆α[a,b](X) =
X(a, .) + X(b, .)

2
−

C(α)
(b − a)α

[
RZJα[a,b]X(a, .) +RZ Jα[a,b]X(b, .)

]
=

b − a
2

∫ 1

0
[(1 − t)α − tα]X

′

(ta + (1 − t)b, .)dt.

Proof. Using (2.7), the proof holds.
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Theorem 2.9. Let X : [a, b] × Ω → R be a mean-square differentiable stochastic process on (a, b) × Ω with
X(t, .) ∈ L1

loc(a, b). If |X′

| is convex on [a, b], then the following inequality for Riesz fractional integrals holds almost
everywhere

|
RZ∆α[a,b](X)| ≤ D(α)

( (b − a)
[
|X′

(a, .)| + |X′

(b, .)|
]

2

)
, (12)

where D(α) =
1 −
(

1
2

)α
1 + α

.

Proof. Using Lemma 2.7 and the convexity of |X′|, we have

|
RZ∆α[a,b](X)| ≤

b − a
2

∫ 1

0

∣∣∣(1 − t)α − tα
∣∣∣ · ∣∣∣X′

(ta + (1 − t)b, .)
∣∣∣dt.

As |X′| is convex, therefore

|
RZ∆α[a,b](X)| ≤

b − a
2

[ ∫ 1/2

0

(
(1 − t)α − tα

)(
t|X

′

(a, .)| + (1 − t)|X
′

(b, .)|
)
dt

+

∫ 1

1/2

(
tα − (1 − t)α

)(
t|X

′

(a, .)| + (1 − t)|X
′

(b, .)|
)
dt
]

≤
b − a

2

[
|X
′

(a, .)|
( ∫ 1/2

0
t(1 − t)αdt −

∫ 1/2

0
tα+1dt

)
+ |X

′

(b, .)|
( ∫ 1/2

0
(1 − t)α+1dt −

∫ 1/2

0
(1 − t)tαdt

)
+ |X

′

(a, .)|
( ∫ 1

1/2
tα+1dt −

∫ 1

1/2
t(1 − t)αdt

)
+ |X

′

(b, .)|
( ∫ 1

1/2
(1 − t)tαdt −

∫ 1

1/2
(1 − t)α+1dt

)]
.

Then,

|
RZ∆α[a,b](X)| ≤

b − a
2

[
|X
′

(a, .)|
( 1

(α + 1)(α + 2)
−

(
1
2

)α+1

α + 1

)
+ |X

′

(b, .)|
( 1
α + 2

−

(
1
2

)α+1

α + 1

)
+ |X

′

(a, .)|
( 1
α + 2

−

(
1
2

)α+1

α + 1

)
+ |X

′

(b, .)|
( 1

(α + 1)(α + 2)
−

(
1
2

)α+1

α + 1

)]
≤

b − a
2

[( 1
(α + 1)(α + 2)

+
1
α + 2

−

(
1
2

)α
α + 1

)[
|X
′

(a, .)| + |X
′

(b, .)|
]]

≤

(1 − ( 1
2

)α
1 + α

) (b − a)
[
|X′

(a, .)| + |X′

(b, .)|
]

2
.

Remark 2.10. If we let α→ 1, (12) becomes (3).

Theorem 2.11. Let X : [a, b]×Ω→ R be a mean-square differentiable stochastic process such that X(t, .) ∈ L1
loc(a, b)

and X′ ∈ L1[a, b]. If |X′|q is convex on [a, b] for some fixed p > 1 with 1
p +

1
q = 1, then the following inequality for
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fractional integrals holds almost everywhere

|
RZ∆α[a,b](X)| ≤ E(α, p, q)

( (b − a)
[
|X′

(a, .)|q + |X′

(b, .)|q
]1/q

2

)
, (13)

where E(α, p, q) =
1

21/q(1 + αp)1/p .

Proof. From Lemma 2.7, the convexity of |X′|q and Holder inequality leads to

|
RZ∆α[a,b](X)| ≤

b − a
2

∫ 1

0

∣∣∣(1 − t)α − tα
∣∣∣ · ∣∣∣X′

(ta + (1 − t)b, .)
∣∣∣dt

≤
b − a

2

( ∫ 1

0

∣∣∣(1 − t)α − tα
∣∣∣pdt
) 1

p
( ∫ 1

0

∣∣∣X′

(ta + (1 − t)b, .)
∣∣∣qdt
) 1

q

≤
b − a

2

( ∫ 1

0

∣∣∣(1 − t)α − tα
∣∣∣pdt
) 1

p
(∣∣∣X′

(a, .)
∣∣∣q ∫ 1

0
tdt +

∣∣∣X′

(b, .)
∣∣∣q ∫ 1

0
(1 − t)dt

) 1
q

.

As α ∈ (0, 1) and ∀x, y ∈ [0, 1], |xα − yα| ≤ |x − y|α then

|
RZ∆α[a,b](X)| ≤

b − a
2

( ∫ 1

0
|1 − 2t|pαdt

) 1
p
(
|X′

(a, .)|q + |X′

(b, .)|q

2

) 1
q

.

As ∀t ∈ [0, 1], 1 − 2t ∈ [−1, 1] then∫ 1

0
|1 − 2t|pαdt =

∫ 1
2

0
(1 − 2t)pαdt +

∫ 1

1/2
(2t − 1)pαdt =

1
1 + pα

,

which completes the proof.

Remark 2.12. If we take α→ 1 in (13), we get (4).

Another similar result may be extended in the following remark.

Remark 2.13. As for all 0 < s < 1, (x + y)s
≤ xs + ys for all x, y positive numbers,

[
|X′

(a, .)|q + |X′

(b, .)|q
]1/q
≤

|X′

(a, .)| + |X′

(b, .)|.
By using x+y

2 ≥
√

xy, we get E(α, p, q) ≤ 1
(αp)1/2p . Then the inequality in the above theorem becomes

|
RZ∆α[a,b](X)| ≤

1
(αp)1/2p

( (b − a)
[
|X′

(a, .)| + |X′

(b, .)|
]

2

)
, (a.e). (14)

In the next section, we cite an important application of our results named fractional moment estimates.

3. Application: Moment Estimates

Let
X : [a, b] ×Ω → R

(t, ω) 7→ X(t, ω)

be a random variable. For simplicity, we denote for a fixed ω ∈ Ω:

X ≡ X(t) = X(t, .).

In this section, we assume that X(t) is an {Ft}-adapted, positive, non-decreasing convex stochastic process,
where Ft = σ{X(s), 0 ≤ s ≤ t} for each t ∈ [0,T], is the filtration.
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Theorem 3.1. Let ϕ : R → R be a convex, non-decreasing function and X a one dimensional adapted, positive,
non-decreasing convex process such that E[ϕ(X2(t)] < ∞ for all t ∈ [a, b]. Then

ϕ
(a + b

2

)
≤

C(α)
(b − a)α

{
E
[

RZJα[a,b]ϕ
(
X2(a)

)]
+ E
[

RZJα[a,b]ϕ
(
X2(b)

)]}
≤

E
[
ϕ
(
X2(a)

)]
+ E
[
ϕ
(
X2(b)

)]
2

, (a.e). (15)

Proof. Note that, if X is a positive convex stochastic process, X2 is also convex (and non-decreasing). Then
the composition ϕ ◦ X2 of a non-decreasing convex function ϕ and X2 is also convex and non-decreasing
stochastic process. Following (9) for convex function ϕ ◦ X2, we have

ϕ
(
X2
(a + b

2

))
≤

C(α)
(b − a)α

{
RZJα[a,b]ϕ

(
X2(a)

)
+ RZJα[a,b]ϕ

(
X2(b)

)}
≤

ϕ
(
X2(a)

)
+ ϕ
(
X2(b)

)
2

, (a.e).

Applying the linearity of the operator E and Jensen’s inequality

ϕ
(
E
[
X2
(a + b

2

)])
≤ E
[
ϕ
(
X2
(a + b

2

))]
,

the result follows.

Corollary 3.2. If ϕ(X2(t)) = X2(t), we obtain

E
[

RZJα[a,b]X
2(a)
]
+ E
[

RZJα[a,b]X
2(b)
]
=

(a + b)(b − a)α

2C(α)
, (a.e). (16)

4. Conclusion

In this paper, the generalisations of some inequalities involving Riesz fractional integrals for convex
stochastic processes have been established. These inequalities are also useful in some techniques that are
using in different proofs of existence and uniqueness problems. Finally, the obtained results may stimulate
further research in the theory of fractional integrals and generalized convex stochastic processes.
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