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Abstract. The purpose of this paper is concerned with the existence of extremal mild solutions for Sobolev
type Hilfer fractional evolution equations with nonlocal conditions in an ordered Banach spaces E. By using
monotone iterative technique coupled with the method of lower and upper solutions, with the help of the
theory of propagation family as well as the theory of the measure of noncompactness and Sadovskii’s fixed
point theorem, we obtain some existence results of extremal mild solutions for Hilfer fractional evolution
equations. Finally, an example is provided to show the feasibility of the theory discussed in this paper.

1. Introduction

Nonlinear fractional differential equations can be studied in many areas such as population dynamics,
heat condition in materials with memory, seepage flow in porous media, autonomous mobile robots, fluid
dynamics, traffic models, electro magnetic, aeronautics, economics, and so on, see [33-42]. Fractional differ-
ential equations provide an excellent instrument for the description of memory and hereditary properties
of various materials and processes and there has been a significant development in fractional differential
equations theory. Especially, in recent years, the numerical solution of fractional differential equation (frac-
tional Schrödinger equations) and its application in partial differential equation are concerned by many
authors, we refer to monographs [38-42].

Hilfer [5] proposed a generalized Riemann-Liouville fractional derivative, for short, Hilfer fractional
derivative, which includes Riemann-Liouville fractional derivative and Caputo fractional derivative. This
operator appeared in the theoretical simulation of dielectric relaxation in glass forming materials. In
recent years, many authors began to study Hilfer fractional differential equations, we refer the reader to
[5,8,11,12,13,6,19]. Presently, Hilfer fractional evolution equations has also been favored by many scholars.
Gu and Trujillo [8] investigated a class of evolution equations involving Hilfer fractional derivatives, the
definition of mild solutions to such problems is given. Furati et al. [10] considered an initial value problem
for a class of nonlinear fractional differential equations involving Hilfer fractional derivative.
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Over the past year, many authors have studied the existence of mild solution for Hilfer fractional
evolution equations with nonlocal conditions. In [11], Min Yang et al. studied the existence and uniqueness
of mild solutions to the following Hilfer fractional evolution equations{

Dν,µ0+ [u(t) − h(t,u(t))] = Au(t) + f (t,u(t)), t ∈ J′ = (0, b],
I(1−ν)(1−µ)
0+ [u(0) − h(0,u(0))] − 1(u) = u0,

with the associated C0-semigroup being compact or not, where Dν,µ0+ denotes the Hilfer fractional derivative
of order µ and type ν which will be given in next section, 0 ≤ ν ≤ 1, 0 < µ < 1. In [13], Hamdy M. Ahmed
et al. studied the existence of mild solutions of Hilfer fractional stochastic integro-differential equations of
the form Dν,µ0+ [u(t) + F(t, v(t))] + Au(t) =

∫ t

0 G(s, η(s))dω(s), t ∈ J := (0, b],
I(1−ν)(1−µ)
0+ u(0) − 1(u) = u0,

where (t, v(t)) = (t,u(t),u(b1(t))), . . . ,u(bm(t))) and (t, η(t)) = (t,u(t),u(a1(t))), . . . ,u(an(t))), Dν,µ0+ denotes the
Hilfer fractional derivative 0 ≤ ν ≤ 1, 0 < µ < 1, −A is the infinitesimal generator of an analytic semigroup
of bounded linear operators S(t), t ≥ 0, on a separable Hilbert space H.

Moreover, Sobolev type fractional differential equations admit more adequate abstract representation
to the partial differential equations arising in numerous applications for example in control theory of
dynamical systems, flow of fluid through fissured rocks [44], propagation of long waves of small amplitude,
shear in second order fluids [45], thermodynamics [46] etc. In particular, Sobolev type fractional differential
equations serve abstract formulation in the form of implicit operator differential equations when an operator
coefficient multiplying by the highest derivative [47]. For more literature on Sobolev type differential
equations, see [9,48-50] and references therein.

On the other hand, by employing the method of lower and upper to study the existence of extremal mild
solution for fractional evolution equation is an interesting issue, which has been attention in [7,17,28,31,32].
In [28], Chen and Li used monotone iterative method and lower and upper solutions to discuss the existence
and uniqueness of mild solutions for a class of semilinear evolution equations with nonlocal conditions in
an ordered Banach space E:{

u′(t) + Au(t) = f (t,u(t)), t ∈ J = [0, b],
u(0) =

∑p
k=1 cku(tk) + u0,

where A : D(A) ⊂ E → E is a closed linear operator and −A generates a C0-semigroup T(t)(t ≥ 0) on
E, f ∈ C(J × E,E), J = [0, b], b > 0 is a constant, 0 < t1 < t2 < · · · < tb, p ∈ N, ck are real numbers,
ck , 0, k = 1, 2, . . . , p,u0 ∈ E.

In [23], Vikram Singh et al. investigated the existence and uniqueness of mild solutions for Sobolev type
fractional impulsive differential systems with nonlocal conditions

cDβ[Bu(t)] = Au(t) + f (t,u(t),
∫ t

0 K(t, s,u(s))ds), t ∈ J = [0, a], t , t j,
∆u|t=t j = I j(u(t j)), j = 1, 2, . . . ,m,m ∈N,
LD1−β[Tu(0)] = u0 + 1(u(t)),

where cDq,L Dq denote Caputo and Riemann-Liouville fractional order derivatives of order q ∈ (0, 1), respec-
tively. By applying monotone iterative technique coupled with the method of lower and upper solutions.

However, so far we have not seen relevant papers that study Sobolev type Hilfer fractional evolution
equations with nonlocal problems by applying the monotone iterative technique and the method of lower
and upper solutions. In this paper, we use the method of lower and upper solutions combined with mono-
tone iterative technique to discuss the existence of extremal mild solutions for Hilfer fractional evolution
equations of Sobolev type with nonlocal conditions

Dν,µ0+Bu(t) + Au(t) = B f (t,u(t),Gu(t)), t ∈ (0, b],

I1−γ
0+ Bu(0) = B[u0 +

m∑
i=1
λiu(τi)], τi ∈ (0, b], (1.1)
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where the two parameter family of fractional derivative Dν,µ0+ denote Hilfer fractional derivative of order µ
and type ν(0 ≤ ν ≤ 1), which is a interpolator between Riemann-Liouville and Caputo fractional derivatives,
the operator I1−γ

0+ is generalized fractional derivative of order 1−γ = (1− ν)(1−µ)(γ = ν+µ− νµ, 0 < µ < 1),
A and B are closed (unbounded) linear operator with domains contained in E, the pair (−A,B) generate a
propagation family {T(t)}t≥0. J = [0, b](b > 0), J′ = (0, b], f : J′×E×E→ D(B) ⊂ E is given functions satisfying
some assumptions, u0 ∈ E and τi(i = 1, 2, . . . ,m) are prefixed points satisfying 0 < τ1 ≤ · · · ≤ τm < b and

λi are real numbers. Here nonlocal condition I1−γ
0+ u(0) = u0 +

m∑
i=1
λiu(τi) can be applied in physical problem

yields better effect than the initial conditions I1−γ
0+ u(0) = u0. The operator G is given by

Gu(t) =
∫ t

0
K(t, s,u(s))ds, (1.2)

where K ∈ C(∇ × E,E),∇ = {(t, s) ∈ R2 : 0 ≤ s ≤ t ≤ b}.
As far as we know, the nonlocal condition can be better effect than the initial condition u(0) = u0 in

physics application. In this article, the nonlocal function 1(u) can be given by 1(u) =
m∑

i=1
λiu(τi), we only

assume thatλi(i = 1, 2, . . . ,m) satisfy the condition (F1) (see in Section 2) without the compactness of nonlocal
function. Firstly, we introduce the definition of mild solutions of the problem (1.1), and then we prove the
existence of extremal mild solutions of the problem (1.1) by employing the Sadovskii’s fixed point theorem.
What’s more, an existence result without using noncompactness measure condition is obtained in order
and weakly sequentially complete Banach spaces, which is very useful in Application. More importantly,
our method is different from that in paper [23]. Particularly, in this work, we do not assume that the
solution operators generated by linear systems are compact. In this paper, we study (1.1) without assuming
B has bounded (or compact) inverse as well as without any assumption on the relation between D(A) and
D(B). This work is based on the theory of propagation family {T(t)}t≥0 (an operator family generated by the
operator pair (A,B)) introduced by Jin Liang and Ti-Jun Xiao [43], and a special measure of noncompactness
which ensure us to do not assume the nonlinear term f satisfies a Lipschitz type condition. Actually, our
result is new when in the case of B = I (the identity operator on E).

The rest of this paper is organized as follows: In Section 2, we review some essential facts and introduce
some notations. In Section 3, we state and prove the existence of mild solutions for Hilfer fractional
differential system (1.1). Finally, in Section 4, an example is given to illustrate the effectiveness of the
abstract results.

2. Preliminaries

Throughout this paper, by C(J,E) and C(J′,E), we denote the spaces of all continuous functions from J to
E and J′ to E, respectively. Let E be an ordered Banach space with the norm ∥ · ∥ and partial order ≤, whose
positive cone P = {x ∈ E : x ≥ θ} is normal with normal constant N.

Define C1−γ(J,E) =
{
u ∈ C(J′,E) : t1−γu(t) ∈ C(J,E)

}
. Clearly, C1−γ(J,E) is a Banach space with the norm

∥u∥γ = supt∈J′ |t
1−γu(t)|. And C1−γ(J,E) is also an ordered Banach space with the partial order ≤ induced by

the positive cone P′ = {u ∈ C1−γ(J,E)|u(t) ≥ θ, t ∈ J}which is also normal with the same normal constant N.
For the convenience of discussion, we recall some definitions and basic results on fractional calculus,

for more details see [8-12].

Definition 2.1. The Riemann-Liouville fractional integral of order α of a function f : [0,∞)→ R is defined as

Iα0+ f (t) =
1
Γ(α)

∫ t

0
(t − s)α−1 f (s)ds, t > 0, α > 0,

provided the right side is point-wise defined on [0,∞).
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Definition 2.2. The Riemann-Liouville derivative of order α with the lower limit zero for a function f : [0,∞)→ R
can be written as

Dα0+ f (t) =
1

Γ(n − α)
dn

dtn

∫ t

0

f (s)
(t − s)α+1−n ds, t > 0,n − 1 < α < n.

Definition 2.3. The Caputo fractional derivative of order α for a function f : [0,∞)→ R can be written as

cDα0+ f (t) = Dα0+
[

f (t) −
n−1∑
k=0

tk

k!
f (k)(0)

]
, t > 0, n − 1 < α < n,

where n = [α] + 1 and [α] denotes the integer part of α.

Definition 2.4. (Hilfer fractional derivative see [5]). The generazlied Riemann-Liouville fractional derivative of
order 0 ≤ ν ≤ 1 and 0 < µ < 1 with lower limit a is defined as

Dν,µa+ f (t) = Iν(1−µ)
a+

d
dt

I(1−ν)(1−µ)
a+ f (t).

for functions such that the expression on the right hand side exists.

Remark 2.1. (i) If ν = 0, 0 < µ < 1 and a = 0, the Hilfer fractional derivative corresponds to the classical
Riemann-Liouville fractional derivative:

D0,µ
0+ f (t) =

d
dt

I1−µ
0+ f (t) = Dµ0+ f (t).

(ii) If If ν = 1, 0 < µ < 1 and a = 0, the Hilfer fractional derivative corresponds to the classical Caputo fractional
derivative:

D1,µ
0+ f (t) = I1−µ

0+
d
dt

f (t) =c Dµ0+ f (t).

Remark 2.2. The Hilfer fractional derivative is considered as an interpolator between the Riemann-Liouville and
Caputo derivative.

Remark 2.3. For 0 < µ < 1, the Laplace transformation of Hilfer fractional derivatives is given by

L[Dµ,ν0+ f (x)](λ) = λµL[ f (x)](λ) − λν(µ−1)(I(1−ν)(1−µ)
0+ f )(0+),

where (I(1−ν)(1−µ)
0+ f )(0+) is the Riemann-Liouville fractional integral of order (1 − ν)(1 − µ) in the limits as t → 0+,

and

L[ f (x)](λ) =
∫
∞

0
e−λx f (x)dx.

The symbol α(·) is the Kuratowski noncompactness measure defined on bounded subset Ω of E. For
any Ω ⊂ C(J,E) and t ∈ J, set Ω(t) = {u(t) : u ∈ B} ⊂ E. If B is bounded in C(J,E), then Ω(t) is bounded in
E, and α(Ω(t)) ≤ α(Ω). As is well known, the Kuratowski measure of noncompactness has the following
properties.

Lemma 2.1. [6] Let B ⊂ C(J,E) be bounded and equicontinuous, then coB ⊂ C(J,E) is also bounded and equicontin-
uous.

Lemma 2.2. [2] Let E be a Banach space, and let D ⊂ E be bounded. Then there exists a countable set D0 ⊂ D, such
that α(D) ≤ 2α(D0).

Lemma 2.3. [3] Let E be a Banach space, and let Ω ⊂ C(J,E) is equicontinuous and bounded, then α(Ω(t)) is
continuous on J, and α(Ω) = maxt∈J α(Ω(t)).
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Lemma 2.4. [4] Let Ω = {un}
∞

n=1 ⊂ C(J,E) be a bounded and countable set and there exists a function m ∈ L1(J,R+)
such that for every n ∈ N,

∥un(t)∥ ≤ m(t), a.e.t ∈ J.

Then α(Ω(t)) is Lebesgue integral on J, and

α
({ ∫

J
un(t)dt : n ∈N

})
≤ 2
∫

J
α(Ω(t))dt.

We recall the abstract degenerate Cauchy problem as follows [43]:

{
d
dt Bu(t) = Au(t), t ∈ J,
Bu(0) = Bu0.

(2.1)

Definition 2.5. (See[12,Definition 1.4].) A strongly continuous operator family {T(t)}t≥0 of D(B) to a Banach space
E, satisfying that {T(t)}t≥0 is exponentially bounded, which means that for any u ∈ D(B) there exist a > 0,M > 0
such that

∥T(t)u∥ ≤Meat
∥u∥, t ≥ 0,

is called an exponentially bounded propagation family for (2.1) if for λ > a,

(λB − A)−1Bu =
∫
∞

0
e−λtT(t)udt, u ∈ D(B).

In this case, we also say that (2.1) has an exponentially bounded propagation family {T(t)}t≥0.
Based on the Lemma 2.12 in [19], we give the following the lemma.

Lemma 2.5. Assume that A and B are closed (unbounded) linear operator and the pair (−A,B) generate a propagation
family {T(t)}t≥0. If f ∈ C1−γ(J,E), for any u ∈ C1−γ(J,E), a function u is a solution of the equation{

Dν,µ0+Bu(t) + Au(t) = B f (t,u(t),Gu(t)), t ∈ J′,
I1−γ
0+ Bu(0) = Bu0,

(2.2)

if and only if u satisfies the following integral equation:

u(t) = Sν,µ(t)u0 +

∫ t

0
Kµ(t − s) f (s,u(s),Gu(s))ds,

where

Sν,µ(t) = Iν(1−µ)
0+ Kµ(t), Kµ(t) = µ

∫
∞

0
σtµ−1ξµ(σ)T(tµσ)u0dσ, (2.3)

the function ξµ is a probability density function defined on (0,∞) such that

ξµ(σ) =
1
µ
σ−1− 1

µϖµ(σ
−

1
µ ) ≥ 0

and the one sided stable probability density in [20] as follows:

ϖµ(σ) =
1
π

∞∑
n=1

(−1)n−1σ−µn−1 Γ(nµ + 1)
n!

sin(nπµ), σ ∈ (0,∞).
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Lemma 2.6. [19] Assume that A and B are closed (unbounded) linear operator and the pair (−A,B) generate a
propagation family {T(t)}t≥0 and T(t) is continuous in the uniform operator topology for t > 0. That is, there exists
M ≥ 1 such that supt∈[0,+∞) ∥T(t)∥ ≤M. Then the operators Sν,µ(t) and Kµ(t) have the following properties.

(i) For any fixed t ≥ 0, {Sν,µ(t)}t>0 and {Kµ(t)}t>0 are linear operators, and for any u ∈ E,

∥Sν,µ(t)u∥ ≤
Mtγ−1

Γ(γ)
∥u∥, ∥Kµ(t)u∥ ≤

Mtµ−1

Γ(µ)
∥u∥.

(ii) The operators Sν,µ(t) and Kµ(t) are strongly continuous for all t ≥ 0.
(iii) If T(t)(t ≥ 0) is an equicontinuous semigroup, then Sν,µ(t) and Kµ(t) are equicontinuous in E for t > 0.

In view of [19], from Lemma 2.6, we adopt the following definition of mild solution of the system (2.2).

Definition 2.6. A function u ∈ C1−γ(J,E) is said to be a mild solution of (2.2) if u0 ∈ E the integral equation

u(t) = Sν,µ(t)u0 +

∫ t

0
Kµ(t − s) f (s,u(s),Gu(s))ds,

is satisfied, for all t ∈ J′.

Next, we present useful lemma which plays an important role.

Lemma 2.7. Assume that A and B are closed (unbounded) linear operator and the pair (−A,B) generate a propagation
family {T(t)}t≥0, for 0 ≤ ν ≤ 1, 0 < µ < 1, then

Dν,µ0+

(
BSν,µ(t)u0

)
= −A

(
Sν,µ(t)u0

)
,

and

Dν,µ0+

( ∫ t

0
Kµ(t − s)B f (s,u(s),Gu(s))ds

)
= −A

∫ t

0
Kµ(t − s) f (s,u(s),Gu(s))ds + B f (t,u(t),Gu(t)). (2.4)

Proof. Let λ > 0,we consider the one sided stable probability density in [20] as follows:

ϖµ(σ) =
1
π

∞∑
n=1

(−1)n−1σ−µn−1 Γ(nµ + 1)
n!

sin(nπµ), σ ∈ (0,∞),

whose Laplace transform is given by∫
∞

0
e−λσϖµ(σ)dσ = e−λ

µ
, µ ∈ (0, 1). (2.5)

Then, using (2.5) and Definition 2.5, we have

(λµB + A)−1Bu =
∫
∞

0
e−λ

µsT(s)uds =
∫
∞

0
µtµ−1e−(λt)µT(tµ)udt

=

∫
∞

0

∫
∞

0
e−(λtσ)µtµ−1ϖµ(σ)T(tµ)udσdt

= µ

∫
∞

0

∫
∞

0
e−λθ
θµ−1

σµ
ϖµ(σ)T

(θµ
σµ
)
udθdσ

=

∫
∞

0
e−λτ
[
µ

∫
∞

0

τµ−1

σµ
ϖµ(σ)T

(τµ
σµ
)
udσ
]
dτ

=

∫
∞

0
e−λt
[
µ

∫
∞

0

tµ−1

σµ
ϖµ(σ)T

( tµ

σµ
)
udσ
]
dt

=

∫
∞

0
e−λt
[
µ

∫
∞

0
σtµ−1ξµ(σ)T(tµσ)udσ

]
dt

=

∫
∞

0
e−λtKµ(t)udt, (2.6)
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where ξµ is a probability density function defined on (0,∞) such that

ξµ(σ) =
1
µ
σ−1− 1

µϖµ(σ
−

1
µ ) ≥ 0.

Since the Laplace inverse transform of λν(µ−1) is

L
−1(λν(µ−1)) =

{
tν(1−µ)−1

Γ(ν(1−µ)) , 0 < ν ≤ 1,
δ(t), ν = 0,

(2.7)

where δ(t) is the Delta function.
It follows from (2.6), (2.7) and Laplace transform, it is obvious to see that

L(BSν,µ(t)u0) = L(Iν(1−µ)
0+ BKµ(t)u0)

= L
( tν(1−µ)−1

Γ(ν(1 − µ))
∗ BKµ(t)u0

)
= L
(
L
−1(λν(µ−1)) ∗ BKµ(t)u0

)
= λν(µ−1)B(λµB + A)−1Bu0, (2.8)

where the symbol ∗ is convolution symbol. By Remark 2.3, we obtain

L(Dν,µ0+ [BSν,µ(t)u0]) = λµL(BSν,µ(t)u0) − λν(µ−1)Bu0

= λµB
[
λν(µ−1)(λµB + A)−1B

]
u0 − λ

ν(µ−1)Bu0

= λν(µ−1)(λµB + A)−1B
[
λµB − (λµB + A)

]
u0

= λν(µ−1)(λµB + A)−1B
[
λµB − λµB − A

]
u0

= −λν(µ−1)(λµB + A)−1BAu0

= −Aλν(µ−1)(λµB + A)−1Bu0. (2.9)

Combing (2.8) and (2.9) yields
Dν,µ0+ [BSν,µ(t)u0] = −A[Sν,µ(t)u0].

Similarly, we have

L

( ∫ t

0
Kµ(t − s)B f (s,u(s),Gu(s))ds

)
= L(Kµ(t)) · L

(
B f (t,u(t),Gu(t))

)
(2.10)

and

L

(
Dν,µ0+

[ ∫ t

0
Kµ(t − s)B f (s,u(s),Gu(s))ds

])
= λµL

( ∫ t

0
Kµ(t − s)B f (s,u(s),Gu(s))ds

)
− λν(µ−1)

· 0

= λµL(Kµ(t)) · L
(
B f (t,u(t),Gu(t))

)
= λµ(λµB + A)−1B · L

(
B f (t,u(t),Gu(t))

)
= (λµB + A − A)(λµB + A)−1B · L

(
f (t,u(t),Gu(t))

)
= −A(λµB + A)−1B · L

(
f (t,u(t),Gu(t))

)
+ B · L

(
f (t,u(t),Gu(t))

)
. (2.11)
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Thus, it follows from (2.10) and (2.11) that

Dν,µ0+

[ ∫ t

0
Kµ(t − s)B f (s,u(s),Gu(s))ds

]
= −A

∫ t

0
Kµ(t − s) f (s,u(s),Gu(s))ds + B f (t,u(t),Gu(t)). (2.12)

For the convenience of discussion, we assume that
(F0) Assume that A and B are closed (unbounded) linear operator and the pair (−A,B) generate a

propagation family {T(t)}t≥0 in E and T(t) is continuous in the uniform operator topology for t > 0. That is,
there exists M ≥ 1 such that supt∈[0,+∞) ∥T(t)∥ ≤M.

(F1) λi > 0(i = 1, 2, . . . ,m) and
m∑

i=1
λi <

Γ(γ)
Mbγ−1 .

In view of [28] and [30], we present the following lemma.

Lemma 2.8. Assume that (F0) and (F1) holds. For any u ∈ C1−γ(J) such that f (·,u,Gu) ∈ C1−γ(J), then the problem
(1.1) has mild solution u ∈ C1−γ(J) given by

u(t) = Sν,µ(t)Θu0 +

m∑
i=1

λiSν,µ(t)Θ
∫ τi

0
Kµ(τi − s) f (s,u(s),Gu(s))ds

+

∫ t

0
Kµ(t − s) f (s,u(s),Gu(s))ds, (2.13)

where Θ =
[
I −
∑m

i=1 λiSν,µ(τi)
]−1

.

Proof. By assumption (F1), we have∥∥∥∥ m∑
i=1

λiSν,µ(t)
∥∥∥∥ ≤ m∑

i=1

|λi| ·

∥∥∥∥Sν,µ(t)∥∥∥∥ ≤ m∑
i=1

|λi|
Mbγ−1

Γ(γ)
< 1.

By operator spectrum theorem, the operator Θ :=
(
I −
∑m

i=1 λiSν,µ(τi))
)−1

exists and is bounded. Further-
more, by Neumann expression, we obtain

∥Θ∥ ≤

∞∑
i=0

∥

m∑
i=1

λiSν,µ(τi)∥n =
1

1 − ∥
∑m

i=1 λiSν,µ(τi)∥
≤

1

1 − Mbγ−1

Γ(γ)

∑m
i=1 λi

.

According to Definition 2.6, a solution of system (2.2) can be expressed by

u(t) = Sν,µ(t)I
1−γ
0+ u(0) +

∫ t

0
Kµ(t − s) f (s,u(s),Gu(s))ds. (2.14)

Next, we substitute t = τi into (2.14) and by multiplying λi to both side of (2.14), we have

λiu(τi) = λiSν,µ(τi)I
1−γ
0+ u(0) + λi

∫ τi

0
Kµ(τi − s) f (s,u(s),Gu(s))ds. (2.15)

Thus, we have

I1−γ
0+ u(0) = u0 +

m∑
i=1

λiu(τi)

= u0 +

m∑
i=1

λiSν,µ(τi)I
1−γ
0+ u(0) +

m∑
i=1

λi

∫ τi

0
Kµ(τi − s) f (s,u(s),Gu(s))ds.
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Since I −
∑m

i=1 λiSν,µ(τi) has a bounded inverse operator Θ, which implies

I1−γ
0+ u(0) =

[
I −

m∑
i=1

λiSν,µ(τi)
]−1(

u0 +

m∑
i=1

λi

∫ τi

0
Kµ(τi − s) f (s,u(s),Gu(s))ds

)
= Θu0 +

m∑
i=1

λi

∫ τi

0
ΘKµ(τi − s) f (s,u(s),Gu(s))ds. (2.16)

Submitting (2.16) to (2.14), we derive that (2.13). It is probative that u is also a solution of the integral of
Eq.(2.13) when u is a solution of system (2.2).

The necessity has been already proved, next, we are read to prove its sufficiency. Applying I1−γ
0+ to both

side of (2.13), and by Lemma 2.7, we have

I1−γ
0+ Bu(t) = I1−γ

0+

(
Sν,µ(t)ΘBu0 +

m∑
i=1

λiSν,µ(t)Θ
∫ τi

0
Kµ(τi − s)B f (s,u(s),Gu(s))ds

+

∫ t

0
Kµ(t − s)B f (s,u(s),Gu(s))ds

)
.

Therefore, we have

lim
t→0

I1−γ
0+ Bu(t) = lim

t→0
I1−γ
0+ Sν,µ(t)ΘBu0 +

m∑
i=1

λi lim
t→0

I1−γ
0+ Sν,µ(t)Θ

∫ τi

0
Kµ(τi − s)B f (s,u(s),Gu(s))ds

= I1−γ
0+ (lim

t→0
Sν,µ(t)(ΘBu0) + I1−γ

0+ lim
t→0

Sν,µ(t)
m∑

i=1

λiΘ

∫ τi

0
Kµ(τi − s)B f (s,u(s),Gu(s))ds

= I1−γ
0+

(ΘBu0

Γ(γ)
tγ−1
)
+ I1−γ

0+

(∑m
i=1 λiΘ

∫ τi

0 Kµ(τi − s)B f (s,u(s),Gu(s))ds

Γ(γ)
tγ−1
)

= ΘBu0 +

m∑
i=1

λiΘ

∫ τi

0
Kµ(τi − s)B f (s,u(s),Gu(s))ds. (2.17)

Substituting t = τi into (2.13), we have

u(τi) = Sν,µ(τi)Θu0 +

m∑
i=1

λiSν,µ(τi)Θ
∫ τi

0
Kµ(τi − s) f (s,u(s),Gu(s))ds

+

∫ τi

0
Kµ(τi − s) f (s,u(s),Gu(s))ds.

Then, we derive

B
(
u0+

m∑
i=1

λiu(τi)
)
= Bu0 +

m∑
i=1

λiSν,µ(τi)Θu0 +

m∑
i=1

λi

m∑
i=1

λiSν,µ(τi)Θ
∫ τi

0
Kµ(τi − s)B f (s,u(s),Gu(s))ds

+

m∑
i=1

λi

∫ τi

0
Kµ(τi − s)B f (s,u(s),Gu(s))ds

=
(
I +

m∑
i=1

λiSν,µ(τi)Θ
)(

Bu0 +

m∑
i=1

λi

∫ τi

0
Kµ(τi − s)B f (s,u(s),Gu(s))ds

)
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=
(
Θ
−1
+

m∑
i=1

λiSν,µ(τi)
)(
ΘBu0 +

m∑
i=1

λiΘ

∫ τi

0
Kµ(τi − s)B f (s,u(s),Gu(s))ds

)
= ΘBu0 +

m∑
i=1

λiΘ

∫ τi

0
Kµ(τi − s)B f (s,u(s),Gu(s))ds. (2.18)

It follows (2.16) and (2.18) that

I1−γ
0+ Bu(0) = B

(
u0 +

m∑
i=1

λiu(τi)
)
.

Next, by applying Dν,µ0+ to both sides of (2.13) and using Lemma 2.7, we have

Dν,µ0+Bu(t) = Dν,µ0+

[
Sν,µ(t)ΘBu0 +

m∑
i=1

λiSν,µ(t)Θ
∫ τi

0
Kµ(τi − s)B f (s,u(s),Gu(s))ds

+

∫ t

0
Kµ(t − s)B f (s,u(s),Gu(s))ds

]
= Dν,µ0+

[
Sν,µ(t)ΘBu0 +

m∑
i=1

λiSν,µ(t)Θ
∫ τi

0
Kµ(τi − s)B f (s,u(s),Gu(s))ds

]
+Dν,µ0+

[ ∫ t

0
Kµ(t − s)B f (s,u(s),Gu(s))ds

]
=
[
Θu0 +

m∑
i=1

λiΘ

∫ τi

0
Kµ(τi − s) f (s,u(s),Gu(s))ds

]
Dν,µ0+

[
BSν,µ(t)

]
+Dν,µ0+

[ ∫ t

0
Kµ(t − s)B f (s,u(s),Gu(s))

]
=
[
Θu0 +

m∑
i=1

λiΘ

∫ τi

0
Kµ(τi − s) f (s,u(s),Gu(s))ds

]
(−ASν,µ(t))

− A
∫ t

0
Kµ(t − s) f (s,u(s),Gu(s))ds + B f (t,u(t),Gu(t))

= −A
(
Sν,µ(t)Θu0 +

m∑
i=1

λiSν,µ(t)Θ
∫ τi

0
Kµ(τi − s) f (s,u(s),Gu(s))ds

+

∫ t

0
Kµ(t − s) f (s,u(s),Gu(s))ds

)
+ B f (t,u(t),Gu(t))

= −Au(t) + B f (t,u(t),Gu(t)).

Hence, it reduces to
Dν,µ0+Bu(t) + Au(t) = B f (t,u(t),Gu(t)).

The results are proved completely. □
From Lemma 2.8, we adopt the following definition of mild solution of the problem (1.1).

Definition 2.7. A function u ∈ C1−γ(J,E) is said to be a mild solution of the problem (1.1), if it satisfies the operator
equation

u(t) = Sν,µ(t)Θu0 +

m∑
i=1

λiSν,µ(t)Θ
∫ τi

0
Kµ(τi − s) f (s,u(s),Gu(s))ds

+

∫ t

0
Kµ(t − s) f (s,u(s),Gu(s))ds, t ∈ J′, (2.19)
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where the operators Sν,µ(t) and Kµ(t) are given by (2.3).

Definition 2.8. A strongly continuous propagation family {T(t)}t≥0 in E is called to be positive, if order
inequality T(t)x ≥ θ holds for each x ≥ θ, x ∈ E and t ≥ 0.

To end this section, we state a fixed point theorem, which plays a major role in the proof of our main
results.

Lemma 2.9. (Sadovskii fixed point theorem). Let D ba a convex, closed and bounded subset of a Banach space E and
Q : D→ D be a condensing map. Then Q has one fixed point in D.

Lemma 2.10. [27] Let a ≥ 0, µ > 0, c(t) and u(t) be the nonnegative locally integrable functions on 0 ≤ t < T < +∞,
such that

u(t) ≤ c(t) + a
∫ t

0
(t − s)µ−1u(s)ds,

then

u(t) ≤ c(t) +
∫ t

0

[ ∞∑
n=1

(aΓ(µ))n

Γ(nµ)
(t − s)nµ−1c(s)

]
ds, 0 ≤ t < T.

3. Main results

In this section, we will discuss the existence of extremal mild solutions for problem (1.1).

Definition 3.1. An abstract function u ∈ C1−γ(J,E) is called a solution of the problem (1.1) if u(t) satisfies all the
equalities of (1.1).

Definition 3.2. If a function v0 ∈ C1−γ(J,E) satisfies{
Dν,µ0+Bv0(t) + Av0(t) ≤ B f (t, v0(t),Gv0(t)), t ∈ J,
I1−γ
0+ Bv0(0) ≤ B[u0 +

∑m
i=1 λiv0(τi)],

(3.1)

we call it a lower solution of the priblem (1.1); if all the inequalities in (3.1) are reversed, we call it an upper
solution of the problem (1.1).

Theorem 3.1. Let E be an ordered Banach space, whose positive cone P is normal, assume that A and B are
closed (unbounded) linear operator and the pair (−A,B) generate a positive propagation family {T(t)}t≥0 on E,
f ∈ C(J × E × E,E) and u0 ∈ E. If the problem (1.1) has a lower solution v0 ∈ C1−γ(J,E) and an upper solution
w0 ∈ C1−γ(J,E) with v0 ≤ w0. Suppose also that the conditions (F0), (F1) and the following conditions are satisfied

(F2) 1. The function K(t, s, ·) : E → E satisfies K(t, s,u1) ≤ K(t, s,u2), for any (t, s) ∈ ∆,u1,u2 ∈ E with
v0(t) ≤ u1 ≤ u2 ≤ w0(t).
2. The function f (t, ·, ·) : E × E→ E satisfies

f (t,u1, v1) ≤ f (t,u2, v2)

for ∀ ∈ J, and v0(t) ≤ u1 ≤ u2 ≤ w0(t), Gv0(t) ≤ v1 ≤ v2 ≤ Gw0(t).

(F3) 1. For each bounded set D ⊂ E, there exists an integrable function ζ : ∇ → [0,∞) such that

α({K(t, s,D)}) ≤ ζ(t, s)α(D),

for a.e. (t, s) ∈ ∇. For simplication, put K0 = supt∈J

∫ t

0 ζ(t, s)ds.
2. There exists a constant L > 0 such that

α({ f (t,un, vn)}) ≤ L(α({un}) + α({vn})),

for ∀t ∈ J, and increasing or decreasing monotonic sequences {un} ⊂ [v0(t),w0(t)] and {vn} ⊂ [Gv0(t),Gw0(t)].
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(F4) The sequence vn(0) and wn(0) are convergent, where vn = Qvn−1,wn = Qwn−1,n = 1, 2, . . . .

Then the problem(1.1) has minimal and maximal mild solutions u and u between v0 and w0, which can be obtained
by a monotone iterative procedure starting from v0 and w0 respectively.

Proof. We can define operator Q : [v0,w0]→ C1−γ(J,E) as follows

(Qu)(t) = Sν,µ(t)Θu0 +

m∑
i=1

λiSν,µ(t)Θ
∫ τi

0
Kµ(τi − s) f (s,u(s),Gu(s))ds

+

∫ t

0
Kµ(t − s) f (s,u(s),Gu(s))ds, t ∈ J′. (3.1)

Since f is continuous, it is easily see that the map Q : [v0,w0] → C1−γ(J,E) is continuous. And by
Lemma 2.8, the mild solutions of the problem (1.1) are equivalent to the fixed points of the operator Q. For
convenience, we divide the proof in the following steps.

Step 1. We show Q : [v0,w0]→ C1−γ(J,E) is an increasing monotone operator.
In fact, for ∀t ∈ J′, v0(t) ≤ u ≤ v ≤ w0, by the assumptions (F2), we have

f (s, v0(s),Gv0(s)) ≤ f (s,u(s),Gu(s)) ≤ f (s, v(s),Gv(s)) ≤ f (s,w0(s),Gw0(s)).

So ∫ t

0
Kµ(t − s) f (s,u(s),Gu(s))ds ≤

∫ t

0
Kµ(t − s) f (s, v(s),Gv(s))ds.

And by the positive of the operators Sν,µ(t) and Kµ(t) for t ≥ 0, from (3.1) we see that Qu ≤ Qv.
Step 2. We first show v0 ≤ Qv0, Qw0 ≤ w0. Let h(t) = Dν,µ0+v0(t) + Av0(t), h ∈ C(J,E) and h(t) ≤

f (t, v0(t),Gv0(t)), t ∈ J′. By Definition 2.7, 3.2 and positivity of the operators Sν,µ(t) and Kµ(t) for t ≥ 0, we
have

v0(t) = Sν,µ(t)v0(0) +
∫ t

0
Kµ(t − s)h(s)ds

≤ Sν,µ(t)Θu0 +

m∑
i=1

λiSν,µ(t)Θ
∫ τi

0
Kµ(τi − s) f (s, v0(s),Gv0(s))ds

+

∫ t

0
Kµ(t − s) f (s, v0(s),Gv0(s))ds

= Qv0(t), t ∈ J′.

It implies that v0 ≤ Qv0. Similarly, it can be show that Qw0 ≤ w0. So Q : [v0,w0] → [v0,w0] is a continuous
increasing monotone operator.

Now, we define two sequences {vn} and {wn} in [v0,w0] by the iterative scheme

vn = Qvn−1, wn = Qwn−1, n = 1, 2, . . . . (3.2)

Then from the monotonicity of Q, it follows that

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ · · · ≤ wn ≤ · · · ≤ w2 ≤ w1 ≤ w0. (3.3)

Step 3. We prove that {vn} and {wn} are convergent in J′.
For convenience, we denote B = {vn : n ∈N} and B0 = {vn−1 : n ∈N}. Then B = Q(B0). From B0 = B

⋃
{v0}

it follows that α(B0(t)) = α(B(t)) for t ∈ J′. Let φ(t) := α(B(t)), t ∈ J′, we will show that φ(t) ≡ 0 in J′.
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For t ∈ J′, from (3.1), using Lemma 2.2, assumption (F3) and (F4), we have

φ(t) = α(B(t)) = α(Q(B0)(t))

= α
({

Sν,µ(t)Θu0 +

m∑
i=1

λiSν,µ(t)Θ
∫ τi

0
Kµ(τi − s) f (s, vn−1(s),Gvn−1(s))ds

+

∫ t

0
Kµ(t − s) f (s, vn−1(s),Gvn−1(s))ds

})
≤

Mbγ−1

Γ(γ)
α
({
Θu0 +

m∑
i=1

λiΘ

∫ τi

0
Kµ(τi − s) f (s, vn−1(s),Gvn−1(s))ds

})
+

2Mbµ−1

Γ(µ)

∫ t

0
α
({

f (s, vn−1(s),Gvn−1(s))
})

ds

≤
Mbγ−1

Γ(γ)
α
({

vn(0)
})
+

2Mbµ−1(L + LK0)
Γ(µ)

∫ t

0
α
(
B0(s)

)
ds

≤
2Mbµ−1(L + LK0)

Γ(µ)

∫ t

0
φ(s)ds.

Hence Lemma 2.10, φ(t) ≡ 0 in J. So, for any t ∈ J, {vn(t)} is precompact, and {vn(t)} has a convergent
subsequence. Combining this with the monotonicity (3.2), we prove that {vn(t)} itself is convergent, i.e.,
limn→∞ vn(t) = u(t), t ∈ J. Similarly, limn→∞ wn(t) = u(t), t ∈ J.

Evidently, {vn(t)} ∈ C1−γ(J,E), so u(t) is bounded integrable on J. For any t ∈ J,

vn(t) = Q(vn−1) = Sν,µ(t)Θu0 +

m∑
i=1

λiSν,µ(t)Θ
∫ τi

0
Kµ(τi − s) f (s, vn−1(s),Gvn−1(s))ds

+

∫ t

0
Kµ(t − s) f (s, vn−1(s),Gvn−1(s))ds. (3.4)

If n→∞ in (3.4), by the Lebesgue dominated convergence theorem, we obtain

u(t) = Q(u(t)) = Sν,µ(t)Θu0 +

m∑
i=1

λiSν,µ(t)Θ
∫ τi

0
Kµ(τi − s) f (s,u(s),Gu(s))ds

+

∫ t

0
Kµ(t − s) f (s,u(s),Gu(s))ds.

Thus, we have u(t) ∈ C1−γ(J,E), and u = Qu. In a similar way, we can prove that there exists u(t) ∈ C1−γ(J,E)
such that u = Qu. Combing this with monotonicity (3.3), we see that v0 ≤ u ≤ u ≤ w0, which implies that u
and u are the minimal and maximal mild solutions of the problem (1.1) in [v0,w0].

Corollary 3.1. Let E be an ordered Banach space, whose positive cone P is regular, assume that A and B are
closed (unbounded) linear operator and the pair (−A,B) generate a positive propagation family {T(t)}t≥0 on E,
f ∈ C(J × E × E,E) and u0 ∈ E. If the problem (1.1) has a lower solution v0 ∈ C1−γ(J,E) and an upper solution
w0 ∈ C1−γ(J,E) with v0 ≤ w0. Suppose also that the conditions (F0)-(F3) are satisfied. Then the problem(1.1) has
minimal and maximal mild solutions u and u between v0 and w0, which can be obtained by a monotone iterative
procedure starting from v0 and w0 respectively.

Proof. Since P is regular, any ordered monotonic and ordered bounded sequence in E is convergent. For t ∈ J,
let {un} ⊂ [v0(t),w0(t)] and {vn} ⊂ [Gv0,Gw0(t)] be two increasing or decreasing sequences. By Definition
of regular cone and assumption (F2), {K(t, s,un)} is convergent. Therefore α({K(t, s,un)}) = α({un}) = 0.
Similarly, we have

α({ f (t,un, vn)}) ≤ α({un}) + α({vn}) = 0.

Therefore, (F3) holds. Then, by Theorem 3.1, the proof is complete.
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As a supplement to Theorem 3.1, we further discuss the existence of mild solutions for the problem
(1.1) in weakly sequentially complete Banach space, we only need to verify the conditions (F1) and (F2) are
satisfied.

Corollary 3.2. Let E be an ordered and weakly sequentially complete Banach space, whose positive cone P is normal,
assume that A and B are closed (unbounded) linear operator and the pair (−A,B) generate a positive propagation
family {T(t)}t≥0 on E, f ∈ C(J × E × E,E) and u0 ∈ E. If the problem (1.1) has a lower solution v0 ∈ C1−γ(J,E)
and an upper solution w0 ∈ C1−γ(J,E) with v0 ≤ w0. Suppose also that the conditions (F0)-(F3) are satisfied. Then
the problem(1.1) has minimal and maximal mild solutions u and u between v0 and w0, which can be obtained by a
monotone iterative procedure starting from v0 and w0 respectively..

Proof. In Theorem 3.1, if E is weakly sequentially complete, the condition (F3) and (F4) holds automatically.
In fact, by Theorem 2.2 in [28], any monotonic and order bounded sequence is precompact. By the
monotonicity (3.3), we can easily see that vn(t) and wn(t) are convergent on J. In particular, vn(0) and wn(0)
are convergent. Thus, condition (F4) holds. For t ∈ J, let {un} ⊂ [v0(t),w0(t)] and {vn} ⊂ [Gv0,Gw0(t)] be two
increasing or decreasing sequences. By (F2), { f (t,un, vn)} is an ordered monotonic and ordered bounded
sequence in E. Then, α({ f (t,un, vn)}) = 0. Therefore, (F3) holds. Then, by Theorem 3.1, our conclusion is
valid.

Theorem 3.2. Let E be an ordered Banach space, whose positive cone P is normal, assume that A and B are closed
(unbounded) linear operator and the pair (−A,B) generate a positive and equicontinuous propagation family {T(t)}t≥0
on E, f ∈ C(J × E × E,E) and u0 ∈ E. If the problem (1.1) has a lower solution v0 ∈ C1−γ(J,E) and an upper solution
w0 ∈ C1−γ(J,E) with v0 ≤ w0. Suppose also that the conditions (F0)-(F3) are satisfied and

(F5) There exists a nonnegative constant L1 with

2Mbµ(L + LK0)
Γ(µ)

[ (bγ−1
− Γ(γ))M

∑m
i=1 λi + Γ(γ)

Γ(γ)(1 −M
∑m

i=1 λi)

]
< 1

such that
α({ f (t,un, vn)}) ≤ L1(α({un}) + α({vn})),

for ∀t ∈ J, and equicontinuous countable set {un} ⊂ [v0(t),w0(t)], {vn} ⊂ [Gv0(t),Gw0(t)].

Then the problem(1.1) has minimal mild solution u and maximal mild solutions u in [v0,w0], moreover

vn(t)→ u(t), wn(t)→ u(t), (n→ +∞), t ∈ J,

where vn(t) = Qvn−1(t),wn(t) = Qwn−1(t) which satisfy

v0(t) ≤ v1(t) ≤ · · · vn(t) ≤ · · · u(t) ≤ u(t) ≤ · · · ≤ wn(t) ≤ · · ·w1(t) ≤ w0(t),∀t ∈ J.

Proof. From the proof of Theorem 3.1, we know that Q : [v0,w0] → [v0,w0] is continuous. First, we will
prove that Q : [v0,w0] → C1−γ(J,E) is an equicontinuous operator. Since T(t)(t ≥ 0) is a equicontinuous
propagation family, and by Lemma 2.6, the operators Sν,µ(t) and Kµ(t) for t ≥ 0 are also equicontinuous. By
the normality of the cone P, there exists M > 0 such that

∥ f (t,u(t),Gu(t))∥ ≤M, u ∈ [v0,w0].

For any u ∈ C1−γ(J,E), let y(t) = t1−γu(t), for t1 = 0, 0 < t2 ≤ b,we get

∥y(t2) − y(0)∥ ≤
∥∥∥∥t1−γ

2 Sν,µ(t2)
∥∥∥∥(Θu0) +

m∑
i=1

λiΘ∥t
1−γ
2 Sν,µ(t2)∥

∫ τi

0
Kµ(τi − s) f (s,u(s),Gu(s))ds

+ t1−γ
2

∥∥∥∥∫ t2

0
Kµ(t2 − s) f (s,u(s),Gu(s))ds

∥∥∥∥
≤

∥∥∥∥t1−γ
2 Sν,µ(t2)

∥∥∥∥(Θu0) +M
m∑

i=1

λiΘ∥t
1−γ
2 Sν,µ(t2)∥

∫ τi

0
Kµ(τi − s)ds +M

∥∥∥∥∫ t2

0
t1−γ
2 Kµ(t2 − s)ds

∥∥∥∥
→ 0, as t2 → t1 = 0.
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For 0 < t1 < t2 ≤ b, by (3.1), we get that

∥y(t2) − y(t1)∥ ≤
∥∥∥∥t1−γ

2 (Qu)(t2) − t1−γ
1 (Qu)(t1)

∥∥∥∥
≤

∥∥∥∥t1−γ
2 Sν,µ(t2) − t1−γ

1 S∗ν,µ(t1)
∥∥∥∥(Θu0) +

∥∥∥∥t1−γ
2 Sν,µ(t2) − t1−γ

1 Sν,µ(t1)
∥∥∥∥

×

m∑
i=1

λiΘ

∫ τi

0
Kµ(τi − s) f (s,u(s),Gu(s))ds +

∫ t2

0
t1−γ
2 Kµ(t2 − s) f (s,u(s),Gu(s))ds

−

∫ t1

0
t1−γ
1 Kµ(t1 − s) f (s,u(s),Gu(s))ds

≤

(∥∥∥∥t1−γ
2 Sν,µ(t2) − t1−γ

2 Sν,µ(t1)
∥∥∥∥

+
∥∥∥∥t1−γ

2 Sν,µ(t1) − t1−γ
1 Sν,µ(t1)

∥∥∥∥)(Θu0) +
∥∥∥∥t1−γ

2 Sν,µ(t2) − t1−γ
1 Sν,µ(t1)

∥∥∥∥
×

m∑
i=1

λiΘ

∫ τi

0
Kµ(τi − s) f (s,u(s),Gu(s))ds +

∥∥∥∥∫ t2

t1

t1−γ
2 Kµ(t2 − s) f (s,u(s),Gu(s))ds

∥∥∥∥
+
∥∥∥∥∫ t1

0
t1−γ
2 Kµ(t2 − s) f (s,u(s),Gu(s))ds −

∫ t1

0
t1−γ
1 Kµ(t2 − s) f (s,u(s),Gu(s))ds

∥∥∥∥
+
∥∥∥∥∫ t1

0
t1−γ
1 Kµ(t2 − s) f (s,u(s),Gu(s))ds −

∫ t1

0
t1−γ
1 Kµ(t1 − s) f (s,u(s),Gu(s))ds

∥∥∥∥
= J1 + J2 + J3 + J4 + J5 + J6,

where
J1 =
(∥∥∥∥t1−γ

2 Sν,µ(t2) − t1−γ
2 Sν,µ(t1)

∥∥∥∥)(Θu0),

J2 =
(∥∥∥∥t1−γ

2 Sν,µ(t1) − t1−γ
1 Sν,µ(t1)

∥∥∥∥)(Θu0),

J3 =
∥∥∥∥t1−γ

2 Sν,µ(t2) − t1−γ
1 Sν,µ(t1)

∥∥∥∥ m∑
i=1

λiΘ

∫ τi

0
Kµ(τi − s) f (s,u(s),Gu(s))ds,

J4 =
∥∥∥∥∫ t2

t1

t1−γ
2 Kµ(t2 − s) f (s,u(s),Gu(s))ds

∥∥∥∥,
J5 =
∥∥∥∥∫ t1

0
t1−γ
2 Kµ(t2 − s) f (s,u(s),Gu(s))ds −

∫ t1

0
t1−γ
1 Kµ(t2 − s) f (s,u(s),Gu(s))ds

∥∥∥∥,
J6 =
∥∥∥∥∫ t1

0
t1−γ
1 Kµ(t2 − s) f (s,u(s),Gu(s))ds −

∫ t1

0
t1−γ
1 Kµ(t1 − s) f (s,u(s),Gu(s))ds

∥∥∥∥.
Here we calculate∥∥∥∥t1−γ

2 (Qu)(t2) − t1−γ
1 (Qu)(t1)

∥∥∥∥ ≤ 6∑
i=1

∥Ji∥.

Therefore, it is not difficult to see that ∥Ji∥ tend to 0, when t2 − t1 → 0, i = 1, 2, . . . , 6.
For J1, by Lemma 2.6, we get

J1 =
(∥∥∥∥t1−γ

2 Sν,µ(t2) − t1−γ
2 Sν,µ(t1)

∥∥∥∥)(Θu0) ≤
∥∥∥∥t1−γ

2

(
Sν,µ(t2) − Sν,µ(t1)

)∥∥∥∥(Θu0)→ 0, as t2 → t1.
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For J2, by Lemma 2.6, we get

J2 =
(∥∥∥∥t1−γ

2 Sν,µ(t1) − t1−γ
1 Sν,µ(t1)

∥∥∥∥)(Θu0)

≤
Mbγ−1

Γ(γ)

∥∥∥∥t1−γ
2 − t1−γ

1

∥∥∥∥∥Θu0∥

≤
Mbγ−1

Γ(γ)

∥∥∥∥(t2 − t1)1−γ
∥∥∥∥∥Θu0∥ → 0, as t2 → t1.

For J3, by Lemma 2.6, we have

J3 =

m∑
i=1

λiΘ
∥∥∥∥t1−γ

2 Sν,µ(t1) − t1−γ
1 Sν,µ(t1)

∥∥∥∥∫ τi

0
Kµ(τi − s) f (s,u(s),Gu(s))ds

≤

M
m∑

i=1
|λi|

1 −M
m∑

i=1
|λi|

∥∥∥∥t1−γ
2 Sν,µ(t1) − t1−γ

1 Sν,µ(t1)
∥∥∥∥∫ τi

0
Kµ(τi − s)ds

→ 0, as t2 → t1.

For J4, by Lemma 2.6, we have

J4 =
∥∥∥∥∫ t2

t1

t1−γ
2 Kµ(t2 − s) f (s,u(s),Gu(s))ds

∥∥∥∥
≤M

∫ t2

t1

t1−γ
2 Kµ(t2 − s)ds

→ 0, as t2 → t1.

For J5, by Lemma 2.6, we have

J5 =
∥∥∥∥∫ t1

0
t1−γ
2 Kµ(t2 − s) f (s,u(s),Gu(s))ds

∫ t1

0
t1−γ
1 Kµ(t2 − s) f (s,u(s),Gu(s))ds

∥∥∥∥
≤

2MM
Γ(µ)

∫ t1

0

[
t1−γ
2 (t2 − s)µ−1

− t1−γ
1 (t1 − s)µ−1

]
ds.

Noting that∫ t1

0

[
t1−γ
2 (t2 − s)µ−1

− t1−γ
1 (t1 − s)µ−1

]
f (s,u(s),Gu(s))ds

≤

∫ t1

0
t1−γ
2 (t2 − s)µ−1 f (s,u(s),Gu(s))ds.

and ∫ t1

0

[
t1−γ
2 (t2 − s)µ−1

− t1−γ
1 (t1 − s)µ−1

]
f (s,u(s),Gu(s))ds

exists, then by Lebesgue dominated convergence Theorem, we have∫ t1

0

[
t1−γ
2 (t2 − s)µ−1

− t1−γ
1 (t1 − s)µ−1

]
f (s,u(s),Gu(s))ds

≤M
∫ t1

0

[
t1−γ
2 (t2 − s)µ−1

− t1−γ
1 (t1 − s)µ−1

]
ds

→ 0, as t2 → t1.
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It is easy to see that limt2→t1 J5 = 0.
For J6, by Lemma 2.6, we have

J6 =
∥∥∥∥∫ t1

0
t1−γ
1 Kµ(t2 − s) f (s,u(s),Gu(s))ds −

∫ t1

0
t1−γ
1 Kµ(t1 − s) f (s,u(s),Gu(s))ds

∥∥∥∥
≤M

∫ t1

0
t1−γ
1

∥∥∥∥Kµ(t2 − s) − Kµ(t1 − s)
∥∥∥∥ds

→ 0, as t2 → t1.

In conclusion,
∥y(t2) − y(t1)∥ ≤

∥∥∥∥t1−γ
2 (Qu)(t2) − t1−γ

1 (Qu)(t1)
∥∥∥∥→ 0,

as t2 → t1, i.e, ∥∥∥∥(Qu)(t2) − (Qu)(t1)
∥∥∥∥

1−γ
→ 0, as t2 → t1,

which means that Q : [v0,w0]→ [v0,w0] is equicontinuous.
So, for any D ⊂ [v0,w0], Q(D) ⊂ [v0,w0] is bounded and equicontinuous. Therefore, by Lemma 2.2, there

exists a countable set D0 = {un} ⊂ D such that

α(Q(D)) ≤ 2α(Q(D0)). (3.5)

For t ∈ J, by the definition of the operator Q,we have

α(Q(D0(t))) = α
({

Sν,µ(t)Θu0 +

m∑
i=1

λiSν,µ(t)Θ
∫ τi

0
Kµ(τi − s) f (s, vn−1(s),Gvn−1(s))ds

+

∫ t

0
Kµ(t − s) f (s, vn−1(s),Gvn−1(s))ds

})
≤

2M2∑m
i=1 λibµ+γ−2(L + LK0)

Γ(γ)Γ(µ)(1 −M
∑m

i=1)

∫ τi

0
α(D0(s))ds +

2Mbµ−1(L + LK0)
Γ(µ)

∫ t

0
α(D0(s))ds

≤
2M2∑m

i=1 λibµ+γ−1(L + LK0)
Γ(γ)Γ(µ)(1 −

∑m
i=1 λi)

α(D) +
2Mbµ(L + LK0)

Γ(µ)
α(D)

≤
2Mbµ(L + LK0)

Γ(µ)

[ bγ−1M
∑m

i=1 λi

Γ(γ)(1 −
∑m

i=1 λi)
+ 1
]
α(D)

=
2Mbµ(L + LK0)

Γ(µ)

[ (bγ−1
− Γ(γ))M

∑m
i=1 λi + Γ(γ)

Γ(γ)(1 −M
∑m

i=1 λi)

]
α(D).

Since Q(D0) is bounded and equicontinuous, we know from Lemma 2.3 that

α(Q(D0)) = max
t∈I
α(Q(D0)(t)).

Combining with (3.5), we have
α(Q(D)) ≤ ηα(D),

where

η =
2Mbµ(L + LK0)

Γ(µ)

[ (bγ−1
− Γ(γ))M

∑m
i=1 λi + Γ(γ)

Γ(γ)(1 −M
∑m

i=1 λi)

]
< 1.

Thus, Q : [v0,w0] → [v0,w0] is a strict set contraction operator. And by Lemma 2.9 that our conclusion
valid.
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When B = I, then D(B) = E. We assume that A generates a norm continuous semigroup {T(t)}t≥0 of
uniformly bounded linear operators on E, then from the proof of Theorem 3.1, we have the following
theorem.

Theorem 3.3. Assume that (F1)-(F4) are satisfied. Then the following problem
Dν,µ0+u(t) + Au(t) = f (t,u(t),Gu(t)), t ∈ (0, b],

I(1−ν)(1−µ)
0+ u(0) = u0 +

m∑
i=1
λiu(τi), τi ∈ (0, b],

has minimal and maximal mild solutions u and u between v0 and w0, which can be obtained by a monotone iterative
procedure starting from v0 and w0 respectively.

4. Applications

In this section, we present an example, which illustrate the applicability of our main results.

Example 4.1. We consider the following fractional partial differential equation Dν,µ0+ q(Dx)u(t, x) + p(Dx)u(t, x) = q(Dx) f (t, x,u(t, x),Gu(t, x)), (t, x) ∈ J ×Ω,
I(1−ν)(1−µ)
0+ q(Dx)u(0, x) = q(Dx)

(
u0 +

∑m
i=1 λiu(τi, x)

)
,

(4.1)

where Dν,µ0+ is the Hilfer fractional derivative, 0 ≤ ν ≤ 1, 0 < µ < 1, t ∈ J = [0, b], λi , 0, i = 1, 2, . . . ,m,
integerN ≥ 1, Ω ⊂ RN is a bounded domain with a sufficiently smooth boundary ∂Ω, f : J × E × E→ E is
continuous and

p(Dx) =
∑
|α|≤2m

aαDαx , q(Dx) =
∑
|α|≤2m

bαDαx , aα, bα ∈ R,

are partial differential operators, here α = (α1, α2, . . . , αn) is an n-dimensional multi-index, α denote their
length, and

Dαx =
( ∂
∂x1

)α1( ∂
∂x2

)α2
· · ·

( ∂
∂xn

)αn
,

coefficient function aα(x) ∈ C2m(Ω).
Let E = Lp(Ω) with 1 < p < ∞, P = {u ∈ Lp(Ω) : u(x) ≥ 0, q.e.x ∈ Ω} and A = p(Dx),B = q(Dx),

D(A) = { f ∈ Lp(Ω) : p(Dx) f ∈ Lp(Ω)},

D(B) = {1 ∈ Lp(Ω) : q(Dx)1 ∈ Lp(Ω)}.

Clearly, A and B are closed linear operators. The symbol of A,B will be denoted respectively by

p(ξ) =
∑
|α|≤2m

i|α|aαξα, q(ξ) =
∑
|α|≤2m

i|α|bαξα, ξ ∈ Rn.

Then the above equation (4.1) can be reformulated as the abstract (1.1).
We deploy the following result in [43] (for the case El = E,Cr,l = I):

Theorem 4.1. Assume that q(ξ) , 0 for each ξ ∈ Rn and

ω = sup
ξ∈Rn

Re[p(ξ)q−1(ξ)] < ∞.

Then the pair (−A,B) generates propagation family {T(t)}t≥0 mapping D(B) into E such that

∥T(t)∥ ≤ Ceωt, t ≥ 0,

where C is a positive constant.
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Theorem 4.2. If the following conditions

(H1) Let u0(x) ≥ 0, x ∈ Ω, and there exists a function w = w(t, x) ∈ C1−γ(J ×Ω) such that Dν,µ0+ q(Dx)w(t, x) + p(Dx)w(t, x) ≥ q(Dx) f (t, x,w(t, x),Gw(t, x)),
I(1−ν)(1−µ)
0+ q(Dx)w(0, x) ≥ q(Dx)

(
u0 +

∑m
i=1 λiw(τi, x)

)
,

(4.2)

and the assumptions (F1)-(F4) are satisfied. Then the problem (4.1) has minimal and maximal mild solutions between
0 and w(x, t), which can be obtained by a monotone iterative procedure starting from 0 and w(t), respectively.

Proof. Assumption (H1) implies that v0 ≡ 0 and w0 ≡ w(x, t) are lower and upper solutions of the problem
(4.1), respectively. So our conclusion follows from Theorem 3.1.

5. Conclusions

In this paper, we focused on the existence of mild solutions for a class of evolution equations with
Hilfer fractional derivative. By using monotone iterative technique, the fixed point theorem combined with
noncompactness measure, we obtain some existence result of mild solutions for Hilfer fractional evolution
equations with nonlocal conditions. Particularly, in this work, we do not assume that the solution operators
generated by linear systems are compact. We study (1.1) without assuming B has bounded (or compact)
inverse as well as without any assumption on the relation between D(A) and D(B).
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