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Abstract. In [6], a sufficient condition for a space to be δ-stratifiable was presented and it was asked whether
the condition is necessary. Jin et al [4] gave a negative answer to the question by showing that a space
with the condition is zero-dimensional. In this paper, we show that a space with the condition is precisely
an almost discrete space. Moreover, we introduce the notions of strongly lower (upper) semi-continuous
functions, with which the characterizations of δ-stratifiable spaces are presented.

1. Introduction and preliminaries

Throughout, a space always means a topological space. For a space X, denote by τ and τc the topology
of X and the family of all closed subsets of X respectively. For a subset A of a space X, we write A (intA)
for the closure (interior) of A in X. Also, we use χA to denote the characteristic function of A. The set of all
positive integers (real numbers) is denoted byN (R).

A real-valued function f on a space X is called lower (upper) semi-continuous [2] if for any real number
r, the set { f > r} = {x ∈ X : f (x) > r} ({ f < r} = {x ∈ X : f (x) < r}) is open. We write L(X) (U(X)) for the set of all
lower (upper) semi-continuous functions on X and L+(X) = { f ∈ L(X) : f ≥ 0}, U+(X) = { f ∈ U(X) : f ≥ 0}.
C(X) is the set of all continuous functions on X and C+(X) = { f ∈ C(X) : f ≥ 0}.

A subset D of a space X is called a regular Gδ-set [7] if there exists a sequence {Un : n ∈ N} of open
subsets of X such that D =

⋂
n∈NUn =

⋂
n∈NUn. The collection of all regular Gδ-sets of X is denoted by

RG(X).
A space X is called δ-normal [7] if every pair of disjoint closed sets, one of which is a regular Gδ-set

can be separated by open sets. X is called weakly δ-normal [5] if every pair of disjoint regular Gδ-sets
can be separated by open sets. In [3], the notions of lmδn spaces and mδδn spaces were introduced as
the monotone versions of δ-normal spaces and weakly δ-normal spaces respectively. In the same paper,
the notions of δ-stratifiable spaces and δ-semi-stratifiable were also introduced as the generalizations of
stratifiable spaces and semi-stratifiable spaces respectively.

For a space X, consider the following condition.
(∗) There is an order-preserving map ϕ : U+(X) → L+(X) such that ϕ(h) ≤ h for each h ∈ U+(X) and

0 < ϕ(h)(x) < h(x) whenever h(x) > 0.
In [6], it was shown that if X satisfies (∗), then X is δ-stratifiable. It was also asked whether the converse

is true. That is, does a δ-stratifiable space satisfy (∗)? Jin et al [4] showed that if X satisfies (∗), then X is
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zero-dimensional. Since R is δ-stratifiable but not zero-dimensional, the answer to the above question is
negative. Now, the following two questions arise naturally.

Question 1.1. What space does condition (∗) characterize?

Question 1.2. How to characterize δ-stratifiable spaces with real-valued functions?

In this paper, we shall answer Question 1.1 by showing that a space satisfying (∗) is precisely an almost
discrete space. To answer Question 1.2, we introduce the notions of strongly lower (upper) semi-continuous
functions, with which the characterizations of δ-stratifiable spaces are obtained.

Definition 1.3. A space X is called almost discrete if every open subset of X is closed. That is, τ = τc.

Notice that a space is discrete if and only if it is T0 and almost discrete. Indeed, necessity is clear.
Suppose that X is T0 and almost discrete. Let x ∈ X and y < {x}. Then x < {y} or y < {x}. If x < {y} then
{y} ∩ {x} = ∅ and {y} is an open neighborhood of y. If y < {x} then X \ {x} is an open neighborhood of y and
(X \ {x}) ∩ {x} = ∅. This implies that {x} is closed and thus open. Therefore, X is discrete.

Let X = {a, b, c} and τ = {∅, {a}, {b, c},X}. Then (X, τ) is almost discrete but not discrete.

Definition 1.4. A real-valued function f on a space X is called strongly lower (upper) semi-continuous
if there exist two sequences {αn( f ) ∈ L(X) : n ∈ N} and {βn( f ) ∈ U(X) : n ∈ N} of functions such that
αn( f ) ≤ βn( f ) for each n ∈N and f = supn αn( f ) = supn βn( f ) ( f = infn αn( f ) = infn βn( f )).

{αn( f ) ∈ L(X) : n ∈ N} and {βn( f ) ∈ U(X) : n ∈ N} in the above definition will be called accompanying
functions for f .

The collection of all strongly lower (upper) semi-continuous functions on a space X is denoted by SL(X)
(SU(X)) and SL+(X) = { f ∈ SL(X) : f ≥ 0}, SU+(X) = { f ∈ SU(X) : f ≥ 0}.

Notice that SL(X) ⊂ L(X), SU(X) ⊂ U(X) and C(X) = SL(X) ∩ SU(X).
It is known that a space X is perfectly normal if and only if for each F ∈ τc, there exists a sequence

{Un : n ∈N} of open subsets of X such that F =
⋂

n∈NUn =
⋂

n∈NUn. That is, τc
⊂ RG(X). Hence, by Lemma

2.8 in Section 2, X is perfectly normal if and only if for each F ∈ τc, χF ∈ SU(X). Therefore, for a space X
which is not perfectly normal, there must exist an F ∈ τc such that χF < SU(X) while χF ∈ U(X). Dually,
there exists a U ∈ τ such that χU < SL(X) while χU ∈ L(X).

Definition 1.5. ([3]) A space X is called δ-stratifiable (δ-semi-stratifiable) if there exists a map σ : N ×
RG(X)→ τ such that

(1) D =
⋂

n∈N σ(n,D) =
⋂

n∈N σ(n,D) (D =
⋂

n∈N σ(n,D)) for each D ∈ RG(X).
(2) If D,E ∈ RG(X) and D ⊂ E then σ(n,D) ⊂ σ(n,E) for each n ∈N.

Notice that, without loss of generality, we may assume that σ is decreasing with respect to n.

2. Some basic lemmas

In this section, we list some properties of strongly lower (upper) semi-continuous functions and some
basic lemmas for later use.

First notice that if f ∈ SL(X) ( f ∈ SU(X)) then r f ∈ SL(X) (r f ∈ SU(X)) whenever r > 0, and r f ∈ SU(X)
(r f ∈ SL(X)) whenever r < 0.

Proposition 2.1. If f ∈ SL(X) ( f ∈ SU(X)) then there exist two increasing (decreasing) sequences {δn( f ) ∈ L(X) :
n ∈ N} and {ηn( f ) ∈ U(X) : n ∈ N} of functions such that δn( f ) ≤ ηn( f ) for each n ∈ N and f = supn δn( f ) =
supn ηn( f ) ( f = infn δn( f ) = infn ηn( f )).
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Proof. Let f ∈ SL(X) be accompanied by {αn( f ) ∈ L(X) : n ∈ N} and {βn( f ) ∈ U(X) : n ∈ N}. For each n ∈ N,
let δn( f ) = max{αi( f ) : i ≤ n} and ηn( f ) = max{βi( f ) : i ≤ n}. Then {δn( f ) ∈ L(X) : n ∈ N}, {ηn( f ) ∈ U(X) : n ∈
N} are increasing, δn( f ) ≤ ηn( f ) for each n ∈N and supn δn( f ) = supn αn( f ), supn ηn( f ) = supn βn( f ).

For f ∈ SU(X) applying the fact that if f ∈ SU(X) then − f ∈ SL(X).

Proposition 2.2. If f , 1 ∈ SL(X) ( f , 1 ∈ SU(X)) then f + 1 ∈ SL(X) ( f + 1 ∈ SU(X)).

Proof. Let f , 1 ∈ SL(X) be accompanied by {αn( f ) ∈ L(X) : n ∈ N}, {βn( f ) ∈ U(X) : n ∈ N} and {αn(1) ∈ L(X) :
n ∈N}, {βn(1) ∈ U(X) : n ∈N} respectively. By Proposition 2.1, we may assume that the four accompanying
sequences are increasing. Hence, f = limn αn( f ) = limn βn( f ) and 1 = limn αn(1) = limn βn(1). It follows that
f + 1 = limn(αn( f ) + αn(1)) = limn(βn( f ) + βn(1)). This in turn implies that f + 1 = supn(αn( f ) + αn(1)) =
supn(βn( f ) + βn(1)), in which αn( f ) + αn(1) ∈ L(X), βn( f ) + βn(1) ∈ U(X) and αn( f ) + αn(1) ≤ βn( f ) + βn(1) for
each n ∈N.

For f , 1 ∈ SU(X) applying the fact that f ∈ SU(X) if and only if − f ∈ SL(X).

Proposition 2.3. Let f , 1 ∈ SL(X) and f be accompanied by {αn( f ) ∈ L(X) : n ∈ N}, {βn( f ) ∈ U(X) : n ∈ N}. If
f ≤ 1 then there exist accompanying functions {δn(1) ∈ L(X) : n ∈ N}, {ηn(1) ∈ U(X) : n ∈ N} for 1 such that
αn( f ) ≤ δn(1) and βn( f ) ≤ ηn(1) for each n ∈N.

Proof. Let 1 be accompanied by {αn(1) ∈ L(X) : n ∈ N}, {βn(1) ∈ U(X) : n ∈ N}. For each n ∈ N, let
δn(1) = max{αn( f ), αn(1)} and ηn(1) = max{βn( f ), βn(1)}. Then δn(1) ∈ L(X), ηn(1) ∈ U(X) and δn(1) ≤ ηn(1),
αn( f ) ≤ δn(1), βn( f ) ≤ ηn(1). It is clear that supn αn(1) ≤ supn δn(1). Assume that supn αn(1)(x) < supn δn(1)(x)
for some x ∈ X. Then supn αn(1)(x) < δm(1)(x) = max{αm( f )(x), αm(1)(x)} for some m ∈ N. It follows
that 1(x) = supn αn(1)(x) < αm( f )(x) ≤ supn αn( f )(x) = f (x), a contradiction to f ≤ 1. This implies that
supn αn(1) = supn δn(1). Similarly, supn βn(1) = supn ηn(1). Therefore, 1 = supn δn(1) = supn ηn(1).

Similarly, let f , 1 ∈ SU(X) and 1 be accompanied by {αn(1) ∈ L(X) : n ∈ N}, {βn(1) ∈ U(X) : n ∈ N}. If
f ≤ 1 then there exist accompanying functions {δn( f ) ∈ L(X) : n ∈N}, {ηn( f ) ∈ U(X) : n ∈N} for f such that
δn( f ) ≤ αn(1) and ηn( f ) ≤ βn(1) for each n ∈N.

Notice that if f ∈ SU+(X) then the accompanying functions {αn( f ) : n ∈ N} and {βn( f ) : n ∈ N} are
non-negative. As for f ∈ SL+(X), by Proposition 2.3, we may also assume that the accompanying functions
are non-negative.

Corollary 2.4. If f ∈ SL+(X) then there exist two sequences {αn( f ) ∈ L+(X) : n ∈N} and {βn( f ) ∈ U+(X) : n ∈N}
of functions such that αn( f ) ≤ βn( f ) for each n ∈N and f = supn αn( f ) = supn βn( f ).

Proposition 2.5. If f , 1 ∈ SL(X) (SU(X)) then min{ f , 1},max{ f , 1} ∈ SL(X) (SU(X)).

Proof. We shall show that if f , 1 ∈ SL(X) then min{ f , 1} ∈ SL(X). The others can be shown analogously.
Let f , 1 ∈ SL(X) be accompanied by increasing sequences {αn( f ) ∈ L(X) : n ∈ N}, {βn( f ) ∈ U(X) :

n ∈ N} and {αn(1) ∈ L(X) : n ∈ N}, {βn(1) ∈ U(X) : n ∈ N} respectively. It is easy to verify that
min{supn αn( f ), supn αn(1)} = supn min{αn( f ), αn(1)} and min{supn βn( f ), supn βn(1)} = supn min{βn( f ), βn(1)}.
Therefore, min{ f , 1} = supn min{αn( f ), αn(1)} = supn min{βn( f ), βn(1)}which implies that min{ f , 1} ∈ SL(X).

Proposition 2.6. If fn ∈ SL(X) ( fn ∈ SU(X)) for each n ∈ N and supn fn (infn fn) exists then supn fn ∈ SL(X)
(infn fn ∈ SU(X)).

Proof. For each n ∈ N, let fn ∈ SL(X) be accompanied by {αm( fn) ∈ L(X) : m ∈ N}, {βm( fn) ∈ U(X) : m ∈ N}.
For each n ∈ N, let 1n = max{αi( f j) : i, j ≤ n} and hn = max{βi( f j) : i, j ≤ n}. Then 1n ∈ L(X), hn ∈ U(X)
and 1n ≤ hn. It is easy to verify that supn supm αm( fn) = supn 1n and supn supm βm( fn) = supn hn. Therefore,
supn fn = supn 1n = supn hn which implies that supn fn ∈ SL(X).

For fn ∈ SU(X) applying the fact that f ∈ SU(X) if and only if − f ∈ SL(X).

Corollary 2.7. Let fn ∈ SL+(X) for each n ∈N. If
∑
∞

n=1 fn exists then
∑
∞

n=1 fn ∈ SL(X).
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Proof. For each n ∈ N, let 1n =
∑n

i=1 fi. Then 1n ∈ SL+(X) and
∑
∞

n=1 fn = supn 1n. By Proposition 2.6,∑
∞

n=1 fn ∈ SL(X).

Lemma 2.8. Let D ⊂ X. Then D ∈ RG(X) if and only if χD ∈ SU(X).

Proof. Let D ∈ RG(X). Then there exists a sequence {Un : n ∈ N} of open subsets of X such that D =⋂
n∈NUn =

⋂
n∈NUn. For each n ∈ N, let fn = χUn

and 1n = χUn
. Then fn ∈ L(X), 1n ∈ U(X) and fn ≤ 1n. It is

clear that χD = infn fn = infn 1n.
Let χD ∈ SU(X) be accompanied by {αn(χD) ∈ L(X) : n ∈ N} and {βn(χD) ∈ U(X) : n ∈ N}. For each

n ∈ N, let Un = {αn(χD) > 1
2 } and Fn = {βn(χD) ≥ 1

2 }. Then Un is open, Fn is closed and Un ⊂ Fn which
implies that Un ⊂ Fn. If x ∈ D then infn αn(χD)(x) = χD(x) = 1 which implies that x ∈ Un for each n ∈ N.
If x ∈

⋂
n∈NUn then x ∈ Un ⊂ Fn for each n ∈ N and thus χD(x) = infn βn(χD)(x) ≥ 1

2 . It follows that x ∈ D.
Therefore, D =

⋂
n∈NUn =

⋂
n∈NUn which implies that D ∈ RG(X).

Lemma 2.9. Let D ⊂ X. Then D ∈ RG(X) if and only if there exists f ∈ SL+(X) such that D = f−1(0).

Proof. Let D ∈ RG(X) and f = 1 − χD. By Lemma 2.8, f ∈ SL+(X). It is clear that D = f−1(0).
Suppose that D = f−1(0) for some f ∈ SL+(X). By Proposition 2.1 and Corollary 2.4, there exist two

increasing sequences {αn( f ) ∈ L+(X) : n ∈N} and {βn( f ) ∈ U+(X) : n ∈N} of functions such thatαn( f ) ≤ βn( f )
for each n ∈N and f = supn αn( f ) = supn βn( f ). Then

D = f−1(0) =
⋂
m∈N

f−1([0,
1
m

)) =
⋂
m∈N

(sup
n
βn( f ))−1([0,

1
m

)) ⊂
⋂
m∈N

⋂
n∈N

βn( f )−1([0,
1
m

))

⊂

⋂
m∈N

⋂
n∈N

βn( f )−1([0,
1
m

)) ⊂
⋂
m∈N

⋂
n∈N

αn( f )−1([0,
1
m

]) =
⋂
m∈N

(sup
n
αn( f ))−1([0,

1
m

])

=
⋂
m∈N

f−1([0,
1
m

]) = f−1(0) = D.

Therefore,

D =
⋂
m∈N

⋂
n∈N

βn( f )−1([0,
1
m

)) =
⋂
m∈N

⋂
n∈N

βn( f )−1([0,
1
m

)).

For each n,m ∈ N, let Unm = βn( f )−1([0, 1
m )). Then Unm ∈ τ, {Unm : m ∈ N} is decreasing for each

n ∈ N and {Unm : n ∈ N} is decreasing for each m ∈ N. For each m ∈ N,
⋂

n∈NUnm ⊂ Umm and thus⋂
m∈N
⋂

n∈NUnm ⊂
⋂

m∈NUmm. Conversely, let x ∈
⋂

n∈NUnn. For each n,m ∈N, let k = max{n,m}. Then x ∈
Ukk ⊂ Unm. This implies that

⋂
n∈NUnn ⊂

⋂
m∈N
⋂

n∈NUnm. Hence,
⋂

m∈N
⋂

n∈NUnm =
⋂

n∈NUnn. Similarly,⋂
m∈N
⋂

n∈NUnm =
⋂

n∈NUnn. Therefore, D =
⋂

n∈NUnn =
⋂

n∈NUnn which implies that D ∈ RG(X).

Corollary 2.10. If f ∈ SL(X) ( f ∈ SU(X)) then for each r ∈ R, { f ≤ r} ∈ RG(X) ({ f ≥ r} ∈ RG(X)).

Proof. Suppose that f ∈ SL(X). For r ∈ R, let h = max{ f − r, 0}. By Proposition 2.5, h ∈ SL+(X). It is clear that
{ f ≤ r} = h−1(0). By Lemma 2.9, { f ≤ r} ∈ RG(X).

If f ∈ SU(X) then − f ∈ SL(X). For each r ∈ R, { f ≥ r} = {− f ≤ −r} ∈ RG(X).

3. Main results

In this section, we show that a space satisfying (∗) is precisely an almost discrete space and present some
characterizations of δ-stratifiable spaces with real-valued functions.
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Theorem 3.1. For a space X, the following are equivalent.
(a) X is almost discrete.
(b) There is an order-preserving map ϕ : U+(X) → C+(X) such that ϕ(h) ≤ h for each h ∈ U+(X), and

0 < ϕ(h)(x) < h(x) whenever h(x) > 0.
(c) X satisfies (∗).
(d) There exists an order-reversing map φ : τ→ L+(X) such that U = φ(U)−1(0) for each U ∈ τ.
(e) There exists a map φ : τ→ L+(X) such that U = φ(U)−1(0) for each U ∈ τ.

Proof. (a)⇒ (b) For each h ∈ U+(X) and n ∈ N, let Un(h) = {h ≥ 1
2n−2 }. Then {Un(h) : n ∈ N} is an increasing

sequence of closed and thus open subsets of X. Let

ϕ(h) =
∞∑

n=1

1
2nχUn(h)

Then ϕ(h) ∈ C+(X). If h1 ≤ h2 then Un(h1) ⊂ Un(h2) for each n ∈N and thus ϕ(h1) ≤ ϕ(h2).
For each x ∈ X, if h(x) = 0 then x < Un(h) for each n ∈ N and thus ϕ(h)(x) = 0. If h(x) > 0 then x ∈ Um(h)

for some m ∈ N. Let k = min{n ∈ N : x ∈ Un(h)}. Then x < Un(h) for each n < k while x ∈ Un(h) for each
n ≥ k. Thus

ϕ(h)(x) =
∞∑

n=1

1
2nχUn (h) (x) =

∞∑
n=k

1
2n =

1
2k−1

Since x ∈ Uk(h), we have h(x) ≥ 1
2k−2 > ϕ(h)(x).

(b)⇒ (c) is clear.
(c) ⇒ (d) Let ϕ be the map in property (∗). For each U ∈ τ, let hU = 1 − χU . Then hU ∈ U+(X). Let

φ(U) = ϕ(hU). Then φ(U) ∈ L+(X). It is clear that φ(U) ≥ φ(V) whenever U ⊂ V. If x ∈ U, then hU(x) = 0
and thus φ(U)(x) = ϕ(hU)(x) = 0. If x < U then hU(x) = 1 and thus φ(U)(x) = ϕ(hU)(x) > 0. This implies that
U = φ(U)−1(0).

(d)⇒ (e) is clear.
(e)⇒ (a) Let φ be the map in (e). Then for each U ∈ τ, φ(U) ∈ L+(X), so U = φ(U)−1(0) = {φ(U) ≤ 0} is a

closed set. Therefore, X is almost discrete.

Theorem 3.2. For a space X, the following are equivalent.
(a) X is δ-stratifiable.
(b) There exist two order preserving maps Ψ : SL+(X) → L+(X) and Φ : SL+(X) → U+(X) such that Ψ(h) ≤

Φ(h) ≤ h for each h ∈ SL+(X) andΨ(h)(x) > 0 whenever h(x) > 0.
(c)There exists an order preserving map Φ : SL+(X) → U+(X) such that Φ(h) ≤ h for each h ∈ SL+(X) and if

h(x) > 0 then there exists an open neighborhood Ox of x such that infΦ(h)(Ox) > 0.
(d) There exists two order reversing maps ψ : RG(X)→ L+(X) and ϕ : RG(X)→ U+(X) such that ψ(D) ≤ ϕ(D)

and D = ψ(D)−1(0) = ϕ(D)−1(0) for each D ∈ RG(X).

Proof. (a)⇒ (b) Let σ be the map in Definition 1.5 which is decreasing with respect to n. For each h ∈ SL+(X)
and n ∈ N, let Dn(h) = {h ≤ 1

2n−1 }. By Corollary 2.10, {Dn(h)}n∈N is a decreasing sequence of regular Gδ-sets
of X. Let

Ψ(h) = 1 −
∞∑

n=1

1
2nχσ(n,Dn(h)), Φ(h) = 1 −

∞∑
n=1

1
2nχσ(n,Dn(h)).

ThenΨ(h) ∈ L+(X), Φ(h) ∈ U+(X) andΨ(h) ≤ Φ(h).
Let x ∈ X.
Case 1. h(x) = 0. Then x ∈ Dn(h) ⊂ σ(n,Dn(h)) for each n ∈N from which it follows that Φ(h)(x) = 0.
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Case 2. h(x) > 0. Then x < Dm(h) for some m ∈ N. It follows that x < σ(i,Dm(h)) for some i ∈ N.
Let j = max{i,m}. Then x < σ( j,D j(h)) and thus Ψ(h)(x) > 0. Let k = min{n ∈ N : x < σ(n,Dn(h))}. Then
x ∈ σ(n,Dn(h)) for each n < k while x < σ(n,Dn(h)) for each n ≥ k. It follows that

Φ(h)(x) = 1 −
∞∑

n=1

1
2nχσ(n,Dn(h))(x) = 1 −

k−1∑
n=1

1
2n =

1
2k−1

.

Since x < σ(k,Dk(h)) ⊃ Dk(h), we have h(x) > 1
2k−1 = Φ(h)(x).

The above argument shows that Φ(h) ≤ h.
Now suppose that h1 ≤ h2. Then Dn(h2) ⊂ Dn(h1) and thus σ(n,Dn(h2)) ⊂ σ(n,Dn(h1)) for each n ∈ N

which implies that Φ(h1) ≤ Φ(h2). Similarly,Ψ(h1) ≤ Ψ(h2).
(b)⇒ (c) Let Ψ,Φ be the maps in (b). If h(x) > 0 then Ψ(h)(x) > 0. Choose r > 0 such that Ψ(h)(x) > r

and let Ox = {Ψ(h) > r}. Then Ox is an open neighborhood of x. For each y ∈ Ox, Φ(h)(y) ≥ Ψ(h)(y) > r and
thus infΦ(h)(Ox) ≥ r > 0.

(c) ⇒ (d) Let Φ be the map in (c). For each D ∈ RG(X), let hD = 1 − χD . Then hD ∈ SL+(X). Let
ϕ(D) = Φ(hD). It is clear that ϕ(D) ≥ ϕ(E) whenever D ⊂ E.

If x ∈ D, then hD(x) = 0 and thus ϕ(D)(x) = Φ(hD)(x) = 0 which implies that D ⊂ ϕ(D)−1(0). If x < D then
hD(x) = 1. By (c), there exists an open neighborhood Ox of x and m ∈ N such that infϕ(D)(Ox) > 1

m . Thus
ϕ(D)(x) > 0. This implies that ϕ(D)−1(0) ⊂ D and so D = ϕ(D)−1(0). From infϕ(D)(Ox) > 1

m it follows that
Ox ⊂ ϕ(D)−1( 1

m ,∞) and thus x ∈ int(ϕ(D)−1( 1
m ,∞)). Let nx(D) = min{n ∈N : x ∈ int(ϕ(D)−1( 1

n ,∞))}.
For each x ∈ X, let ψ(D)(x) = 0 whenever x ∈ D and ψ(D)(x) = 1

nx(D) whenever x < D. Then D =
ψ(D)−1(0). For each x ∈ X, if x ∈ D then ϕ(D)(x) = ψ(D)(x) = 0. If x < D then by the definition of nx(D),
x ∈ int(ϕ(D)−1( 1

nx(D) ,∞)) which implies that ϕ(D)(x) > 1
nx(D) = ψ(D)(x). Therefore, ψ(D) ≤ ϕ(D).

To show that ψ(D) ∈ L(X), suppose that ψ(D)(x) > r. Then r < 1. If r < 0 then X is an open neighborhood
of x and ψ(D)(y) ≥ 0 > r for each y ∈ X. If r ≥ 0 then ψ(D)(x) = 1

nx(D) . Let Ox = int(ϕ(D)−1( 1
nx(D) ,∞)). Then Ox

is an open neighborhood of x. For each y ∈ Ox, ϕ(D)(y) > 1
nx(D) and thus y < D. By the definition of ny(D),

ny(D) ≤ nx(D) and thus ψ(D)(y) ≥ ψ(D)(x) > r. This implies that ψ(D) ∈ L(X).
Suppose that D ⊂ E. If x ∈ E then ψ(E)(x) = 0 ≤ ψ(D)(x). f x < E then x < D. Since ϕ(D) ≥ ϕ(E), we have

x ∈ int(ϕ(E)−1( 1
nx(E) ,∞)) ⊂ int(ϕ(D)−1( 1

nx(E) ,∞)) and thus nx(D) ≤ nx(E). Therefore, ψ(D)(x) ≥ ψ(E)(x).
(d)⇒ (a) Let ψ,ϕ be the maps in (d). Then for each D ∈ RG(X),

D = ϕ(D)−1(0) =
⋂
n∈N

ϕ(D)−1([0,
1
n

)) ⊂
⋂
n∈N

ϕ(D)−1([0,
1
n

))

⊂

⋂
n∈N

ψ(D)−1([0,
1
n

]) = ψ(D)−1(0) = D.

For each D ∈ RG(X) and n ∈ N, let σ(n,D) = ϕ(D)−1([0, 1
n )). Then σ(n,D) ∈ τ and D =

⋂
n∈N σ(n,D) =⋂

n∈N σ(n,D).
If D ⊂ E, then ϕ(E) ≤ ϕ(D) and thus σ(n,D) = ϕ(D)−1([0, 1

n )) ⊂ ϕ(E)−1([0, 1
n )) = σ(n,E) for each n ∈ N.

Therefore, X is δ-stratifiable.

An analogous argument proves the following.

Proposition 3.3. For a space X, the following are equivalent.
(a) X is δ-semi-stratifiable.
(b) There exists an order preserving map Φ : SL+(X) → U+(X) such that Φ(h) ≤ h for each h ∈ SL+(X) and

Φ(h)(x) > 0 whenever h(x) > 0.
(c) There exists an order reversing map ϕ : RG(X)→ U+(X) such that D = ϕ(D)−1(0) for each D ∈ RG(X).

As another applications of strongly semi-continuous functions, we have the following.
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Theorem 3.4. For a space X, the following are equivalent.
(a) X is perfectly normal.
(b) There exists a map ϕ : L+(X) → C+(X) such that ϕ(h) ≤ h for each h ∈ L+(X) and ϕ(h)(x) > 0 whenever

h(x) > 0.
(c) There exists a map ϕ : L+(X) → SL+(X) such that ϕ(h) ≤ h for each h ∈ L+(X) and ϕ(h)(x) > 0 whenever

h(x) > 0.
(d) There exists a map φ : τc

→ SL+(X) such that F = φ(F)−1(0) for each F ∈ τc.

Proof. The equivalence of (a) and (b) has been shown in [8].
(b)⇒ (c) is clear.
(c)⇒ (d) Letϕ be the map in (c). For each F ∈ τc, 1−χF ∈ L+(X). Letφ(F) = ϕ(1−χF). Thenφ(F) ∈ SL+(X).

A direct argument shows that F = φ(F)−1(0).
(d)⇒ (a) Let φ be the map in (d). Then for each F ∈ τc, φ(F) ∈ SL+(X). By Lemma 2.9, F = φ(F)−1(0) ∈

RG(X). Therefore, X is perfectly normal.

Since stratifiable spaces are monotone versions of perfectly normal spaces, one may conjecture that X
is stratifiable if the map ϕ in Theorem 3.4 (c) is order preserving. Actually, it still characterizes perfectly
normal spaces.

Theorem 3.5. For a space X, the following are equivalent.
(a) X is perfectly normal.
(b) There exists an order reversing map φ : τc

→ SL+(X) such that F = φ(F)−1(0) for each F ∈ τc.
(c) There exists order preserving map ϕ : L+(X)→ SL+(X) such that ϕ(h) ≤ h for each h ∈ L+(X) and ϕ(h)(x) > 0

whenever h(x) > 0.

Proof. (a)⇒ (b) Suppose that X is perfectly normal. Then for each F ∈ τc, F ∈ RG(X). Let φ(F) = 1 − χF. By
Lemma 2.8, φ(F) ∈ SL+(X). It is clear that F = φ(F)−1(0) and φ(F) ≥ φ(G) whenever F ⊂ G.

(b)⇒ (c) Let φ be the map in (b). For each F ∈ τc, let ψ(F) = min{φ(F), 1}. Then ψ : τc
→ SL+(X) is an

order reversing map such that F = ψ(F)−1(0) for each F ∈ τc.
For each h ∈ L+(X) and n ∈N, let Fn(h) = {h ≤ 1

2n−1 }. Then Fn(h) ∈ τc. Let

ϕ(h) =
∞∑

n=1

1
2nψ(Fn(h)).

By Corollary 2.7, ϕ(h) ∈ SL+(X).
For each x ∈ X, if h(x) = 0 then x ∈ Fn(h) for each n ∈ N and thus ψ(Fn(h))(x) = 0. It follows that

ϕ(h)(x) = 0 = h(x). If h(x) > 0 then x < Fm(h) for some m ∈ N and thus ψ(Fm(h))(x) > 0. It follows that
ϕ(h)(x) > 0. Now, let k = min{n ∈ N : x < Fn(h)}. Then x ∈ Fn(h) and thus ψ(Fn(h))(x) = 0 for each n < k.
Thus

ϕ(h)(x) =
∞∑

n=k

1
2nψ(Fn(h))(x) ≤

∞∑
n=k

1
2n =

1
2k−1

Since x < Fk(h), we have h(x) > 1
2k−1 ≥ ϕ(h)(x).

The above argument shows that ϕ(h) ≤ h.
Now suppose that h1 ≤ h2. Then Fn(h2) ⊂ Fn(h1) and hus ψ(Fn(h1)) ≤ ψ(Fn(h2)) for each n ∈ N which

implies that ϕ(h1) ≤ ϕ(h2).
(c)⇒ (a) follows from Theorem 3.4.

By their definitions (or characterizations), it is clear that if a pace is δ-stratifiable and perfectly normal
then it is stratifiable (the converse is, of course, also true). This can also be deduced from Theorem 3.2
(b), Theorem 3.5 (c) and the following characterization of a stratifiable space [9]: a space X is stratifiable
if and only if there exist two order preserving maps Ψ : L+(X) → L+(X) and Φ : L+(X) → U+(X) such that
Ψ(h) ≤ Φ(h) ≤ h for each h ∈ L+(X) andΨ(h)(x) > 0 whenever h(x) > 0.
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