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Abstract. We show that small-bound isomorphisms of spaces of affine continuous functions on Choquet
simplices with Lindelöf boundaries induce Baire measurable bijections of their sets of extreme points.

1. Introduction

If K is a compact (Hausdorff) space then let C(K) stand for the space of all real continuous functions on
K, endowed with the supremum norm. Further, letM(K) stand for the space of all Radon measures on K
endowed with the variation norm and the weak∗-topology given by the duality C(K)∗ =M(K), letM+(K)
stand for the set of positive elements from M(K), and let M1(K) stand for the set of Radon probability
measures on K. If E is a real Banach space then E∗ stands for its dual space. We denote by BE and SE the
unit ball and sphere in E, respectively, and we write ⟨·, ·⟩ : E∗ × E→ R for the duality mapping.

If X is a compact convex set in a locally convex (Hausdorff) space, then let A(X) stand for the space of all
continuous real affine functions on X, endowed with the supremum norm. Let us recall that if µ, ν ∈ M+(X),
then µ ≺ ν if µ(k) ≤ ν(k) for each convex continuous function k on X, and a measure µ ∈ M+(X) is maximal
if µ is ≺-maximal. A measure µ ∈ M(X) is boundary if its variation

∣∣∣µ∣∣∣ is maximal or if µ = 0. Further,
for any µ ∈ M1(X) there exists a unique point r(µ) ∈ X, called the barycenter of µ, such that µ(a) = a(r(µ)),
a ∈ A(X), see [1, Propositions I.2.1 and I.2.2]. By the Choquet–Bishop–de-Leeuw representation theorem
(see [1, Theorem I.4.8]), for each x ∈ X there exists a maximal measure µ ∈ M1(X) with r(µ) = x. If this
measure is uniquely determined for each x ∈ X, the set X is called a simplex, see [1, Theorem II.3.6]. When
X is a simplex, the space A(X) is sometimes termed a simplex space.

The well-known generalization of the Banach-Stone theorem given independently by Amir [2] and
Cambern [5] states that compact spaces K1 and K2 are homeomorphic if there exists an isomorphism
T : C(K1)→ C(K2) with ∥T∥

∥∥∥T−1
∥∥∥ < 2. This result has been successively extended in papers [7], [13], [8], and

[18] to the context of spaces of affine continuous functions on compact convex sets, whose extreme points
consist of weak peak points (we recall that a point x ∈ ext X is a weak peak point if given ε ∈ (0, 1) and an
open set U ⊂ X containing x, there exists a in BA(X,R) such that |a| < ε on ext X \U and a(x) > 1 − ε, see [6, p.
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73]). On the other hand, it is known that without the assumption of weak peak points the Amir-Cambern
theorem for spaces of affine continuous functions in some sense fails completely even if the considered
compact convex sets are simplices. Indeed, in [9], Hess shows that for each ε > 0, there exist simplices
X1, X2 with nonhomeomorphic countable sets of extreme points and an isomorphism T : A(X1) → A(X2)
with ∥T∥

∥∥∥T−1
∥∥∥ < 1 + ε. Thus it seems natural to ask, given two simplex spaces that are isomorphic by an

isomorphism with a small-bound, how different the sets of extreme points of these simplices can be. We
show that, under some topological assumptions, the sets of extreme points are in this case in a certain sense
quite similar. More precisely, we prove the following result saying that there exists a bijection of the sets of
extreme points that is measurable in both directions with respect to hierarchies of Baire sets, with a small
complexity (for the definition of the unexplained notions see the next section).

Theorem 1.1. Let for i = 1, 2, Xi be a simplex with ext Xi being Lindelöf, and assume that there exists an isomorphism
T : A(X1) → A(X2) with ∥T∥

∥∥∥T−1
∥∥∥ < 3

2 . Then there exist mutually bijective mappings ρ1 : ext X1 → ext X2 and
ρ2 : ext X2 → ext X1 with the following properties.

(i) For i , j ∈ {1, 2}, and for each zero set F ⊆ ext X j,
ρ−1

i (F) ∈ ∆3(Bas(ext Xi)).

(ii) For i , j ∈ {1, 2}, if ext X j is moreover resolvable, then for each zero set F ⊆ ext X j, ρ−1
i (F) ∈ ∆2(Bas(ext Xi)).

In case where the considered simplices are metrizable, the sets of extreme points are Gδ, see [1, Corollary
I.4.4], and hence Polish spaces. The hierarchies of Baire and Borel sets in this case coincide, since any closed
subset of a metrizable space is Gδ (see e.g. [14, Proposition A.43]). Moreover, the sets of extreme points are
resolvable if and only if they are Fσ. Thus in this case, using the standard notation (see e.g. [11, Definition
(24.2)]), the above result can be stated in the following simpler way.

Corollary 1.2. Let for i = 1, 2, Xi be a metrizable simplex, and assume that there exists an isomorphism T :
A(X1) → A(X2) with ∥T∥

∥∥∥T−1
∥∥∥ < 3

2 . Then there exist mutually bijective mappings ρ1 : ext X1 → ext X2 and
ρ2 : ext X2 → ext X1 with the following properties.

(i) For i ∈ {1, 2}, the mapping ρi is ∆0
3-measurable.

(ii) For i , j ∈ {1, 2}, if ext X j is Fσ, then the mapping ρi is ∆0
2-measurable.

We recall that two uncountable Polish spaces are always Borel isomorphic (see [11, Theorem 15.6]).
Further, by [17], the sets of extreme points of two simplices have the same cardinality if the corresponding
simplex spaces are isomorphic. Thus the new information that we obtain here is that under the assumptions
of Corollary 1.2, the Borel isomorphism has a very low complexity.

The paper is organized as follows. In sections 2 and 3, we collect preliminaries from topology and the
theory of affine functions on compact convex sets, respectively. Section 4 is devoted to the proofs of the
results, and in Section 5 we present several examples concerning the question of sharpness of the results. In
particular, we prove that Theorem 1.1 does not hold without the assumption that the sets of extreme points
are Lindelöf, see Example 5.1.

2. Topological preliminaries

Let X be a topological space. We recall that X is Lindelöf, if any open covering of X has a countable
subcover. A subset A of X is Gδ if it is a countable intersection of open sets, and the complement of a Gδ set
is called an Fσ set. The set A is resolvable if for any nonempty B ⊂ X (equivalently, for any nonempty closed
B ⊂ X) there exists a relatively open U ⊂ B such that either U ⊂ A or U ∩ A = ∅. By [14, Proposition A.117],
a subset of a completely metrizable space is resolvable if and only if it is of type Fσ and Gδ.

Next we recall that a zero set in X is the inverse image of a closed set in R under a continuous function
f : X→ R. The complement of a zero set is a cozero set. If X is normal, it follows from Tietze’s theorem that
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a closed set is a zero set if and only if it is also a Gδ set. We recall that Borel sets are members of the σ-algebra
generated by the family of all open subsets of X and Baire sets are members of the σ-algebra generated by
the family of all cozero sets in X.

Next we recall the hierarchies of Baire and Borel sets and mappings. For details we refer the reader to [20].
The hierarchy of Baire sets in X is defined as follows. Let Bas(X) stand for the algebra generated by cozero
sets in X andΣ2(Bas(X)) for countable unions of sets from Bas(X) (we recall that a familyF of subsets of X is
an algebra if ∅,X ∈ F andF is closed with respect to complements and finite unions). Further, letΠ2(Bas(X))
be made of all countable intersections of sets from Bas(X), and let ∆2(Bas(X)) = Σ2(Bas(X)) ∩ Π2(Bas(X)).
Proceeding inductively, for any α ∈ (2, ω1) we let Σα(Bas(X)) be made of all countable unions of sets from⋃

1≤β<αΠβ(Bas(X)),Πα(Bas(X)) is made of all countable intersections of sets from
⋃

1≤β<α Σβ(Bas(X)), and let
∆α(Bas(X)) = Σα(Bas(X)) ∩Πα(Bas(X)). Further, let Bos(X) stand for the algebra generated by closed sets in
X. Proceeding analogically as above, we obtain the hierarchy of Borel sets in X.

Further, let F be an another topological space. The Baire measurable mappings are the mappings measurable
with respect to Baire sets (we recall that, given a family F of sets in a set X, a mapping f : X → F is called
F -measurable if f−1(U) ∈ F for every U ⊂ F open). The hierarchy of Baire measurable mappings is defined
as follows. Let

Baf1(X,F) = { f : X→ F; f−1(U) ∈ Σ2(Bas(X)),U ⊂ F open}.

Given an ordinal α ∈ (1, ω1), assuming that Bafβ(X,F) has been already defined for each β < α, let Bafα(X,F)
stand for the mappings that are pointwise limits of sequences contained in

⋃
1≤β<α Bafβ(X,F). The hierarchy

of Borel measurable mappings is defined analogously, starting the procedure with mappings of the first Borel
class, i.e., with

Bof1(X,F) = { f : X→ F; f−1(U) ∈ Σ2(Bos(X)),U ⊂ F open}.

Further, let C0(X,F) = C(X,F) be the family of all continuous mappings from X to F, and for an ordinal
α ∈ (0, ω1), assuming that Cβ(X,F) has been already defined for each β < α, we define Cα(X,F) as pointwise
limits of sequences contained in

⋃
0≤β<α Cβ(X,F).

Then we have the following results (see [20, Theorem 5.2] and [21, Theorem 3.7(i)]).

Proposition 2.1. Let f : X → R be a function on a Tychonoff space X and α ∈ [1, ω1). Then f ∈ Bafα(X,R) if and
only if f is Σα+1(Bas(X))-measurable.

Proposition 2.2. If X is a normal topological space, then Cα(X,R) = Bafα(X,R) for each α ∈ [1, ω1).

3. Affine functions on compact convex sets

Let X be a compact convex set in a locally convex (Hausdorff) space. We consider the evaluation
mapping

ϕ : X→ A(X)∗, ϕ(x)( f ) = f (x), x ∈ X, f ∈ A(X).

It is a standard part of the theory of compact convex sets (see e.g [14, Section 4.3]) that the mapping ϕ is
a homeomorphic embedding of X into the unit ball BA(X)∗ equipped with the weak∗ topology, and moreover,

ext BA(X)∗ = ϕ(ext X) ∪ −ϕ(ext X), ext BA(X)∗ ⊆ ϕ(X) ∪ −ϕ(X)

and

BA(X)∗ = co(ϕ(X) ∪ −ϕ(X)).

Further, if µ ∈ M(X) and f : X→ R is a µ-measurable function, then we write µ( f ) for
∫

X f dµ. There exists
a natural restriction R :M(X)→ A(X)∗ defined by

R(µ)( f ) = µ( f ), µ ∈ M(X), f ∈ A(X).
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Further, the symbol εx stands for the Dirac measure at a point x ∈ X. Clearly, R(εx) = ϕ(x).
Next we recall that a function f : X → R is called strongly affine if, for any measure µ ∈ M1(X), f is

µ-integrable and
∫

X f dµ = f (r(µ)). Each strongly affine function is affine, but the converse is not true in
general. Every strongly affine function is bounded, see [14, Lemma 4.5]. The function f is said to satisfy
the maximum principle if

sup
x∈X

∣∣∣ f (x)
∣∣∣ = sup

x∈ext X

∣∣∣ f (x)
∣∣∣ .

Consequently, if an element a∗∗ ∈ A(X)∗∗ satisfies the maximum principle on the compact convex set
BA(X)∗ , then a∗∗ is determined by its values on ext X in the sense that

∥a∗∗∥ = sup
s∗∈BA(X)∗

|⟨a∗∗, s∗⟩| = sup
s∗∈ext BA(X)∗

|⟨a∗∗, s∗⟩| =

= sup
s∗∈ϕ(ext X)∪−ϕ(ext X)

|⟨a∗∗, s∗⟩| = sup
x∈ext X

∣∣∣⟨a∗∗, ϕ(x)⟩
∣∣∣ . (1)

Important examples of functions satisfying the maximum principle on a compact convex set are Baire
strongly affine functions (see e.g. [14, Theorem 3.86]), and affine functions of the first Borel class (see [8]
and [12, Theorem 2.3]). Further, by [13, Lemma 2.1] if X is a compact convex set with the set ext X being
Lindelöf, each strongly affine function f : X→ R satisfies the maximum principle. In this case, also the set
ext BA(X)∗ = ϕ(ext X) ∪ −ϕ(ext X) is Lindelöf, and hence for each element a∗∗ ∈ A(X)∗∗ that is strongly affine
on BA(X)∗ ,

∥a∗∗∥ =(1) sup
x∈ext X

∣∣∣⟨a∗∗, ϕ(x)⟩
∣∣∣ . (2)

4. Results

In [17] it was showed how to extend the characteristic function χ{x} of an extreme point x of a simplex X
to an element a∗∗x ∈ A(X)∗∗ satisfying the maximum principle on each ball rBA(X)∗ , r > 0. We briefly recall the
way this was done.

The characteristic function χ{x} is convex and upper semicontinuous. Moreover, since X is a simplex, its
upper envelope χ∗

{x} defined for z ∈ X as

χ∗
{x}(z) = inf{a(z) : a ∈ A(X,R), a > χ{x}} = lim{a(z) : a ∈ A(X,R), a > χ{x}},

(where the system {a ∈ A(X,R), a > χ{x}} is considered as a downward directed net) is upper semicontinuous
and affine, see [14, Theorem 6.5], and coincides with χ{x} on the set of extreme points of X, see [14, Theorem
3.24]. Thus by [18, Lemma 2.4], the formula

⟨a∗∗x , s
∗
⟩ = lim{⟨s∗, a⟩ : a ∈ A(X,R), a > χ{x}}, s∗ ∈ A(X)∗,

defines an element a∗∗x ∈ A(X)∗∗, satisfying that ⟨a∗∗x , ϕ(z)⟩ = χ∗
{x}(z) for z ∈ X. Moreover, a∗∗x is of the first Borel

class on each ball rBA(X)∗ , r > 0, and hence satisfies the maximum principle on each such ball.
Next we need to show that for each boundary measure µ ∈ M(X) it holds that

⟨a∗∗x ,R(µ)⟩ = µ({x}). (3)

To see this, we write µ = α1µ1 − α2µ2, where α1, α2 ≥ 0 and µ1, µ2 ∈ M
1(X). Since the function χ∗

{x} is affine
and upper semicontinuous, it is strongly affine, see [14, Proposition 4.7]. Moreover, since the measure µ is
boundary, it holds that µ(χ∗

{x}) = µ(χ{x}), see [14, Theorem 3.68]. Thus

⟨a∗∗x ,R(µ)⟩ = lim{⟨R(µ), a⟩ : a ∈ A(X,R), a > χ{x}} =
= lim{α1µ1(a) − α2µ2(a) : a ∈ A(X,R), a > χ{x}} =
= lim{α1a(r(µ1)) − α2a(r(µ2)) : a ∈ A(X,R), a > χ{x}} =
= α1χ

∗

{x}(r(µ1)) − α2χ
∗

{x}(r(µ2)) =

= α1µ1(χ∗
{x}) − α2µ2(χ∗

{x}) = µ(χ∗
{x}) = µ(χ{x}),



J. Rondoš, J. Spurný / Filomat 36:15 (2022), 5251–5262 5255

and (3) holds.
Now we aim to show that also Baire subsets of extreme points of a simplex X can be extended to

elements of A(X)∗∗, although the demonstration of this fact differs substantially from the above arguments
for a single extreme point. Here the construction uses the solution of the abstract Dirichlet problem on X,
i.e., the possibility of extending a Baire function defined on ext X to a strongly affine Baire function on X.

Lemma 4.1. Let X be a compact convex set, and let f ∈ Bafα(X,R) be a strongly affine function for some ordinal
α ∈ [0, ω1). Then the formula

f̃ (s∗) = µ( f ), where R(µ) = s∗, s∗ ∈ A(X)∗,

and where R :M(X)→ A(X)∗ is the restriction mapping, defines an extension of f to an element in A(X)∗∗ satisfying
that for each r > 0, f ∈ Bafα(rBA(X)∗ ,R) is strongly affine.

Proof. First we show that the function f̃ is defined correctly. To this end, let measures µ, ν ∈ M(X) satisfy
R(µ) = R(ν). We write

µ = α1µ1 − α2µ2, ν = β1ν1 − β2ν2,

where α1, α2, β1, β2 are nonnegative real numbers and µ1, µ2, ν1, ν2 ∈ M
1(X). By the assumption, we have

µ(1) = ν(1), hence

α1 + β2 = α2 + β1.

If α1 + β2 = 0, then µ = ν = 0. Thus we assume that α1 + β2 , 0, and we pick an arbitrary function h ∈ A(X).
Then, since µ(h) = ν(h), we obtain that

α1µ1(h) + β2ν2(h)
α1 + β2

=
α2µ2(h) + β1ν1(h)

α2 + β1
,

in others words, the probabilities α1µ1+β2ν2

α1+β2
and α2µ2+β1ν1

α2+β1
share the same barycenter. Thus, since the function

f is strongly affine, we have

α1µ1( f ) + β2ν2( f )
α1 + β2

=
α2µ2( f ) + β1ν1( f )

α2 + β1
,

and it follows that µ( f ) = ν( f ). Hence the function f̃ is a correctly defined linear functional on A(X)∗ and it
is an extension of f in the sense that f̃ (ϕ(x)) = εx( f ) = f (x) for each x ∈ X. Hence f̃ (−ϕ(x)) = − f (x) for x ∈ X.
Moreover, since f is bounded by [14, Lemma 4.5], it is clear that also f̃ is bounded on BA(X)∗ , and hence it
belongs to the space A(X)∗∗.

Next we show that f̃ is a strongly affine function in Bafα(BA(X)∗ ,R). We recall that BA(X)∗ = co(ϕ(X)∪−ϕ(X))
with ext BA(X)∗ ⊆ ϕ(X) ∪ −ϕ(X). By the assumption, f ∈ Bafα(X,R). Thus f̃ ∈ Bafα(ϕ(X) ∪ −ϕ(X),R), and
hence also f̃ ∈ Bafα(ext BA(X)∗ ,R).

Moreover, since the function f is strongly affine on X, it follows that for each measure µ ∈ M1(ext BA(X)∗ ),
µ( f̃ ) = f̃ (r(µ)). To see this, given a measure µ ∈ M1(ext BA(X)∗ ), we write µ = α1µ1 + α2µ2, where α1 ≥

0, α2 ≥ 0, α1 + α2 = 1, µ1 ∈ M
1(ϕ(X)) and µ2 ∈ M

1(−ϕ(X)). Then r(µ1) ∈ ϕ(X), r(µ2) ∈ −ϕ(X), and
r(µ) = α1r(µ1)+α2r(µ2). Also, since the function f is strongly affine on X, it follows that the function f ◦ϕ−1

is strongly affine on ϕ(X), see [19, Proposition 3.2]. Thus we have

µ( f̃ ) = α1µ1( f̃ ) + α2µ2( f̃ ) = α1µ1( f ◦ ϕ−1) − α2µ2( f ◦ ϕ−1) =

= α1( f ◦ ϕ−1)(r(µ1)) − α2( f ◦ ϕ−1)(r(µ2)) =

= α1 f̃ (r(µ1)) + α2 f̃ (r(µ2)) = f̃ (α1r(µ1) + α2r(µ2)) = f̃ (r(µ)).

Thus it follows by [19, Theorem 3.3] that f̃ is a strongly affine function and f̃ ∈ Bafα(BA(X)∗ ,R).
Finally, since for any r > 0, the ball rBA(X)∗ is affinely homeomorphic to BA(X)∗ , it easily follows that f̃ is a

strongly affine function on rBA(X)∗ and f̃ ∈ Bafα(rBA(X)∗ ,R). The proof is finished.
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Lemma 4.2. Let X be a simplex with ext X Lindelöf, and let F ⊆ ext X be a zero set (in ext X). Then the characteristic
function χF may be uniquely extended to a function a∗∗F ∈ A(X)∗∗ satisfying the maximum principle on BA(X)∗ .
Moreover, for each r > 0, a∗∗F is a strongly affine function in Baf2(rBA(X)∗ ,R). If, in addition, ext X is resolvable, then
a∗∗F ∈ Baf1(rBA(X)∗ ,R).

Proof. The uniqueness part of the statement follows from (1). To prove the existence, we note that the
function χF clearly belongs to Baf1(ext X,R). Since ext X is normal, being Lindelöf and regular, we have
χF ∈ C1(ext X,R) by Proposition 2.2. Thus by [16, Theorem 2.1], χF can be extended to a strongly affine
function hF ∈ C2(X,R) = Baf2(X,R). By Lemma 4.1, the function hF may be extended to a function a∗∗F ∈ A(X)∗∗

such that for each r > 0, a∗∗F is strongly affine function in Baf2(rBA(X)∗ ,R).
In the case when ext X is moreover resolvable, hF ∈ Baf1(X,R) by [16, Theorem 2.3], and hence a∗∗F ∈

Baf1(rBA(X)∗ ,R). Finally, since a∗∗F is a strongly affine Baire function on BA(X)∗ , it satisfies the maximum
principle.

We note that from the uniqueness part of the previous lemma it follows that the notation a∗∗x is not
ambiguous, meaning that in the case when ext X is Lindelöf and x ∈ ext X is such that {x} is a zero set, the
element a∗∗x defined at the beginning of this section coincides with the element a∗∗

{x} given by Lemma 4.2.
Now we prove our main result.

Proof. [Proof of Theorem 1.1]
For i = 1, 2 we consider the evaluation mappingϕi : Xi → A(Xi)∗, and we note that since ext Xi is Lindelöf

by the assumption, so is ext BA(Xi)∗ = ϕi(ext Xi) ∪ −ϕi(ext Xi). Further, for each x ∈ ext X1 we consider the
element a∗∗x ∈ A(X1)∗∗, and analogously, for each y ∈ ext X2 we consider the element b∗∗y ∈ A(X2)∗∗.

Next we define the desired mappings ρ1, ρ2 in the following way. We find ε ∈ (0, 1
4 ) such that ∥T∥

∥∥∥T−1
∥∥∥ <

3
2 − 2ε, and let

ρ1(x) = {y ∈ ext X2 :
∣∣∣⟨(T∗∗)−1b∗∗y , ϕ1(x)⟩

∣∣∣ > 1 − ε
∥T∥
}, x ∈ ext X1,

ρ2(y) = {x ∈ ext X1 :
∣∣∣⟨T∗∗a∗∗x , ϕ2(y)⟩

∣∣∣ > 1 − ε∥∥∥T−1
∥∥∥ }, y ∈ ext X2.

We need to show that the relations ρ1 and ρ2 are mutual bijections. This is done very similarly as in,
e.g., [18]. Let L1 and L2 denote the domain of ρ1 and ρ2, respectively.

First we show that ρ2 : L2 → ext X1 is a mapping. To this end, assume that for some y ∈ ext X2 there
exist distinct points x1, x2 ∈ ext X1 such that∣∣∣⟨T∗∗a∗∗xi

, ϕ2(y)⟩
∣∣∣ > 1 − ε∥∥∥T−1

∥∥∥ , i = 1, 2.

Then we find α1, α2 ∈ SR satisfying

αi⟨T∗∗a∗∗xi
, ϕ2(y)⟩ >

1 − ε∥∥∥T−1
∥∥∥ , i = 1, 2,

and so we have

⟨T∗∗(α1a∗∗x1
+ α2a∗∗x2

), ϕ2(y)⟩ > 2
1 − ε∥∥∥T−1
∥∥∥ .

Consequently,
∥∥∥T∗∗(α1a∗∗x1

+ α2a∗∗x2
)
∥∥∥ > 2 1−ε

∥T−1∥
.

On the other hand, since the function α1a∗∗x1
+ α2a∗∗x2

satisfies the maximum principle on BA(X1)∗ , by (1) we
obtain that∥∥∥α1a∗∗x1

+ α2a∗∗x2

∥∥∥ = sup
x∈ext X1

∣∣∣α1χ{x1}(x) + α2χ{x2}(x)
∣∣∣ = 1,
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and hence
∥∥∥T∗∗(α1a∗∗x1

+ α2a∗∗x2
)
∥∥∥ ≤ ∥T∗∗∥ = ∥T∥. Thus it follows that

∥T∥ > 2
1 − ε∥∥∥T−1
∥∥∥ > 3

2
1∥∥∥T−1
∥∥∥ .

This contradicts the assumption that ∥T∥
∥∥∥T−1
∥∥∥ < 3

2 , and hence ρ2 is a mapping.
Next we show that the mapping ρ2 : L2 → ext X1 is surjective. To this end, let x ∈ ext X1 be given. We

know that a∗∗x is a strongly affine function on any ball rBA(X1)∗ , r > 0. Thus, since T∗∗a∗∗x = a∗∗x ◦ T∗ and T∗ is
an affine weak∗-weak∗ homeomorphism, it follows that T∗∗a∗∗x is a strongly affine function on the compact
convex set BA(X2)∗ , see [19, Proposition 3.2]. Consequently, by (2) and since

∥∥∥a∗∗x ∥∥∥ = 1, we have

1 − ε∥∥∥T−1
∥∥∥ < 1∥∥∥T−1

∥∥∥ = 1∥∥∥(T∗∗)−1
∥∥∥ ≤ ∥∥∥T∗∗a∗∗x ∥∥∥ = sup

y∈ext X2

∣∣∣⟨T∗∗a∗∗x , ϕ2(y)⟩
∣∣∣ .

Thus there exists y ∈ ext X2 such that 1−ε
∥T−1∥

<
∣∣∣⟨T∗∗a∗∗x , ϕ2(y)⟩

∣∣∣, that is, ρ2(y) = x. Similarly we would show
that ρ1 : L1 → ext X2 is a surjective mapping.

Further, we show that L2 = ext X2 and for each y ∈ ext X2, ρ2(y) ∈ L1 and ρ1(ρ2(y)) = y. To this end, for
a fixed y ∈ ext X2, since the mapping ρ1 is surjective, we find x ∈ ext X1 such that ρ1(x) = y, and, since the
mapping ρ2 is surjective, we find ỹ ∈ ext X2 satisfying that ρ2(ỹ) = x. We want to show that ỹ = y. Thus
we assume that ỹ , y, and we find a boundary measure µ ∈ M(X1) satisfying that R(µ) = T∗(ϕ2(ỹ)) and∥∥∥µ∥∥∥ = ∥∥∥T∗(ϕ2(ỹ))

∥∥∥ ≤ ∥T∥, see e.g. [10]. We write µ = λεx + ν, where λ ∈ R and ν ∈ M(X1) satisfies ν({x}) = 0.
Further, since ρ2(ỹ) = x, we have

1 − ε∥∥∥T−1
∥∥∥ < ∣∣∣⟨T∗∗a∗∗x , ϕ2(ỹ)⟩

∣∣∣ = ∣∣∣⟨a∗∗x ,T∗(ϕ2(ỹ))⟩
∣∣∣ = ∣∣∣⟨a∗∗x ,R(µ)⟩

∣∣∣ =(3)
∣∣∣µ({x})

∣∣∣ = |λ| .
Consequently,

∥ν∥ =
∥∥∥µ∥∥∥ − |λ| < ∥T∥ − 1 − ε∥∥∥T−1

∥∥∥ .
Further, we have

0 = χ{y}(ỹ) = χ∗
{y}(ỹ) = ⟨b∗∗y , ϕ2(ỹ)⟩ = ⟨(T∗∗)−1b∗∗y ,T

∗ϕ2(ỹ)⟩ =

= ⟨(T∗∗)−1b∗∗y ,R(µ)⟩ = ⟨(T∗∗)−1b∗∗y ,R(λεx + ν)⟩ = ⟨(T∗∗)−1b∗∗y , λϕ1(x) + R(ν)⟩,

hence∣∣∣⟨(T∗∗)−1b∗∗y , λϕ1(x)⟩
∣∣∣ = ∣∣∣⟨(T∗∗)−1b∗∗y ,R(ν)⟩

∣∣∣ .
Thus, recalling that ρ1(x) = y we finally obtain that

2
3

(1 − ε)2 <
1 − ε∥∥∥T−1
∥∥∥ · 1 − ε
∥T∥

< |λ|
∣∣∣⟨(T∗∗)−1b∗∗y , ϕ1(x)⟩

∣∣∣ =
=
∣∣∣⟨(T∗∗)−1b∗∗y ,R(ν)⟩

∣∣∣ ≤ ∥ν∥ ∥∥∥(T∗∗)−1b∗∗y
∥∥∥ < (∥T∥ −

1 − ε∥∥∥T−1
∥∥∥ ) ·
∥∥∥T−1
∥∥∥ =

= ∥T∥
∥∥∥T−1
∥∥∥ − (1 − ε) <

3
2
− 2ε − (1 − ε) =

1
2
− ε.

However, it is easy to check that the inequality

2
3

(1 − ε)2 <
1
2
− ε
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does not hold for any ε > 0. This contradiction shows that L2 = ext X2, and for each y ∈ ext X2, ρ2(y) ∈ L1
and ρ1(ρ2(y)) = y.

Moreover, since ρ2 is surjective, it follows that L1 = ext X1. Further, for a given x ∈ ext X1 we find
y ∈ ext X2 satisfying that ρ2(y) = x, and then

ρ2(ρ1(x)) = ρ2(ρ1(ρ2(y))) = ρ2(y) = x.

Thus the mappings ρ1 and ρ2 are mutual bijections.
It remains to show that the mappings ρ1 and ρ2 are measurable in accordance with the statements (i)

and (ii). We prove the measurability of the mapping ρ1, the proof for ρ2 would be analogous. Thus we pick
a zero set F ⊆ ext X2 and we consider the element b∗∗F given by Lemma 4.2. We want to show that

ρ−1
1 (F) = {x ∈ ext X1 :

∣∣∣⟨(T∗∗)−1b∗∗F , ϕ1(x)⟩
∣∣∣ > 1

2 ∥T∥
} =

= {x ∈ ext X1 :
∣∣∣⟨(T∗∗)−1b∗∗F , ϕ1(x)⟩

∣∣∣ ≥ 1 − 2ε
2 ∥T∥

}.
(4)

We consider a fixed x ∈ ρ−1
1 (F). Thus y = ρ1(x) ∈ F. First we show that∣∣∣⟨(T∗∗)−1(b∗∗F − b∗∗y ), ϕ1(x)⟩
∣∣∣ < 1 − 2ε

2 ∥T∥
.

To this end, we find α, β ∈ SR satisfying that∣∣∣⟨(T∗∗)−1(b∗∗F − b∗∗y ), ϕ1(x)⟩
∣∣∣ = α⟨(T∗∗)−1(b∗∗F − b∗∗y ), ϕ1(x)⟩

and ∣∣∣⟨(T∗∗)−1b∗∗y , ϕ1(x)⟩
∣∣∣ = β⟨(T∗∗)−1b∗∗y , ϕ1(x)⟩.

Then, since both the functions b∗∗F and b∗∗y are strongly affine on the compact convex set BA(X2)∗ , so is the
function α(b∗∗F − b∗∗y ) + βb∗∗y . Thus, since ext BA(X2)∗ is Lindelöf, by (2) we have∥∥∥α(b∗∗F − b∗∗y ) + βb∗∗y

∥∥∥ = sup
ỹ∈ext X2

∣∣∣αχF\{y}(ỹ) + βχ{y}(ỹ)
∣∣∣ = 1.

Hence∣∣∣⟨(T∗∗)−1(α(b∗∗F − b∗∗y ) + βb∗∗y ), ϕ1(x)⟩
∣∣∣ ≤ ∥∥∥T−1

∥∥∥ .
Thus if we assume that

∣∣∣⟨(T∗∗)−1(b∗∗F − b∗∗y ), ϕ1(x)⟩
∣∣∣ ≥ 1−2ε

2∥T∥ , we would have

⟨(T∗∗)−1(α(b∗∗F − b∗∗y ) + βb∗∗y ), ϕ1(x)⟩ =

= α⟨(T∗∗)−1(b∗∗F − b∗∗y ), ϕ1(x)⟩ + β⟨(T∗∗)−1b∗∗y , ϕ1(x)⟩ =

=
∣∣∣⟨(T∗∗)−1(b∗∗F − b∗∗y ), ϕ1(x)⟩

∣∣∣ + ∣∣∣⟨(T∗∗)−1b∗∗y , ϕ1(x)⟩
∣∣∣ > 1 − 2ε

2 ∥T∥
+

1 − ε
∥T∥
.

But this would yield∥∥∥T−1
∥∥∥ > 1 − 2ε

2 ∥T∥
+

1 − ε
∥T∥
,

that is, ∥T∥
∥∥∥T−1
∥∥∥ > 3

2 − 2ε. This contradiction with the choice of ε shows that∣∣∣⟨(T∗∗)−1(b∗∗F − b∗∗y ), ϕ1(x)⟩
∣∣∣ < 1 − 2ε

2 ∥T∥
.
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Consequently, we have∣∣∣⟨(T∗∗)−1b∗∗F , ϕ1(x)⟩
∣∣∣ = ∣∣∣⟨(T∗∗)−1(b∗∗F − b∗∗y ) + (T∗∗)−1b∗∗y , ϕ1(x)⟩

∣∣∣ ≥
≥

∣∣∣⟨(T∗∗)−1b∗∗y , ϕ1(x)⟩
∣∣∣ − ∣∣∣⟨(T∗∗)−1(b∗∗F − b∗∗y ), ϕ1(x)⟩

∣∣∣ > 1 − ε
∥T∥

−
1 − 2ε
2 ∥T∥

=
1

2 ∥T∥
.

On the other hand, let x ∈ ext X1 \ ρ−1
1 (F) be given. Thus y = ρ1(x) < F. We want to show that∣∣∣⟨(T∗∗)−1b∗∗F , ϕ1(x)⟩

∣∣∣ < 1 − 2ε
2 ∥T∥

.

This we show similarly as above. So we find α, β ∈ SR satisfying that∣∣∣⟨(T∗∗)−1b∗∗F , ϕ1(x)⟩
∣∣∣ = α⟨(T∗∗)−1b∗∗F , ϕ1(x)⟩

and ∣∣∣⟨(T∗∗)−1b∗∗y , ϕ1(x)⟩
∣∣∣ = β⟨(T∗∗)−1b∗∗y , ϕ1(x)⟩.

Then as above, since the function αb∗∗F + βb
∗∗
y is strongly affine, by (2) we have∥∥∥αb∗∗F + βb

∗∗

y

∥∥∥ = sup
ỹ∈ext X2

∣∣∣αχF(ỹ) + βχ{y}(ỹ)
∣∣∣ = 1,

and thus∣∣∣⟨(T∗∗)−1(αb∗∗F + βb
∗∗

y ), ϕ1(x)⟩
∣∣∣ ≤ ∥∥∥T−1

∥∥∥ .
Thus, assuming that

∣∣∣⟨(T∗∗)−1b∗∗F , ϕ1(x)⟩
∣∣∣ ≥ 1−2ε

2∥T∥ , we would have

⟨(T∗∗)−1(αb∗∗F + βb
∗∗

y ), ϕ1(x)⟩ =

= α⟨(T∗∗)−1b∗∗F , ϕ1(x)⟩ + β⟨(T∗∗)−1b∗∗y , ϕ1(x)⟩ =

=
∣∣∣⟨(T∗∗)−1b∗∗F , ϕ1(x)⟩

∣∣∣ + ∣∣∣⟨(T∗∗)−1b∗∗y , ϕ1(x)⟩
∣∣∣ ≥ 1 − 2ε

2 ∥T∥
+

1 − ε
∥T∥
,

which in the same way as above gives a contradiction with ∥T∥
∥∥∥T−1
∥∥∥ < 3

2 − 2ε, and hence (4) holds.
Further, since b∗∗F ∈ Baf2(rBA(X2)∗ ,R) for each r > 0, it follows that the function (T∗∗)−1b∗∗F = b∗∗F ◦T∗ belongs to

Baf2(BA(X1)∗ ,R). Hence (T∗∗)−1b∗∗F is Σ3(Bas(BA(X1)∗ )))-measurable by Proposition 2.1. Thus, since the mapping
ϕ1 is a homeomorphic embedding and the system Σ3(Bas(ext X1)) is closed with respect to finite unions, the
set

ρ−1
1 (F) ={x ∈ ext X1 : ⟨(T∗∗)−1b∗∗F , ϕ1(x)⟩ >

1
2 ∥T∥

}

∪ {x ∈ ext X1 : ⟨(T∗∗)−1b∗∗F , ϕ1(x)⟩ < −
1

2 ∥T∥
}

belongs to Σ3(Bas(ext X1)). Similarly from the equality

ρ−1
1 (F) ={x ∈ ext X1 : ⟨(T∗∗)−1b∗∗F , ϕ1(x)⟩ ≥

1 − 2ε
2 ∥T∥

}

∪ {x ∈ ext X1 : ⟨(T∗∗)−1b∗∗F , ϕ1(x)⟩ ≤ −
1 − 2ε
2 ∥T∥

}

we obtain that ρ−1
1 (F) ∈ Π3(Bas(ext X1)), and hence ρ−1

1 (F) ∈ ∆3(Bas(ext X1)).
If, moreover, the set ext X2 is resolvable, then (T∗∗)−1b∗∗F ∈ Baf1(BA(X1)∗ ,R) by Lemma 4.2, and hence as

above we see that ρ−1
1 (F) ∈ ∆2(Bas(ext X1)). This finishes the proof.
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5. Examples

In this final section we discuss the optimality of our results. To start with, we do not know whether the
constant 3

2 , appearing in Theorem 1.1, can be replaced by 2, which could be expected in view of the Amir-
Cambern theorem and related results for spaces of affine functions. We note that in our proof, this better
constant is needed only for the measurability of the constructed mappings ρ1, ρ2, the mutual bijectivity of
these mappings could be proven also with the constant 2.

On the other hand, it turns out that the topological assumption of Lindelöf sets of extreme points is
necessary. To prove this, we modify the example of Hess [9].

Example 5.1. For each ε > 0 there exist simplices X1, X2 such that there exists an isomorphism T : A(X1)→ A(X2)
with ∥T∥

∥∥∥T−1
∥∥∥ ≤ 1 + ε, but there is no Baire bimeasurable bijection of the sets ext X1 and ext X2.

Proof. Let ε > 0 be given. We consider the function space (see [14, Definition 3.1])

H1 = { f ∈ C([0, ω1]) : f (ω1) =
2

2 + ε
f (0) +

ε
2 + ε

f (1)},

and letH2 = C([0, ω1]). ThenM1([0, ω1]) is a simplex with extM1([0, ω1]) homeomorphic to [0, ω1], see e.g.
[1, Corollary II.4.2], and moreover,H2 is isometric to the space A(M1([0, ω1])), see e.g. [1, Corollary II.3.13].
Further, we show that the state space

S(H1) = {s∗ ∈ H ∗1 : s∗ ≥ 0, s∗(1) = 1}

is a simplex. To start with, it is standard to check that ext S(H1) is homeomorphic to the interval [0, ω1).
Moreover, it is easy to see that if a nonzero measure µ ∈ M([0, ω1]) annihilates H1 then it is a nonzero

multiple of

εω1 −
2

2 + ε
ε0 −

ε
2 + ε

ε1,

so it is not carried by [1, ω1). Thus S(H1) is a simplex (see [14, Propositions 6.9. and 3.66.]). Moreover, the
spaceH1 can be identified in a standard way with A(S(H1)), see [14, Proposition 4.26.].

To proceed further, we define T : H1 →H2 for α ∈ [0, ω1] as

T f (α) =

 f (α + 1), α ∈ [0, ω),
f (α), otherwise.

Then T is injective, since if T f = 0 then f (α) = 0 for each α ≥ 1, and f (0) = 2+ε
2 ( f (ω1) − ε

2+ε f (1)) = 0.
Moreover, T is surjective, since T−1 can be written for 1 ∈ H2 as

T−11(α) =


2+ε

2 (1(ω1) − ε
2+ε1(0)), α = 0,

1(α − 1), α ∈ [1, ω),
1(α), otherwise.

Further, it is clear that ∥T∥ ≤ 1, and for 1 ∈ H2,∥∥∥T−11
∥∥∥ ≤ max{

2 + ε
2

(1(ω1) −
ε

2 + ε
1(0)),

∥∥∥1∥∥∥} ≤ ∥∥∥1∥∥∥ (
2 + ε

2
)(1 +

ε
2 + ε

) =
∥∥∥1∥∥∥ (1 + ε).

Finally, it is easy to see that each singleton in [0, ω1) is a zero set, but it is known that {ω1} is not a Baire
set in [0, ω1]. (To see this, assume for a contradiction that {ω1}, and hence also [0, ω1), is a Baire set in [0, ω1].
But then [0, ω1) would be K-analytic, see [14, Definition A.110 and Theorem A.111(i)], and hence Lindelöf,
see [14, Theorem A.111(d)], which is clearly not true.)

Thus it follows that there exists no Baire bimeasurable bijection ρ : [0, ω1)→ [0, ω1], because otherwise
the singleton ρ−1(ω1) would not be a Baire set, which is not possible. The proof is finished.
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Finally, it is not clear whether in Theorem 1.1, it is possible to prove that the constructed mappings ρi
are measurable also with respect to the Borel hierarchy of sets instead of the Baire hierarchy. While we do
not know the solution to this problem, we show that it cannot be answered in positive using our methods,
which rely on the solution of the abstract Dirichlet problem. To this end, imitating standard constructions,
see e.g. [4, Section VII], [1, Proposition I.4.15], [3, Theorem 3.2.4] or [13], we present an example of the
characteristic function of a closed subset of a simplex with Lindelöf boundary for which the solution of the
abstract Dirichlet problem does not exist.

Example 5.2. There exists a simplex X with Lindelöf set of extreme points and a closed set F ⊆ ext X such that χF
cannot be extended to an affine Borel function on X.

Proof. Let B ⊆ [0, 1] be a Bernstein set, i.e., a set which intersects each nonempty perfect subset of [0, 1] but
contains no such set (see [15, Theorem 5.3]), and let

K = (B × {−1, 1}) ∪ ([0, 1] × {0})

be endowed with the ”porcupine” topology, see [4, Section VII]. Precisely, let B×{−1} and B×{1} be endowed
with the discrete topology, and let a point x ∈ [0, 1] × {0} has a basis of neighbourhoods consisting of the
sets of the form

(U × {0}) ∪ (((B ∩U) \
n⋃

i=1

{xi}) × {−1}) ∪ (((B ∩U) \
k⋃

i=1

{yi}) × {1}),

where k,n ∈N, U ⊆ [0, 1] is an euclidean open neighbourhood of x, and
x1, . . . xn, y1, . . . yk ∈ U. Then it is easy to check that K is a compact Hausdorff space.

Further, we consider the function space

H = { f ∈ C(K) : f (x, 0) =
1
2

f (x,−1) +
1
2

f (x, 1), x ∈ B}.

ThenH is an example of the so-called Stacey function space, see [14, Definition 6.13]. Thus it follows from
[14, Lemma 6.14, Theorem 6.54 and Proposition 4.26] that its state space

X = {s∗ ∈ H ∗ : s∗ ≥ 0, s∗(1) = 1}

is a simplex,H is isometric to A(X), and ext X is homeomorphic to

(B × {−1, 1}) ∪ ([0, 1] \ B) × {0}.

We check that this set is Lindelöf. Thus we consider an arbitrary open coveringU of this set. Then, since
([0, 1] \ B) × {0} is a separable metric space, it is Lindelöf, hence we may extract fromU a countable family
{Un}n∈N covering the set ([0, 1] \ B) × {0}. Then the set

(B × {0}) \
∞⋃

n=1

Un = ([0, 1] × {0}) \
∞⋃

n=1

Un

is at most countable. Indeed, if this set were uncountable, then, since it is closed (in the euclidean topology
on [0, 1] × {0}), it would contain a perfect set, which is not possible due to the fact that B is a Bernstein
set. Thus it follows from the definition of the topology of K that also the set (B × {−1}) \

⋃
n∈NUn is at

most countable, and hence we may extract an another countable subfamily {Vn}n∈N from U such that⋃
n∈N(Un ∪ Vn) covers (([0, 1] \ B) × {0}) ∪ (B × {−1}). Similarly we can cover the set B × {1}, and it follows

that ext X is Lindelöf.
Further, the set F = ([0, 1] \B)× {0} is closed in ext X. Finally, if f : X→ R is an affine function extending

χF, then f (x, 0) = 1 for x ∈ [0, 1] \ B, and, since f is affine, f (x, 0) = 0 for x ∈ B. Thus, since B is a Bernstein
set, f is not Borel, which finishes the proof.
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