
Filomat 36:15 (2022), 5307–5313
https://doi.org/10.2298/FIL2215307L

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper, we investigate the Sherman-Morrison-Woodbury formula for the {1}-inverses
and the {2}-inverses of bounded linear operators on a Hilbert space. Some conditions are established to
guarantee that (A+YGZ∗)⊙ = A⊙−A⊙Y(G⊙+Z∗A⊙Y)⊙Z∗A⊙ holds, where A⊙ stands for any kind of standard
inverse, {1}-inverse, {2}-inverse, Moore-Penrose inverse, Drazin inverse, group inverse, core inverse and
dual core inverse of A.

1. Introduction

Let H and K be Hilbert spaces over the same field. We use B(H ,K ) to denote the set of all bounded
linear operators from H to K , and set B(H ) = B(H ,H ). For A ∈ B(H ,K ), let A∗, R(A) and N (A) be
the adjoint, the range and the null space of A, respectively. Let A ∈ B(H ) and G ∈ B(K ) both be invertible,
and Y,Z ∈ B(H ,K ). Then A + YGZ∗ is invertible if and only if G−1 + Z∗A−1Y is invertible. In this case,

(A + YGZ∗)−1 = A−1
− A−1Y(G−1 + Z∗A−1Y)−1Z∗A−1. (1)

The formula (1) is called Sherman-Morrison-Woodbury formula (for short SMW formula). The SMW
formula was discovered by Sherman and Morrison [1], Woodbury [2], Bartlett [3] and Bodewig [4]. The
original SMW formula was considered for matrices and is valid if the matrix A is invertible. The SMW
formula has been used in various fields, see for example, [5]-[8]. In particular, Hager [5] applied it to
statistics, networks, structural analysis, asymptotic analysis, optimization and partial differential equations.

Let A ∈ B(H ,K ), if there exists X ∈ B(K ,H ) satisfying the following four operator equations (see
for example, [9–11]):

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA,
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then X is called the Moore-Penrose inverse of A. The Moore-Penrose inverse of A is unique if it exists and is
denoted by A†. In addition, X satisfying equation (i) is called a {i}-inverse of A and is denoted by X ∈ A{i},
where i ∈ {1, 2, 3, 4}. We use A− and A+ to denote a {1}-inverse and a {2}-inverse of A, respectively. An
operator A ∈ B(H ,K ) is {1}-invertible (or Moore-Penrose invertible) if and only if R(A) is closed in K .
For A ∈ B(H ,K ), there exists B ∈ B(K ,H ) such that B , 0 and B ∈ A{2} if and only if A , 0.

The Drazin inverse of A ∈ B(H ) is the element X ∈ B(H ) such that

AX = XA, XAX = X, A − A2X is nilpotent.

Such an X is unique if it exists and is denoted by AD. If A−A2X = 0, then X is called the group inverse of A.
Let A ∈ B(H ). Baksalary and Trenkler [12] introduced the core inverse for a complex matrix. Rakić et

al. [13] generalized this concept to bounded linear operators on a Hilbert space. A #O
∈ B(H ) is called the

core inverse of A if it satisfies

AA #OA = A, A #OAA #O = A #O, (AA #O)∗ = AA #O, A(A #O)2 = A #O, A #OA2 = A.

And A #O ∈ B(H ) is called the dual core inverse of A if it satisfies

AA #OA = A, A #OAA #O = A #O, (A #OA)∗ = A #OA, (A #O)2A = A #O, A2A #O = A.

Several authors generalized the original SMW formula to singular or rectangular matrices by the concept
of Moore-Penrose inverses (see for example, [14–17]). Even the extension of SMW formula is available for
bounded linear operators on Hilbert space (see for example, [18–20]). In this paper, we generalized the
SMW formula to the {1}-inverse case and the {2}-inverse case. Moreover, we obtain the SMW formula for
the Moore-Penrose inverse, Drazin inverse, group inverse, core inverse and dual core inverse. Therefore,
some results in [18] and [19] are completed.

2. Main results

Let us first present some auxiliary lemmas and results for the further reference.

Lemma 2.1. ([21, Lemma 10] and [9]) If A ∈ B(H ) and P = P2
∈ B(H ), then

(i) PA = A⇔ R(A) ⊂ R(P);
(ii)AP = A⇔ N (P) ⊂ N (A).

Lemma 2.2. Let A ∈ B(H ,K ). Then we have the following results:
(i) R(AA−) = R(A) and N (A−A) = N (A), where A− ∈ A{1};
(ii)[19, Lemma 2] R(A+A) = R(A+) and N (AA+) = N (A+), where A+ ∈ A{2};
(iii) if A is core invertible, then R(AA #O) = R(A) = R(A #O) = R(A #OA);
(iv) if A is core invertible, then N (AA #O) = N (A) = N (A #O) = N (A #OA).

Proof. (i). From R(A) = R(AA−A) ⊂ R(AA−) ⊂ R(A) and N (A) ⊂ N (A−A) ⊂ N (AA−A) = N (A), we get
that R(AA−) = R(A) and N (A−A) = N (A).

(iii). Since A #O
∈ A{1, 2}, we have R(AA #O) = R(A) and R(A #O) = R(A #OA) according to (i) and (ii).

Moreover,
R(A) = R(A #OA2) ⊂ R(A #O) = R(A(A #O)2) ⊂ R(A),

thus R(A) = R(A #O).
(iv). Since A #O ∈ A{1, 2}, we have N (AA #O) = N (A) #O and N (A) = N (A #OA) according to (i) and (ii).

Furthermore,
N (A) ⊂ N ((A #O)2A) = N (A #O) ⊂ N (A2A #O) = N (A),

hence N (A) = N (A #O).
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Lemma 2.3. [19, Theorem 3] Let A,G ∈ B(H ) such that A , 0 and G , 0. Also let Y,Z ∈ B(K ,H ),
B = A + YGZ∗, T = G+ + Z∗A+Y such that B , 0 and T , 0. If

R(A+) ⊂ R(B+), N (A+) ⊂ N (B+),

N (G+) ⊂ N (Y), N (T+) ⊂ N (G),

then B+ = A+ − A+YT+Z∗A+.

Duan [19] proved that Lemma 2.3 is valid for standard inverse, Moore-Penrose inverse, Drazin inverse
and group inverse. It is worth mentioning that Lemma 2.3 is also valid for core inverse and dual core
inverse. Now we give the following result which which in way a mimics dual of Lemma 2.3.

Theorem 2.4. Let A,G ∈ B(H ) such that A , 0 and G , 0. Also let Y,Z ∈ B(K ,H ), B = A + YGZ∗,
T = G+ + Z∗A+Y such that B , 0 and T , 0. If

N (B+) ⊂ N (A+), R(B+) ⊂ R(A+),

R(G) ⊂ R(T+), R(Z∗) ⊂ R(G+),

then B+ = A+ − A+YT+Z∗A+.

Proof. By Lemma 2.1 and 2.2, these four conditions N (BB+) = N (B+) ⊂ N (A+), R(B+) ⊂ R(A+) = R(A+A),
R(G) ⊂ R(T+) = R(T+T) and R(Z∗) ⊂ R(G+) = R(G+G) are equivalent to A+BB+ = A+, A+AB+ = B+,
T+TG = G and G+GZ∗ = Z∗, respectively.

Since

TGZ∗B+ = (G+ + Z∗A+Y)GZ∗B+

= G+GZ∗B+ + Z∗A+YGZ∗B+

= Z∗B+ + Z∗A+(B − A)B+

= Z∗B+ + Z∗A+BB+ − Z∗A+AB+

= Z∗B+ + Z∗A+ − Z∗B+

= Z∗A+,

we obtain

GZ∗B+ = T+TGZ∗B+ = T+Z∗A+. (2)

Therefore,

A+ = A+BB+ = A+(A + YGZ∗)B+

= A+AB+ + A+YGZ∗B+

(2)
= B+ + A+YT+Z∗A+,

which shows that B+ = A+ − A+YT+Z∗A+.

Let A⊙ stand for any kind of the following standard inverse A−1, Moore-Penrose inverse A†, Drazin
inverse AD, group inverse A#, core inverse A #O and dual core inverse A #O. Since A⊙ ∈ A{2}, we can obtain the
following corollary.

Corollary 2.5. Let A,G ∈ B(H ) such that A⊙ and G⊙ exist. Also let Y,Z ∈ B(K ,H ), B = A + YGZ∗,
T = G⊙ + Z∗A⊙Y such that B⊙ and T⊙ exist. If

N (B⊙) ⊂ N (A⊙), R(B⊙) ⊂ R(A⊙),

R(G) ⊂ R(T⊙), R(Z∗) ⊂ R(G⊙),

then B⊙ = A⊙ − A⊙YT⊙Z∗A⊙.
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If G and T are invertible in Corollary 2.5, then we can get the following result.

Corollary 2.6. Let A,G ∈ B(H ) such that A⊙ exists and G is invertible. Also let Y,Z ∈ B(K ,H ), B = A+YGZ∗,
T = G−1 + Z∗A⊙Y such that B⊙ exists and T is invertible. If

N (B⊙) ⊂ N (A⊙), R(B⊙) ⊂ R(A⊙),

then B⊙ = A⊙ − A⊙YT−1Z∗A⊙.

Now we establish new conditions to guarantee the validity of SWM formula for {2}-inverse and {1}-
inverse. Let A▽ denote a {1}-inverse or a {2}-inverse of A. Suppose that A,G ∈ B(H ) with A▽ and G▽

exist and Y,Z ∈ B(K ,H ), let B = A + YGZ∗ and T = G▽ + Z∗A▽Y with T▽ exists. We use the notation ai
(i = 1, . . . , 8) to stand for the following conditions:
a1 : R(YT▽Z∗A▽) ⊂ R(AA▽)

a2 : N (TT▽) ⊂ N (YG) or R(Z∗A▽) ⊂ R(TT▽)

a3 : N (GG▽) ⊂ N (Y) or R(T▽Z∗A▽) ⊂ R(GG▽)

a4 : R(YGZ∗) ⊂ R(AA▽)

a5 : N (A▽A) ⊂ N (A▽YT▽Z∗)

a6 : N (T▽T) ⊂ N (A▽Y) or R(GZ∗) ⊂ R(T▽T)

a7 : N (G▽G) ⊂ N (A▽YT▽) or R(Z∗) ⊂ R(G▽G)

a8 : N (A▽A) ⊂ N (YGZ∗)

Let X = A▽ − A▽YT▽Z∗A▽.

Case I. If a1, a2 and a3 hold, then

AA▽YT▽Z∗A▽
a1
= YT▽Z∗A▽ (3)

and

YGZ∗A▽YT▽Z∗A▽ = YG(Z∗A▽Y)T▽Z∗A▽

= YG(T − G▽)T▽Z∗A▽

= YGTT▽Z∗A▽ − YGG▽T▽Z∗A▽

a2, a3
= YGZ∗A▽ − YT▽Z∗A▽,

(4)

we obtain

BX = (A + YGZ∗)(A▽ − A▽YT▽Z∗A▽)
= AA▽ − AA▽YT▽Z∗A▽ + YGZ∗A▽ − YGZ∗A▽YT▽Z∗A▽

(3)(4)
= AA▽ − YT▽Z∗A▽ + YGZ∗A▽ − YGZ∗A▽ + YT▽Z∗A▽

= AA▽.

(5)

Case II. If a5, a6 and a7 hold, then

A▽YT▽Z∗A▽A
a5
= A▽YT▽Z∗ (6)

and

A▽YT▽Z∗A▽YGZ∗ = A▽YT▽(Z∗A▽Y)GZ∗

= A▽YT▽(T − G▽)GZ∗

= A▽YT▽TGZ∗ − A▽YT▽G▽GZ∗

a6, a7
= A▽YGZ∗ − A▽YT▽Z∗,

(7)
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we obtain

XB = (A▽ − A▽YT▽Z∗A▽)(A + YGZ∗)
= A▽A + A▽YGZ∗ − A▽YT▽Z∗A▽A − A▽YT▽Z∗A▽YGZ∗

(6)(7)
= A▽A + A▽YGZ∗ − A▽YT▽Z∗ − A▽YGZ∗ + A▽YT▽Z∗

= A▽A.

(8)

If A▽ = A+ is a {2}-inverse in the above notations, then we have the following result.

Theorem 2.7. Let A,G ∈ B(H ) such that A , 0 and G , 0. Let Y,Z ∈ B(K ,H ), B = A+YGZ∗, T = G++Z∗A+Y.
If T , 0 and any of the following items holds:
(i) a1, a2, a3;
(ii) a5, a6, a7,
then A+ − A+YT+Z∗A+ ∈ B{2}.

Proof. Let X = A+ − A+YT+Z∗A+.
(i). According to Case I, we have

XBX
(5)
= (A+ − A+YT+Z∗A+)AA+ = A+ − A+YT+Z∗A+ = X,

thus X ∈ B{2}.

(ii). According to Case II, we get

XBX
(8)
= A+A(A+ − A+YT+Z∗A+) = A+ − A+YT+Z∗A+ = X,

that is to say, X ∈ B{2}.

Corollary 2.8. [19, Theorem 5] Let A,G ∈ B(H ) such that A , 0 and G , 0. Let Y,Z ∈ B(K ,H ), B = A+YGZ∗,
T = G+ + Z∗A+Y. If T , 0 and any of the following items holds:
(i) R(Y) ⊂ R(AA+), R(Z∗) ⊂ R(TT+), N (G+) ⊂ N (Y);
(ii) N (A+A) ⊂ N (Z∗), N (T+T) ⊂ N (Y), R(Z∗) ⊂ R(G+),
then A+ − A+YT+Z∗A+ ∈ B{2}.

Proof. (i). The conditions R(Y) ⊂ R(AA+) and R(Z∗) ⊂ R(TT+) imply the conditions a1 and a2, respectively.
N (GG+) = N (G+) ⊂ N (Y) satisfies the condition a3, thus the result is valid by Theorem 2.7.

(ii). Similarly, N (A+A) ⊂ N (Z∗), N (T+T) ⊂ N (Y) and R(Z∗) ⊂ R(G+) = R(G+G) give the conditions
a5, a6 and a7, respectively. Therefore, we obtain the conclusion by Theorem 2.7.

We present new conditions under which that generalized SMW formula is satisfied for {1}-inverse. If
A▽ = A− is a {1}-inverse of A in the above notations, then we obtain the following result.

Theorem 2.9. Suppose that A,G ∈ B(H ) with R(A) and R(G) are both closed. Let Y,Z ∈ B(K ,H ), B =
A + YGZ∗, T = G− + Z∗A−Y. If R(T) is closed and any of the following items holds:
(i) a1, a2, a3, a4;
(ii) a5, a6, a7, a8,
then R(B) is closed with A− − A−YT−Z∗A− ∈ B{1}.

Proof. Let X = A− − A−YT−Z∗A−.
(i). According to Case I, we obtain

BXB
(5)
= AA−(A + YGZ∗) = AA−A + AA−YGZ∗

a4
= A + YGZ∗ = B,

which shows that X ∈ B{1}.
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(ii). According to Case II, we obtain

BXB
(8)
= (A + YGZ∗)A−A = AA−A + YGZ∗A−A

a8
= A + YGZ∗ = B,

hence X ∈ B{1}.

Let A⊖ stand for any kind of standard inverse A−1, Moore-Penrose inverse A†, Drazin inverse AD, group
inverse A# and core inverse A #O. Replace all the superscripts ▽with ⊖ in items a1-a7, then we can obtain the
following corollary.

Corollary 2.10. Let A,G ∈ B(H ) with A⊖,G⊖ exist, Y,Z ∈ B(K ,H ), B = A + YGZ∗, T = G⊖ + Z∗A⊖Y. If T⊖

exists and the following items holds:
a1, a2, a3, a4, a5, a6, a7,

then B⊖ exists with B⊖ = A⊖ − A⊖YT⊖Z∗A⊖.

Proof. Let X = A⊖ − A⊖YT⊖Z∗A⊖. According to Case I and Case II, conditions a1, a2, a3, a5, a6, a7 follow
that X satisfies BX = AA⊖ and XB = A⊖A.

If ⊖ denotes the standard inverse, then the result is valid obviously.
If ⊖ denotes the Moore-Penrose inverse, then BX = AA† and XB = A†A show that BX and XB are both

Hermitian. Moreover, Theorem 2.7 and 2.9 show that XBX = X and BXB = B, respectively. Thus X = B†.
If ⊖ denotes the Drazin inverse (resp., group inverse), then BX = AAD = ADA = XB. Moreover,

XBX = ADA(AD
− ADYTDZ∗AD) = X

and
B − B2X = (I − BX)B = (I − AAD)(A + YGZ∗)

a4
= (I − AAD)A

is nilpotent (resp., B − B2X = 0 for the group inverse). Thus X = BD (resp., X = B#).
If ⊖ denotes the core inverse, then XB = A #OA, and BX = AA #O shows that BX is Hermitian. Furthermore,

since R(AA #O) = R(A) = R(A #O) = R(A #OA) by Lemma 2.2,

BXB = AA #O(A + YGZ∗) = A + AA #OYGZ∗
a4
= A + YGZ∗ = B,

XBX = A #OA(A #O
− A #OYT #OZ∗A #O) = A #O

− A #OYT #OZ∗A #O = X,

BX2 = AA #O(A #O
− A #OYT #OZ∗A #O) = A #O

− A #OYT #OZ∗A #O = X,

XB2 = A #OA(A + YGZ∗) = A + A #OAYGZ∗
a4
= A + YGZ∗ = B.

Hence X = B #O.

Let A⊘ stand for any kind of standard inverse A−1, Moore-Penrose inverse A†, Drazin inverse AD, group
inverse A# and dual core inverse A #O. Replace all the superscripts ▽with ⊘ in items a1-a3, a5-a8, then we can
obtain the following corollary.

Corollary 2.11. Let A,G ∈ B(H ) with A⊘,G⊘ exist, Y,Z ∈ B(K ,H ), B = A + YGZ∗, T = G⊘ + Z∗A⊘Y. If T⊘

exists and the following items holds:
a1, a2, a3, a5, a6, a7, a8,

then B⊘ exists with B⊘ = A⊘ − A⊘YT⊘Z∗A⊘.

Proof. Let X = A⊘ − A⊘YT⊘Z∗A⊘. According to Case I and Case II, conditions a1, a2, a3, a5, a6, a7 deduce
that X satisfies BX = AA⊘ and XB = A⊘A.

If ⊘ denotes the standard inverse, then the result is valid obviously.
If ⊘ denotes the Moore-Penrose inverse, then BX = AA† and XB = A†A show that BX and XB are both

Hermitian. Moreover, Theorem 2.7 and 2.9 show that XBX = X and BXB = B, respectively. Thus X = B†.
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If ⊘ denotes the Drazin inverse (resp., group inverse), then BX = AAD = ADA = XB. Moreover,

XBX = ADA(AD
− ADYTDZ∗AD) = X

and
B − B2X = B(I − BX) = (A + YGZ∗)(I − AAD)

a8
= A(I − AAD)

is nilpotent (resp., B − B2X = 0 for the group inverse). Thus X = BD (resp., X = B#).
If ⊘ denotes the dual core inverse, then BX = AA #O, and XB = A #OA shows that XB is Hermitian.

Furthermore, since N (AA #O) = N (A #O) = N (A) = N (A #OA) by Lemma 2.2,

BXB = (A + YGZ∗)A #OA = A + YGZ∗A #OA
a8
= A + YGZ∗ = B,

XBX = (A #O − A #OYT #OZ∗A #O)AA #O = A #O − A #OYT #OZ∗A #O = X,

X2B = (A #O − A #OYT #OZ∗A #O)A #OA = A #O − A #OYT #OZ∗A #O = X,

B2X = (A + YGZ∗)AA #O = A + YGZ∗AA #O
a8
= A + YGZ∗ = B.

So X = B #O.

Corollary 2.12. [19, Corollary 6] Let A,G ∈ B(H ) with A⊙,G⊙ exist, Y,Z ∈ B(K ,H ), B = A + YGZ∗,
T = G⊙ + Z∗A⊙Y. If T⊙ exists and the following conditions holds:

R(Y) ⊂ R(A), R(Z∗) ⊂ R(T), N (G⊙) ⊂ N (Y),

N (A) ⊂ N (Z∗), N (T) ⊂ N (Y), R(Z∗) ⊂ R(G⊙).

then B⊙ exists with B⊙ = A⊙ − A⊙YT⊙Z∗A⊙.

Proof. The hypothesis R(Y) ⊂ R(A) = R(AA⊙) implies conditions a1 and a4, N (A⊙A) = N (A) ⊂ N (Z∗)
implies conditions a5 and a8. In addition, R(Z∗) ⊂ R(T) = R(TT⊙), N (GG⊙) = N (G⊙) ⊂ N (Y), N (T⊙T) =
N (T) ⊂ N (Y), R(Z∗) ⊂ R(G⊙ = R(G⊙G) can yield conditions a2, a3, a6 and a7, respectively. Therefore, the
conclusion is true by applying Corollary 2.10 and 2.11.
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