Strongly Semi-Continuous Functions and δ-Stratifiable Spaces

Er-Guang Yang ${ }^{\text {a }}$, Zheng Jiang ${ }^{\text {a }}$
${ }^{\text {a }}$ School of Mathematics \& Physics, Anhui University of Technology, Maanshan 243002, P.R. China

Abstract

In [6], a sufficient condition for a space to be δ-stratifiable was presented and it was asked whether the condition is necessary. Jin et al [4] gave a negative answer to the question by showing that a space with the condition is zero-dimensional. In this paper, we show that a space with the condition is precisely an almost discrete space. Moreover, we introduce the notions of strongly lower (upper) semi-continuous functions, with which the characterizations of δ-stratifiable spaces are presented.

1. Introduction and preliminaries

Throughout, a space always means a topological space. For a space X, denote by τ and τ^{c} the topology of X and the family of all closed subsets of X respectively. For a subset A of a space X, we write \bar{A} (int A) for the closure (interior) of A in X. Also, we use χ_{A} to denote the characteristic function of A. The set of all positive integers (real numbers) is denoted by $\mathbb{N}(\mathbb{R})$.

A real-valued function f on a space X is called lower (upper) semi-continuous [2] if for any real number r, the $\operatorname{set}\{f>r\}=\{x \in X: f(x)>r\}(\{f<r\}=\{x \in X: f(x)<r\})$ is open. We write $L(X)(U(X))$ for the set of all lower (upper) semi-continuous functions on X and $L^{+}(X)=\{f \in L(X): f \geq 0\}, U^{+}(X)=\{f \in U(X): f \geq 0\}$. $C(X)$ is the set of all continuous functions on X and $C^{+}(X)=\{f \in C(X): f \geq 0\}$.

A subset D of a space X is called a regular G_{δ}-set [7] if there exists a sequence $\left\{U_{n}: n \in \mathbb{N}\right\}$ of open subsets of X such that $D=\bigcap_{n \in \mathbb{N}} U_{n}=\bigcap_{n \in \mathbb{N}} \overline{U_{n}}$. The collection of all regular G_{δ}-sets of X is denoted by $R G(X)$.

A space X is called δ-normal [7] if every pair of disjoint closed sets, one of which is a regular G_{δ}-set can be separated by open sets. X is called weakly δ-normal [5] if every pair of disjoint regular G_{δ}-sets can be separated by open sets. In [3], the notions of $\operatorname{lm} \delta n$ spaces and $m \delta \delta n$ spaces were introduced as the monotone versions of δ-normal spaces and weakly δ-normal spaces respectively. In the same paper, the notions of δ-stratifiable spaces and δ-semi-stratifiable were also introduced as the generalizations of stratifiable spaces and semi-stratifiable spaces respectively.

For a space X, consider the following condition.
$(*)$ There is an order-preserving map $\phi: U^{+}(X) \rightarrow L^{+}(X)$ such that $\phi(h) \leq h$ for each $h \in U^{+}(X)$ and $0<\phi(h)(x)<h(x)$ whenever $h(x)>0$.

In [6], it was shown that if X satisfies (*), then X is δ-stratifiable. It was also asked whether the converse is true. That is, does a δ-stratifiable space satisfy (*)? Jin et al [4] showed that if X satisfies $(*)$, then X is

[^0]zero-dimensional. Since \mathbb{R} is δ-stratifiable but not zero-dimensional, the answer to the above question is negative. Now, the following two questions arise naturally.

Question 1.1. What space does condition (*) characterize?
Question 1.2. How to characterize δ-stratifiable spaces with real-valued functions?
In this paper, we shall answer Question 1.1 by showing that a space satisfying (*) is precisely an almost discrete space. To answer Question 1.2, we introduce the notions of strongly lower (upper) semi-continuous functions, with which the characterizations of δ-stratifiable spaces are obtained.

Definition 1.3. A space X is called almost discrete if every open subset of X is closed. That is, $\tau=\tau^{c}$.
Notice that a space is discrete if and only if it is T_{0} and almost discrete. Indeed, necessity is clear. Suppose that X is T_{0} and almost discrete. Let $x \in X$ and $y \notin\{x\}$. Then $x \notin \overline{\{y\}}$ or $y \notin \overline{\{x\}}$. If $x \notin \overline{\{y\}}$ then $\overline{\{y\}} \cap\{x\}=\emptyset$ and $\overline{\{y\}}$ is an open neighborhood of y. If $y \notin \overline{\{x\}}$ then $X \backslash \overline{\{x\}}$ is an open neighborhood of y and $(X \backslash\{x\}) \cap\{x\}=\emptyset$. This implies that $\{x\}$ is closed and thus open. Therefore, X is discrete.

Let $X=\{a, b, c\}$ and $\tau=\{\emptyset,\{a\},\{b, c\}, X\}$. Then (X, τ) is almost discrete but not discrete.
Definition 1.4. A real-valued function f on a space X is called strongly lower (upper) semi-continuous if there exist two sequences $\left\{\alpha_{n}(f) \in L(X): n \in \mathbb{N}\right\}$ and $\left\{\beta_{n}(f) \in U(X): n \in \mathbb{N}\right\}$ of functions such that $\alpha_{n}(f) \leq \beta_{n}(f)$ for each $n \in \mathbb{N}$ and $f=\sup _{n} \alpha_{n}(f)=\sup _{n} \beta_{n}(f)\left(f=\inf _{n} \alpha_{n}(f)=\inf _{n} \beta_{n}(f)\right)$.
$\left\{\alpha_{n}(f) \in L(X): n \in \mathbb{N}\right\}$ and $\left\{\beta_{n}(f) \in U(X): n \in \mathbb{N}\right\}$ in the above definition will be called accompanying functions for f.

The collection of all strongly lower (upper) semi-continuous functions on a space X is denoted by $S L(X)$ $(S U(X))$ and $S L^{+}(X)=\{f \in S L(X): f \geq 0\}, S U^{+}(X)=\{f \in S U(X): f \geq 0\}$.

Notice that $S L(X) \subset L(X), S U(X) \subset U(X)$ and $C(X)=S L(X) \cap S U(X)$.
It is known that a space X is perfectly normal if and only if for each $F \in \tau^{c}$, there exists a sequence $\left\{U_{n}: n \in \mathbb{N}\right\}$ of open subsets of X such that $F=\bigcap_{n \in \mathbb{N}} U_{n}=\bigcap_{n \in \mathbb{N}} \overline{U_{n}}$. That is, $\tau^{c} \subset R G(X)$. Hence, by Lemma 2.8 in Section $2, X$ is perfectly normal if and only if for each $F \in \tau^{c}, \chi_{F} \in S U(X)$. Therefore, for a space X which is not perfectly normal, there must exist an $F \in \tau^{c}$ such that $\chi_{F} \notin S U(X)$ while $\chi_{F} \in U(X)$. Dually, there exists a $U \in \tau$ such that $\chi_{u} \notin S L(X)$ while $\chi_{u} \in L(X)$.

Definition 1.5. ([3]) A space X is called δ-stratifiable (δ-semi-stratifiable) if there exists a map $\sigma: \mathbb{N} \times$ $R G(X) \rightarrow \tau$ such that
(1) $D=\bigcap_{n \in \mathbb{N}} \sigma(n, D)=\bigcap_{n \in \mathbb{N}} \overline{\sigma(n, D)}\left(D=\bigcap_{n \in \mathbb{N}} \sigma(n, D)\right)$ for each $D \in R G(X)$.
(2) If $D, E \in R G(X)$ and $D \subset E$ then $\sigma(n, D) \subset \sigma(n, E)$ for each $n \in \mathbb{N}$.

Notice that, without loss of generality, we may assume that σ is decreasing with respect to n.

2. Some basic lemmas

In this section, we list some properties of strongly lower (upper) semi-continuous functions and some basic lemmas for later use.

First notice that if $f \in S L(X)(f \in S U(X))$ then $r f \in S L(X)(r f \in S U(X))$ whenever $r>0$, and $r f \in S U(X)$ $(r f \in S L(X))$ whenever $r<0$.

Proposition 2.1. If $f \in S L(X)(f \in S U(X))$ then there exist two increasing (decreasing) sequences $\left\{\delta_{n}(f) \in L(X)\right.$: $n \in \mathbb{N}\}$ and $\left\{\eta_{n}(f) \in U(X): n \in \mathbb{N}\right\}$ of functions such that $\delta_{n}(f) \leq \eta_{n}(f)$ for each $n \in \mathbb{N}$ and $f=\sup _{n} \delta_{n}(f)=$ $\sup _{n} \eta_{n}(f)\left(f=\inf _{n} \delta_{n}(f)=\inf _{n} \eta_{n}(f)\right)$.

Proof. Let $f \in S L(X)$ be accompanied by $\left\{\alpha_{n}(f) \in L(X): n \in \mathbb{N}\right\}$ and $\left\{\beta_{n}(f) \in U(X): n \in \mathbb{N}\right\}$. For each $n \in \mathbb{N}$, let $\delta_{n}(f)=\max \left\{\alpha_{i}(f): i \leq n\right\}$ and $\eta_{n}(f)=\max \left\{\beta_{i}(f): i \leq n\right\}$. Then $\left\{\delta_{n}(f) \in L(X): n \in \mathbb{N}\right\},\left\{\eta_{n}(f) \in U(X): n \in\right.$ $\mathbb{N}\}$ are increasing, $\delta_{n}(f) \leq \eta_{n}(f)$ for each $n \in \mathbb{N}$ and $\sup _{n} \delta_{n}(f)=\sup _{n} \alpha_{n}(f), \sup _{n} \eta_{n}(f)=\sup _{n} \beta_{n}(f)$.

For $f \in S U(X)$ applying the fact that if $f \in S U(X)$ then $-f \in S L(X)$.
Proposition 2.2. If $f, g \in S L(X)(f, g \in S U(X))$ then $f+g \in S L(X)(f+g \in S U(X))$.
Proof. Let $f, g \in S L(X)$ be accompanied by $\left\{\alpha_{n}(f) \in L(X): n \in \mathbb{N}\right\},\left\{\beta_{n}(f) \in U(X): n \in \mathbb{N}\right\}$ and $\left\{\alpha_{n}(g) \in L(X)\right.$: $n \in \mathbb{N}\},\left\{\beta_{n}(g) \in U(X): n \in \mathbb{N}\right\}$ respectively. By Proposition 2.1, we may assume that the four accompanying sequences are increasing. Hence, $f=\lim _{n} \alpha_{n}(f)=\lim _{n} \beta_{n}(f)$ and $g=\lim _{n} \alpha_{n}(g)=\lim _{n} \beta_{n}(g)$. It follows that $f+g=\lim _{n}\left(\alpha_{n}(f)+\alpha_{n}(g)\right)=\lim _{n}\left(\beta_{n}(f)+\beta_{n}(g)\right)$. This in turn implies that $f+g=\sup _{n}\left(\alpha_{n}(f)+\alpha_{n}(g)\right)=$ $\sup _{n}\left(\beta_{n}(f)+\beta_{n}(g)\right)$, in which $\alpha_{n}(f)+\alpha_{n}(g) \in L(X), \beta_{n}(f)+\beta_{n}(g) \in U(X)$ and $\alpha_{n}(f)+\alpha_{n}(g) \leq \beta_{n}(f)+\beta_{n}(g)$ for each $n \in \mathbb{N}$.

For $f, g \in S U(X)$ applying the fact that $f \in S U(X)$ if and only if $-f \in S L(X)$.
Proposition 2.3. Let $f, g \in S L(X)$ and f be accompanied by $\left\{\alpha_{n}(f) \in L(X): n \in \mathbb{N}\right\},\left\{\beta_{n}(f) \in U(X): n \in \mathbb{N}\right\}$. If $f \leq g$ then there exist accompanying functions $\left\{\delta_{n}(g) \in L(X): n \in \mathbb{N}\right\},\left\{\eta_{n}(g) \in U(X): n \in \mathbb{N}\right\}$ for g such that $\alpha_{n}(f) \leq \delta_{n}(g)$ and $\beta_{n}(f) \leq \eta_{n}(g)$ for each $n \in \mathbb{N}$.

Proof. Let g be accompanied by $\left\{\alpha_{n}(g) \in L(X): n \in \mathbb{N}\right\},\left\{\beta_{n}(g) \in U(X): n \in \mathbb{N}\right\}$. For each $n \in \mathbb{N}$, let $\delta_{n}(g)=\max \left\{\alpha_{n}(f), \alpha_{n}(g)\right\}$ and $\eta_{n}(g)=\max \left\{\beta_{n}(f), \beta_{n}(g)\right\}$. Then $\delta_{n}(g) \in L(X), \eta_{n}(g) \in U(X)$ and $\delta_{n}(g) \leq \eta_{n}(g)$, $\alpha_{n}(f) \leq \delta_{n}(g), \beta_{n}(f) \leq \eta_{n}(g)$. It is clear that $\sup _{n} \alpha_{n}(g) \leq \sup _{n} \delta_{n}(g)$. Assume that $\sup _{n} \alpha_{n}(g)(x)<\sup _{n} \delta_{n}(g)(x)$ for some $x \in X$. Then $\sup _{n} \alpha_{n}(g)(x)<\delta_{m}(g)(x)=\max \left\{\alpha_{m}(f)(x), \alpha_{m}(g)(x)\right\}$ for some $m \in \mathbb{N}$. It follows that $g(x)=\sup _{n} \alpha_{n}(g)(x)<\alpha_{m}(f)(x) \leq \sup _{n} \alpha_{n}(f)(x)=f(x)$, a contradiction to $f \leq g$. This implies that $\sup _{n} \alpha_{n}(g)=\sup _{n} \delta_{n}(g)$. Similarly, $\sup _{n} \beta_{n}(g)=\sup _{n} \eta_{n}(g)$. Therefore, $g=\sup _{n} \delta_{n}(g)=\sup _{n} \eta_{n}(g)$.

Similarly, let $f, g \in S U(X)$ and g be accompanied by $\left\{\alpha_{n}(g) \in L(X): n \in \mathbb{N}\right\},\left\{\beta_{n}(g) \in U(X): n \in \mathbb{N}\right\}$. If $f \leq g$ then there exist accompanying functions $\left\{\delta_{n}(f) \in L(X): n \in \mathbb{N}\right\},\left\{\eta_{n}(f) \in U(X): n \in \mathbb{N}\right\}$ for f such that $\delta_{n}(f) \leq \alpha_{n}(g)$ and $\eta_{n}(f) \leq \beta_{n}(g)$ for each $n \in \mathbb{N}$.

Notice that if $f \in S U^{+}(X)$ then the accompanying functions $\left\{\alpha_{n}(f): n \in \mathbb{N}\right\}$ and $\left\{\beta_{n}(f): n \in \mathbb{N}\right\}$ are non-negative. As for $f \in S L^{+}(X)$, by Proposition 2.3, we may also assume that the accompanying functions are non-negative.

Corollary 2.4. If $f \in S L^{+}(X)$ then there exist two sequences $\left\{\alpha_{n}(f) \in L^{+}(X): n \in \mathbb{N}\right\}$ and $\left\{\beta_{n}(f) \in U^{+}(X): n \in \mathbb{N}\right\}$ of functions such that $\alpha_{n}(f) \leq \beta_{n}(f)$ for each $n \in \mathbb{N}$ and $f=\sup _{n} \alpha_{n}(f)=\sup _{n} \beta_{n}(f)$.

Proposition 2.5. If $f, g \in S L(X)(S U(X))$ then $\min \{f, g\}, \max \{f, g\} \in S L(X)(S U(X))$.
Proof. We shall show that if $f, g \in S L(X)$ then $\min \{f, g\} \in S L(X)$. The others can be shown analogously.
Let $f, g \in S L(X)$ be accompanied by increasing sequences $\left\{\alpha_{n}(f) \in L(X): n \in \mathbb{N}\right\},\left\{\beta_{n}(f) \in U(X)\right.$: $n \in \mathbb{N}\}$ and $\left\{\alpha_{n}(g) \in L(X): n \in \mathbb{N}\right\},\left\{\beta_{n}(g) \in U(X): n \in \mathbb{N}\right\}$ respectively. It is easy to verify that $\min \left\{\sup _{n} \alpha_{n}(f), \sup _{n} \alpha_{n}(g)\right\}=\sup _{n} \min \left\{\alpha_{n}(f), \alpha_{n}(g)\right\}$ and $\min \left\{\sup _{n} \beta_{n}(f), \sup _{n} \beta_{n}(g)\right\}=\sup _{n} \min \left\{\beta_{n}(f), \beta_{n}(g)\right\}$. Therefore, $\min \{f, g\}=\sup _{n} \min \left\{\alpha_{n}(f), \alpha_{n}(g)\right\}=\sup _{n} \min \left\{\beta_{n}(f), \beta_{n}(g)\right\}$ which implies that $\min \{f, g\} \in S L(X)$.

Proposition 2.6. If $f_{n} \in S L(X)\left(f_{n} \in S U(X)\right)$ for each $n \in \mathbb{N}$ and $\sup _{n} f_{n}\left(\inf _{n} f_{n}\right)$ exists then $\sup _{n} f_{n} \in S L(X)$ $\left(\inf _{n} f_{n} \in S U(X)\right.$).

Proof. For each $n \in \mathbb{N}$, let $f_{n} \in S L(X)$ be accompanied by $\left\{\alpha_{m}\left(f_{n}\right) \in L(X): m \in \mathbb{N}\right\},\left\{\beta_{m}\left(f_{n}\right) \in U(X): m \in \mathbb{N}\right\}$. For each $n \in \mathbb{N}$, let $g_{n}=\max \left\{\alpha_{i}\left(f_{j}\right): i, j \leq n\right\}$ and $h_{n}=\max \left\{\beta_{i}\left(f_{j}\right): i, j \leq n\right\}$. Then $g_{n} \in L(X), h_{n} \in U(X)$ and $g_{n} \leq h_{n}$. It is easy to verify that $\sup _{n} \sup _{m} \alpha_{m}\left(f_{n}\right)=\sup _{n} g_{n}$ and $\sup _{n} \sup _{m} \beta_{m}\left(f_{n}\right)=\sup _{n} h_{n}$. Therefore, $\sup _{n} f_{n}=\sup _{n} g_{n}=\sup _{n} h_{n}$ which implies that $\sup _{n} f_{n} \in S L(X)$.

For $f_{n} \in S U(X)$ applying the fact that $f \in S U(X)$ if and only if $-f \in S L(X)$.
Corollary 2.7. Let $f_{n} \in S L^{+}(X)$ for each $n \in \mathbb{N}$. If $\sum_{n=1}^{\infty} f_{n}$ exists then $\sum_{n=1}^{\infty} f_{n} \in S L(X)$.

Proof. For each $n \in \mathbb{N}$, let $g_{n}=\sum_{i=1}^{n} f_{i}$. Then $g_{n} \in S L^{+}(X)$ and $\sum_{n=1}^{\infty} f_{n}=\sup _{n} g_{n}$. By Proposition 2.6, $\sum_{n=1}^{\infty} f_{n} \in S L(X)$.

Lemma 2.8. Let $D \subset X$. Then $D \in R G(X)$ if and only if $\chi_{D} \in S U(X)$.
Proof. Let $D \in R G(X)$. Then there exists a sequence $\left\{U_{n}: n \in \mathbb{N}\right\}$ of open subsets of X such that $D=$ $\bigcap_{n \in \mathbb{N}} U_{n}=\bigcap_{n \in \mathbb{N}} \overline{U_{n}}$. For each $n \in \mathbb{N}$, let $f_{n}=\chi_{U_{n}}$ and $g_{n}=\chi_{\overline{u_{n}}}$. Then $f_{n} \in L(X), g_{n} \in U(X)$ and $f_{n} \leq g_{n}$. It is clear that $\chi_{D}=\inf _{n} f_{n}=\inf _{n} g_{n}$.

Let $\chi_{D} \in S U(X)$ be accompanied by $\left\{\alpha_{n}\left(\chi_{D}\right) \in L(X): n \in \mathbb{N}\right\}$ and $\left\{\beta_{n}\left(\chi_{D}\right) \in U(X): n \in \mathbb{N}\right\}$. For each $n \in \mathbb{N}$, let $U_{n}=\left\{\alpha_{n}\left(\chi_{D}\right)>\frac{1}{2}\right\}$ and $F_{n}=\left\{\beta_{n}\left(\chi_{D}\right) \geq \frac{1}{2}\right\}$. Then U_{n} is open, F_{n} is closed and $U_{n} \subset F_{n}$ which implies that $\overline{U_{n}} \subset F_{n}$. If $x \in D$ then $\inf _{n} \alpha_{n}\left(\chi_{D}\right)(x)=\chi_{D}(x)=1$ which implies that $x \in U_{n}$ for each $n \in \mathbb{N}$. If $x \in \bigcap_{n \in \mathbb{N}} \overline{U_{n}}$ then $x \in \overline{U_{n}} \subset F_{n}$ for each $n \in \mathbb{N}$ and thus $\chi_{D}(x)=\inf _{n} \beta_{n}\left(\chi_{D}\right)(x) \geq \frac{1}{2}$. It follows that $x \in D$. Therefore, $D=\bigcap_{n \in \mathbb{N}} U_{n}=\bigcap_{n \in \mathbb{N}} \overline{U_{n}}$ which implies that $D \in R G(X)$.

Lemma 2.9. Let $D \subset X$. Then $D \in R G(X)$ if and only if there exists $f \in S L^{+}(X)$ such that $D=f^{-1}(0)$.
Proof. Let $D \in R G(X)$ and $f=1-\chi_{D}$. By Lemma 2.8, $f \in S L^{+}(X)$. It is clear that $D=f^{-1}(0)$.
Suppose that $D=f^{-1}(0)$ for some $f \in S L^{+}(X)$. By Proposition 2.1 and Corollary 2.4, there exist two increasing sequences $\left\{\alpha_{n}(f) \in L^{+}(X): n \in \mathbb{N}\right\}$ and $\left\{\beta_{n}(f) \in U^{+}(X): n \in \mathbb{N}\right\}$ of functions such that $\alpha_{n}(f) \leq \beta_{n}(f)$ for each $n \in \mathbb{N}$ and $f=\sup _{n} \alpha_{n}(f)=\sup _{n} \beta_{n}(f)$. Then

$$
\begin{aligned}
& D=f^{-1}(0)=\bigcap_{m \in \mathbb{N}} f^{-1}\left(\left[0, \frac{1}{m}\right)\right)=\bigcap_{m \in \mathbb{N}}\left(\sup _{n} \beta_{n}(f)\right)^{-1}\left(\left[0, \frac{1}{m}\right)\right) \subset \bigcap_{m \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \beta_{n}(f)^{-1}\left(\left[0, \frac{1}{m}\right)\right) \\
& \subset \bigcap_{m \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \overline{\beta_{n}(f)^{-1}\left(\left[0, \frac{1}{m}\right)\right)} \subset \bigcap_{m \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \alpha_{n}(f)^{-1}\left(\left[0, \frac{1}{m}\right]\right)=\bigcap_{m \in \mathbb{N}}\left(\sup _{n} \alpha_{n}(f)\right)^{-1}\left(\left[0, \frac{1}{m}\right]\right) \\
& =\bigcap_{m \in \mathbb{N}} f^{-1}\left(\left[0, \frac{1}{m}\right]\right)=f^{-1}(0)=D .
\end{aligned}
$$

Therefore,

$$
D=\bigcap_{m \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \beta_{n}(f)^{-1}\left(\left[0, \frac{1}{m}\right)\right)=\bigcap_{m \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \overline{\beta_{n}(f)^{-1}\left(\left[0, \frac{1}{m}\right)\right)} .
$$

For each $n, m \in \mathbb{N}$, let $U_{n m}=\beta_{n}(f)^{-1}\left(\left[0, \frac{1}{m}\right)\right)$. Then $U_{n m} \in \tau,\left\{U_{n m}: m \in \mathbb{N}\right\}$ is decreasing for each $n \in \mathbb{N}$ and $\left\{U_{n m}: n \in \mathbb{N}\right\}$ is decreasing for each $m \in \mathbb{N}$. For each $m \in \mathbb{N}, \bigcap_{n \in \mathbb{N}} U_{n m} \subset U_{m m}$ and thus $\bigcap_{m \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} U_{n m} \subset \bigcap_{m \in \mathbb{N}} U_{m m}$. Conversely, let $x \in \bigcap_{n \in \mathbb{N}} U_{n n}$. For each $n, m \in \mathbb{N}$, let $k=\max \{n, m\}$. Then $x \in$ $U_{k k} \subset U_{n m}$. This implies that $\bigcap_{n \in \mathbb{N}} U_{n n} \subset \bigcap_{m \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} U_{n m}$. Hence, $\bigcap_{m \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} U_{n m}=\bigcap_{n \in \mathbb{N}} U_{n n}$. Similarly, $\bigcap_{m \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \overline{U_{n m}}=\bigcap_{n \in \mathbb{N}} \overline{U_{n n}}$. Therefore, $D=\bigcap_{n \in \mathbb{N}} U_{n n}=\bigcap_{n \in \mathbb{N}} \overline{U_{n n}}$ which implies that $D \in R G(X)$.

Corollary 2.10. If $f \in S L(X)(f \in S U(X))$ then for each $r \in \mathbb{R},\{f \leq r\} \in R G(X)(\{f \geq r\} \in R G(X))$.
Proof. Suppose that $f \in S L(X)$. For $r \in \mathbb{R}$, let $h=\max \{f-r, 0\}$. By Proposition 2.5, $h \in S L^{+}(X)$. It is clear that $\{f \leq r\}=h^{-1}(0)$. By Lemma 2.9, $\{f \leq r\} \in R G(X)$.

If $f \in S U(X)$ then $-f \in S L(X)$. For each $r \in \mathbb{R},\{f \geq r\}=\{-f \leq-r\} \in R G(X)$.

3. Main results

In this section, we show that a space satisfying (*) is precisely an almost discrete space and present some characterizations of δ-stratifiable spaces with real-valued functions.

Theorem 3.1. For a space X, the following are equivalent.
(a) X is almost discrete.
(b) There is an order-preserving map $\phi: U^{+}(X) \rightarrow C^{+}(X)$ such that $\phi(h) \leq h$ for each $h \in U^{+}(X)$, and $0<\phi(h)(x)<h(x)$ whenever $h(x)>0$.
(c) X satisfies (*).
(d) There exists an order-reversing map $\varphi: \tau \rightarrow L^{+}(X)$ such that $U=\varphi(U)^{-1}(0)$ for each $U \in \tau$.
(e) There exists a map $\varphi: \tau \rightarrow L^{+}(X)$ such that $U=\varphi(U)^{-1}(0)$ for each $U \in \tau$.

Proof. (a) \Rightarrow (b) For each $h \in U^{+}(X)$ and $n \in \mathbb{N}$, let $U_{n}(h)=\left\{h \geq \frac{1}{2^{n-2}}\right\}$. Then $\left\{U_{n}(h): n \in \mathbb{N}\right\}$ is an increasing sequence of closed and thus open subsets of X. Let

$$
\phi(h)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \chi_{U_{n}(h)}
$$

Then $\phi(h) \in C^{+}(X)$. If $h_{1} \leq h_{2}$ then $U_{n}\left(h_{1}\right) \subset U_{n}\left(h_{2}\right)$ for each $n \in \mathbb{N}$ and thus $\phi\left(h_{1}\right) \leq \phi\left(h_{2}\right)$.
For each $x \in X$, if $h(x)=0$ then $x \notin U_{n}(h)$ for each $n \in \mathbb{N}$ and thus $\phi(h)(x)=0$. If $h(x)>0$ then $x \in U_{m}(h)$ for some $m \in \mathbb{N}$. Let $k=\min \left\{n \in \mathbb{N}: x \in U_{n}(h)\right\}$. Then $x \notin U_{n}(h)$ for each $n<k$ while $x \in U_{n}(h)$ for each $n \geq k$. Thus

$$
\phi(h)(x)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \chi_{u_{n}(k)}(x)=\sum_{n=k}^{\infty} \frac{1}{2^{n}}=\frac{1}{2^{k-1}}
$$

Since $x \in U_{k}(h)$, we have $h(x) \geq \frac{1}{2^{k-2}}>\phi(h)(x)$.
(b) \Rightarrow (c) is clear.
(c) \Rightarrow (d) Let ϕ be the map in property $(*)$. For each $U \in \tau$, let $h_{U}=1-\chi_{U}$. Then $h_{U} \in U^{+}(X)$. Let $\varphi(U)=\phi\left(h_{U}\right)$. Then $\varphi(U) \in L^{+}(X)$. It is clear that $\varphi(U) \geq \varphi(V)$ whenever $U \subset V$. If $x \in U$, then $h_{U}(x)=0$ and thus $\varphi(U)(x)=\phi\left(h_{U}\right)(x)=0$. If $x \notin U$ then $h_{U}(x)=1$ and thus $\varphi(U)(x)=\phi\left(h_{U}\right)(x)>0$. This implies that $U=\varphi(U)^{-1}(0)$.
$(\mathrm{d}) \Rightarrow(\mathrm{e})$ is clear.
(e) \Rightarrow (a) Let φ be the map in (e). Then for each $U \in \tau, \varphi(U) \in L^{+}(X)$, so $U=\varphi(U)^{-1}(0)=\{\varphi(U) \leq 0\}$ is a closed set. Therefore, X is almost discrete.

Theorem 3.2. For a space X, the following are equivalent.
(a) X is δ-stratifiable.
(b) There exist two order preserving maps $\Psi: S L^{+}(X) \rightarrow L^{+}(X)$ and $\Phi: S L^{+}(X) \rightarrow U^{+}(X)$ such that $\Psi(h) \leq$ $\Phi(h) \leq h$ for each $h \in S L^{+}(X)$ and $\Psi(h)(x)>0$ whenever $h(x)>0$.
(c)There exists an order preserving map $\Phi: S L^{+}(X) \rightarrow U^{+}(X)$ such that $\Phi(h) \leq h$ for each $h \in S L^{+}(X)$ and if $h(x)>0$ then there exists an open neighborhood O_{x} of x such that $\inf \Phi(h)\left(O_{x}\right)>0$.
(d) There exists two order reversing maps $\psi: R G(X) \rightarrow L^{+}(X)$ and $\phi: R G(X) \rightarrow U^{+}(X)$ such that $\psi(D) \leq \phi(D)$ and $D=\psi(D)^{-1}(0)=\phi(D)^{-1}(0)$ for each $D \in R G(X)$.

Proof. (a) \Rightarrow (b) Let σ be the map in Definition 1.5 which is decreasing with respect to n. For each $h \in S L^{+}(X)$ and $n \in \mathbb{N}$, let $D_{n}(h)=\left\{h \leq \frac{1}{2^{n-1}}\right\}$. By Corollary 2.10, $\left\{D_{n}(h)\right\}_{n \in \mathbb{N}}$ is a decreasing sequence of regular G_{δ}-sets of X. Let

$$
\Psi(h)=1-\sum_{n=1}^{\infty} \frac{1}{2^{n}} \chi_{\overline{\sigma\left(n, D_{n}(h)\right)}}, \Phi(h)=1-\sum_{n=1}^{\infty} \frac{1}{2^{n}} \chi_{\sigma\left(n, D_{n}(h)\right)} .
$$

Then $\Psi(h) \in L^{+}(X), \Phi(h) \in U^{+}(X)$ and $\Psi(h) \leq \Phi(h)$.
Let $x \in X$.
Case 1. $h(x)=0$. Then $x \in D_{n}(h) \subset \sigma\left(n, D_{n}(h)\right)$ for each $n \in \mathbb{N}$ from which it follows that $\Phi(h)(x)=0$.

Case 2. $h(x)>0$. Then $x \notin D_{m}(h)$ for some $m \in \mathbb{N}$. It follows that $x \notin \overline{\sigma\left(i, D_{m}(h)\right)}$ for some $i \in \mathbb{N}$. Let $j=\max \{i, m\}$. Then $x \notin \overline{\sigma\left(j, D_{j}(h)\right)}$ and thus $\Psi(h)(x)>0$. Let $k=\min \left\{n \in \mathbb{N}: x \notin \sigma\left(n, D_{n}(h)\right)\right\}$. Then $x \in \sigma\left(n, D_{n}(h)\right)$ for each $n<k$ while $x \notin \sigma\left(n, D_{n}(h)\right)$ for each $n \geq k$. It follows that

$$
\Phi(h)(x)=1-\sum_{n=1}^{\infty} \frac{1}{2^{n}} \chi_{\sigma\left(n, D_{n}(h)\right)}(x)=1-\sum_{n=1}^{k-1} \frac{1}{2^{n}}=\frac{1}{2^{k-1}} .
$$

Since $x \notin \sigma\left(k, D_{k}(h)\right) \supset D_{k}(h)$, we have $h(x)>\frac{1}{2^{k-1}}=\Phi(h)(x)$.
The above argument shows that $\Phi(h) \leq h$.
Now suppose that $h_{1} \leq h_{2}$. Then $D_{n}\left(h_{2}\right) \subset D_{n}\left(h_{1}\right)$ and thus $\sigma\left(n, D_{n}\left(h_{2}\right)\right) \subset \sigma\left(n, D_{n}\left(h_{1}\right)\right)$ for each $n \in \mathbb{N}$ which implies that $\Phi\left(h_{1}\right) \leq \Phi\left(h_{2}\right)$. Similarly, $\Psi\left(h_{1}\right) \leq \Psi\left(h_{2}\right)$.
(b) \Rightarrow (c) Let Ψ, Φ be the maps in (b). If $h(x)>0$ then $\Psi(h)(x)>0$. Choose $r>0$ such that $\Psi(h)(x)>r$ and let $O_{x}=\{\Psi(h)>r\}$. Then O_{x} is an open neighborhood of x. For each $y \in O_{x}, \Phi(h)(y) \geq \Psi(h)(y)>r$ and thus $\inf \Phi(h)\left(O_{x}\right) \geq r>0$.
(c) \Rightarrow (d) Let Φ be the map in (c). For each $D \in R G(X)$, let $h_{D}=1-\chi_{D}$. Then $h_{D} \in S L^{+}(X)$. Let $\phi(D)=\Phi\left(h_{D}\right)$. It is clear that $\phi(D) \geq \phi(E)$ whenever $D \subset E$.

If $x \in D$, then $h_{D}(x)=0$ and thus $\phi(D)(x)=\Phi\left(h_{D}\right)(x)=0$ which implies that $D \subset \phi(D)^{-1}(0)$. If $x \notin D$ then $h_{D}(x)=1$. By (c), there exists an open neighborhood O_{x} of x and $m \in \mathbb{N}$ such that $\inf \phi(D)\left(O_{x}\right)>\frac{1}{m}$. Thus $\phi(D)(x)>0$. This implies that $\phi(D)^{-1}(0) \subset D$ and so $D=\phi(D)^{-1}(0)$. From inf $\phi(D)\left(O_{x}\right)>\frac{1}{m}$ it follows that $O_{x} \subset \phi(D)^{-1}\left(\frac{1}{m}, \infty\right)$ and thus $x \in \operatorname{int}\left(\phi(D)^{-1}\left(\frac{1}{m}, \infty\right)\right)$. Let $n_{x}(D)=\min \left\{n \in \mathbb{N}: x \in \operatorname{int}\left(\phi(D)^{-1}\left(\frac{1}{n}, \infty\right)\right)\right\}$.

For each $x \in X$, let $\psi(D)(x)=0$ whenever $x \in D$ and $\psi(D)(x)=\frac{1}{n_{x}(D)}$ whenever $x \notin D$. Then $D=$ $\psi(D)^{-1}(0)$. For each $x \in X$, if $x \in D$ then $\phi(D)(x)=\psi(D)(x)=0$. If $x \notin D$ then by the definition of $n_{x}(D)$, $x \in \operatorname{int}\left(\phi(D)^{-1}\left(\frac{1}{n_{x}(D)}, \infty\right)\right)$ which implies that $\phi(D)(x)>\frac{1}{n_{x}(D)}=\psi(D)(x)$. Therefore, $\psi(D) \leq \phi(D)$.

To show that $\psi(D) \in L(X)$, suppose that $\psi(D)(x)>r$. Then $r<1$. If $r<0$ then X is an open neighborhood of x and $\psi(D)(y) \geq 0>r$ for each $y \in X$. If $r \geq 0$ then $\psi(D)(x)=\frac{1}{n_{x}(D)}$. Let $O_{x}=\operatorname{int}\left(\phi(D)^{-1}\left(\frac{1}{n_{x}(D)}, \infty\right)\right)$. Then O_{x} is an open neighborhood of x. For each $y \in O_{x}, \phi(D)(y)>\frac{1}{n_{x}(D)}$ and thus $y \notin D$. By the definition of $n_{y}(D)$, $n_{y}(D) \leq n_{x}(D)$ and thus $\psi(D)(y) \geq \psi(D)(x)>r$. This implies that $\psi(D) \in L(X)$.

Suppose that $D \subset E$. If $x \in E$ then $\psi(E)(x)=0 \leq \psi(D)(x)$. f $x \notin E$ then $x \notin D$. Since $\phi(D) \geq \phi(E)$, we have $x \in \operatorname{int}\left(\phi(E)^{-1}\left(\frac{1}{n_{x}(E)}, \infty\right)\right) \subset \operatorname{int}\left(\phi(D)^{-1}\left(\frac{1}{n_{x}(E)}, \infty\right)\right)$ and thus $n_{x}(D) \leq n_{x}(E)$. Therefore, $\psi(D)(x) \geq \psi(E)(x)$.
$(\mathrm{d}) \Rightarrow(\mathrm{a})$ Let ψ, ϕ be the maps in (d). Then for each $D \in R G(X)$,

$$
\begin{aligned}
& D=\phi(D)^{-1}(0)=\bigcap_{n \in \mathbb{N}} \phi(D)^{-1}\left(\left[0, \frac{1}{n}\right)\right) \subset \bigcap_{n \in \mathbb{N}} \phi(D)^{-1}\left(\left[0, \frac{1}{n}\right)\right) \\
& \subset \bigcap_{n \in \mathbb{N}} \psi(D)^{-1}\left(\left[0, \frac{1}{n}\right]\right)=\psi(D)^{-1}(0)=D .
\end{aligned}
$$

For each $D \in R G(X)$ and $n \in \mathbb{N}$, let $\sigma(n, D)=\phi(D)^{-1}\left(\left[0, \frac{1}{n}\right)\right)$. Then $\sigma(n, D) \in \tau$ and $D=\bigcap_{n \in \mathbb{N}} \sigma(n, D)=$ $\bigcap_{n \in \mathbb{N}} \overline{\sigma(n, D)}$.

If $D \subset E$, then $\phi(E) \leq \phi(D)$ and thus $\sigma(n, D)=\phi(D)^{-1}\left(\left[0, \frac{1}{n}\right)\right) \subset \phi(E)^{-1}\left(\left[0, \frac{1}{n}\right)\right)=\sigma(n, E)$ for each $n \in \mathbb{N}$. Therefore, X is δ-stratifiable.

An analogous argument proves the following.
Proposition 3.3. For a space X, the following are equivalent.
(a) X is δ-semi-stratifiable.
(b) There exists an order preserving map $\Phi: S L^{+}(X) \rightarrow U^{+}(X)$ such that $\Phi(h) \leq h$ for each $h \in S L^{+}(X)$ and $\Phi(h)(x)>0$ whenever $h(x)>0$.
(c) There exists an order reversing map $\phi: R G(X) \rightarrow U^{+}(X)$ such that $D=\phi(D)^{-1}(0)$ for each $D \in R G(X)$.

As another applications of strongly semi-continuous functions, we have the following.

Theorem 3.4. For a space X, the following are equivalent.
(a) X is perfectly normal.
(b) There exists a map $\phi: L^{+}(X) \rightarrow C^{+}(X)$ such that $\phi(h) \leq h$ for each $h \in L^{+}(X)$ and $\phi(h)(x)>0$ whenever $h(x)>0$.
(c) There exists a map $\phi: L^{+}(X) \rightarrow S L^{+}(X)$ such that $\phi(h) \leq h$ for each $h \in L^{+}(X)$ and $\phi(h)(x)>0$ whenever $h(x)>0$.
(d) There exists a map $\varphi: \tau^{c} \rightarrow S L^{+}(X)$ such that $F=\varphi(F)^{-1}(0)$ for each $F \in \tau^{c}$.

Proof. The equivalence of (a) and (b) has been shown in [8].
(b) \Rightarrow (c) is clear.
$(c) \Rightarrow(d)$ Let ϕ be the map in (c). For each $F \in \tau^{c}, 1-\chi_{F} \in L^{+}(X)$. Let $\varphi(F)=\phi\left(1-\chi_{F}\right)$. Then $\varphi(F) \in S L^{+}(X)$. A direct argument shows that $F=\varphi(F)^{-1}(0)$.
(d) \Rightarrow (a) Let φ be the map in (d). Then for each $F \in \tau^{c}, \varphi(F) \in S L^{+}(X)$. By Lemma 2.9, $F=\varphi(F)^{-1}(0) \in$ $R G(X)$. Therefore, X is perfectly normal.

Since stratifiable spaces are monotone versions of perfectly normal spaces, one may conjecture that X is stratifiable if the map ϕ in Theorem 3.4 (c) is order preserving. Actually, it still characterizes perfectly normal spaces.

Theorem 3.5. For a space X, the following are equivalent.
(a) X is perfectly normal.
(b) There exists an order reversing map $\varphi: \tau^{c} \rightarrow S L^{+}(X)$ such that $F=\varphi(F)^{-1}(0)$ for each $F \in \tau^{c}$.
(c) There exists order preserving map $\phi: L^{+}(X) \rightarrow S L^{+}(X)$ such that $\phi(h) \leq h$ for each $h \in L^{+}(X)$ and $\phi(h)(x)>0$ whenever $h(x)>0$.

Proof. (a) \Rightarrow (b) Suppose that X is perfectly normal. Then for each $F \in \tau^{c}, F \in R G(X)$. Let $\varphi(F)=1-\chi_{F}$. By Lemma 2.8, $\varphi(F) \in S L^{+}(X)$. It is clear that $F=\varphi(F)^{-1}(0)$ and $\varphi(F) \geq \varphi(G)$ whenever $F \subset G$.
$(b) \Rightarrow$ (c) Let φ be the map in (b). For each $F \in \tau^{c}$, let $\psi(F)=\min \{\varphi(F), 1\}$. Then $\psi: \tau^{c} \rightarrow S L^{+}(X)$ is an order reversing map such that $F=\psi(F)^{-1}(0)$ for each $F \in \tau^{c}$.

For each $h \in L^{+}(X)$ and $n \in \mathbb{N}$, let $F_{n}(h)=\left\{h \leq \frac{1}{2^{n-1}}\right\}$. Then $F_{n}(h) \in \tau^{c}$. Let

$$
\phi(h)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \psi\left(F_{n}(h)\right) .
$$

By Corollary $2.7, \phi(h) \in S L^{+}(X)$.
For each $x \in X$, if $h(x)=0$ then $x \in F_{n}(h)$ for each $n \in \mathbb{N}$ and thus $\psi\left(F_{n}(h)\right)(x)=0$. It follows that $\phi(h)(x)=0=h(x)$. If $h(x)>0$ then $x \notin F_{m}(h)$ for some $m \in \mathbb{N}$ and thus $\psi\left(F_{m}(h)\right)(x)>0$. It follows that $\phi(h)(x)>0$. Now, let $k=\min \left\{n \in \mathbb{N}: x \notin F_{n}(h)\right\}$. Then $x \in F_{n}(h)$ and thus $\psi\left(F_{n}(h)\right)(x)=0$ for each $n<k$. Thus

$$
\phi(h)(x)=\sum_{n=k}^{\infty} \frac{1}{2^{n}} \psi\left(F_{n}(h)\right)(x) \leq \sum_{n=k}^{\infty} \frac{1}{2^{n}}=\frac{1}{2^{k-1}}
$$

Since $x \notin F_{k}(h)$, we have $h(x)>\frac{1}{2^{k-1}} \geq \phi(h)(x)$.
The above argument shows that $\phi(h) \leq h$.
Now suppose that $h_{1} \leq h_{2}$. Then $F_{n}\left(h_{2}\right) \subset F_{n}\left(h_{1}\right)$ and hus $\psi\left(F_{n}\left(h_{1}\right)\right) \leq \psi\left(F_{n}\left(h_{2}\right)\right)$ for each $n \in \mathbb{N}$ which implies that $\phi\left(h_{1}\right) \leq \phi\left(h_{2}\right)$.
(c) \Rightarrow (a) follows from Theorem 3.4.

By their definitions (or characterizations), it is clear that if a pace is δ-stratifiable and perfectly normal then it is stratifiable (the converse is, of course, also true). This can also be deduced from Theorem 3.2 (b), Theorem 3.5 (c) and the following characterization of a stratifiable space [9]: a space X is stratifiable if and only if there exist two order preserving maps $\Psi: L^{+}(X) \rightarrow L^{+}(X)$ and $\Phi: L^{+}(X) \rightarrow U^{+}(X)$ such that $\Psi(h) \leq \Phi(h) \leq h$ for each $h \in L^{+}(X)$ and $\Psi(h)(x)>0$ whenever $h(x)>0$.

Acknowledgements

The authors would like to thank the referee for the valuable comments.

References

[1] C.J.R. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966) 1-16
[2] R. Engelking, General Topology, Revised and Completed Edition, Heldermann Verlag, Berlin, 1989.
[3] C. Good, L. Haynes, Monotone versions of δ-nomality, Topology Appl. 156 (2009) 1985-1992.
[4] Y. Jin, L. Xie, H. Yue, Monotone insertion of semi-continuous functions on stratifiable spaces, Filomat 31 (2017) 575-584.
[5] J.K. Kohli, D. Singh, Weak normality properties and factorizations of normality, Acta Math. Hungar. 110 (2006) 67-80.
[6] K. Li, Characterization of δ-stratifiable spaces, Mat. Vesnik 61 (2009) 241-246.
[7] J. Mack, Countable paracompactness and weak normality properties, Trans. Amer. Math. Soc. 148 (1970) 265-272.
[8] E. Michael, Continuous selections I, Ann. of Math. 63 (1956), 361-382.
[9] L. Xie, P. Yan, Insertions of semi-continuous functions and sequences of sets, Acta Math. Hungar. 126 (2010),164-180.

[^0]: 2020 Mathematics Subject Classification. Primary 54C08; Secondary 54C30, 54E20
 Keywords. Real-valued functions, semi-continuity, strong semi-continuity, δ-stratifiable spaces
 Received: 21 September 2021; Revised: 07 February 2022; Accepted: 11 February 2022
 Communicated by Ljubiša D.R. Kočinac
 Email addresses: egyang@126.com (Er-Guang Yang), jz1363564@126.com (Zheng Jiang)

