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Abstract. We construct the group of H-Galois objects for a flat and cocommutative Hopf algebra in a
braided monoidal category with equalizers provided that a certain assumption on the braiding is fulfilled.
We show that it is a subgroup of the group of BiGalois objects of Schauenburg, and prove that the latter
group is isomorphic to the semidirect product of the group of Hopf automorphisms of H and the group
of H-Galois objects. Dropping the assumption on the braiding, we construct the group of H-Galois objects
with normal basis. For H cocommutative we construct Sweedler cohomology and prove that the second
cohomology group is isomorphic to the group of H-Galois objects with normal basis. We construct the
Picard group of invertible H-comodules for a flat and cocommutative Hopf algebra H. We show that
every H-Galois object is an invertible H-comodule, yielding a group morphism from the group of H-Galois
objects to the Picard group of H. A short exact sequence is constructed relating the second cohomology
group and the two latter groups, under the above mentioned assumption on the braiding. We show how
our constructions generalize some results for modules over commutative rings, and some other known
for symmetric monoidal categories. Examples of Hopf algebras are discussed for which we compute the
second cohomology group and the group of Galois objects.

1. Introduction

The notion of a Hopf-Galois extension, defined in [18], is one of the pillars in the Hopf algebra theory.
It is strongly related to algebraic geometry. A faithfully flat commutative Hopf-Galois extension for a
Hopf algebra that is the coordinate algebra of an affine group scheme is a principle homogeneous space.
Then faithfully flat not necessarily commutative Hopf-Galois extensions may be seen as a noncommutative
analogue of this geometric concept. Hopf-Galois extensions arose from Hopf-Galois objects, also called
Galois objects. The group of Galois objects over a commutative ring was introduced by Chase and Sweedler
in 1969, [9]. It emerged as a generalization from the classical Galois field theory and the Galois theory for
commutative rings developed in [8]. Galois objects in a closed symmetric monoidal category were studied
in [19] in 1980. A recent construction was made in [31]. There, as for the category of modules in [5], the
product in the group is induced by the cotensor product, which in categorical language is a particular
equalizer. For the definition of Galois objects in a braided monoidal category one needs that equalizers are

2020 Mathematics Subject Classification. Primary 18M15; Secondary 16T05, 18M30
Keywords. braided monoidal categories, Hopf-Galois objects, Sweedler cohomology, Picard group, quasi-triangular Hopf algebras,

Radford biproducts
Received: 10 September 2021; Accepted: 08 September 2022
Communicated by Dragan S. Djordjević
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preserved by certain tensor products. For this purpose Schauenburg introduced the notions of flatness and
faithful flatness. It turns out that using them the construction of Galois objects from [19] is much simplified.

In this paper we construct the group of Galois objects as a subgroup of Schauenburg’s group of biGalois-
objects from [31]. We show that in order for this subgroup to exist one has to assume that the braiding Φ
when acting between two H-Galois objects A and B is symmetric, meaning ΦA,B = Φ

−1
B,A. The main result of

this paper is Theorem 5.13 where the following short exact sequence is constructed, whose middle term is
our mentioned group of Galois objects:

1 H2(C; H, I)- Gal(C; H)-ζ Picco(C; H).-ξ (1.1)

Here H2(C; H, I) is the second Sweedler cohomology group, Picco(C; H) is the Picard group of invertible H-
comodules, and H is a flat cocommutative Hopf algebra in a braided monoidal category C with equalizers
such that the above assumption on the braiding holds. The group H2(C; H, I) we construct by direct
categorification of Sweedler cohomology for a cocommutative Hopf algebra over a commutative ring in
[33]. We find that this construction requires the following restriction on the braiding to hold: ΦH,H = Φ

−1
H,H.

Though, by a smart observation of Schauenburg in [30, Corollary 5] this condition is already fulfilled for
cocommutative H. The Picard group of invertible comodules Picco(C; H) we construct in the following way.
Pareigis established in [27, Theorems 5.1 and 5.3] Morita Theorems for categories of modules in a monoidal
category. Dualizing such characterized bimodules we obtain our notion of invertible comodules. The group
of their isomorphism classes is our group Picco(C; H). On the other hand, it can be seen as a categorification
of the Picard group for a coalgebra over a field introduced in [35]. The latter classifies Morita-Takeuchi
equivalences, proposed by Takeuchi in [34] as equivalences of categories of comodules for coalgebras over
a field, dually to Morita equivalences.

Galois objects which are isomorphic to H as H-comodules are called H-Galois objects with normal
basis. We argue that for H cocommutative the property ΦH,H = Φ

−1
H,H implies that the assumption ΦA,B =

Φ−1
B,A is automatically fulfilled for all H-Galois objects with normal basis A and B, hence that such Galois

objects induce a (sub)group Galnb(C; H). We prove in Theorem 5.9 that ζ from (1.1) corestricts to a group
isomorphism H2(C; H, I) � Galnb(C; H). On the other hand, we prove that every H-Galois object is an
invertible H-comodule, inducing a non-trivial morphism ξ in (1.1), when ζ is not surjective.

Our short exact sequence (1.1) is a generalization of the sequence of Álvarez and Vilaboa constructed in
[1, Theorem 11] and [2, Proposition 0.3]. Whereas in the latter sequence the Hopf algebra should be finite
and the category symmetric, the first restriction is not present in our case, and the second one is weakened
by our assumption on the braiding.

More of a historical background of the sequence (1.1) we may resume as follows. The original idea for
its construction was accomplished in 1976 in [24] for a commutative ring R and a finitely generated and
projective Hopf algebra H with a bijective antipode, where the morphism from the group of Galois objects
to the Picard group of invertible H-modules generalized that of [14, Theorem 2] for a group ring RG. A
slightly more general construction was carried out in [10] in 1986. Following the latter, the corresponding
morphism from the group of Galois objects to the Picard group of invertible modules was defined in a
closed symmetric category in [2] in 2000. There was shown that the kernel of the morphism is isomorphic
to the subgroup of Galois objects with a normal basis. Taking into account that this subgroup was proved to
be isomorphic to Sweedler’s second cohomology group in [1], generalizing the Normal Basis Theorem [33,
Theorem 8.6], one gets the aforementioned short exact sequence. Harrison cohomology appearing in [24] is
here replaced by Sweedler cohomology. This is consistent, since the Hopf algebra H in the first construction
becomes a Hopf algebra H∗ in the second one, and Harrison cohomology for H is isomorphic to Sweedler
cohomology for H∗, [7, Proposition 9.2.3]. K-theoretical background for these exact sequences can be found
in [7, (C.8), p. 470]. A version of the short exact sequence for commutative rings is [7, (10.25), p. 267] and
how it emerges from the K-theoretical origin one can comprehend from the steps [7, (10.19)–(10.23), p. 265].
Our construction can be seen as a categorification of [7, (10.25), p. 267].

Apart from the above-mentioned main result Theorem 5.13, we prove generalizations to braided
monoidal categories of the following important classical results. The Fundamental Theorem of Hopf
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modules for a flat Hopf algebra H in a braided monoidal categoryCwith equalizers was proved in [20, The-
orem 1.1]. It establishes an equivalence of categories − ⊗H : C C

H
H : (−)coH-� where CH

H is the category
of Hopf modules in C and (−)coH the functor that delivers H-coinvariants. We generalize this result proving
that for an H-comodule algebra A there is an adjunction of categories − ⊗ A : C C

H
A : (−)coH-� where CH

A
is the category of relative Hopf modules inC, and moreover, under the assumption that H is flat we prove in
Theorem 3.11 that A is an H-Galois object if and only if the latter adjunction is an equivalence of categories.
As a consequence we obtain that a flat Hopf algebra is itself an H-Galois object, and in particular faithfully
flat. Moreover, we prove in Proposition 3.14 that for a flat H every H-comodule algebra morphism between
two H-Galois objects is an isomorphism. The mentioned results are established in Section 3 and mainly
present categorification of analogous results for modules over a commutative ring from [7].

Along the way of constructing the group of Galois objects, the other important results are Lemma 4.7
and Theorem 4.21. In the former we give sufficient conditions for the associativity of the cotensor product
over flat coalgebras in a monoidal category with equalizers, generalizing and correcting an analogous result
from [7] for colagebras over a commutative ring. In the latter we prove that for a flat and cocommutative
Hopf algebra H the group of BiGalois objects of Schauenburg is isomorphic to the semidirect product of
the group of Hopf automorphisms of H and the group of H-Galois objects. This is categorification of [32,
Lemma 4.7].

The last Section is devoted to examples. For the Radford Hopf algebra Hν and the Nichols Hopf algebra
E(n), using the fact that they both are Radford biproduct Hopf algebras, we compute the second Sweedler
cohomology group and the groups of Galois and biGalois objects in the corresponding settings.

The outline of the paper is as follows. In Section 2 we give preliminaries on (faithful) flatness and
preservation and inheritance of additional structure on equalizers. Section 3 is devoted to Hopf-Galois
objects: we prove the mentioned adjunction and equivalences of categories for (relative) Hopf modules,
characterizing H-Galois objects, we prove that flat H is an H-Galois object and thus faithfully flat, and that
every H-comodule algebra morphism between H-Galois objects is an isomorphism. in Section 4 we construct
the group of Galois objects. In Subsection 4.1 we study cotensor coproducts, and in Subsection 4.2 we
construct the group itself, the subgroup of Galois objects with normal basis, and prove the semidirect product
decomposition for the group of biGalois objects. In Section 5 we first construct Sweedler cohomology, then
we prove how 2-cocycles twist the multiplication of Galois objects yielding an isomorphism between the
second cohomology group and the group of Galois objects with normal basis. In Section 5.4 we construct the
Picard group of invertible comodules and prove that Galois objects are invertible comodules. In Subsection
5.5 we finally construct our short exact sequence and compare it to the analogous sequence of Álvarez and
Vilaboa. In the last Section we first recall Radford biproducts and Majid’s bosonization, and then compute
the second Sweedler cohomology group and the groups of Galois and biGalois objects for the Radford
biproduct Hopf algebras Hν and E(n).

2. Preliminaries

The reader is supposed to be familiarized with braided monoidal categories. For references we recom-
mend [21] and [15], [16], [17] and [22]. The 7-tuple (C,⊗, a, I, l, r,Φ) will denote a braided monoidal category,
where C is a category, ⊗ : C × C → C is the tensor product functor, aX,Y,Z : (X ⊗ Y) ⊗ Z→ X ⊗ (Y ⊗ Z) is the
associativity constraint, that satisfies Mac Lane’s pentagonal axiom, I denotes the unit object, lX : I⊗X→ X
and rX : X ⊗ I → X are the left and right unity constraint, respectively, and ΦX,Y : X ⊗ Y → Y ⊗ X denotes
the braiding. In view of Mac Lane’s Coherence Theorem we may (and we will do) assume that our braided
monoidal category is strict, i.e., the associativity and unity constraints are identities in C. We will use the
standard graphical calculus to work in braided monoidal categories. For two objects V,W in C the braiding
between them and its inverse are denoted by

ΦV,W =

V W

W V

and Φ−1
V,W =

W V

V W
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respectively. We will assume throughout that C has equalizers.

We refer to [6] for the definition of the following algebraic structures in braided monoidal categories:
algebras, modules, coalgebras, comodules, Hopf algebras, module algebras and comodule algebras. The
list of axioms for each of these structures, expressed in graphical calculus, may be found in [6, Page 159].
We fix some notation for the different structures: A is an algebra, C a coalgebra, H a Hopf algebra with
antipode S, M an A-module and N a C-comodule.

Algebra Coalgebra Antipode
Unit Multiplication Counit Comultiplication

ηA = r
A

∇A =

A A
	
A

εC =

Cr ∆C =

C��
C C

H

hS
H

Module Comodule
Left Right Left Right

νM =

A M

PP

M

µM =

M A

��

M

λN =

N

��

C N

ρN =

N

PP

N C

2.1 Flatness: An object A in C is called flat if the functor A ⊗ − : C −→ C preserves equalizers. If, in
addition, it reflects isomorphisms, then A is called faithfully flat. By naturality of the braiding the functor
A ⊗ − : C −→ C preserves equalizers (resp. reflects isomorphisms) if and only if − ⊗ A : C −→ C does it. The
following statements for objects A,B ∈ C are easy to prove:

(i) If A and B are flat, then so is A ⊗ B.
(ii) If A and B are faithfully flat, then so is A ⊗ B.

(iii) If the functor A ⊗ − reflects equalizers and A ⊗ B is faithfully flat, then B is faithfully flat.

We will record in several results how the (co)equalizer of two morphisms with additional structures
inherits these structures. The proofs of these results are standard.

2.2 Let E A-e -f
B-

1
be an equalizer in C.

(i) If f and 1 are algebra morphisms, then E is an algebra and e is an algebra morphism. We call (E, e) an
algebra pair.

(ii) If f and 1 are left (resp. right) H-module morphisms for an algebra H, then E is a left (resp. right)
H-module and e is a left (resp. right) H-module morphism. The pair (E, e) is called an H-module pair.
The dual statement follows for H-comodules provided that H is a flat coalgebra. Similarly, (E, e) is said
to be an H-comodule pair.

Assume that A,B are H-comodule algebras, where H is flat, and let (E, e) be the equalizer of H-comodule
algebra morphisms f , 1 : A −→ B. Then E inherits an H-comodule algebra structure such that e is a morphism
of H-comodule algebras. It is important to stress that once the corresponding structure morphisms are
induced on E, one does not need anymore the hypothesis on f and 1 to prove the compatibility conditions
in each structure (the reader is encouraged to check it).

2.3 Let A ∈ C be an algebra and AC the category of left A-modules. If C has equalizers, then AC

has equalizers, too - an equalizer in C of two morphisms in AC is an equalizer in AC. Moreover, the
forgetful functorU : AC −→ C preserves equalizers. Both statements hold true for the category CC of right
C-comodules if C is a flat coalgebra.
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2.4 Consider a commutative diagram of morphisms in C

E2 A2-
e2

E1 A1-e1

?

f
?

f

and assume that e2 is a monomorphism.

(i) If e1, e2 and f are right H-comodule morphisms and e2⊗H is a monomorphism, then f is an H-comodule
morphism.

(ii) If e1, e2 and f are right H-module morphisms, then f is an H-module morphism.
(iii) If e1, e2 and f are algebra morphisms, then f is an algebra morphism.

As a consequence we have:

(a) Let f : A −→ R and 1 : B −→ R be algebra (resp. H-comodule) morphisms and assume that 1 (resp.
H⊗1) is a monomorphism. Let h : A −→ B be such that 1h = f . Then h is an algebra (resp. H-comodule)
morphism.

3. Hopf-Galois objects

In this section we recall from [31] the notion of Hopf-Galois object and present some results on it.
The principal one is the characterization of a Hopf-Galois object in terms of a pair of functors being an
equivalence, that generalizes the Fundamental Theorem of Hopf modules. As a consequence of this result
we will obtain that a comodule algebra morphism between two Hopf-Galois objects is an isomorphism.
This fact is an essential tool to establish the main results in [11].

3.1. Hopf modules and relative Hopf modules

We start by recalling from [31, Definition 3.7] the notion of relative Hopf module in C for a right
comodule algebra A over a Hopf algebra H. We will show that there is an adjoint pair of functors between
the category CH

A of relative Hopf modules and C.

Definition 3.1 Let H be a Hopf algebra in C and A a right H-comodule algebra. A right relative Hopf module (or
an (A,H)-Hopf module) M ∈ C is a right H-comodule and a right A-module such that the H-comodule structure of
M is right A-linear, where M ⊗ H is endowed with the codiagonal A-module structure. The compatibility condition
takes the form:

M A

��
PP

M H

=

M A

PP PP

�� 
	
M H

We will denote by CH
A the category whose objects are right relative Hopf modules and whose morphisms

are A-linear H-colinear morphisms.

Definition 3.2 Let M be a right H-comodule in C. The object of H-coinvariants of M is the equalizer:

McoH M-i -ρM
M ⊗H.-

M ⊗ ηH
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Actually, (−)coH defines a functor from CH to C. If f : M −→ N is a morphism in CH, then f coH : McoH

−→ NcoH is induced by the commutativity of the square in the diagram:

McoH M-iM

NcoH N-iN
?

f coH

?
f

-ρN
N ⊗H-

N ⊗ ηH

The existence of f coH is assured by the H-colinearity of f and the universal property of the equalizer
(NcoH, iN). Clearly, the functor (−)coH also acts on CH

A . Indeed, it is part of an adjoint pair as we see next.

Proposition 3.3 With A and H inC as above,F : C −→ CH
A ,N 7→ N⊗A, is a left adjoint toG : CH

A −→ C,M 7→McoH.

Proof. Given N ∈ Cwe view N⊗A as a right H-comodule with coaction ρN⊗A = N⊗ρA and a right A-module
with action µN⊗A = N ⊗∇A. The compatibility condition of CH

A holds for N ⊗A because A is an H-comodule
algebra. The definition of F on morphisms is obvious.

For N ∈ C and M ∈ CH
A we define morphisms

C
H
A (N ⊗ A,M) C(N,McoH)-Θ

�
Ψ

as follows. Given f ∈ CH
A (N ⊗ A,M) its image Θ( f ) ∈ C(N,McoH) is defined as

N

Θ( f )

i

M

=

N r
f

M

whereas for 1 ∈ C(N,McoH) the imageΨ(1) ∈ CH
A (N ⊗ A,M) is given by

N⊗A

Ψ(1)

M

=

N A
1

i
��

M

It is easy to check thatΘ( f ) andΨ(1) are well defined, that they are inverses of each other and naturality.

The unit of the adjunction αN = ΘN,N⊗A(idN⊗A) : N→ (N ⊗ A)coH is the unique morphism such that

iN⊗AαN = N ⊗ ηA. (3.2)

The counit of the adjunction βM = ΨMcoH ,M(idMcoH ) : McoH
⊗ A→M is given via

βM =

McoH A

i
��

M

(3.3)

Remark 3.4 Analogously, the pair of functors (A ⊗ −, (−)coH) is also an adjoint pair between the same
categories, with counit β′ : A ⊗McoH

−→ M given by β′M = βMΦA,McoH . For N ∈ C we consider A ⊗ N as a
relative Hopf module with the right H-comodule and A-module structures given by

ρA⊗N =

A N

PP

A N H

and µA⊗N =

A N A


	
A N

(3.4)
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Using 2.2 and 2.3 one obtains:

Lemma 3.5 If H is flat, then an equalizer in C of two morphisms in CH
A is an equalizer in CH

A . Moreover, the forgetful
functorU : CH

A −→ C preserves equalizers.

When A = H the category CH
H is called the category of Hopf modules. In this setting, the Fundamental

Theorem for Hopf modules was established in [20, Theorem 1.1]. We formulate it here.

Theorem 3.6 (Fundamental Theorem of Hopf modules) Let H be a flat Hopf algebra in C. Then the pair of
functors− ⊗H : C C

H
H : (−)coH-� establishes an equivalence. In particular, McoH

⊗H �M for all M ∈ CH
H.

3.2. Galois objects

In this section we will prove that the category of relative Hopf modules CH
A admits an equivalence with

Cwhen A is an H-Galois object, generalizing the Fundamental Theorem of Hopf Modules.

Definition 3.7 Let H ∈ C be a Hopf algebra. A right H-comodule algebra A in C, with structure morphism ρA, is
called an H-Galois object if the following two conditions are satisfied:

(i) A is faithfully flat;

(ii) The canonical morphism can : A ⊗ A A ⊗ A ⊗H-A ⊗ ρA
A ⊗H-∇A ⊗H

is an isomorphism.

Consider A⊗A and A⊗H as right H-comodules by the structure morphisms A⊗ρA and A⊗∆, respectively.
Then can is right H-colinear. Viewing A ⊗ A as a right A-module by the structure morphism A ⊗ ∇ and
equipping A ⊗H with the codiagonal structure, can is also right A-linear.

In [36, Lemma 1.1] the author proved that if H is a commutative Hopf algebra over a field K, then
AcoH � K, for a commutative H-Galois object A. A similar statement, when working over a commutative
ring R, was proved in [24, Lemma 2.9] for H∗-Galois objects, where H is now finite and cocommutative.
We show next that this result for the category of vector spaces (and R-modules) extends to any braided
monoidal category with equalizers even for a not necessarily commutative Hopf algebra. We will need first
to prove this statement for H, although we will do it more generally for future purposes:

Lemma 3.8 Let H ∈ C be a Hopf algebra and M ∈ C. The diagram

M M ⊗H-M ⊗ ηH -M ⊗ ∆H
M ⊗H ⊗H-

M ⊗H ⊗ ηH

is an equalizer. Hence there is a natural isomorphism

δM : M −→ (M ⊗H)coH (3.5)

satisfying iM⊗HδM =M ⊗ ηH.

Proof. Clearly (M⊗∆H)(M⊗ ηH) =M⊗ ηH ⊗ ηH = (M⊗H ⊗ ηH)(M⊗ ηH). Let f : T −→M⊗H be a morphism
in C such that (M ⊗∆H) f = (M ⊗H ⊗ ηH) f . Applying to this M ⊗ εH ⊗H, we obtain f = (M ⊗ εH ⊗ ηH) f . We
define 1 : T −→ M by 1 = (M ⊗ εH) f . From the above, f = (M ⊗ ηH)(M ⊗ εH) f = (M ⊗ ηH)1. Moreover, 1 is
the unique such a morphism because M ⊗ ηH is a monomorphism due to (M ⊗ εH)(M ⊗ ηH) = idM.

We know that ((M ⊗ H)coH, iM⊗H) is an equalizer of the same pair of morphisms. Then (M,M ⊗ ηH) and
((M ⊗ H)coH, iM⊗H) will be isomorphic as equalizers by a unique isomorphism δM : M −→ (M ⊗ H)coH such
that iM⊗HδM =M ⊗ ηH. The naturality of δM is easy to check.
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Proposition 3.9 Let A be an H-Galois object in C. There is an isomorphism η : I −→ AcoH such that iAη = ηA. In
particular,

I A-ηA -ρA
A ⊗H-

A ⊗ ηH

(3.6)

is an equalizer.

Proof. From the claim we get that (I, ηA) and (AcoH, iA) are isomorphic as equalizers. Notice that can(A⊗ iA) :
A ⊗ AcoH

−→ A ⊗H factors through A ⊗HcoH since

A AcoH

iA

PP
	��
A H H

=

A AcoH

iA

PP

PP
	
A H H

=

A AcoH

iA

PP
	 r
A H H

By flatness of A and the preceding lemma the following diagram is an equalizer.

A ⊗ I A ⊗H-A ⊗ ηH -A ⊗ ∆H
A ⊗H ⊗H-

A ⊗H ⊗ ηH

Then A ⊗HcoH � A ⊗ I. This assures the existence of φ : A ⊗ AcoH
−→ A ⊗ I such that

(A ⊗ ηH)φ = can(A ⊗ iA). (3.7)

Clearly, ηA factors through AcoH since it is H-colinear. Therefore there is η : I −→ AcoH with iAη = ηA. We
show that A ⊗ η is the inverse of φ,

(A ⊗ ηH)φ(A ⊗ η) = can(A ⊗ iA)(A ⊗ η) = can(A ⊗ ηA) = A ⊗ ηH.

Then φ(A ⊗ η) = idA. On the other hand,

can(A ⊗ iA)(A ⊗ η)φ
(3.7)
= (A ⊗ ηH)φ(A ⊗ η)φ = (A ⊗ ηH)φ

(3.7)
= can(A ⊗ iA).

Since A ⊗ iA is a monomorphism, clearly so is can(A ⊗ iA), and thus we obtain (A ⊗ η)φ = idA⊗AcoH . This
proves that A ⊗ η : A −→ A ⊗ AcoH is an isomorphism. By the faithful flatness of A we finally get that η : I
−→ AcoH is an isomorphism.

Remark 3.10 Our definition of H-Galois object is stronger than Schauenburg’s one [31, Definition 3.1] in
view of the preceding result. He defines an H-Galois object as an H-comodule algebra A such that (3.6)
is an equalizer and can : A ⊗ A → A ⊗ H is an isomorphism. However, to define the group of H-biGalois
objects he considers faithfully flat H-Galois objects. This is one reason to make our definition. Another one
is that it allows to characterize when the adjunction from Proposition 3.3 is an equivalence, as we see next.

Theorem 3.11 Let A ∈ C be a right H-comodule algebra and suppose that H is flat. The following statements are
equivalent:

(i) A is a right H-Galois object;
(ii) The functors − ⊗ A : C C

H
A : (−)coH-� establish an equivalence of categories.

Proof. (i) ⇒ (ii) This is proved in [31]. The counit of the adjunction βM : McoH
⊗ A −→ M is given by

βM = µ(i ⊗ A), where µ is the action of A on M (Diagram 3.3). It was shown in [31, Proposition 3.8] that
βM is an isomorphism. Recall from (3.2) that the unit of the adjunction αN : N −→ (N ⊗ A)coH is induced by
N ⊗ ηA. In [31, Lemma 3.9] it is proved that αN is an isomorphism. Notice that for this faithful flatness of A
is needed.
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(ii) ⇒ (i) Being an equivalence of categories, the functor − ⊗ A : C −→ CH
A preserves equalizers. By

Lemma 3.5, A is flat. Suppose that f ⊗A is an isomorphism in C for f : M −→ N in C. Lying in CH
A , it is then

an isomorphism also in there. Then G( f ⊗ A) = GF ( f ) (and hence f ) is an isomorphism, yielding that A is
faithfully flat.

We finally prove that can : A ⊗ A −→ A ⊗ H is an isomorphism. First of all, note that A ⊗ H ∈ CH
A . It is

a right A-module by the codiagonal structure and an H-comodule with coaction A ⊗ ∆. We show that the
compatibility condition is satisfied:

A⊗H A

��
PP

A⊗H H

=

A H A

PP


	
	��
A H H

=

A H A

PP


	����

	
	

A H H

=

A H A��PP

PP


	
	
	
A H H

=

A H A��PP

PP
	

	
	

A H H

=

A⊗H A

PP PP

�� 
	
A⊗H H

Let δA : A −→ (A ⊗H)coH be the isomorphism from (3.5). Observe that we have an isomorphism

ν : A ⊗ A = F (A)
F (δA)
−→ F ((A ⊗H)coH) = FG(A ⊗H)

βA⊗H
−→ A ⊗H.

Now:
ν = βA⊗HF (δA) = βA⊗H(δA ⊗ A) = µA⊗H(iA⊗H ⊗ A)(δA ⊗ A) = µA⊗H(A ⊗ ηH ⊗ A) = can.

Thus can is an isomorphism.

Remark 3.12 (1) The above theorem is also true for the adjoint pair of functors

A ⊗ − : C C
H
A : (−)coH-�

(2) For the above theorem we were inspired by [7, Theorems 8.1.6 and 8.1.8], where a similar result is
established for C the category of R-modules (R a commutative ring). Notice that, due to a transposition of
letters when defining the unit of adjunction ψN in [7, Remark 8.1.4(3)], the author is led to state wrongly
that ψN is an isomorphism if and only if Aco(H) is trivial. To claim that ψN is an isomorphism A faithfully
flat is needed.

By Theorem 3.6 for a flat Hopf algebra H the functors − ⊗H : C C
H : (−)coH-� are an equivalence of

categories. By the above theorem we get:

Corollary 3.13 A flat Hopf algebra H ∈ C is an H-Galois object, in particular faithfully flat.

The inverse of canH is:

H H

can-1
H

H H

:=

H H��
Sh
	

H H

The next proposition will be very useful in the future to check that a comodule algebra morphism
between two Galois objects is an isomorphism. It is a generalization to any braided monoidal category of
a result from [7] for the category of modues over a commutative ring.

Proposition 3.14 Let H ∈ C be a flat Hopf algebra. An H-comodule algebra morphism f : A −→ B between two
H-Galois objects A and B is an isomorphism.
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Proof. As an H-Galois object, B is a right H-comodule. Equip it with the right A-module structure given by
µB := ∇B(B ⊗ f ). With these structures, B lies in CH

A :

B A

��
PP

B H

=

B A

f
	
PP

B H

comod.
al1.
=

B A

f

PP PP

�� 
	
B H

f
H-colin.
=

B A

PP PP
f


	
	
B H

nat.
=

B A

PP PP

f
	
	
B H

A-act.
=

B A

PP PP

�� 
	
B H

Having that A is an H-Galois object, by the preceding theorem the counit β of the adjunction
− ⊗ A : C C

H
A : (−)coH-� , given in (3.3), is an isomorphism. Let η : I −→ BcoH be the isomorphism from

Proposition 3.9. Then we obtain that

βB(η ⊗ A) =

I A

η

i
��

B

=

Ar
��

B

=

Ar f
	
B

=

A

f

B

is an isomorphism.

4. The group of Galois and biGalois objects

In this section we will construct, under an assumption on the braiding, the group of H-Galois objects
for a flat and cocommutative Hopf algebra H. Our construction relies on the construction of the group of
biGalois objects due to Schauenburg [31]. We will also construct, dropping the assumption on the braiding,
the group of H-Galois objects with a normal basis.

4.1. The cotensor product

We record in this first subsection several properties of the cotensor product, that will give the group law
in the set of isomorphism classes of Galois and biGalois objects.

Definition 4.1 Let C ∈ C be a coalgebra, M a right C-comodule and N a left C-comodule. The cotensor product of
M and N is the equalizer

M□CN M ⊗N-e -ρM ⊗N
M ⊗ C ⊗N.-

M ⊗ λN

(4.8)

where ρM and λN are the structure morphisms of M and N respectively.

In braided diagrams the equalizer property of M□CN reads as:

M□CN

eM,N

PP

M C N

=

M□CN

eM,N

��

M C N

For morphisms f : M −→M′ in CC and 1 : N −→ N′ in C
C, f ⊗1 : M⊗N −→M′

⊗N′ induces f□C1 : M□CN
−→M′□CN′ in C. Thus we have a bifunctor −□C− : CC

×
C
C → C.
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Remark 4.2 When C is cocommutative every right C-comodule M is a left C-comodule (indeed a C-
bicomodule) via λM = Φ

−1
C,MρM. In braided diagrams:

M

PP

C M

(4.9)

We will work with right C-comodules and convert them into left ones using (4.9). Thus we will be able to
make cotensor products of two right C-comodules when C is cocommutative.

Lemma 4.3 Let M be a right C-comodule, N a left C-comodule and X a flat object inC. There are natural isomorphisms
of equalizers

θM,N,X : (M□CN) ⊗ X→M□C(N ⊗ X) and κM,N,X : X ⊗ (M□CN)→ (X ⊗M)□CN.

Here, the structure of left C-comodule of N ⊗ X is inherited from N, that is, λN⊗X = λN ⊗ X.

Proof. The universal property of the equalizers (M□C(N ⊗ X), eM,N⊗X) and ((X ⊗M)□CN, eX⊗M,N) gives the
existence of θM,N,X and κM,N,X such that the diagrams

(M□CN) ⊗ X (M ⊗N) ⊗ X-eM,N ⊗ X

M□C(N ⊗ X) M ⊗ (N ⊗ X)-eM,N⊗X
?

θM,N,X

?

αM,N,X

(4.10)

X ⊗ (M□CN) X ⊗ (M ⊗N)-X ⊗ eM,N

(X ⊗M)□CN (X ⊗M) ⊗N-eX⊗M,N
?

κX,M,N

?

α−1
X,M,N

(4.11)

commute. Flatness of X makes ((M□CN) ⊗ X, eM,N ⊗ X) into an equalizer. By its universal property,
α−1

M,N,XeM,N⊗X induces a morphism θ′M,N,X : M□C(N ⊗ X) −→ (M□CN) ⊗ X, which is the inverse of θ. The
naturality of θ follows from the naturality of α and the universal property of the equalizer. Similarly, κX,M,N
is an isomorphism.

Remark 4.4 Let C,D and E be coalgebras in C, where C and E are flat. For M ∈
C
C

D and N ∈
D
C

E

it can be proved that M□DN is a left C- and a right E-comodule by κ−1
C,M,N(λM□DN) and θ−1

M,N,E(M□DρN)
respectively. Moreover, the equalizer morphism eM,N becomes C-E-bicolinear. If F is another flat coalgebra
and X ∈ CF, the morphism θM,N,X : (M□DN)⊗X→M□D(N⊗X) is of C-F-bicomodules. The same is true for
κX,M,N : X ⊗ (M□DN)→ (X ⊗M)□DN if X is now a left F-comodule.

We will say that M ∈
C
C

D is coflat in CD if the morphism θM,N,X is an isomorphism. This definitioin
is taken from [25, Page 202] although formulated in the opposite category. Nevertheless, our definition
is stronger since we are assuming that C has equalizers and that the coalgebras C,D and any other one
involved are flat to assure that the category of bicomodules also has equalizers.

In view of (4.9) and the preceding considerations we have:

Corollary 4.5 Let C be a flat cocommutative coalgebra inC. For two right C-comodules M and N we have that M□CN
is a C-bicomodule with right structure morphismθ−1

M,N,C(M□CρN) and left structure morphismκ−1
C,M,N(λM□CN), where

λM = Φ
−1
C,MρM.

The following result is easy to prove.

Lemma 4.6 For a left C-comodule M its structure morphism λM : M −→ C⊗M factors through λM : M −→ C□CM.
This gives a natural isomorphism with inverse πM : C□CM −→M induced by ε⊗M. If additionally M ∈ C

C
D (and C

and D are flat), then this is an isomorphism of C-D-bicomodules. Analogously, it is M□DD �M as C-D-bicomodules.

We next point out two sufficient conditions for the cotensor product to be associative.
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Lemma 4.7 Let C and D be flat coalgebras in C and M ∈ C
C flat. For every N ∈

C
C

D and L ∈ D
C it is

M□C(N□DL) � (M□CN)□DL as equalizers if one of the following two conditions is satisfied:

(i) L is flat;
(ii) M is coflat in CC.

If, in addition, M ∈ E
C

C and L ∈ D
C

F, where E and F are flat coalgebras, then this isomorphism is of E-F-bicomodules.

Proof. We view N□DL as a left C-comodule and M□CN as a right D-comodule with the structures from
Remark 4.4. Consider the diagram

(M□CN)□DL (M□CN) ⊗ L-eM□CN,L -ρM□CN ⊗ L
(M□CN) ⊗D ⊗ L-

(M□CN) ⊗ λL

(M ⊗N)□DL (M ⊗N) ⊗ L-eM⊗N,L -ρM⊗N ⊗ L
(M ⊗N) ⊗D ⊗ L-

(M ⊗N) ⊗ λL

?

eM,N□DL
?

eM,N ⊗ L
?

eM,N ⊗D ⊗ L

(M ⊗ C ⊗N)□DL (M ⊗ C ⊗N) ⊗ L-eM⊗C⊗N,L -ρM⊗C⊗N ⊗ L
(M ⊗ C ⊗N) ⊗D ⊗ L-

(M ⊗ C ⊗N) ⊗ λL

?

(ρM ⊗N)□DL

?

(M ⊗ λN)□DL

??
(ρM ⊗N) ⊗ L (M ⊗ λN) ⊗ L

?

(ρM ⊗N) ⊗D ⊗ L

?

(M ⊗ λN) ⊗D ⊗ L

The three rows are equalizers. Assume that L is flat. Then by Lemma 4.3 the second and – since D is flat
too – the third column are equalizers. The same conclusion holds if we suppose that M is coflat in CC,
because then M□C(N⊗L) � (M□CN)⊗L and M□C(N⊗D⊗L) � (M□CN)⊗D⊗L. Note that all inner squares
commute. Then by the equalizer version of Lemma 3 × 3 (see [4, Exercise 2.2.3.13]), the first column is an
equalizer too.

We show that (M□C(N□DL), eM,N□DL) and ((M□CN)□DL, eM,N□DL) are isomorphic as equalizers. For this
purpose we consider the diagram

M□C(N□DL) M ⊗ (N□DL)-eM,N□DL -ρM ⊗ (N□DL)
M ⊗ C ⊗ (N□DL)-

M ⊗ λN□DL

(M□CN)□DL (M ⊗N)□DL-eM,N□DL -(ρM ⊗N)□DL
(M ⊗ C ⊗N)□DL-

(M ⊗ λN)□DL

?

ωM,N,L

?

κM,N,L

?

κM⊗C,N,L1

Since M and C are flat, κM,N,L and κM⊗C,N,L are isomorphisms (Lemma 4.3). The right square obviously
commutes with upper lines. It commutes with lower lines as well, because λN□DL is induced by λN□DL.
Knowing that both rows are equalizers, κM,N,LeM,N□DL induces ωM,N,L so that the left square commutes.
Similarly, κ−1

M,N,L(eM,N□DL) induces the inverse of ωM,N,L.
Suppose M ∈ E

C
C and L ∈ D

C
F. Due to Remark 4.4, eM,N□DL is E-F-bicolinear and eM,N is left E-colinear.

Hence eM,N□DL is E-F-bicolinear, as so is κM,N,L, by Remark 4.4. Then because of 2.4(i), ωM,N,L is E-F-
bicolinear.

Corollary 4.8 Let M,N and L be right C-comodules where C is a flat and cocommutative coalgebra. If M and L are
flat, then M□C(N□CL) � (M□CN)□CL as equalizers and as C-bicomodules.

4.2. The group of Galois and biGalois objects

We start by recalling the construction of Schauenburg’s group of biGalois objects. We will assume that
the antipode is an isomorphism which allows to describe easier the inverse element.
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Definition 4.9 Let H ∈ C be a Hopf algebra. An H-bicomodule algebra A ∈ C is said to be an H-biGalois object if it
is a right H-Galois object and a left H-Galois object.

Let A be a right H-comodule algebra and B a left H-comodule algebra. Then A□HB may be seen as the
equalizer of two algebra morphisms and by 2.2(i) it admits an algebra structure so that eA,B : A□HB→ A⊗B
is an algebra morphism ([31, Lemma 2.3(2)]). If, in addition, A,B are H-bicomodule algebras and H is flat,
by 2.2(ii) then A□HB becomes an H-bicomodule algebra, with left structure inherited from A and right one
inherited from B, such that eA,B is an H-bicomodule algebra morphism. The next result is [31, Theorems 5.2
and 6.6].

Theorem 4.10 Let H be a flat Hopf algebra whose antipode is an isomorphism.

(i) For an H-biGalois object A in C, let A denote the opposite algebra of A (∇A = ∇AΦA,A) with H-bicomodule
structure given by

λA =

A

PP

−h
H A

and ρA =

A

��

−h
A H

where the sign minus stands for S−1. Then A is an H-biGalois object and there are H-bicomodule algebra
isomorphisms A□HA � H and A□HA � H.

(ii) The set BiGal(C; H) of isomorphism classes of H-biGalois objects is a group with multiplication [A][B] =
[A□HB], identity element [H] and the inverse of [A] is [A].

For further purposes we must describe how the isomorphisms H � A□HA and H � A□HA are induced.
This is explained in detail in [31, Remark 3.5]. Consider the morphism γr := can−1

r (ηA ⊗ H) : H −→ A ⊗ A,
where canr denotes the canonical isomorphism of A as a right H-Galois object. Then γr : H → A ⊗ A is
an algebra morphism. Endowing A ⊗ A with the codiagonal H-comodule structure, γr factors through
coH(A⊗A). On the other hand, coH(A⊗A) is isomorphic, as an equalizer, to A□HA (left version of [31, Lemma
2.4]). Then, there is a unique morphism γ̃r : H −→ A□HA such that eA,Aγ̃r = γr. In [31, Lemma 4.2] it is
proved that γ̃r is an isomorphism of H-bicomodule algebras. Symmetrically, there is an isomorphism of
H-bicomodule algebras γ̃l : H→ A□HA such that eA,Aγ̃l = γl where now γl = can−1

l (H ⊗ ηA) : H −→ A ⊗ A.

We proceed to prove the final necessary results to construct the group Gal(C; H) of H-Galois objects for a
cocommutative Hopf algebra H. We will construct it as a subgroup of BiGal(C; H). Since H is cocommutative,
we can consider every right H-comodule as a left H-comodule and as an H-bicomodule via (4.9). This fact
introduces a restriction to construct Gal(C; H), as we will show next, and we are forced to make the following
assumption, satisfied whenC is symmetric. In Section 6 a non-symmetric case where this holds is discussed.

Assumption 4.11 For any two H-Galois objects A and B the equality

A B

B A

=

A B

B A

holds, i.e., ΦA,B = Φ
−1
B,A. We say that the braiding acting between two H-Galois objects is symmetric.

Dealing with bicomodules (where the left and right comodule structures are not necessarily related)
gives a freedom when manipulating with biGalois objects, which we do not have when only handling one
sided comodule structure. In the latter case one is conditioned in order that the compatibility conditions be
fulfilled. The following two lemmas are examples of this.

Lemma 4.12 Let H be a cocommutative Hopf algebra, B a right H-comodule algebra and suppose that ΦB,H = Φ
−1
H,B.

Then B is a left H-comodule algebra.
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Proof. Recall that B is a left H-comodule with structure morphism λB = Φ
−1
H,BρB by (4.9). We prove that λB

is an algebra morphism. We compute:

B B
	
PP

H B

=

B B

PP PP


	
	
H B

nat.
=

B B

PP PP


	
	
H B

=

B B

PP PP


	
	
H B

=

B B

PP PP


	
	
H B

where in the last equation we used the assumptionΦB,H = Φ
−1
H,B. The compatibility with unit is obvious.

Lemma 4.13 Let H be a cocommutative and flat Hopf algebra and A a right H-comodule algebra. Under Assumption
4.11:

(i) A is a right H-comodule algebra with right H-comodule structure given by

ρA =
A

PP

A H

:=

A

PP

Sh
A H

(ii) If A is an H-Galois object, then so is A with the above H-comodule structure.

Proof. (i) First let us prove that ρA endows A with a right H-comodule structure. We compute

A

PP

PP

ShSh
A H H

=

A

PP��
ShSh

A H H

coc.
=

A

PP��
ShSh

A H H

=

A

PP

Sh��
A H H

For the compatibility of the multiplication and the right H-comodule structure of A we compute

A A


	
PP

Sh
A H

=

A A

PP PP


	
	
Sh

A H

=

A A

PP PP


	ShSh

	

A H

nat.
=

A A

PP PP


	ShSh

	

A H

Ass. 4.11
=

A A

PP PP


	ShSh

	

A H

Ass. 4.11
nat.
=

A A

PP PP

Sh Sh

	
	

A H

Notice that H is an H-Galois object because H is flat (Corollary 3.13) and we may use Assumption 4.11. The
compatibility of the unit and the right H-comodule structure of A is clear.

(ii) Obviously A is faithfully flat. Let us prove that canA is an isomorphism. We will show that
ϑ : A ⊗H→ A ⊗ A given by

A H

PP


	
can−1

A

A A
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is the inverse of canA. Compute the following composition:

Γ :=

A H

PP


	
can-1

A

canA

PP

Sh

	

A H

=

A H

PP


	
PP

Sh

	

A H

=

A H

PP��
Sh 
	

	

A H

=

A H

PP��
Sh


	
	
A H

=

A H

PP��
Sh

	


	
A H

=

A H

PP r r
	
A H

=

A H

A H

On the other hand, for the lower half of the diagram Γwe have

A A

PP
	
PP

Sh

	

A H

=

A A

PP

PP PP


	
	
Sh

	

A H

comod.
S antih.
=

A A

PP

PP ��
	ShSh

	

	

A H

nat.
=

A A

PP PP


	Sh ��

Sh
	
	
A H

ass.
=

A A

PP PP


	Sh ��

Sh
	
	
A H

nat.
=

A A

PP PP


	Sh ��
Sh
	


	
A H

coc.
antip.
=

A A

PP


	Sh
A H

nat.
=

A A

PP

Sh
	
A H

Ass. 4.11
=

A A

canA

A H

This implies that ϑ is a right inverse for canA. On the other hand:

A H
canA

PP


	
A H

=

A H

PP

Sh
	
PP


	
A H

=

A H

PP

Sh
PP PP


	
	

	

A H

=

A A

PP

PP PP

Sh


	
	

	

A H

Ass. 4.11
=

A A

PP

PP PP

Sh

	
	


	
A H

comod.
=

A A

PP

PP ��
Sh
	
	


	
A H

nat.
=

A A

PP

PP ��
Sh
	

	
	

A H

coc.
ass.
=

A A

PP

PP ��
Sh


	

	
	

A H

nat.
antip.
=

A A

PP


	
A H

nat.
=

A A

canA

A H

From this it follows that ϑ is a left inverse of canA (note that Assumption 4.11 is being used).
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We are now in a position to construct the group of Galois objects.

Theorem 4.14 If H is a flat and cocommutative Hopf algebra in C and the Assumption 4.11 is fulfilled, then the set
Gal(C; H) of isomorphism classes of (right) H-Galois objects is an abelian subgroup of BiGal(C; H).

Proof. Notice first that, since H is cocommutative, the square of the antipode is the identity. Let A be a
right H-Galois object. Make it into a left H-comodule and an H-bicomodule via λA = Φ

−1
H,AρA. Under the

Assumption 4.11, A is a left H-comodule algebra with the above structure by Lemma 4.12. We claim that
A is a left H-Galois object and consequently an H-biGalois object. We will denote it by

•A. The morphism
canl

A : A ⊗ A −→ H ⊗ A is an isomorphism because it may be written as a composition of the following
isomorphisms:

canl
A =

A A

��
	
H A

=

A A

PP


	
H A

nat.
=

A A

PP


	
H A

S2=1
nat.
=

A A

PP

Sh
	
Sh
H A

= (S ⊗ A)Φ−1
H,Acanr

A
ΦA,A.

Bear in mind that in Lemma 4.13(ii) we showed that canr
A

is an isomorphism.

The map j : Gal(C; H) → BiGal(C; H), [A] → [
•A], is clearly injective. Hence we can see Gal(C; H) as a

subset of BiGal(C; H). We next prove that it is indeed a subgroup.

Since the square of the antipode is the identity, the inverse of a biGalois object is described in Theorem
4.10(i). Let A be a right H-Galois object and consider the H-biGalois object

•A. Consider •A with structures
as in Theorem 4.10(i). Notice that the right H-comodule structure coincides with the structure of A in
Proposition 4.13 due to Assumption 4.11 and that the left structure stems from this one as in (4.9). This
means that [•A] ∈ Gal(C; H).

Pick two right H-Galois objects A and B and make them into H-biGalois objects. Consider the cotensor
product

•A□H
•B. Its right (resp. left) H-comodule structure is inherited from the one of B (resp. A). The left

H-comodule structure comes from the right one as in (4.9) in view of the following computation:

A□HB

eA,B

��

H A B

=

A□HB

eA,B

PP

H A B

eA,B
=

A□HB

eA,B

��

H A B

=

A□HB

eA,B

PP

H A B

Therefore [
•A][

•B] ∈ Gal(C; H).

We finally show that Gal(C; H) is abelian. We check that the braiding induces a morphism Ψ : A□HB
−→ B□HA that will be an H-comodule algebra morphism. It will be well defined if we prove that in the
diagram

A□HB A ⊗ B-eA,B

B□HA B ⊗ A-eB,A
?

Ψ
?
ΦA,B

-ρB ⊗ A
B ⊗H ⊗ A-

B ⊗ λA

(4.12)

it is (ρB ⊗ A)ΦA,BeA,B = (B ⊗ λA)ΦA,BeA,B. We have:
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A□HB

eA,B

PP

B H A

nat.
=

A□HB

eA,B

PP

B H A

=

A□HB

eA,B

PP

B H A

=

A□HB

eA,B

��

B H A

eA,B
=

A□HB

eA,B

PP

B H A

nat.
=

A□HB

eA,B

PP

B H A

Ass. 4.11
=

A□HB

eA,B

��

B H A

Note that Φ−1
B,A induces a morphism in the other direction – changing the sign of the braiding in the

upper diagrams gives analogous computation. This induced morphism will be the inverse of Ψ. We will
now prove that Ψ is an algebra morphism. We know that eA,B and eB,A are algebra morphisms. Then by
2.4(iii),Ψwill be an algebra morphism if we show that so is ΦA,B. This is true since we have

A B A B


	
	
A B

=

A B A B


	
	
A B

nat.
=

A B A B


	
	
A B

Ass. 4.11
=

A B A B


	
	
A B

We finally check thatΨ is right H-colinear. Consider the diagram

(A□HB) ⊗H
ρA□HB

�����������1

?
eA,B ⊗H

A□HB A ⊗ B-eA,B

?
Ψ

B□HA B ⊗ A-eB,A
?

ΦA,B

A ⊗ B ⊗H-A ⊗ ρB

B ⊗ A ⊗H-B ⊗ ρA
?
ΦA,B ⊗H

(B□HA) ⊗H
ρB□HA

PPPPPPPPPPPq

6eB,A ⊗H

1 2

3

4

We have that Diagram ⟨2⟩ commutes when composed with eA,B:

A□HB

eA,B

PP

B A H

nat.
=

A□HB

eA,B

PP

B A H

eA,B
=

A□HB

eA,B

��

B A H

=

A□HB

eA,B

PP

B A H

=

A□HB

eA,B

PP

B A H

Diagram ⟨1⟩ commutes by the definition of Ψ. Diagrams ⟨3⟩ and ⟨4⟩ commute by the definitions of ρA□HB
and ρB□HA respectively. Then the outer diagram in the above picture commutes, yielding

(ΦA,B ⊗H)(eA,B ⊗H)ρA□HB = (eB,A ⊗H)ρB□HAΨ.

On the other hand, tensoring ⟨1⟩ from the right with H, one obtains

(ΦA,B ⊗H)(eA,B ⊗H) = (eB,A ⊗H)(Ψ ⊗H).

Substituting this in the preceding equation, one gets

(eB,A ⊗H)(Ψ ⊗H)ρA□HB = (eB,A ⊗H)ρB□HAΨ.

Since H is flat, eB,A ⊗H is a monomorphism, yielding thatΨ is right H-colinear.
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As a consequence of the above theorem we get:

Corollary 4.15 Let H be a flat and cocommutative Hopf algebra in a symmetric monoidal category C. Then the set
Gal(C; H) is an abelian group.

In a braided non-symmetric category Assumption 4.11 will be satisfied on an important subclass of
H-Galois objects that we next define:

Definition 4.16 An H-Galois object which is isomorphic to H as a right H-comodule is called an H-Galois object
with a normal basis.

There is a smart observation of Schauenburg in [30, Corollary 5] that will allow us to consider the group
of Galois objects with a normal basis. We quote it here:

Theorem 4.17 If a Hopf algebra H ∈ C is cocommutative (or commutative), then

H H

H H

=

H H

H H

i.e., Φ2
H,H = idH⊗H.

Proposition 4.18 For a cocommutative or commutative Hopf algebra H the Assumption 4.11 is fulfilled on H-Galois
objects with a normal basis.

Proof. We have that an H-Galois object with normal basis is isomorphic to H (as an object). Then the
statement follows from Theorem 4.17 and naturality of the braiding.

Corollary 4.19 Let H be a flat and cocommutative Hopf algebra in C. Then the set Galnb(C; H) of isomorphism
classes of H-Galois objects with a normal basis is an abelian group.

Proof. Go through the proof of Theorem 4.14 bearing in mind the above proposition. Take into account that
if A,B are two right H-Galois objects with a normal basis, then A□HB is too because A□HB � H□HH � H as
H-comodules. Using the antipode, we have that A is isomorphic to H as H-comodules if A is so.

For H flat and cocommutative the group BiGal(C; H) may be recovered from Gal(C,H) and the group
AutHop f (H) of Hopf automorphisms of H, since it is isomorphic to the semidirect product of the latter
two. This is proved by Schauenburg in [32, Lemma 4.7] for a flat and cocommutative Hopf algebra over a
commutative ring. The same arguments used in his proof are valid in our categorical setting as we show.
We recall the following universal property of biGalois objects.

Proposition 4.20 Let A be an H-biGalois object with left structure morphism λA.

(i) If K is an algebra in C and ϕ : A → K ⊗ A is an algebra morphism, then there is a unique algebra morphism
f : H→ K such that ϕ = ( f ⊗ A)λA.

(ii) If λ′A : A→ H ⊗ A is another left H-comodule structure on A making it into an H-biGalois object, then there
is a unique f ∈ AutHop f (H) such that λ′A = ( f ⊗ A)λA.

Proof. (i) Combine the following results in [31]: Lemma 4.2, Theorem 4.3 and Proposition 4.4.

(ii) Applying (i) to (A, λA), there is a unique algebra morphism f : H→ H such that λ′A = ( f ⊗A)λA. The
existence of its inverse is assured by applying (i) to (A, λ′A). We now check that f is a bialgebra morphism.
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That ∆ f = ( f ⊗ f )∆ and ε f = ε follows from (i) and the following computations:

((∆ f ) ⊗ A)λA = (∆ ⊗ A)λ′A
= (H ⊗ λ′A)λ′A
= (H ⊗ f ⊗ A)(H ⊗ λA)( f ⊗ A)λA
= (H ⊗ f ⊗ A)( f ⊗H ⊗ A)(H ⊗ λA)λA
= (H ⊗ f ⊗ A)( f ⊗H ⊗ A)(∆ ⊗ A)λA
= ((( f ⊗ f )∆) ⊗ A)λA.

((ε f ) ⊗ A)λA = (ε ⊗ A)λ′A = IdA = (ε ⊗ A)λA.

Being f a bialgebra morphism, it is a Hopf algebra morphism.

Let A be a left H-comodule algebra and f ∈ AutHop f (H). The morphism λ f
A = ( f ⊗ A)λA endows A

with a structure of left H-comodule algebra. We will denote this new object by fA. Moreover, if A is an
H-bicomodule algebra, then fA is such, too. Symmetrically, we write A f for the right version of the above
fact.

Theorem 4.21 Let H ∈ C be a flat and cocommutative Hopf algebra. Under Assumption 4.11 (e.g. C symmetric)
AutHop f (H) acts on Gal(C,H) by A ◁ f = A f−1 and there is a group isomorphism

Ψ : AutHop f (H) ⋉Gal(C,H)→ BiGal(C; H), ( f , [A]) 7→ [ f (
•

A)].

Proof. If A is right H-Galois object and f ∈ AutHop f (H), then A f−1
is a right H-Galois object too because

canA f−1 = (A⊗ f−1)canA and clearly A f−1
is faithfully flat. This gives a right action of AutHop f (H) on Gal(C,H)

and we may consider the semidirect product AutHop f (H) ⋉Gal(C,H).

We check that Ψ is a group morphism. Let [A], [B] ∈ Gal(C,H) and f , 1 ∈ AutHop f (H). We have the
following isomorphism of H-bicomodule algebras:

f (
•A)□H

1(
•B) = f (

•A)11
−1
□H
1(
•B)

= ( f (
•A)1

−1
)1□H

1(
•B)

� f (
•A)1

−1
□H

•B
= f11−1

(
•A)1

−1
□H

•B
= f1( 1

−1
(
•A)1

−1
□H

•B)
= f1(

•

(A1−1
)□H

•B).
� f1(

•

(A1−1
□HB)).

This shows thatΨ( f , [A])Ψ(1, [B]) = Ψ( f1, (A ◁ 1)□HB) = Ψ(( f , [A])(1, [B])).

We show the injectivity of Ψ. Assume that f (
•A) � H as H-bicomodule algebras. Then A � H as

right H-comodule algebras and hence
•A � H as H-bicomodule algebras. Hence we have an isomorphism

1 : H → f H of H-bicomodule algebras. By (i) of the preceding proposition, there is an algebra morphism
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φ : H→ I such that 1 = (φ ⊗H)∆H. Now we calculate:

( f−1
⊗ 1)canl =

H H��
	
f -1 1

H H

1 al1.m.
=

H H��
1 1

f -1 
	
H H

1 le f t
H-colin.
=

H H
1 1��
	

H H

1
=

H H� �
1

φ ��
	
I H H

coass.
=

H H��
1
	��

φ

I H H

nat.
=

H H��
1
	��

φ

H I H

cocomm.
=

H H��
1
	��

φ

H I H

coass.
=

H H� �
1��

φ 
	
H I H

1
=

H H��
1 1
	

H H

1 al1.m.
=

H H��
	
1

H H

= (H ⊗ 1)canl.

Using this,
f−1
⊗ ηH = ( f−1

⊗ 1)(H ⊗ ηH)
= ( f−1

⊗ 1)canlcan−1
l (H ⊗ ηH)

= (H ⊗ 1)canlcan−1
l (H ⊗ ηH)

= (H ⊗ 1)(H ⊗ ηH)
= (H ⊗ ηH).

Applying H ⊗ ε to this equality, we get f−1 = IdH.
We finally show the surjectivity of Ψ. Let B be an H-biGalois object. Then it is a right H-Galois object.

Turn it into a left H-comodule algebra and consider the H-biGalois object
•B. By (ii) of the above proposition

applied to (
•B, λ•B), there is f ∈ AutHop f (H) such that λB = ( f ⊗ B)λ•B. Hence B � f (

•B) as H-bicomodule
algebras.

In Section 6 we will compute the group of biGalois objects for some examples of cocommutative braided
Hopf algebras.

5. A short exact sequence for the group of Galois objects

In this section we present the main result of this paper, the construction of the short exact sequence

1 H2(C; H, I)- Gal(C; H)-ζ Picco(C; H),-ξ

connecting second Sweedler cohomology group, the group of Galois objects and the Picard group of a flat
and cocommutative Hopf algebra H ∈ C. The construction is done in several steps: the first subsection is
devoted to Sweedler cohomology; second subsection deals with the definition and properties of the map
ζ; the results needed for the exactness are established in the third subsection; fourth subsection treats the
Picard group and the definition of ξ and in the fifth subsection all the pieces are put together to prove the
result.

5.1. Sweedler cohomology
The construction of Sweedler cohomology done in [33] passes mutatis mutandis to the categorical setting.

There is only one point about the braiding to care about.
Let C be a coalgebra and A an algebra in C. The set S := C(C,A) of morphisms from C to A is a monoid

with the convolution product f ∗ 1 = ∇A( f ⊗ 1)∆C for f , 1 ∈ S, and unit 1S = ηAεH. If C is cocommutative
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and A commutative, then C(C,A) is abelian. We denote by Reg(C,A) the group of morphisms from C to A
invertible with respect to the convolution product.

Let H be a cocommutative Hopf algebra and A a commutative H-module algebra in C. We denote by
H⊗n the n-fold tensor product of H. For n = 0 it is H⊗0 = I. Since H is cocommutative,ΦH,H = Φ

−1
H,H (Theorem

4.17) and hence H⊗n is again a cocommutative Hopf algebra. Then Reg(H⊗n,A) is abelian. For i = 0, . . . ,n+1
and f ∈ Reg(H⊗n,A) we define morphisms ∂i : Reg(H⊗n,A) −→ Reg(H⊗(n+1),A) by:

∂0( f ) = µ(H ⊗ f ),
∂i( f ) = f (H ⊗ · · · ⊗H︸        ︷︷        ︸

i−1

⊗∇H ⊗H · · · ⊗H), i = 1, . . . ,n,

∂n+1( f ) = f ⊗ εH,

where µ : H⊗A −→ A denotes the H-module structure morphism of A. The maps ∂i’s are group morphisms.
We set ∂−1

i ( f ) = ∂i( f−1) and further define

dn := ∂0 ∗ ∂
−1
1 ∗ · · · ∗ ∂

(−1)n+1

n+1 : Reg(H⊗n,A) −→ Reg(H⊗(n+1),A),

where (∂i∗∂ j)( f ) := ∂i( f )∗∂ j( f ) in Reg(H⊗(n+1),A). One then has that di’s are group morphisms (commutativity
of Reg(H⊗(n+1),A) is needed for this) and didi−1 = 1Reg(H⊗(i+1),A), for i ≥ 1, which makes

Reg(I,A) Reg(H,A)-d0
· · ·-d1 Reg(H⊗n,A)-dn−1 Reg(H⊗n+1,A)-dn

· · ·-dn+1

into a complex.

Definition 5.1 Morphisms from Zn(C; H,A) := Ker(dn) are called n-cocycles and those from Bn(C; H,A) :=
Im(dn−1) n-coboundaries. The quotient group

Hn(C; H,A) = Zn(C; H,A)/Bn(C; H,A)

is called n-th Sweedler cohomology group with values in A.

Two n-cocycles f and 1 are called cohomologous, denoted by f ∼ 1, if they are in the same class in
Hn(C; H,A). That is, f ∗ 1−1

∈ Bn(C; H,A), or equivalently, f = dn−1h ∗ 1, for some h ∈ Reg(H⊗(n−1),A).

Let us consider second Sweedler cohomology group for A = I. The left H-action on I is then given by
ε : H � H ⊗ I −→ I. A 2-cocycle is then a morphism σ ∈ Reg(H ⊗H, I) for which it holds

d2(σ) = (∂0 ∗ ∂
−1
1 ∗ ∂2 ∗ ∂

−1
3 )(σ) = 1Reg(H⊗3,I).

A 2-coboundary is a morphism τ ∈ Reg(H⊗H, I) for which there existsκ ∈ Reg(H, I) so that τ = d1(κ) = (∂0∗∂−1
1 ∗

∂2)(κ). In braided diagrams the 2-cocycle and the 2-coboundary conditions, rewritten as (∂1 ∗∂3)(σ) = (∂2 ∗∂4)
and τ ∗ ∂1(κ) = (∂0 ∗ ∂2)(κ) respectively, take the form:

H H H����

	

σ σ

=

H H H����

	

σ σ

(5.13)

H H����
τ 
	

κ

=

H H

κ κ
(5.14)
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Definition 5.2 A 2-cocycle σ that satisfies

H r
σ
=

Hr = Hr
σ

is called normalized.

Composing d2(σ−1) = 1Reg(H⊗3,I) with H ⊗ ηH ⊗ ηH and d2(σ) = 1Reg(H⊗3,I) with ηH ⊗ ηH ⊗ H, one obtains
respectively:

H

r =

Hr r r
σ−1 σ

(5.15)

H

r =

Hr r r
σ−1 σ

(5.16)

In future computations we will need the explicit form of the 2-coboundary condition d1(κ) = (∂0 ∗∂−1
1 ∗∂2)(κ),

H H��
��

κ
	
κ κ−1

(5.17)

Lemma 5.3 Every 2-cocycle σ is cohomologous to a normalized one.

Proof. Clearly κ = σ−1(H⊗ηH) ∈ Reg(H, I) and σ ∼ σ ∗d1(κ). We prove that the latter 2-cocycle is normalized.
Note that κ−1 = σ(H ⊗ ηH). We have:

H r
σ∗d1(κ)

(5.17)
=

H� �r r
σ

��
��

κ
	
κ κ−1

=

H� �r � �r
σ κ−1 κ κ

κ∗κ−1

=

H r r r
σ σ−1

(5.15)
=

H

r

Hr
σ∗d1(κ)

(5.17)
=

H� �r r
σ

��
��

κ
	
κ κ−1

=

H� �r � �r
σ κ κ−1 κ

κ∗κ−1

=

Hr r r
σ σ−1

(5.16)
=

H

r
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Proposition 5.4 Let H ∈ C be a cocommutative Hopf algebra and σ ∈ Reg(H ⊗ H, I). We define Hσ := H as
H-comodule and consider the following morphisms:

Hσ Hσ
	
Hσ

=

H H����
σ 
	

H

and
r

Hσ

=

r r
σ−1r
H

(5.18)

If σ is a 2-cocycle, then Hσ is a right H-comodule algebra. Moreover, if σ is normalized, then the unit on Hσ coincides
with ηH.

Proof. Using that H is cocommutative and applying Theorem 4.17 we will prove that the 2-cocycle condition
expressed in Diagram (5.13) is equivalent to

H H H����
σ 
	����

σ 
	
H

=

H H H����
σ 
	����

σ 
	
H

(5.19)

This just means that the multiplication of Hσ is associative. For the unit property we find

Hσ r
	
Hσ

=

H r r
σ−1r����

σ 
	
H

=

H r r
σ−1��r

σ

H

coc.
=

H r r��
σ−1r

σ

H

nat.
=

H�� r rr σ−1

σ

H

(5.15)
=

H��r
H

=

H

H

Hσr
	
Hσ

=

Hr r
σ−1r����
σ 
	

H

=

Hr r
σ−1r ��

σ

H

(5.16)
=

H��r
H

=

H

H

Thus Hσ is an algebra. We proceed to prove what the 2-cocycle condition in Diagram (5.13) is equivalent to
(5.19). Starting from Diagram (5.13) one obtains:

H H H��
����

	

σ σ

H

=

H H H��
����


	
σ σ

H
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By cocommutativity of H, coassociativity and naturality we have:

H��
��

H H H

=

H��
��

H H H

We apply this to the first tensor factor in the left hand-side diagram and simultaneously cocommutativity
of H to the second tensor factor and we get:

H H H��
����


	
σ σ

H

=

H H H��
����


	
σ σ

H

Then it is also true that:
H H H���� ��

���� 
	

	

σ σ� 
H

=

H H H���� ��

	����


	
σ σ� 

H

Denote the left hand-side by Σ and the right one by Ω. By naturality (and left and right unity constraints)
we have that Σ further equals to

Σ =

H H H�� ����
�� 
	

σ ��

	

σ� 
H

nat.
=

H H H�� ����
�� 
	

σ ��

	 
	

σ

H

Th. 4.17
ass.
=

H H H�� ����
��

σ ��

	 
	

σ 
	
H

coass.
nat.
=

H H H����
σ ����


	
	��
σ 
	

H

bial1.
=

H H H����
σ 
	����

σ 
	
H
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Similarly, Ω equals to

Ω
nat.
=

H H H�� ��
���� ��


	
	
σ

� 
σ

H

Th. 4.17
coass.
=

H H H�� ��
�� �� ��


	
	
σ

� 
σ

H

2×nat.
bial1.
=

H H H����
σ 
	����

σ 
	
H.

Thus the equation Σ = Ω finally yields (5.19).
Conversely, we start now from Diagram (5.19) to obtain Diagram (5.13). Let Σ denote the left hand-side

of (5.19) and Ω the right one. Then:

εHΩ =

H H H����
σ 
	����

σ 
	r
counit
=

H H H����
σ 
	
σ

nat.
= (∂1 ∗ ∂3)(σ).

εHΣ =

H H H����
σ 
	����

σ 
	r
counit
=

H H H����
σ 
	

σ

2×coc.
=

H H H����
σ 
	

σ

Th. 4.17
=

H H H����
σ 
	

σ

nat.
= (∂2 ∗ ∂4)(σ).

We continue with the proposition under proof. We should show that Hσ is an H-comodule algebra. For
the compatibility of the H-comodule structure and multiplication of Hσ we have:

Hσ Hσ� 
PP

Hσ H

=

H H����
σ 
	��

H H

bial1.
=

H H����
σ ����


	
	
H H

2×
coass.
nat.
=

H H�� ��
�� ��
σ 
	
	

H H

nat.
=

H H� �� �
� ����

σ 
	
H H

=

Hσ Hσ

PP PP


	
	
Hσ H

The compatibility with unit of Hσ is also satisfied, so Hσ is a right H-comodule algebra. The last statement
is clear.

In the above proof we have also established:

Corollary 5.5 For a cocommutative Hopf algebra H a morphism σ ∈ Reg(H ⊗ H, I) is a 2-cocycle if and only if the
multiplication on Hσ defined in (5.18) is associative.
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5.2. Cocycles and Galois objects
We will now use the cocycle twisting of the multiplication presented in the previous section to define

an injective group morphism from H2(C; H, I) into the group of H-Galois objects with a normal basis.

Proposition 5.6 Let H ∈ C be a flat and cocommutative Hopf algebra. The map

ζ : H2(C; H, I) −→ Galnb(C; H), [σ] 7→ [Hσ]

is a group monomorphism.

Proof. We have that Galnb(C; H) is a group due to Corollary 4.19. By Proposition 5.4 we know that Hσ is a
right H-comodule algebra. We are going to prove here that Hσ is an H-Galois object. Clearly it will have a
normal basis. Then we will prove that ζ does not depend on the choice of a representative of the class of σ,
that it is compatible with the product and that it is injective.

1) Let us prove that Hσ is an H-Galois object. In Corollary 3.13 we have seen that H = Hσ is faithfully flat.
We claim that the inverse of canHσ is given by

γ :=

H H��
������

Sh Sh
	
σ−1� 
H H

We first record several identities to be used in the proof of γcanHσ = idHσ⊗Hσ . They are:

H� ���
Sh

H H H

nat.
coass.
=

H� ���
Sh
H H H

coc.
=

H� ���
Sh
H H H

coass.
=

H� ���
Sh
H H H

(5.20)

H H� �� �

	��

Sh
	
H H H

coass.
ass.
=

H H� �� �
Sh ��
	


	
H H H

coass.
=

H H� �
��

Sh
	

	 ��

H H H

antip.
counit
unit
=

H H��
H H H

(5.21)

H� ���
H H H

coc.
=

H� ���
H H H

coass.
=

H� ���
H H H

(5.22)

We set

ω :=

H H��
Sh
	
σ−1



B. Femić / Filomat 36:15 (2022), 5179–5220 5205

Then we have

Hσ Hσ

canHσ

γ

Hσ Hσ

=

H H������ ��
σ 
	������

Sh Sh
	
σ−1� 
H H

bial1.
=

H H� �����
σ ������


	
	 ��
ω

Sh� 
H H

coass.
nat.
=

H H� ��� � �� �
σ

� ��� ��
Sh
	
	

� ω

H H

(5.20)
=

H H� ��� � �� �
σ

� ��� ��
Sh
	
	

� ω

H H

nat.
=

H H� ��� � �� �
σ

� ��� ��
Sh
	

� 
	
ω

H H

(5.20)
=

H H� ��� � �� �
σ

� ���
Sh ��
	 
	
	 ω

H H

coass.
ass.
=

H H� ��� � ���
σ

����
Sh ��


	
	
	 ω

H H

nat.
antip.
=

H H��� �� �
σ r ���� ��r 
	
	 ω

H H

=

H H��� ���
σ �� ��
	

ω

H H

ω
=

H H��� �� �
σ

� ��� ��
	Sh
	
σ−1

H H

(5.21)
=

H H��� �
σ ����

σ−1

H H

nat.
=

H H� ����� ��
σ−1

σ

H H

(5.22)
coass.
=

H H� ����� ��
σ−1

σ

H H

nat.
=

H H�� ��
����
σ σ−1

H H

σ∗σ−1

=

H H����
r r

H H

=

H H

H H
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As before we next record a few identities needed in the proof of canHσγ = idHσ⊗H. We have

H H

Sh
	��
H H

bial1.
=

H H

Sh����

	
	
H H

S coal1.
antih.
=

H H����
ShSh


	
	
H H

coc.
=

H H����
ShSh


	
	
H H

coc.
nat.
=

H H����
ShSh


	
	
H H

(5.23)

On the other hand, we also have

H H� �
Sh ��
	� 

H H

coass.
ass.
=

H H����
Sh
	
	
H H

antip.
=

H H��rr
	
H H

=

H H

H H

(5.24)

Applying coassociativity (and cocommutativity) in appropriate way one obtains the following equalities:

H� �����
H H H H

=

H� �� ���
H H H H

(5.25)

H� �� ���
H H H H

=

H� �����
H H H H

(5.26)

H� �
��� ���

H H H H H

=

H� �� �����
H H H H H

(5.27)

H� ���
H H H

=

H� �
��

H H H

(5.28)

We now compute

Hσ H
γ

canHσ

Hσ Hσ

=

H H��
������

Sh Sh
	
σ−1� � �����
σ 
	

H H

(5.23)
coc.
=

H H��
����� �

Sh
	
σ−1� �� � ��

Sh Sh ��� � 
σ 
	

H H

(5.25)
nat.
=

H H��
����� �

Sh � �
	 ��
σ−1 ShSh� �

� � ��� 
σ

H H

(5.24)
=

H H��
����� �

Sh Sh
	 ��
σ−1� �

� 
σ

H H
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(5.28)
(5.27)
=

H H� �� �� �������
Sh Sh
	
σ−1

� 
σ

H H

nat.
=

H H� �� ��� � ���
ShSh ��
	
σ−1� 

σ

H H

nat.
=

H H� �� ��� � ���
ShSh ��


	
	
σ−1

σ

H H

(5.23)
=

H H��� �
Sh � �
	����
σ−1

σ

H H

nat.
=

H H��� �
Sh ��
	����
σ σ−1

H H

coc.
=

H H��� �
Sh ��
	����
σ σ−1

H H

σ∗σ−1

=

H H����
Sh
	r

H H

ε al1.mor.
S coal1.mor.
=

H H����r r
H H

=

H H

H H

This proves that canHσ is an isomorphism and that Hσ is an H-Galois object.

2) We next show that ζ : H2(C; H, I) −→ Galnb(C; H) does not depend on the choice of the representative.
Assume that σ ∼ τ and let κ ∈ Reg(H, I) be such that σ = d1(κ) ∗ τ. We will prove that φ := (κ ⊗ H)∆H : Hσ

−→ Hτ is an isomorphism of right H-comodule algebras. Its inverse is φ−1 := (κ−1
⊗ H)∆H. Colinearity is

immediate. To check the compatibility with the algebra structure we record some necessary equalities.
Applying three times coassociativity and once cocommutativity in an appropriate way we obtain

H� �� ���
H H H H

=

H� �� ���
H H H H

(5.29)

H� �� ��� ��
H H H H H

=

H� �� ���
��

H H H H H

(5.30)

We now compute:

Hσ Hσ
	
φ

Hτ

=

H H����
σ 
	��

κ

H

σ=d1(κ)∗τ
(5.17)
bial1.
=

H H� �� �
���������� 
	
	��

τ κ

κ
	
κ κ−1

H

coass.
=

H H�� � �� ������� ��
��

τ 
	
	
κ κ
	

κ κ−1

H

nat.
=

H H� �� �
�� ���� ���� 
	
	��

τ κ

κ
	
κ κ−1

H
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2×nat.
(5.29)
=

H H� �� �
� �� ���� � ���� 
	

κ κ 
	�  τ κ

κ−1

H

(5.30)
=

H H� �� �� �� � 
	� �
κ

� ��� ��
κ

�  τ 
	
κ−1 κ

H

nat.
=

H H� �� �� �� � 
	� �
κ

� ��� ��
κ τ�  
	

κ−1 κ

H

2×nat.
=

H H� �������
	
κ����

κ τ��� �

	� 
κ−1 κ

H

bial1.
nat.

coass.
=

H H��� �
κ

� ���
����� 
κ τ� � �

κ−1 κ

H

κ−1
∗κ

ε al1.mor.
=

H H� ���
κ

� �
��
κ τ � 

H

coass.
=

H H�� ��
κ κ����

τ 
	
H

=

Hσ Hσ

φ φ
	
Hτ

This proves that φ : Hσ −→ Hτ is compatible with multiplication. From the condition σ = d1(κ) ∗ τ we have
σ−1 = τ−1

∗ d1(κ−1). Then φ is also compatible with unit, since

r
φ

Hτ

=

r r
σ−1r��

κ

Hτ

(5.17)
=

r��rr r
τ−1

��r r κ−1

κ 
	
κ−1 κ

Hτ

ηH
=

rr r r ��r
τ−1 κ κ−1 κ κ−1r

Hτ

κ−1
∗κ

κ∗κ−1

=

r r r r
τ−1 r rr

Hτ

=

r r
τ−1r

Hτ

=
r

Hτ

This finishes the proof that φ : Hσ −→ Hτ is an isomorphism of right H-Galois objects.

3) We next prove that ζ is a group morphism by showing that Hσ∗τ � Hσ□HHτ as right H-comodule
algebras. We know from Lemma 4.6 that the morphism ∆H : H −→ H ⊗H factors through the (bi)comodule
isomorphism ∆H : H −→ H□HH � H such that eH,H∆H = ∆H. Furthermore, Hσ∗τ = H and Hσ□HHτ � H□HH
as right H-comodules. It remains to prove that ∆H : Hσ∗τ −→ Hσ□HHτ is an algebra morphism. By 2.4(a) it
suffices to prove that ∆H : Hσ∗τ −→ Hσ ⊗Hτ is an algebra morphism (e : Hσ□HHτ −→ Hσ ⊗Hτ is such, since H
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is a bialgebra). We have

Hσ∗τ Hσ∗τ� 
∆H

Hσ Hτ

=

H H����
σ∗τ 
	��

H H

=

H H� �� �
��������
σ τ 
	
	

H H

2×coass.
3×nat.
=

H H� �� �
��� �

σ τ ����

	
	
H H

coc.
=

H H� �� �
��� �

σ τ ����

	
	
H H

nat.
=

H H� �� �
����

τ

σ
����

	
	
H H

nat.
(5.25)
=

H H� �� �� �
σ

����
τ��


	
	
H H

(5.26)
=

H H� �� �� �� �� �
σ

��
τ

� � 
H H

nat.
=

H H� �� �� �� �� �
σ 
	��

τ� 
H H

2×nat.
=

H H� �� �
� �������

σ 
	
τ 
	

H H

coc.
=

H H� �� �
��������
σ 
	 τ 
	

H H

=

Hσ∗τ Hσ∗τ

∆H ∆H

∇Hσ⊗Hτ

Hσ⊗Hτ

showing that ∆H : Hσ∗τ −→ Hσ ⊗Hτ is multiplicative. It also preserves the unit. We have (σ ∗ τ)−1 = σ−1
∗ τ−1

and thus

r r
σ−1
∗τ−1r� �

Hσ Hτ

=

r r����
σ−1 τ−1r r

H H

=

r r r r
σ−1 τ−1r r

H H

=
r r

Hσ Hτ

=
r

Hσ⊗Hτ

Thus ∆H : Hσ∗τ −→ Hσ□HHτ is an isomorphism of H-comodule algebras.

4) We finally prove that ζ is injective, that is, if Hσ � Hτ as H-comodule algebras, then σ ∼ τ. Let φ : Hσ

−→ Hτ be the given H-comodule algebra isomorphism. We define κ := εHφ : H −→ I. It is convolution
invertible with inverse κ−1 = κS = εHφS. Indeed,

H

κ−1
∗κ
=

H� �hS
φ φr r

ε al1.mor.
=

H� �hS
φ φ� r

φ al1.mor.
=

H� �hS� 
φr

=

Hrr
φr

φ al1.mor.
=

Hrrr
=

H

r
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We claim that σ = d1(κ) ∗ τ. Note that φ = (κ ⊗H)∆H : H −→ H, since

H��
κ

H

=

H��
φr

H

φ colin.
=

H
φ��r

H

=

H

φ

H

Then φ : Hσ −→ Hτ is the same one we have dealt with in 2). When we proved that φ : Hσ −→ Hτ is an
algebra morphism in the diagram computation after (5.30), we have proved ∇Hτ (φ ⊗ φ) = φ∇d1(κ)∗τ – taking
into account the bialgebra compatibility written out there (see the thitd diagram from the start and the
penultimate diagram in that computation). Observe that in the mentioned computation we have used only
the definition of φ. Using that φ is an algebra morphism, ∇Hτ (φ ⊗ φ) = φ∇Hσ , since φ is an isomorphism,
from the former equality we get ∇Hσ = ∇d1(κ)∗τ. Applying εH to this we obtain σ = d1(κ) ∗ τ, as desired.

Notice that in the course of the above proof we have shown that Hσ � Hτ as H-comodule algebras if and
only if σ ∼ τ.

5.3. Galois objects with a normal basis
The aim of this subsection is to prove that the group monomorphism ζ from Proposition 5.6 is surjective,

yielding Galnb(C; H) � H2(C; H, I). The proof for the following claim can be found in the first part of the
proof of [1, Proposition 9], where it is formulated for symmetric monoidal categories. We show that the
symmetricity hypothesis is not necessary.

Lemma 5.7 Let A be an H-Galois object with a normal basis, where H is cocommutative. There is a convolution
invertible right H-colinear morphism ν : H −→ A satisfying νηH = ηA.

Proof. Denote by ψ : H −→ A the right H-comodule isomorphism. We define the morphism ν : H −→ A as
ν := κ⊗ψ, where κ := εHψ−1ηA : I −→ I is a commuting factor (because of the left and right unity constraints).
We first prove that νηH = ηA. Indeed,

νηH = (ψηH) ⊗ κ= (ψSηH) ⊗ (εHψ−1ηA)
= (ψS)(∇H(S ⊗H)∆H)(ψ−1ηA)
= ψS∇H(S ⊗H)(ψ−1

⊗H)ρAηA

= ψS∇H(Sψ−1
⊗H)(ηA ⊗ ηH)

= ψSSψ−1ηA
= ψψ−1ηA

= ηA.

Then

κ ⊗ (ψηH) = ηA. (5.31)

We have that ν is right H-colinear, as so are κ and ψ. Let us prove that the convolution inverse of ν is given
by ν′ := ∇A(A ⊗ (εHψ−1) ⊗ A)(γr ⊗ (ψηH)). Recall that γr = can−1(ηA ⊗H). Since can is left A-linear we have
(∇A ⊗ A)(A ⊗ γr) = can−1. In the following diagrams ψ′ will stand for ψ−1. We have:

ν ∗ ν′ =

H� �r
κ ψ γr ψ

ψ′r� � 
A

(5.31)
=

H� �
ψ γr
	ψ′r

A

=

H��
ψ

can−1

ψ′r
A

ψ ri1ht
H-colin.
=

H

ψ

PP

can−1

ψ′r
A

=

Hr ψ

can

can−1

ψ′r
A

=

Hr ψ

ψ′r
A

=

Hrr
A
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On the other hand:

ν′ ∗ ν =

H� �
γr r ψ

ψ′ ψ κr� � 
A

(5.31)
=

H��
γr ψ

ψ′r� 
A

γr ri1ht
H-colin.
=

H
γr

PP
ψ′ ψr� 
A

ψ′ ri1ht
H-colin.
=

H
γr

ψ′��r ψ� 
A

εH
=

H
γr
	
A

=

Hrr
A

A right H-comodule algebra A for which there exists an H-colinear convolution invertible morphism
ν : H −→ A is called H-cleft, and the morphism ν is called a cleaving morphism. One may always assume that
νηH = ηA, because otherwise one may take ν′ := ∇A[(ν−1ηH) ⊗ ν]. Thus together with the above lemma we
have proved:

Corollary 5.8 An H-Galois object with a normal basis is H-cleft.

Due to [3, Proposition 1.2c)], for an H-Galois object A with a normal basis one has A � AcoH#σνH as
H-comodule algebras, where σν ∈ H2(C; H,AcoH) is obtained as a factorization through AcoH of the morphism
σν = (∇A(ν ⊗ ν)) ∗ ((ν−1

∇H)) : H ⊗H −→ A. Here ν is a cleaving morphism for A. The cocycle twisted smash
product turns out to be isomorphic to Hσν from (5.18), since AcoH � I.

Theorem 5.9 The monomorphism ζ from Proposition 5.6 is an isomorphism. Therefore
Galnb(C; H) � H2(C; H, I).

Proof. Take an H-Galois object A with a normal basis and let ν be like in Lemma 5.7. With σν the 2-cocycle
as in the above paragraph, we know from Proposition 5.6 that Hσν is an H-Galois object. Let us prove that
ν : Hσν −→ A is an isomorphism of H-comodule algebras (Proposition 3.14). By Lemma 5.7 we know that ν
is right H-colinear. That ν is compatible with multiplication follows from the following calculation:

H H����
σν 
	

ν

A

unit
=

H H����
σν 
	r ν
	

A

σν
=

H H����
σν 
	

ν
	
A

σν
=

H H� ���
����
	

ν

ν ν 
	
	 ν−1� � 
A

2×coass.
nat.
=

H H� �� ��� ��
ν ν 
	
	
	 ν−1 ν� � 

A

nat.
bial1.
=

H H����
ν ν 
	
	��

ν−1 ν� � 
A

ν−1
∗ν
=

H H����
ν ν 
	
	 rr� 

A

counit
unit
=

H H

ν ν
	
A

Note that in the second equality we identified the equalizers (AcoH, iA) and (I, ηA) according to Proposition
3.9. We next check that ν is compatible with the unit. The convolution inverse of σν is induced by the
convolution inverse of σν, that is, σ−1

ν = (ν∇H) ∗ (∇AΦA,A(ν−1
⊗ ν−1)). Then:

νηHσν
= νηH(σν)−1(ηH ⊗ ηH) Lem.5.7

= ηA(σν)−1(ηH ⊗ ηH) = σ−1
ν (ηH ⊗ ηH).
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On the other hand, νηH = ηA implies ν−1ηH = ηA. Finally,

σ−1
ν (ηH ⊗ ηH) =

r r��� �

	 ν−1 ν−1

ν 
	� 
A

unit
nat.
=

r r r r
	 ν−1 ν−1

ν 
	� 
A

unit
Lem.5.7

nat.
=

r r
ν−1 ν−1� 

A

unit
= ηA

5.4. The Picard group

Dually to the Morita theory which characterizes equivalences between categories of modules, Takeuchi
proposed in [34] a theory that describes equivalences of categories of comodules for coalgebras over a
field. This theory is called Morita-Takeuchi theory. Torrecillas and Zhang defined in [35] the Picard group
of a coalgebra over a field as the set of isomorphism classes of bicomodules giving a Morita-Takeuchi
equivalence. In this section we define the Picard group of a cocommutative coalgebra in a braided monoidal
category.

Module categories and module functors over a monoidal category Cwere treated already in [26], under
the namesC-categories andC-functors, respectively. For newer reference see [12, Definitions 7.1. and 7.2.1].
It is immediate to check and well-known that the categories of the form C

C are right C-module categories.
For the purpose of our next result we recollect that a functor F : D

C −→
C
C is right C-linear if for all M ∈ D

C

and X ∈ C there are natural isomorphisms F (M ⊗ X) � F (M) ⊗ X satisfying a pentagonal and a triangular
diagram. Here M ⊗ X inherits the structure of a left D-comodule from that of M. Pareigis established in
[27, Theorems 5.1 and 5.3] Morita Theorems for categories of modules in a monoidal category. Using his
theorems, read in the opposite category, we will prove the following result.

Theorem 5.1 Let C and D be flat coalgebras in C. The following assertions are equivalent:

(i) The functorsF : D
C

C
C : G-� establish a C-module equivalence;

(ii) There is P ∈ C
C

D flat and coflat in CD such that F (−) � P□D− and Q ∈ D
C

C flat and coflat in CC such
that G(−) � Q□C−, together with bicomodule isomorphisms f : C −→ P□DQ and 1 : D → Q□CP so that the
following diagrams

-λP C□CP

P□D(Q□CP) � (P□DQ)□CP
?

f□CP

P

P□DD
?

ρP

-
P□D1

(5.32)

-λQ D□DQ

Q□C(P□DQ) � (Q□CP)□DQ
?

1□DQ

Q

Q□CC
?

ρQ

-
Q□C f

(5.33)

commute. The isomorphisms λ’s and ρ’s are those from Lemma 4.6.
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Proof. (i) ⇒ (ii) The coalgebras C and D become algebras in the opposite category Cop, that we denote
by Co and Do respectively. Taking into account that by duality, Co (Cop) � (C

C)op and similarly for D,
condition (i) read in Cop means that there are Cop-module equivalence functors F o : Do (Cop) −→ Co (Cop) and
G

o : Co (Cop) −→ Do (Cop). By Morita Theorem [27, Theorem 5.1], F o(−) � Po
⊗Do − for some Po

∈ Co (Cop)Do

and Go(−) � Qo
⊗Co − for some Qo

∈ Do (Cop)Co (here ⊗Co denotes the tensor product over the algebra Co, a
construction dual to that of the cotensor product). Moreover, we have that Po is coflat (in Pareigis’ sense) in
(Cop)Do and Qo is coflat in (Cop)Co , as well as that there are isomorphisms f o : Po

⊗Do Qo
−→ Co in Co (Cop)Co and

1o : Qo
⊗Co Po

−→ Do in Do (Cop)Do so that there are two commutative diagrams, which read in C are Diagrams
(5.32) and (5.33). Back in C we have thus objects P ∈ C

C
D coflat in CD and Q ∈ D

C
C coflat in CC such that

F (−) � P□D− and G(−) � Q□C−, and isomorphisms f : C −→ P□DQ in C
C

C and 1 : D → Q□CP in D
C

D so
that the desired two diagrams commute.

Let us prove that P is flat, then similarly Q will be flat, too. Consider the following equalizer in C:

E X-e -k
Y-

l

Since D is flat,

D ⊗ E D ⊗ X-D ⊗ e -D ⊗ k
D ⊗ Y-

D ⊗ l

is an equalizer in C, which by 2.3 becomes an equalizer in D
C. We now apply that P□D− : D

C −→
C
C is a

C-module equivalence to conclude that

P□D(D ⊗ E) P□D(D ⊗ X)-P□D(D ⊗ e) -P□D(D ⊗ k)
P□D(D ⊗ B)-

P□D(D ⊗ l)

i.e.

(P□DD) ⊗ E (P□DD) ⊗ X-(P□DD) ⊗ e -(P□DD) ⊗ k
(P□DD) ⊗ Y-

(P□DD) ⊗ l

is an equalizer in C
C (we are using coflatness of P in CD). Applying the isomorphism P□DD � P and the

fact that the forgetful functorU : C
C −→ C preserves equalizers since C is flat (2.3) , we finally obtain that

P ⊗ E P ⊗ X-P ⊗ e -P ⊗ k
P ⊗ Y-

P ⊗ l

is an equalizer in C.

(ii)⇒ (i) Note that we have the associativity laws in the two diagrams by Lemma Lemma 4.7. Likewise,
by part (ii) of the mentioned lemma, we have P□D(Q□CM) � (P□DQ)□CM � C□CM � M for every M ∈ C

C.
Similarly, Q□C(P□DN) � (Q□CP)□DN
� D□DN � N for every N ∈ D

C. In other words, putting F := P□D− : D
C −→

C
C and G := Q□C− : C

C −→
D
C,

we have FG � IdCC and GF � IdDC. The functors F and G are C-module equivalences because P and Q
are coflat in CD and CC, respectively. That the pentagon and the triangle axiom work, one sees by applying
diagram (4.10) to the pentagon and the triangle axiom for the associativity and unity constraints of C.

Definition 5.10 Let C ∈ C be a flat and cocommutative coalgebra. An invertible C-comodule is a flat right C-
comodule P coflat in CC for which there exists a further flat right C-comodule Q coflat in CC so that P□CQ � C and
Q□CP � C by C-bicomodule isomorphisms f and 1, respectively, so that the Diagrams (5.32) and (5.33) commute.
We turned right C-comodules into left ones as in (4.9).

From Morita theory it is clear that:
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Proposition 5.11 The set Picco(C; C) of isomorphism classes of invertible C-comodules in C is a group under the
product induced by the cotensor product over C, with unit the class of C and the inverse for the class of P is the class
of Q for which P□CQ � C � Q□CP. This group is called the Picard group of C.

Recall that in the proof of Theorem 4.14 we constructed a morphism Ψ : A□HB −→ B□HA, induced by
the braiding. As we have seen, it is a well defined isomorphism of H-bicomodules if C is symmetric, or if
A and B are H-Galois objects and Assumption 4.11 holds, or A and B have a normal basis. If one of these
conditions is satisfied, then in the definition of an invertible H-comodule the second isomorphism (that we
denoted as 1) is superfluous. Moreover, in this case the group Picco(C; H) is abelian.

Proposition 5.12 Let H be a flat and cocommutative Hopf algebra. A right H-Galois object A is an invertible
H-comodule.

Proof. Clearly, A and A are flat. From the paragraph after Theorem 4.10, we know that there are H-
bicomodule isomorphisms γ̃r : H −→ A□HA and γ̃l : H −→ A□HA. We are going to prove that A, and
analogously A, is coflat in CH and that the Diagrams (5.32) and (5.33) commute for P = A,Q = A, f = γ̃l and
1 = γ̃r.

To prove coflatness of A we must show that the associativity constraint induces an isomorphism (A□HN)⊗
X � A□H(N ⊗ X) for arbitrary N ∈ H

C and X ∈ C. For this purpose we consider the diagram

A
A

A
A
AAK

eA⊗H,N ⊗ X

(A ⊗H) ⊗N ⊗ X

[(A ⊗H)□HN] ⊗ X

HH
HHHHj A ⊗N ⊗ X

A ⊗ εH ⊗N ⊗ X

�
���

��*
A ⊗ λN ⊗ X

A ⊗H ⊗N ⊗ X

�
���

��*
δ−1

A,N ⊗ X

(can□HN) ⊗ X

�
�
�
�
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

can−1
⊗N ⊗ X

HHH
HHj

δA,N⊗X

�
�
�
�
�
��

eA⊗H,N⊗X

(A ⊗H)□H(N ⊗ X)

(A ⊗ A)□H(N ⊗ X)

B
B
B
B
BBN

can−1□H(N ⊗ X)

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BN

can−1
⊗N ⊗ X

���
�����

eA⊗A,N ⊗ X

(A ⊗ A) ⊗N ⊗ X

A ⊗ eA,N ⊗ X
�

�
�

�
�	

A ⊗ eA,N⊗X

@
@
@

@@R

[(A ⊗ A)□HN] ⊗ X

κA,A,N ⊗ X

@
@

@
@

@I

κ−1
A,A,N⊗X

�
�

�
�

�	
A ⊗ (A□HN) ⊗ X A ⊗ [A□H(N ⊗ X)]-β

eA⊗A,N⊗X
HHH

HHHHj

αA,A,N⊗X

�
�

�
�

�
�	

(A ⊗ A) ⊗ (N ⊗ X)

αA,A,N ⊗ X

@
@

@
@

@
@@R

A ⊗ (A ⊗N) ⊗ X A ⊗ [A ⊗ (N ⊗ X)]-A ⊗ αA,N,X

2

3

4 5

6

7

8

1

The morphisms κ are isomorphisms because A is flat (Lemma 4.3). Note that for Z ∈ H
C there is a natural

isomorphism δA,Z : A ⊗ Z −→ (A ⊗ H)□HZ induced by the structure morphism of Z. Its inverse is given by
δ−1

A,Z = (A⊗ εH ⊗Z)eA⊗H,Z. Let β be equal to the composition of the six isomorphisms lying on the remaining
edges of diagram ⟨8⟩. Clearly, β is an isomorphism. The diagrams ⟨2⟩ – ⟨7⟩ commute by definitions of
the morphisms along diagram ⟨8⟩. Using the equalizer property of ((A ⊗H)□HN, eA⊗H,N), which appears in
diagram ⟨4⟩, we find

(A⊗H)□HN X
eA⊗H,Nr
��

A H N X

e
=

(A⊗H)□HN X
eA⊗H,N��r

A H N X

=

(A⊗H)□HN X
eA⊗H,N

A H N X

(5.34)
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We now have

(A ⊗ eA,N⊗X)β(κ−1
A,A,N ⊗ X)((can−1□HN) ⊗ X)

β
= (A ⊗ eA,N⊗X)κ−1

A,A,N⊗X(can−1□H(N ⊗ X))δA,N⊗X(δ−1
A,N ⊗ X)

⟨4⟩−⟨7⟩
= αA,A,N⊗X(can−1

⊗N ⊗ X)(A ⊗ λN ⊗ X)(A ⊗ εH ⊗N ⊗ X)(eA⊗H,N ⊗ X)
(5.34)
= (A ⊗ αA,N,X)(αA,A,N ⊗ X)(can−1

⊗N ⊗ X)(eA⊗H,N ⊗ X)
⟨2⟩−⟨3⟩
= (A ⊗ αA,N,X)(A ⊗ eA,N ⊗ X)(κ−1

A,A,N ⊗ X)((can−1□HN) ⊗ X).

From here

(A ⊗ eA,N⊗X)β = (A ⊗ αA,N,X)(A ⊗ eA,N ⊗ X)
(4.10)
= (A ⊗ eA,N⊗X)(A ⊗ θA,N,X).

Since A ⊗ eA,N⊗X is a monomorphism, β = A ⊗ θA,N,X. Recalling that β is an isomorphism and that A is
faithfully flat we conclude finally that θA,N,X : (A□HN) ⊗ X −→ A□H(N ⊗ X) is an isomorphism.

We next show that Diagram (5.32) commutes. The commutativity of the other one is similarly proved.
Galois objects are faithfully flat, then Lemma Lemma 4.7 ensures the associativity laws in both diagrams.
Let λ : A −→ H□HA and ρ : A −→ A□HH denote respectively the isomorphisms from Lemma 4.6 induced by
the left and right H-comodule structure morphisms of A. In order to prove that

-ρ
A□HH

(A□HA)□HA � A□H(A□HA)
?

A□Hγ̃r

A

H□HA
?

λ

-
γ̃l□HA

(5.35)

commutes we compute:
A

ρ

A□Hγ̃r

eA,A□HA

A⊗eA,A

A⊗(A⊗A)

=

A

ρ

eA,H

A⊗γ̃r

A⊗eA,A

A⊗(A⊗A)

=

A

PP
γr

A A⊗A

=: Σ

A

λ

γ̃l□HA

eA,A□HA

eA⊗A,A

(A⊗A)⊗A

=

A

λ

γl□HA
eA⊗A,A

(A⊗A)⊗A

=

A

λ
eH,A

γl⊗A

(A⊗A)⊗A

=

A

PP

γl

A⊗A A

=: Ω

We compose Σwith canl ⊗ A and obtain

(canl ⊗ A)Σ =

A

PP
γr

PP


	
H A A

comod.
=

A

PP��
γr
	

H A A

coc.
=

A

PP��
γr
	

H A A

comod.
nat.
=

A

PP

PP
γr
	

H A A

=

A

PPr
H A A

=

A

PP

r
can-1

l

canl

H A A

= (canl ⊗ A)Ω



B. Femić / Filomat 36:15 (2022), 5179–5220 5216

Since canl ⊗ A is an isomorphism, Σ = Ω up to associativity constraint, or

(A ⊗ eA,A)eA,A□HA(A□Hγ̃r)ρ = αA,A,AeA⊗A,A(eA,A□HA)(γ̃l□HA)λ. (5.36)

The commutativity of the diagram

(A□HA)□HA (A ⊗ A)□HA-
eA,A□HA

(A ⊗ A) ⊗ A-
eA⊗A,A

A□H(A□HA) A ⊗ (A□HA)-
eA,A□HA

A ⊗ (A ⊗ A)-
A ⊗ eA,A

?

ω−1
A,A,A

?

κ−1
A,A,A

?

αA,A,A

yields αA,A,AeA⊗A,A(eA,A□HA) = (A ⊗ eA,A)eA,A□HAω
−1
A,A,A

. With this equation (5.36) becomes

(A ⊗ eA,A)eA,A□HA(A□Hγ̃r)ρ = (A ⊗ eA,A)eA,A□HAω
−1
A,A,A

(γ̃l□HA)λ.

As A ⊗ eA,A and eA,A□HA are monomorphisms, we get (A□Hγ̃r)ρ = ω−1
A,A,A

(γ̃l□HA)λ, proving that Diagram
(5.35) commutes.

5.5. The exact sequence

After preparing all the necessary ingredients, we can at last construct the announced short exact se-
quence.

Theorem 5.13 Let C be a braided monoidal category with equalizers and H ∈ C a flat cocommutative Hopf algebra.
Under Assumption 4.11, there is a short exact sequence of abelian groups

1 H2(C; H, I)- Gal(C; H)-ζ Picco(C; H),-ξ

where ζ([σ]) = [Hσ] and ξ([A]) = [A] for [σ] ∈ H2(C; H, I) and [A] ∈ Gal(C; H).

Proof. In Theorem 4.14 we proved that, under Assumption 4.11, Gal(C; H) is an abelian group. By Proposi-
tion 5.6, ζ is injective. From Proposition 5.12, ξ is well defined. Since the group structures in Gal(C; H) and
Picco(C; H) are both induced by the cotensor product over H, ξ is clearly a group morphism. The kernel of
ξ is precisely Galnb(C; H). Exactness is proved in Theorem 5.9.

We will now examine the relationship between this sequence and a similar one of Alonso Álvarez and
Fernández Vilaboa constructed in [1, Theorem 11] and [2, Proposition 0.3] for a finite and cocommutative
Hopf algebra H in a closed symmetric monoidal category with equalizers and coequalizers. The authors
proved that there is a short exact sequence

1 H2(C; H, I)- Gal(C; H)- Pic(C; H∗),-ξ (5.37)

where the group Pic(C; H∗) consists of isomorphism classes of invertible left H∗-modules. We present our
findings in an abbreviated form here, the details can be found in [13, Section 4.5].

Let Picco
f (C; H) ⊆ Picco(C; H) denote the subgroup of finite invertible H-comodules and let β : Picco

f (C; H)
−→ Pic(C; H∗) denote a morphism given by β([M]) := [M∗], where M∗ is a dual object of M whose right
H∗-module structure is induced by the right H-comodule structure of M. In [13, Theorem 5.2.5], which is
included in [11, Proposition 5.12], we proved that in a closed symmetric category C and finite H, H-Galois
objects are faithfully projective, thus finite. Hence Im(ξ) ⊆ Picco

f (C; H), and then clearly βξ = ξ. The
following is [13, Lemma 4.5.2].
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Lemma 5.2 Assume that C is a closed symmetric monoidal category with equalizers and coequalizers and that H is
a finite and cocommutative Hopf algebra. If ξ : Gal(C; H) −→ Picco(C; H) is the morphism from Theorem 5.13, then
βξ : Gal(C; H) −→ Pic(C; H∗) is the group morphism ξ from the sequence (5.37).

In a closed categoryC the modules determining the group Pic(C; H∗) from [1] and [2] which are moreover
H∗-coflat (in the sense of [25, Page 202]) can be viewed as C-autoequivalences of H∗C, dually to Theorem 5.1.
Let Picco f l(C; H∗) ⊆ Pic(C; H∗) denote the corresponding subgroup. Note that the dual condition to the
flatness appearing in Theorem 5.1, 2) is omitted, as it is automatically fulfilled. Namely, C is closed and
the tensor functor, as a left adjoint, preserves coequalizers. The relationship between the groups Picco(C; H)
of invertible Picard H-comodules and Picco f l(C; H∗) is revealed by the following proposition, which is [13,
Proposition 4.5.3].

Proposition 5.3 Assume that C is a closed braided monoidal category with equalizers and coequalizers and that H
is a finite and cocommutative Hopf algebra. There is a group isomorphism Picco(C; H) � Picco f l(C; H∗).

6. Examples

This final section will be devoted to examples to illustrate the main results of this paper. We will take C
the category of left H-modules over a quasi-triangular Hopf algebra (H,R) (over a field K). We will compute
the group of Galois objects for two examples of B ∈ C and we will compare it with the second Sweedler
cohomology group of B. The examples we will deal with are Radford Hopf algebra Hν and Nichols Hopf
algebra E(n).

6.1. Radford biproducts and Majid’s bosonization
It is well known (see [23, Theorem 10.4.2] and [22, Theorem 9.2.4]) that a Hopf algebra H with bijective

antipode over a field K (or just a bialgebra H) has a quasi-triangular structure R if and only if HM is a
braided monoidal category with braiding ΦR := τR, where τ is the flip map. The quasi-triangular structure
on H is recovered by setting R := τΦ(1H ⊗ 1H). The difference here between the bialgebra and the Hopf
algebra case is that in the latter the bijectivity of the antipode enables one to have an explicit expression for
the inverse of the quasi-triangular structureR, namely, it is: R−1 = S(R(1))⊗R(2) = R(1)

⊗S−1(R(2)). Moreover,
recall that triangular structure corresponds to a symmetric braiding.

Let H be a bialgebra and B an algebra in HM and a coalgebra in H
M. Radford’s biproduct Theorem

[28, Theorem 2.1 and Proposition 2], in the reformulation due to Majid’s observation, characterizes that the
space B × H = B ⊗ H is a bialgebra (respectively, a Hopf algebra), with particularly introduced bialgebra
(resp. Hopf algebra) structure which one calls Radford biproduct, if and only if B is a bialgebra (resp. a Hopf
algebra) in the braided monoidal category H

HYD of Yetter-Drinfel’d H-modules.
For a quasi-triangular bialgebra (H,R) every left H-module M belongs to H

HYD with coaction λ : M
−→ H ⊗M given by λ(m) := R(2)

⊗ (R(1)
·Hm) for m ∈M. Moreover, HM is a braided monoidal subcategory of

H
HYD. The process of obtaining an ordinary Hopf algebra B ×H out of a Hopf algebra B in HM as above is

called bosonization by Majid. It is a particular case of Radford’s Theorem.

6.2. Example: Radford Hopf algebra
A family of Hopf algebras generalizing Sweedler Hopf algebra was constructed by Radford in [29]. It is

Hν = K⟨1, x|12ν = 1, x2 = 0, 1x = −x1⟩

for ν an odd natural number and char(K) ∤ 2ν. The element 1 ∈ Hν is group-like whereas x is a (1ν, 1)-
primitive element, i.e., ∆(x) = 1 ⊗ x + x ⊗ 1ν and ε(x) = 0. The antipode is defined as S(1) = 1−1 and
S(x) = 1νx. The quasi-triangular structures on Hν have the form

Rs,β =
1
2ν

( 2ν−1∑
i,l=0

ω−il1i
⊗ 1sl
)
+
β

2ν

( 2ν−1∑
i,l=0

ω−il1ix ⊗ 1sl+νx
)

(6.38)
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for 1 ⩽ s < 2ν odd, β ∈ K and ω a 2ν-th primitive root of unity.
The Hopf algebra Hν is a Radford biproduct of B = K[x]/(x2) and the group algebra L = KZ2ν. Since

KZ2ν is a self-dual Hopf algebra (because K contains a primitive 2ν-th root of unity), we can identify the
category GrZ2ν

ofZ2ν-graded vector spaces with the category LM. The L-module structure on aZ2ν-graded
vector space M is given by 1 · m = ωde1(m)sm for homogeneous m ∈ M. Furthermore, we have that ((6.38))
for β = 0 determines a quasi-triangular structure on L. The braiding ΦRs,0 on LM arising from Rs,0 coincides
with the one induced in GrZ2ν

by the corresponding bicharacter, that is, ΦRs,0 (m ⊗ n) = ωde1(m)de1(n)sn ⊗m for
M,N ∈ GrZ2ν

and homogeneous m ∈M,n ∈ N. The braiding ΦRs,0 is not a symmetry if s , ν.
The algebra B = K[x]/(x2) is a Z2ν-graded vector space by setting B0 = K1,Bν = Kx, and Bσ = 0 for all

σ , 0, ν. It becomes a commutative and cocommutative Hopf algebra in GrZ2ν
with the coalgebra structure

and antipode given as follows:

∆(1) = 1 ⊗ 1, ε(1) = 1, S(1) = 1, ∆(x) = 1 ⊗ x + x ⊗ 1, ε(x) = 0, S(x) = −x.

We now may consider the Hopf algebra B × L obtained by Majid’s bosonization. It is not difficult to show
that the map Ψ : Hν −→ K[x]/(x2) × KZ2ν,G 7→ 1 × 1,X 7→ x × 1ν is a Hopf algebra isomorphism. Here we
denote the generators of Hν by G and X instead of 1 and x. We will compute the group Gal(GrZ2ν

; K[x]/(x2))
and check that it coincides with H2(C; K[x]/(x2),K). Although GrZ2ν

is not a symmetric category for s , ν
and thus we do not know a priori if Gal(GrZ2ν

; K[x]/(x2)) is a group, it will turn out that it coincides with
the subgroup Galnb(GrZ2ν

; K[x]/(x2)), which we know is a group by Corollary 4.19.
For α ∈ K we define the algebra C(α) := K⟨y|y2 = α⟩. It is Z2ν-graded by C(α)0 = K,C(α)ν = Ky and

the rest of homogeneous components are zero. Furthermore, C(α) is a right B-comodule algebra with the
comodule structure morphism ρ : C(α) −→ C(α) ⊗ B given by

ρ(1) = 1 and ρ(y) = 1 ⊗ x + y ⊗ 1.

It is easy to see that can : C(α) ⊗ C(α) −→ C(α) ⊗ B is a Z2ν-graded isomorphism. Thus C(α) is indeed a
B-Galois object in GrZ2ν

. Moreover, it has the normal basis property since the map B→ C(α), 1 7→ 1, x 7→ y
is a B-comodule isomorphism.

Conversely, we show that any B-Galois object A in GrZ2ν
is of this form. From the isomorphism

can : A ⊗ A → A ⊗ B we obtain dimK(A) = dimK(B) = 2. Since K1 ⊂ A0, it follows that dimK(A0) ≥ 1. If
dimK(A0) = 2, then A = A0 and since the structure morphism ρ : A → A ⊗ B is Z2ν-graded, ρ(A) ⊆ A ⊗ K1,
implying A ⊆ Aco(B) = K, a contradiction. As dimK(A0) = 1, there is a unique 1 ≤ ϵ < 2ν such that Aϵ , {0}.
This forces ϵ = ν. Thus we may write A = A0 ⊕ Aν, where A0 = K1 and Aν = Ku with u , 0 and u2 = γ ∈ K.
Knowing that ρ is a morphism in GrZ2ν

, we obtain ρ(u) = a ⊗ x + bu ⊗ 1, for some a, b ∈ K. We claim that
a , 0. If a = 0, then can(1 ⊗ u) = bu ⊗ 1 = can(bu ⊗ 1), contradiction. Take v = 1

a u. Then ρ(v) = 1 ⊗ x + bv ⊗ 1.
Since (A ⊗ ε)ρ(v) = v, we get b = 1. Note that v2 = α, for some α ∈ K. It is easy to check that φ : A −→ C(α),
defined by φ(1) = 1 and φ(v) = y, is an B-comodule algebra isomorphism. We have thus proved that any
B-Galois object has the normal basis property and we can consider the group Gal(GrZ2ν

; B).

Theorem 6.1 The map Ω : (K,+) −→ Gal(GrZ2ν
; B), α 7→ [C(α)] is a group isomorphism.

Proof. For α, β ∈ K let C(α) = K⟨y|y2 = α⟩, C(β) = K⟨z|z2 = β⟩ and C(α + β) = K⟨w|w2 = α + β⟩. We prove
that Ω is a group morphism by giving a right B-comodule algebra morphism θ : C(α + β) −→ C(α)□BC(β)
(recall Proposition 3.14). Let ρα and ρβ denote the right B-comodule structure morphisms of C(α) and C(β),
respectively. We turn C(β) into a left B-comodule via the inverse braiding. If λβ denotes the left B-comodule
structure morphism, then λβ(1) = 1 ⊗ 1 and λβ(z) = 1 ⊗ z + x ⊗ 1. It is easy to see that {1 ⊗ 1, 1 ⊗ z + y ⊗ 1} is
a K-basis of C(α)□BC(β). Recall that we consider C(α) ⊗ C(β) as a right B-comodule via C(α) ⊗ ρβ. It is also
easy to show that θ : C(α + β) −→ C(α)□BC(β), defined by θ(1) = 1 ⊗ 1 and θ(w) = 1 ⊗ z + y ⊗ 1, is a right
B-comodule algebra morphism in GrZ2ν

.

We prove thatΩ is injective. Letϑ : C(α) −→ C(β) be aZ2ν-graded right B-comodule algebra isomorphism.
Then ϑ(1) = 1 and ϑ(y) = κz, for some κ ∈ K. Since ϑ is right B-colinear, (ϑ ⊗ B)ρα(y) = ρβϑ(y). That is,
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1⊗ x+ κz⊗ 1 = κ⊗ x+ κz⊗ 1. Hence κ = 1. On the other hand, α = ϑ(α) = ϑ(y2) = ϑ(y)2 = κ2z2 = β. ThatΩ
is surjective was previously proved.

Observe that C(α) is just Bσα where the cocycle σα : B ⊗ B → K is given by σα(1 ⊗ 1) = 1, σα(1 ⊗ x) =
σα(x ⊗ 1) = 0 and σα(x ⊗ x) = α. On the other hand, taking into account the grading of B, any normalized
2-cocycle of B with values in K is of this form. Then H2(GrZ2ν

; B,K) � Galnb(GrZ2ν
; B) = Gal(GrZ2ν

; B) � (K,+).

We next compute the group of biGalois objects of B. Any Hopf automorphism of B is of the form
fλ(1) = 1 and fλ(x) = λx for λ ∈ K× and AutHop f (B) � K×. It is easy to show that Bσα ◁ fλ � Bσαλ2 as right
B-comodule algebras. Then BiGal(GrZ2ν

; B) � K× ⋉ (K,+) with product (λ, α)(γ, β) = (λγ, γ2α + β), due to
Theorem 4.21.

6.3. Example: Nichols Hopf algebra

Nichols Hopf algebra E(n) will provide us with an example where the morphism ζ in Theorem 5.13 is
not surjective. This is explained in [11, Remark 6.10]. Nichols’ Hopf algebra is

E(n) = K⟨1, xi, i, j ∈ {1, ...,n}|12 = 1, x2
i = 0, 1xi = −xi1, xix j = −x jxi⟩

and it has a triangular structure given by R0 =
1
2 (1 ⊗ 1 + 1 ⊗ 1 + 1 ⊗ 1 − 1 ⊗ 1), the same one as for Sweedler

Hopf algebra H4 = E(1), which is R0,0 from (6.38) with ν = 1. The element 1 ∈ E(n) is grouplike, whereas
xi ∈ E(n) for i = 1, ...,n are (1, 1)-primitive elements, that is ∆(xi) = 1⊗ xi + xi ⊗ 1 and ε(xi) = 0. The antipode
is given by S(1) = 1−1 and S(xi) = 1xi.

Nichols’ Hopf algebra E(n) is isomorphic to the Radford biproduct K[xn]/(x2
n)×E(n−1). Set L = E(n−1).

The algebra B = K[xn]/(x2
n) is an L-module via 1 · xn = −xn and xi · xn = 0, i = 1, ...,n − 1. The Hopf algebra

structure of B in the category LM is similar to that of K[x]/(x2): ∆(xn) = 1 ⊗ xn + xn ⊗ 1, ε(xn) = 0 and
S(xn) = −xn.

Similarly as in the case of Hν, it is proved that the algebra morphismΨ′ : E(n) −→ K[xn]/(x2
n) × E(n − 1),

defined on generators by Ψ′(G) = 1 ⊗ 1,Ψ′(Xi) = 1 ⊗ xi and Ψ′(Xn) = xn ⊗ 1, for i = 1, ...,n − 1, is a Hopf
algebra isomorphism. Here we denote the generators of E(n) by G and Xi, i = 1, ...,n instead of 1 and
xi, i = 1, ...,n.

Similarly as in Theorem 6.1 we have the group isomorphism

Gal(E(n−1)M; K[xn]/(x2
n)) � (K,+)n (6.39)

given by
(α, α1, ..., αn−1) 7→M(α, α1, ..., αn−1) = K⟨y|y2 = α⟩

where M(α, α1, · · · , αn−1) has a structure of an E(n−1)-module by 1 ·y = −y and xi ·y = αi, for i ∈ {1, · · · ,n−1},
and of a right K[xn]/(x2

n)-comodule by ρ(1) = 1 ⊗ 1, ρ(y) = 1 ⊗ xn + y ⊗ 1.
Looking at the above given L-module structure on B, it is clear that M(α, α1, ..., αn−1) is isomorphic to

K[xn]/(x2
n) as a left L-module only if all αi = 0, i = 1, ...,n − 1. Consequently, in the case of Nichols’ Hopf

algebra the subgroup of Galois objects with normal basis is a proper subgroup in the whole group, as
we announced. In other words, the morphism ζ : H2(E(n−1)M; K[xn]/(x2

n),K) −→ Gal(E(n−1)M; K[xn]/(x2
n))

from Theorem 5.13 is not surjective and the K[xn]/(x2
n)-comodules M(α, α1, ..., αn−1) where some αi , 0 give

non-trivial elements in the group Picco(E(n−1)M; K[xn]/(x2
n)).

For the Galois objects with normal basis we thus have

Galnb(E(n−1)M; K[xn]/(x2
n)) � H2(E(n−1)M; K[xn]/(x2

n),K) � (K,+)

and its elements are represented by M(α, 0, ..., 0), which, similarly as in the case of Hν, equal Bσα , where
σα : B ⊗ B→ K is the cocycle given by σα(1 ⊗ 1) = 1, σα(1 ⊗ xn) = σα(xn ⊗ 1) = 0 and σα(xn ⊗ xn) = α.

From the above said we find: BiGal(E(n−1)M; K[xn]/(x2
n)) � K× ⋉ (K,+)n.
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