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Abstract. In this paper, we establish the existence of nonoscillatory solutions to neutral dynamic equations
with positive and negative coefficients on time scales of the form

(x(t) −
∫ b

a
p(t, τ)x(1(t, τ))∆τ)∆ +

∑l
i=1 ri(t)x(δi(t)) −

∑m
j=1 s j(t)x(η j(t)) = 0.

Two examples are included to illustrate our presented results. In our approaches, a key role is played by
the fixed point technique.

1. Introduction

The theory of time scales, which has received a lot of attention, was introduced by Hilger [1] in
order to unify continuous and discrete analysis. The study of dynamic equations on time scales reveals
such discrepancies, and helps to avoid proving results twice, once for differential equations and once for
difference equations. In recent years, there has been much significant research activity concerning the
oscillation and nonoscillation of dynamic equations on time scales, we refer readers to the references [2-13].
We also refer to the papers [14-16] for oscillatory and nonoscillatory solutions to models from mathematical
biology and physics formulated by partial differential equations and such that their long time behavior is
connected to the external source, idealized by nonlocal and/or taxis-driven terms. For example, in 2007,
Zhu and Wang [2] established some necessary and sufficient conditions for the existence of nonoscillatory
solutions to the neutral functional dynamic equation

(x(t) + p(t)x(1(t)))∆ + f (t, x(h(t))) = 0.

In 2019, Zhou, Alsaedi and Ahmad [3] studied the existence of oscillatory and nonoscillatory solutions for
the delay dynamic equation

(y(t) − C(t)y(t − ξ))∆ + P(t)y(t − η) −Q(t)y(t − δ) = 0.
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Chen, Lv, He and Li [4] considered the existence of nonoscillatory solutions to neutral dynamic equation

(x(t) −
∫ b

a
p(t, τ)x(1(t, τ))∆τ)∆ +

∫ d

c
ω(t, ν)x(h(t, ν))∆ν = 0.

Motivated by the above works, we are concerned with first-order neutral functional dynamic equations
of the following form

(x(t) −
∫ b

a
p(t, τ)x(1(t, τ))∆τ)∆ +

l∑
i=1

ri(t)x(δi(t)) −
m∑

j=1

s j(t)x(η j(t)) = 0, (1)

where t ∈ T,T = [t0,∞)T := {t ∈ T : t ≥ t0} is a time scale, t0 ∈ R. Eq. (1) is often used for mathematical
modelling of various physical, chemical and biological systems. The main feature of Eq. (1) is that the
positive and negative perturbations are separated. However, there have been few studies in present
papers.

In this paper, we obtain some new sufficient conditions for the existence of nonoscillatory solutions to
Eq. (1) by the fixed point theory in Banach space and the theory of time scales. The results of this paper
enrich the research of nonoscillatory solutions of dynamic equations on time scales.

As it is customary, a solution is called oscillatory if it has arbitrarily large zeros and otherwise, it is called
nonoscillatory.

This paper is organized as follows. In Section 2, we recall some preliminaries and lemmas. In Section
3, we will establish the existence of nonoscillatory solutions for Eq. (1). Finally, some applications are
presented in Section 4.

2. Preliminaries

A time scale is an nonempty closed subset of the real numbers R, such as R, natural numbers N,
integers Z, cantor set, etc.. Let T be a time scale with supT = ∞. We denote the closed interval in T by
[a, b] := {t ∈ T : a ≤ t ≤ b}. Open intervals, half-open intervals and others are defined accordingly.

According to [17], we recall some concepts related to time scales.

Definition 2.1. For t ∈ T, we define a forward jump operator σ : T → T by σ(t) := inf {s ∈ T : s > t}. If
t < σ(t)(t < supT) as well as t = σ(t), then t is right-scatterd and right-dense, respectively. A backward jump
operator ρ : T → T is defined by ρ(t) := sup {s ∈ T : s < t}. If t > ρ(t)(t > infT) as well as t = ρ(t), then t is
left-scatterd and left-dense, respectively. The graininess operator µ : T→ [0,∞) is defined by µ(t) = σ(t) − t.

Definition 2.2. If T has a left-scattered maximum m, then Tk := T \ {m}; otherwise Tk = T.
For a function f : T→ R and t ∈ Tk, we define f∆ to be number (provided it exists) with property that given any

ε > 0, there is a neighborhood U of t (i.e., U = (t − δ, t + δ) ∩ T for some δ > 0) such that∣∣∣[ f (σ(t)) − f (s)] − f∆(t)[σ(t) − s]
∣∣∣ ≤ ε|σ(t) − s|, for all s ∈ U.

We call f∆ the delta or Hilger derivative of f at t.

Definition 2.3. A function f : T → R is called rd-continuous provided it is continuous at right-dense points
in T and its left-sided limits exist (finite) at left-dense points in T. The set of all such functions is denoted by
Crd = Crd(T) = Crd(T,R).

Definition 2.4. Every rd-continuous function has an antiderivative. In particular if t0 ∈ T, then an antiderivative
of f is defined by F(t) :=

∫ t

t0
f (τ)∆τ(t ∈ T). And we define the Cauchy integral by∫ s

r
f (t)∆t = F(s) − F(r) for all r, s ∈ T.
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The following theorems will be used to prove our main results in the next section.

Lemma 2.5. ([2]) Suppose that X ⊆ BC[T0,∞)T is bounded and uniformly Cauchy. Further, suppose that X is
equi-continuous on [T0,T1]T for any T1 ∈ [T0,∞)T. Then X is relatively compact.

Lemma 2.6. ([18] Krasnoselskii’s fixed point theorem) Suppose that Ω is a Banach space and X is bounded, convex
and closed subset of Ω. Suppose further that there exist two operators U,S : X→ Ω such that
(1) Ux + Sy ∈ X for all x, y ∈ X;
(2) U is a contraction mapping;
(3) S is completely continuous.
Then U + S has a fixed point in X.

Lemma 2.7. ([2]) Suppose that Ω is a Banach space and X is bounded, convex and closed subset of Ω. Suppose
further that there exist an operator F : X→ Ω such that
(1) Fx ∈ X for all x ∈ X;
(2) F is completely continuous.
Then F has a fixed point in X.

3. Main results

Throughout this section, we will assume in Eq. (1) that
(H1) ri(t), s j(t) ∈ Crd(T, [0,∞)), where i = 1, 2, ..., l, j = 1, 2, ...,m, and l +m = q;
(H2) δi(t), η j(t) ∈ Crd(T,T), 1(t, τ) ∈ Crd(T × [a, b],T), and maxτ∈[a,b] 1(t, τ) ≤ t, δi(t) ≤ t, η j(t) ≤ t, for t ≥ t0,

lim t→∞max τ∈[a,b]1(t, τ) = ∞, lim t→∞δi(t) = ∞, lim t→∞η j(t) = ∞;

(H3) p(t, τ) ∈ Crd(T × [a, b]T, [0,∞)), 0 < P(t) =
∫ b

a p(t, τ)∆τ ≤ α < 1 and 0 ≤ limt→∞P(t) = β ≤ α for all
t ∈ T;

(H4) There exists T0 ∈ T large enough such that∫
∞

T0

ri(ξ)∆ξ ≤
1 − α

q
< 1 and

∫
∞

T0

s j(ξ)∆ξ ≤
1 − α

q
< 1 for any i or j.

In the sequel, we use the notation

z(t) = x(t) −
∫ b

a
p(t, τ)x(1(t, τ))∆τ −

∫ t

T0

m∑
j=1

s j(τ)x(η j(τ))∆τ. (2)

Lemma 3.1. If x(t) is an eventually positive solution of Eq. (1), then eventually z∆(t) < 0 and z(t) > 0.

Proof. Since x(t) is an eventually positive solution of Eq. (1), there exists T1 ≥ T0 such that

x(1(t, τ)) > 0, x(δi(t)) > 0, x(η j(t)) > 0(i = 1, 2, ..., l, j = 1, 2, ...,m) for t ≥ T1.

In view of (H1) and (H2), we get

z∆(t) = (x(t) −
∫ b

a
p(t, τ)x(1(t, τ))∆τ)∆ −

m∑
j=1

s j(t)x(η j(t)) = −
l∑

i=1

ri(t)x(δi(t)) < 0,

which implies that z(t) is decreasing for t ≥ T1.
Next, we will show that z(t) > 0. If z(t)→ −∞ as t→ ∞, then x(t) is unbounded by (2). Hence, there is

the subsequence {tn} on [T1,∞)T such that

lim
n→∞

tn = ∞, lim
n→∞

x(tn) = ∞
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and x(tn) = max T1≤t≤tn x(t) for each n ∈ N. Moreover, according to (H3) and (H4) we have

z(tn) = x(tn) −
∫ b

a
p(tn, τ)x(1(tn, τ))∆τ −

∫ tn

T0

m∑
j=1

s j(τ)x(η j(τ))∆τ

≥ x(tn)(1 −
∫ b

a
p(tn, τ)∆τ −

∫ tn

T0

m∑
j=1

s j(τ)∆τ) ≥ x(tn)
l(1 − α)

q
> 0. (3)

Hence, we get
lim
t→∞

z(t) = lim
n→∞

z(tn) ≥ 0,

which is in contradiction with z(t)→ −∞. Therefore, limt→∞ z(t) = A and is finite. As can be seen from the
proof above, if x(t) is unbounded, then A ≥ 0.

If x(t) is bounded, there is the subsequence {t′n} on [T1,∞)T such that

lim
n→∞

x(t′n) = lim sup
t→∞

x(t) = B.

Therefore, we have

x(t′n) − z(t′n) =
∫ b

a
p(t′n, τ)x(1(t′n, τ))∆τ +

∫ t′n

T0

m∑
j=1

s j(τ)x(η j(τ))∆τ

≤ y(t′n)(α +
m(1 − α)

q
) ≤ y(t′n), (4)

where y(t′n) = max {max τ∈[a,b]{x(1(t′n, τ))},max 1≤ j≤m{x(η j(s)) : T1 ≤ s ≤ t′n}}. Hence, it follows that

lim sup
n→∞

y(t′n) ≤ B.

Taking supremum limit of the two sides of (4) as n → ∞, we get B − A ≤ B. Hence, A ≥ 0. To sum up, we
deduce z(t) > 0 .

Theorem 3.2. If x(t) is an eventually positive solution of Eq. (1), then lim t→∞x(t) = B > 0 or lim t→∞x(t) = 0.

Proof. In view of Lemma 3.1, we have lim t→∞z(t) = A ≥ 0 and A is finite.
We assert that x(t) is bounded. In fact, if it is not true, it follows that z(t) → ∞ from (3) which is in

contradiction. Hence x(t) is bounded. We suppose that lim supt→∞ x(t) = B and lim inft→∞ x(t) = B.
We define the function

S(t,m,T0) =
∫ t

T0

m∑
j=1

s j(ξ)∆ξ,

which is increasing and upper bounded for t, and there exists the limit λ as t → ∞. It’s not hard to get
λ≤ m(1−α)

q . From (2), we have

A ≥ B − βB − λB,A ≤ B − βB − λB.

Thus, we have B = B. To sum up, we get that limt→∞ x(t) exists and limt→∞ x(t) = A
1−β−λ . The proof is

complete.
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Theorem 3.3. Assume that

(1 − α)lri(t)
q

>
m∑

j=1

s j(t) f or each t ∈ T and all i = 1, 2, ..., l. (5)

Then Eq. (1) has a bounded nonoscillatory solution x(t) with limt→∞ x(t) = B > 0.

Proof. Define the set of all continuous bounded functions

BC[T0,∞) := {x : x ∈ C([T0,∞)T,R) and sup
t∈[T0,∞)T

|x(t)| < ∞},

with the norm ∥x∥ = sup t∈[T0,∞)T |x(t)|. Then BC[T0,∞) is a Banach space. Let

X = {x : x ∈ BC[T0,∞)T and
(1 − α)

q
K ≤ x(t) ≤ K,K > 0}.

It is easy to check that X is a bounded, convex and closed subset of BC[T0,∞).
Now we define two operators U and S : X→ BC[T0,∞) as follow

(Ux)(t) =
∫ b

a
p(t, τ)x(1(t, τ))∆τ,

(Sx)(t) =
m
q

(1 − α)K +
∫
∞

t

l∑
i=1

ri(ξ)x(δi(ξ))∆ξ −
∫
∞

t

m∑
j=1

s j(ξ)x(η j(ξ))∆ξ.

Next, we will show that U and S satisfy the conditions in Lemma 2.6.
(i) We will show that Ux + Sy ∈ X is true for any x, y ∈ X and t ∈ [T0,∞)T.
In view of (H3), (H4) and (5), we have

(Ux)(t) + (Sy)(t) ≥
m
q

(1 − α)K +
∫
∞

t

l∑
i=1

ri(ξ)y(δi(ξ))∆ξ −
∫
∞

t

m∑
j=1

s j(ξ)y(η j(ξ))∆ξ

≥
m
q

(1 − α)K +
1 − α

q
K
∫
∞

t

l∑
i=1

ri(ξ)∆ξ − K
∫
∞

t

m∑
j=1

s j(ξ)∆ξ

≥
m
q

(1 − α)K + K
∫
∞

t
(
1 − α

q

l∑
i=1

ri(ξ) −
m∑

j=1

s j(ξ))∆ξ

≥
m
q

(1 − α)K ≥
1 − α

q
K

and

(Ux)(t) + (Sy)(t) ≤
m
q

(1 − α)K +
∫ b

a
p(t, τ)x(1(t, τ))∆τ +

∫
∞

t

l∑
i=1

ri(ξ)y(δi(ξ))∆ξ

≤
m
q

(1 − α)K + αK + lK
1 − α

q
= K.

So Ux + Sy ∈ X for any x, y ∈ X and t ∈ [T0,∞)T.
(ii) We will show that U is a contraction operator.
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For any x, y ∈ X and t ∈ [T0,∞)T, we have

|(Ux)(t) − (Uy)(t)| = |

∫ b

a
p(t, τ)(x(1(t, τ)) − y(1(t, τ)))∆τ|

≤

∫ b

a
p(t, τ)∆τ ∥ x − y ∥ ≤ α∥ x − y ∥ .

This implies that

∥ Ux −Uy ∥ ≤ α∥ x − y ∥ .

Hence, we conclude that U is a contraction operator on X.
(iii) We now prove that S is completely continuous operator on X.
First, we show that S maps X into X. For any x ∈ X, according to the proof of (i) we have

(Sx)(t) ≥
1 − α

q
K

and

(Sx)(t) ≤
m
q

(1 − α)K +
∫
∞

t

l∑
i=1

ri(ξ)x(δi(ξ))∆ξ

≤
m
q

(1 − α)K + lK
1 − α

q
= (1 − α)K < K.

That is, S maps X into X.
Second, we show that S is continuous. Let {xn} ⊂ X and ∥xn − x∥ → 0 as n → ∞. Since X is closed, we

have x ∈ X. Then, |xn(t) − x(t)| → 0 is obvious for any t ∈ [T0,∞)T, and

|(Sxn)(t) − (Sx)(t)| ≤ |

∫
∞

t

l∑
i=1

ri(ξ)(xn(δi(ξ)) − x(δi(ξ)))∆ξ|

+|

∫
∞

t

m∑
j=1

s j(ξ)(xn(η j(ξ)) − x(η j(ξ)))∆ξ|

≤ (|
∫
∞

t

l∑
i=1

ri(ξ)∆ξ| + |
∫
∞

t

m∑
j=1

s j(ξ)∆ξ|) ∥ xn − x ∥

≤ (l
1 − α

q
+m

1 − α
q

) ∥ xn − x ∥ = (1 − α) ∥ xn − x ∥ .

By applying Lebesgue dominated convergence theorem, we obtain

lim
n→∞
∥(Sxn)(t) − (Sx)(t)∥ = 0,

which proves that S is continuous on X.
Finally, we prove SX is relatively compact. Clearly, SX is bounded. Let T1 ∈ [T0,∞)T be large enough,

and we take any t1, t2 ∈ [T1,∞). Without loss of generality, we set t1 < t2. In view of (H4), for any ε > 0, we
have ∫ t2

t1

ri(ξ)∆ξ ≤
ε

2lK
and

∫ t2

t1

s j(ξ)∆ξ ≤
ε

2mK
.
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Hence, we infer

|(Sx)(t2) − (Sx)(t1)| ≤ |

∫ t2

t1

l∑
i=1

ri(ξ)x(δi(ξ))∆ξ| + |
∫ t2

t1

m∑
j=1

s j(ξ)x(η j(ξ))∆ξ|

≤ (
ε

2lK
l +

ε
2mK

m)K = ε.

This means that SX is uniformly Cauchy on [T1,∞)T.
Because ri(t) and s j(t) are rd-continuous on the interval [T0,T1], they are bounded([5]). We take any

t1, t2 ∈ [T0,T1], and let
M = max t∈[T0,T1]{sup 1≤i≤lri(t), sup 1≤ j≤ms j(t)}.

Without loss of generality, we suppose t1 < t2. For any ε> 0, we have

|(Sx)(t2) − (Sx)(t1)| ≤ |

∫ t2

t1

l∑
i=1

ri(ξ)x(δi(ξ))∆ξ| + |
∫ t2

t1

m∑
j=1

s j(ξ)x(η j(ξ))∆ξ|

≤ (lMK +mMK)|t2 − t1| = qMK|t2 − t1|.

Hence, when δ = ε
qMK and |t2 − t1| < δ, |(Sx)(t2)− (Sx)(t1)| < ε is true. Thus, SX is equi-continuous on [T0,T1].

By Lemma 2.5, SX is relatively compact. So, S is completely continuous operator on X.
According to Lemma 2.6, there exists x ∈ X such that(U + S)(x) = x, which is a bounded nonoscillatory

solution of Eq. (1) with limt→∞ x(t) = B > 0.

Theorem 3.4. Let G1(t) = maxτ∈[a,b]{1(t, τ)} and G2(t) = minτ∈[a,b]{1(t, τ)}. If there exists T∗ ∈ T with T∗ >
max{1,T0} such that ∫

∞

t

m∑
j=1

s j(ξ)
η j(ξ)

∆ξ ≤
P(t)

G2
1(t)
−

1
t2 , t ∈ [T∗,∞)T (6)

and ∫
∞

t

l∑
i=1

ri(ξ)
δi(ξ)

∆ξ ≤
1
t
−

P(t)
G2(t)

, t ∈ [T∗,∞)T, (7)

then, Eq. (1) has a bounded nonoscillatory solution x(t) with limt→∞ x(t) = 0.

Proof. Similar to Theorem 3.3, we define the Banach space BC[T∗,∞). Let

X = {x : x ∈ BC[T∗,∞)T and t−2
≤ x(t) ≤ t−1

}.

Then, X is a bounded, convex and closed subset of BC[T∗,∞). Define the following operator F on X

(Fx)(t) =
∫ b

a
p(t, τ)x(1(t, τ))∆τ +

∫
∞

t

l∑
i=1

ri(ξ)x(δi(ξ))∆ξ −
∫
∞

t

m∑
j=1

s j(ξ)x(η j(ξ))∆ξ.

First, we will show that Fx ∈ X for any x ∈ X and t ∈ [T∗,∞)T. In view of (H3), (H4), (6) and (7), we have

(Fx)(t) ≥ P(t)
1

12(t, τ)
−

∫
∞

t

m∑
j=1

s j(ξ)x(η j(ξ))∆ξ

≥ P(x)
1

G2
1(t)
−

∫
∞

t

m∑
j=1

s j(ξ)
η j(ξ)

∆ξ

≥ P(t)
1

G2
1(t)
− P(t)

1
G2

1(t)
+

1
t2 >

1
t2
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and

(Fx)(t) ≤ P(t)
1
1(t, τ)

+

∫
∞

t

l∑
i=1

ri(ξ)x(δi(ξ))∆ξ

≤ P(x)
1

G2
1(t)
+

∫
∞

t

l∑
i=1

ri(ξ)
δi(ξ)

∆ξ

≤ P(t)
1

G2(t)
+

1
t
− P(t)

1
G2(t)

≤
1
t
.

So Fx ∈ X for any x ∈ X and t ∈ [T∗,∞)T.
Similar to the proof of Theorem 3.3, we can show that F satisfies the rest conditions in Lemma 2.7.

Hence, there exists x ∈ X such that

x(t) =
∫ b

a
p(t, τ)x(1(t, τ))∆τ +

∫
∞

t

l∑
i=1

ri(ξ)x(δi(ξ))∆ξ

−

∫
∞

t

m∑
j=1

s j(ξ)x(η j(ξ))∆ξ, t ∈ [T∗,∞)T.

According to the definition of X, we have limt→∞ x(t) = 0. The proof is complete.

Remark 3.5. Clearly, the discussed equation in [3] is a particular case of Eq. (1). Because Eq. (1) contains both
positive and negative parameters, the application of the model (1) is more extensive. On the other hand, one can easily
see that the results obtained in [2,3,4,18] cannot be applied to Eq. (1). So, our results are new and interesting.

4. Examples

In the section, we would like to illustrate the results by means of the following examples.

Example 4.1. Let T = 2N0 . Consider the following equation

(x(t) −
∫ 4

1

sin τ4 sin 3τ
4

2t
x(t − τ + 1)∆τ)△ +

1
tσ(t)

x(
3
4

t) −
1

5(t2 + σ2(t))
x(

2
3

t) = 0, (8)

where T = 2N0 = {1, 2, 4, 8...}, σ(t) = 2t, µ(t) = t, p(t, τ) = sin τ4 sin 3τ
4

2t , r(t) = 1
tσ(t) , s(t) = 1

5(t2+σ2(t)) , q = 2, l = m = 1.
Then we have

P(t) =
∫ 4

1

sin τ4 sin 3τ
4

2t
∆τ =

1
2t

∫ 4

1
sin
τ
4

sin
3τ
4
∆τ

=
1
2t

(µ(1) sin
1
4

sin
3
4
+ µ(2) sin

1
2

sin
3
2

)

=
1
2t

(sin
1
4

sin
3
4
+ 2 sin

1
2

sin
3
2

) ≤
2
3t
≤

2
3
= α < 1,

∫
∞

T0

1
tσ(t)

∆t =
1

T0
≤

1
6
=

1 − α
q
< 1,

∫
∞

T0

1
5(t2 + σ2(t))

∆t ≤
∫
∞

T0

1
5tσ(t)

∆t =
1

5T0
≤

1 − α
q
< 1,
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and

1 − α
q

r(t) ≥ s(t),

where T0 ≥ 8. Hence, by Theorem 3.3 with α= 2
3 < 1, Eq. (8) has a bounded nonoscillatory solution x(t)

with limt→∞ x(t) > 0.

Example 4.2. Let T = {t ≥ 1 : t ∈ R}. Consider the following equation

(x(t) −
∫ 2

1

2(τ−1)
t + 1

x((t − τ)
1
2 )∆τ)∆ +

1
t2 + 1

x(
4
5

t) −
1

t3 + 1
x(

5
6

t) = 0, (9)

where p(t, τ) = 2(τ−1)
t+1 , r(t) = 1

t2+1 , s(t) = 1
t3+1 , q = 2, l = m = 1. Taking t ≥ 3, we have

P(t) =
∫ 2

1

2(τ−1)
t + 1

∆τ =
1

t + 1
≤

1
4
= α < 1,G1(t) = (t − 1)

1
2 ,G2(t) = (t − 2)

1
2 ,∫

∞

3

1
t2 + 1

△t ≤
3
8
≤

1 − α
q
< 1,
∫
∞

3

1
t3 + 1

△t ≤
3
8
≤

1 − α
q
< 1,∫

∞

t

1
s2 + 1

·
1
4
5 s
△s ≤

1
(t + 1)(t − 1)

−
1
t2 ,

and ∫
∞

t

1
s3 + 1

·
1
5
6 s
△s ≤

1
t
−

1

(t + 1)(t − 2)
1
2

.

Hence, by Theorem 3.4, Eq. (9) has a bounded nonoscillatory solution x(t) with limt→∞ x(t) = 0.
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