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Abstract. In this note, we give two comparison results of Poincaré constants:
(i) Let X and Y be Banach spaces. We give a relationship between the X-valued p-Poincaré constant and

the Y-valued q-Poincaré constant introduced by Laat and Salle for all 1 ≤ p, q < ∞ when the unit sphere
S(X) of X is uniformly homeomorphic to the unit sphere S(Y) of Y.

(ii) We provide an explicit relationship between the nonlinear spectral gap introduced by Mimura and
the Poincaré constant introduced by Laat and Salle.

1. Introduction

Recently, the classical Mazur map has been extended to Banach-valued Lp spaces. These extension
results have been successfully applied in comparing of Poincearé constants (see, e.g., [5, 12, 18, 22]).

In this note, continuing in this direction, we first give a comparison between the X-valued p-Poincaré
constant and the Y-valued q-Poincaré constant introduced by Laat and Salle for all 1 ≤ p, q < ∞ when the
unit sphere S(X) of X is uniformly homeomorphic to the unit sphere S(Y) of Y. Then we establish an explicit
quantity relationship between Mimura’s nonlinear spectral gap [18] (a variant of Poincaré constant) and
Laat ans Salle’s Poincaré constant [12]. Let’s first recall some related materials.

The variants of Poincaré constants have been developed in a series of works, including [1, 5, 10, 13, 17–
20, 22, 25], for several geometric and computer science applications, though many fundamental questions
remain open. On the other hand, the explicit comparison of Poincaré constants, is a natural approach. See
meta problem in [21, Question 1.1]. In this context, the sphere equivalence is often useful.

Let (M, d) and (M′, d′) be two metric spaces and let f : M→M′ be any map. The modulus of continuity
of f is the function ω f : [0,∞)→ [0,∞) defined by

ω f (t) = sup{d′( f (x), f (y)) : x, y ∈M and d(x, y) ≤ t}

The map f is said to be uniformly continuous if limt→+0 ω f (t) = 0, and a uniform homeomorphism if f is a
bijection and f and f−1 are both uniformly continuous. The metric spaces M and M′ is uniform homeomorphic
provided there is a uniform homeomorphism between them. The map f is said to be α-Hölder if there exist
an exponent α ∈ (0, 1] and a constant c > 0 such that ω f (t) ≤ ctα for all t > 0. We say that M and M′ are
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Hölder equivalent or more precisely (α, β)-Hölder homeomorphic if there exists a uniform homeomorphism
f : M→ M′ such that f is α-Hölder and f−1 is β-Hölder for some α, β ∈ (0, 1]. In the present paper, we are
mainly interested in the case when M and M′ are the unit spheres or the unit balls of Banach spaces.

It is well known that the unit spheres of Lp-spaces 1 ≤ p < ∞ are mutually uniformly (resp., Hölder)
equivalent. This is achieved by the so-called Mazur map first used by Mazur in 1929 [16], which is an explicit
uniform homeomorphism, with explicit modulus of continuity, between the unit spheres of different Lp-
spaces, for 1 ≤ p < ∞. More precisely, for given 1 ≤ p, q < ∞ and a measure space (Ω, µ), the Mazur map
from Lp(Ω, µ,C) to Lq(Ω, µ,C) is defined by

Mp,q( f ) = | f |
p
q sign( f ).

Then Mp,q is a uniform homeomorphism between the unit spheres such that M−1
p,q =Mq,p and Mp,q is Lipschitz

on the unit sphere if p ≥ q, and p
q -Hölder if p < q. Thus the Mazur map provides a Hölder classification of

unit spheres of Lp-spaces, 1 ≤ p < ∞.

Theorem 1.1 (Mazur,1929). The unit spheres of Lp(Ω, µ,C) and Lq(Ω, µ,C) are uniformly homeomorphic (resp.,
(min{ pq , 1},min{ qp , 1})-Hölder homeomorphic) for every 1 ≤ p, q < ∞ and every measure space (Ω, µ).

Since then, the Mazur map has been generalized to more general situations and has been proven to be
a strong tool in applications by people (see [3, 7, 8, 11, 21, 24, 26–29]). In recent years, the Mazur map has
been extended to Banach-valued Lp spaces. Firstly, its qualitative version of Banach-valued Lp spaces was
obtain in [6, Cheng-Dong].

Theorem 1.2. [6] Let X,Y be Banach spaces. If their unit spheres S(X) and S(Y) are uniformly homeomorphic. Then
the unit spheres of Lp(Ω, µ,X) and Lq(Ω, µ,Y) are uniformly homeomorphic for every measure space (Ω, µ) and for
every 1 ≤ p, q < ∞.

Recently, Chen and Cheng give the quantitative version of Banach-valued Lp spaces of Mazur’s result.

Theorem 1.3. [4] Let X,Y be Banach spaces. If their unit spheres S(X) and S(Y) are (α, β)-Hölder homeomorphic.
Then the unit spheres of Lp(Ω, µ,X) and Lq(Ω, µ,Y) are (min{ pq , α},min{ qp , β})-Hölder homeomorphic for every
measure space (Ω, µ) and for every 1 ≤ p, q < ∞.

These results have been successfully applied in comparing of Poincearé constants (see, e.g., [5, 12, 18, 22]).
For example, Mimura [18, Theorem 3.8] first established Theorem 1.2 in this case when Lp(Ω, µ,X) and

Lq(Ω, µ,Y) are the sequence spaces lp(X) and lq(Y), respectively, and X = Y is uniformly convex. He [18,
Proposition 3.9] also proved Theorem 1.3 in this case when Lp(Ω, µ,X) and Lq(Ω, µ,Y) are the sequence spaces
lp(X) and lq(Y), respectively, and p = q. These results were applied in generating an explicit comparison
of Mimura’s nonlinear spectral gap (see [18, Theorem 4.1]). Later, Cheng and Dong [6, Theorem 1.2]
showed Theorem 1.2. Recently, Laat and Salle [12, Lemma 3.10] firstly proved Theorem 1.3 for different p, q
but X = Y. They applied it to obtain a more general version of Banach-valued Matoušek’s extrapolation
phenomenon than the aforementioned Mimura’s and Cheng’s ones, in the sense that it does not rely on the
maximal degree of the graph (see [12, Proposition 3.9]). This latter fact has a big advantage in applications.
For example it is needed for Naor’s result in [22](see details in Naor’s remark [22, Remark 46] ). More
recently, Chen and Cheng [4, Theorem 1.2] completed the proof of Theorem 1.3.

This note consists of closely related three sections. In Section 2 we will apply Theorem 1.2 to give a
relationship between the X-valued p-Poincaré constant and the Y-valued q-Poincaré constant introduced
by Laat and Salle for all 1 ≤ p, q < ∞. In Section 3 we give an explicit relation between the nonlinear
spectral gap introduced by Mimura and the Poincaré constant introduced by Laat and Salle, As its direct
application, a non-coarse embedding result of a sequence of expander graphs is obtained.

Our notation and terminology for Banach spaces are standard, as may be found for example in [14] and
[15]. For a Banach space X, by S(X) and BX denote the unit sphere and unit ball of X, respectively.
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2. Laat and Salle’s extrapolation result for Poincaré inequalities

In this section, we aim to provide an extension of Laat and Salle’s extrapolation result [12, Proposition
3.9].

2.1. p-Poincaré inequality
In this note, we let G = (V, ω) be a finite, undirected, connected graph with the vertex set V and the

weight function ω : V × V → [0,∞) such that ω(x, y) = ω(y, x) for every x, y ∈ V. Unweighted graphs
correspond to the case when ω takes values in {0, 1}, in which case ω is the indicator function of the edge
set. The degree of a vertex x in a graph G = (V, ω) is defined as the number dω(x) =

∑
y∈V ω(x, y).

Following [12], let G = (V, ω) be a finite connected graph. Equip V × V with the probability measure
P(x, y) = ω(x,y)∑

x′ ,y′∈V
ω(x′,y′) and V with the probability measure ν(x) = dω(x)∑

y dω(y) . Note that ν is the stationary

probability measure for the random walk on G with transition probability p(x → y) = ω(x,y)
dω(x) . It is also

the pushforward measure of P under both maps (x, y) 7→ x and (x, y) 7→ y. Let f : V → X. Its gradient
∇ f : V × V → X is defined by ∇ f (e) = f (x) − f (y) if e = (x, y).

Consider a weighted, finite graph G = (V,E), a number 1 ≤ p < ∞ and a Banach space X.We denote by
πp,G(X) the smallest real number π such that for all f : V → X, the inequality

inf
x∈X
∥ f − x∥Lp(V,ν;X) ≤ π∥∇ f ∥Lp(V×V,P;X) (1)

holds. Following Laat and Salle [12, Definition 3.1], we call πp,G(X) the X-valued p-Poincaré constant of G.
On a finite graph, the inequality (1) is always satisfied for some π > 0. For p = 2 and X = L2, the constant
π2,G(L2) = π2,G(R) can be expressed in terms of the first non-zero eigenvalue of the discrete Laplacian (see
[12, Proposition 3.3 (iii)]).

Let (Z0,Z1, . . . ) be the random walk on G with Z0 (and hence Zn for all n ≥ 0) distributed as ν. In this
setting, the X-valued p-Poincaré constant of G is the smallest real number π such that for all f : V → X, the
following inequality holds:

inf
x∈X
E[∥ f (Z0) − x∥p] ≤ πpE[∥ f (Z0) − f (Z1)∥p].

2.2. Sphere equivalence and Laat and Salle’s extrapolation result
Now we provide an extension of Laat and Salle’s extrapolation result [12, Proposition 3.9]. Its proof is

inspired by the original one in [12, Proposition 3.9].

Theorem 2.1. Let X and Y be Banach spaces and assume that φ : S(X)→ S(Y) is a uniform homeomorphism. Then,
for every 1 ≤ p, q < ∞ and for every finite connected graph G, we have the following inequality

1
πp,G(X)

≥ δ−1
1

(
δ−1

2 (1)
1

πq,G(Y)

)
.

Here δ1 = ωMp,q , δ2 = ωMq,p and Mp,q is the Banach-valued Mazur map defined by Mp,q(h) = ∥h∥
p
qφ( h

∥h∥ ) from BLp(X)
onto BLq(Y).

Proof. Let πq,G(Y) be the Y-valued q-Poincaré constant for a finite connected graph G, and simply denoted
by πq. Let f ∈ Lp(V, ν,X). We next want to prove

δ−1
1

(
δ−1

2 (1)
1
πq

)
inf
x∈X
∥ f − x∥p ≤ (E∥ f (Z0) − f (Z1)∥p)

1
p , (2)

where (Z0,Z1, · · · ) be the random walk on G distributed as ν and δ1 = ωMp,q , δ2 = ωMq,p . Let φ : S(X)→ S(Y)
be the uniform homeomorphism. Let Mp,q : Lp(V, ν,X) → Lq(V, ν,Y) be the Banach valued Mazur map.
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By Theorem 1.2 , we know that Mp,q : Lp(V, ν,X) → Lq(V, ν,Y) is also a uniform homeomorphism when
restricted to their unit balls.

As in the proof of [12, Proposition 3.9], we may assume that infx∈X ∥ f − x∥p = 1, and replacing f by f − x
for a suitable x, we may assume that ∥ f ∥p ≤ 1. Let 1 =Mp,q( f ). Then ∥1∥q ≤ 1. For every x ∈ BX we regard x

as a constant function on V then x ∈ Lp(V, ν,X) with ∥x∥p ≤ 1. Thus y =Mp,q(x) = ∥x∥
p
qφ( x

∥x∥ ) is also a constant
function in Lq(V, ν,Y) with y ∈ BY. Since Mq,p is a uniform homeomorphism, it follows that

∥ f − x∥p = ∥Mq,p(1) −Mq,p(y)∥p ≤ δ2(∥1 − y∥q).

By taking the infimum over x ∈ BX and note that Mp,q(BX) = BY (regard as constant function), we obtain

1 = inf
x∈X,∥x∥≤1

∥ f − x∥p ≤ inf
y∈Y,∥y∥≤1

δ2(∥1 − y∥q).

This in particular implies, for every y ∈ Y, ∥y∥ ≤ 1,

δ2(∥1 − y∥q) ≥ 1,

and so

∥1 − y∥q ≥ δ−1
2 (1).

Thus

inf
y∈Y,∥y∥≤1

∥1 − y∥q ≥ δ−1
2 (1).

From the definition of πq it follows that

δ−1
2 (1)
πq

≤ (E∥1(Z0) − 1(Z1)∥q)
1
q . (3)

Since Mp,q is also a uniform homeomorphism we have

(E∥1(Z0) − 1(Z1)∥q)
1
q ≤ δ1((E∥ f (Z0) − f (Z1)∥p)

1
p ).

This together (3) finally gives

δ−1
2 (1)
πq

≤ δ1((E∥ f (Z0) − f (Z1)∥p)
1
p ),

and so

δ−1
1 (
δ−1

2 (1)
πq

) ≤ (E∥ f (Z0) − f (Z1)∥p)
1
p .

This gives

inf
x∈X
∥ f − x∥p ≤

1

δ−1
1 (
δ−1

2 (1)
πq

)
(E∥ f (Z0) − f (Z1)∥p)

1
p ,

and so

1
πp,G(X)

≥ δ−1
1

(
δ−1

2 (1)
1

πq,G(Y)

)
. (4)

This completes the proof.
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3. Comparing of Poincaré constants

In this section, we will give an explicit relationship between Mimura’s nonlinear spectral gap and Laat
and Salle’s Poincaré constant for a regular graph.

Let’s recall some related materials. Following [19], a sequence of metric spaces {(Xn, dXn )} is said
to embed coarsely (with the same moduli) into a metric space (Y, dY) if there exist two non-decreasing
functions ρ1, ρ2 : [0,∞) → [0,∞) such that limt→∞ ρ1(t) = ∞, and there exist mappings fn : Xn → Y, such
that for all n ∈N and x, y ∈ Xn we have

ρ1

(
dXn (x, y)

)
≤ dY( fn(x), fn(y)) ≤ ρ2

(
dXn (x, y)

)
.

As said in [19], since coarse embeddability is a weak requirement, it is quite difficult to prove coarse non-
embeddability. The nonlinear spectral gaps have been the well-known obstacle for coarse embeddability,
as pioneered by Gromov [10].

We now turn to Mimura’s nonlinear spectral gap [18], which is an variant of Poincaré constant. Consider
a finite connected graph G = (V,E), a number 1 ≤ p < ∞ and a Banach space X.We denote by λ1(G; X, p) the
largest real number λ such that for all f : V → X, the inequality

∥ f −m( f )∥plp(V,X) ≤
1
λ
∥∇

E f ∥plp(V,X)

holds. Here m( f ) = 1
|V|
∑

x∈V f (x) is the mean value of f . By ∥h∥lp(V,X) we denote the p-norm
(∑

x∈V ∥h(x)∥p
) 1

p

of h : V → X and ∥∇Eh∥lp(V,X) is the semi-norm defined by

∥∇
Eh∥lp(V,X) =

( ∑
(x,y)∈E

∥h(y) − h(x)∥p
) 1

p
.

Following Mimura [18, Definition 1.1], we call λ1(G; X, p) the (X, p)-spectral gap of G. In particular, for
p = 2 and X = (R, | · |), where we denote by | · | the Euclidean distance on R, we have that λ1(G;R, 2) is the
just classical spectral gap of G. Following [18], a sequence of finite connected graphs {Gn = (Vn,En)}∞n=1 is
called (X, p)-anders if they have uniformly bounded degree, limn→∞ |Vn| = ∞ and infn∈N λ1(Gn; X, p) > 0. It
is classical that for a fixed d ∈ N a sequence of d-regular graphs is a sequence of expander graphs if and
only if they are (R, 2)-anders.

Gromov [9] observed that every sequence of expander graphs {Gn}n∈N (here every Gn is considered as
a metric space equipped with the shorted-path metric dGn (x, y) between x, y ∈ Vn. ) does not admit coarse
embeddings into a Hilbert space. More generally, being (X, p)-anders for some fixed p and a Banach space
X implies poor coarse embeddability into X, which means that if expander graphs {Gn}n∈N are (X, p)-anders
then {Gn}n∈N do not coarsely embed into X.

On the other hand, Matoušek proved in [17] that being (R, p)-anders does not depend on p (his strategy
is often called Matoušek extrapolation [18, 19]). This was greatly generalized to Banach spaces setting by
Mimura in [18], and finally Cheng proved in [5, Theorem 4.9] that for any fixed Banach space X the property
of being an (X, p)-anders does not depend on p ∈ [1,∞). A key fact used there is that the property of being
an (X, p)-anders is stable under sphere equivalence of Banach spaces (see [18, Theorem A] and [5, Theorem
4.9]).

We first need the following result.

Lemma 3.1. Let G = (V,E) be a finite connected graph with weight ω(x, y) and let X be a Banach space. Set

υ(x) =
∑

y∈V ω(x,y)∑
x′ ,y′∈V ω(x′,y′) and let f : V → X. Assume that m( f ) =

∑
x∈V f (x)υ(x) is the mean value of f with respect to

the probability measure υ on V. Then for every 1 ≤ p < ∞ we have

inf
x∈X
∥ f − x∥Lp(V,υ,X) ≤ ∥ f −m( f )∥Lp(V,υ,X) ≤ 2 inf

x∈X
∥ f − x∥Lp(V,υ,X). (5)
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Proof. The first inequality in (5) is obvious. We turn to prove the second inequality. Note that, for a given
1 ≤ p < ∞, the function 1(x) = ∥x∥p is a convex function on X. This gives∫

V
∥ f (x) −m( f )∥pdυ =

∫
V
∥

∑
y∈V

( f (x) − f (y))υ(y)∥pdυ

≤

∫
V

[∑
y∈V

∥ f (x) − f (y)∥pυ(y)
]
dυ

=
∑

x,y∈V

∥ f (x) − f (y)∥pυ(y)υ(x).

Choose x0 ∈ X such that

∥ f − x0∥Lp(V,υ,X) = inf
x∈X
∥ f − x∥Lp(V,υ,X).

By the triangle inequality we have( ∑
x,y∈V

∥ f (x) − f (y)∥pυ(x)υ(y)
) 1

p

=
( ∑

x,y∈V

∥[ f (x) − f (y)][υ(x)υ(y)]
1
p ∥

p
) 1

p

≤

( ∑
x,y∈V

(∥[ f (x) − x0][υ(x)υ(y)]
1
p ∥ + ∥[ f (y) − x0][υ(x)υ(y)]

1
p ∥)p
) 1

p

≤

( ∑
x,y∈V

(∥[ f (x) − x0][υ(x)υ(y)]
1
p ∥

p
) 1

p
+
( ∑

x,y∈V

(∥[ f (y) − x0][υ(x)υ(y)]
1
p ∥

p
) 1

p

= 2
(∑

x∈V

∥ f (x) − x0∥
pυ(x)

) 1
p

= 2∥ f − x0∥Lp(V,υ,X).

Thus

∥ f −m( f )∥Lp(V,υ,X) ≤ 2 inf
x∈X
∥ f − x∥Lp(V,υ,X).

Which completes the proof.

Theorem 3.2. Let G = (V,E) be a finite connected, d-regular, unweighted graphs. Then for every 1 ≤ p < ∞ and
every Banach space X, we have

1
2

( 1
λ1(G; p,X)

) 1
p
≤ πp,G(X) ≤

( 1
λ1(G; p,X)

) 1
p
.

Proof. Note first that in this case we have

m( f ) =
1
|V|

∑
x∈V

f (x) =
∑
x∈V

f (x)υ(x),

where υ(x) = 1
|V| for every x ∈ V. Thus for every f : V → X, we have

∥ f −m( f )∥plp(V,X) =
∑
x∈V

∥ f (x) −m( f )∥p = |V|
∫

V
∥ f (x) −m( f )∥pdυ.
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This together with the inequality (5) and the definition of πp,G(X) (in short πp) gives

∥ f −m( f )∥plp(V,X) = |V|
∥∥∥∥ f −m( f )

∥∥∥∥p
Lp(V,υ,X)

≤ |V|
(
2 inf

x∈X
∥ f − x∥Lp(V,υ,X)

)p
≤ |V|

(
2πp∥∇ f ∥Lp(V×V,P,X)

)p
= |V|2pπp

p

∑
(x,y)∈V×V

∥ f (x) − f (y)∥pP(x, y)

= |V|2pπp
p(

1
|V|

∑
(x,y)∈E

∥ f (x) − f (y)∥p)

= 2pπp
p∥∇

E f ∥pp.

Thus
1

λ1(G; p,X)
≤ 2pπp

p. (6)

On the other hand, for every f : V → X, by again the inequality (5) and the definition of λ1(G; p,X) we have

inf
x∈X
∥ f − x∥pLp(V,υ,X) ≤ ∥ f −m( f )∥pLp(V,υ,X) =

1
|V|
∥ f −m( f )∥plp(V,X)

≤
1
|V|

(
1

λ1(G; p,X)
∥∇

E f ∥pp)

=
1
|V|

1
λ1(G; p,X)

(
|V|
∥∥∥∥∇ f
∥∥∥∥p

Lp(V×V,P,X)

)
=

1
λ1(G; p,X)

∥∇ f ∥pLp(V×V,P,X).

This gives πp
p,G(X) ≤ 1

λ1(G;p;X) . Combine this with the inequality (6) we obtain

1
2pλ1(G; p,X)

≤ πp
p,G(X) ≤

1
λ1(G; p,X)

.

Thus the proof of theorem 3.2 is complete.

Remark 3.3. Here we need to point out that some (implicit) relationship between the variants of Poincaré constants
may be well-known to experts. As in Laat and Salle’s paper [12], they wrote ”Let us point out that our p-Poincaré
constant differs (by a factor or power) from the p-Poincaré constants in [2] and [23], neither does it exactly coincide
with the conventions of [19]”, and for them it was enough about the relationship between these variants of Poincaré
constants.

Theorem 3.2 particularly implies the following non-coarse embedding result of expander graphs.

Corollary 3.4. Let X be a Banach space. Assume that a sequence of expander graphs {Gn}n∈N is (X, p)-anders
in the sense of Laat and Salle, this means that {Gn}n∈N is d-regular for some d ∈ N, limn→∞ |Vn| = ∞ and
infn∈N πp,Gn (X) > 0 for some pair (X, p) (1 ≤ p < ∞), then the sequence of expander graphs does not coarsely embed
into the Banach space X.

Proof. By the assumption and Theorem 3.2, we have that the sequence of expander graphs {Gn}n∈N is also
(X, p)-anders in the sense of Mimura. Thus the sequence of expander graphs does not coarsely embed into
X from the aforementioned fact.
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