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Abstract. In this paper, we give a lot of new characterizations of SEP elements and partial isometries in
rings with involution. Especially, we discuss these characterizations from the perspectives of the existence
of solutions to certain equations, the general solutions of some equations.

1. Introduction

Let R be a ring with 1. ∗ is an anti-isomorphism of degree 2 in R, that is,

(1)(a∗)∗ = a, (2)(a + b)∗ = a∗ + b∗, (3)(ab)∗ = b∗a∗

for all a, b ∈ R. In this case, R is called a ∗−ring.
In the following research, we let R be a ∗−ring and a ∈ R.
a is called group invertible if there exists b ∈ R such that

(1) aba = a, (2) bab = b, (3) ab = ba.

According to [2], b is uniquely determined by the above equations. We call it the group inverse of a and
denote it by a#. The set of all group invertible elements of R is denoted by R#.

a is said to be Moore-Penrose invertible (or MP-invertible) if there exists b ∈ R such that the following
Penrose equations hold:

(1) aba = a, (2) bab = b, (3) (ab)∗ = ab, (4)(ba)∗ = ba.

There is at most one b such that the above conditions hold, see [7, 9, 11, 14, 15]. We call it the Moore-Penrose
inverse (or MP inverse) of a and denote it by a†. The set of all MP-invertible elements of R is denoted by R†.

a is said to be EP [10] if a ∈ R#
∩ R† satisfying a# = a†. We denote the set of all EP elements of R by REP.

If a = aa∗a, then a is called a partial isometry. The set of all partial isometries of R is denoted by RPI.
If a ∈ REP and a∗ = a†, we say the element a is a strongly EP element. We denote the set of all strongly EP

elements of R by RSEP.
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The research of EP elements in rings originates from EP-matrices. In [1], by using the representation of
complex matrices and the matrix rank provided in [11], Baksalary, Styan and Trenkler investigated various
classes of matrices such as partial isometries and EP matrices. In [18], Mosić and Djordjević studied the
conditions involving a†, a# and a∗ to ensure that a is a partial isometry, giving several equivalent conditions
under which an element in R is an EP element or a partial isometry based on ring theory only. More
researches on EP elements and partial isometries have produced some meaningful findings, see [4, 16, 19–
21, 23, 26].

In [5], using the generalized inverse of elements, common solutions of linear equations in a ring are
discussed. Interesting research in this direction can be found in the literatures [6, 22, 25]. Recently, by means
of the solution of constructed equations, a new kind of characterizations of generalized inverse elements
are studied such as [24, 27].

Motivated by these results, this paper is intended to give a number of new characterizations of partial
isometries and SEP elements [27] in rings with involution from some different angles. We characterize these
elements by considering the existence of solutions to certain equations in a definite set, the general solutions
of certain equations, and invertible elements in rings, which are all new approaches to study generalized
inverses in rings.

2. Some characterizations of SEP elements

In [17, Theorem 1.5.3], It is proved that a ∈ RSEP if and only if a ∈ R#
∩R+ and aa∗ = a+a. We can generalize

this result as follows.

Lemma 2.1. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if aa∗a+ = a+aa#.

Proof. ” =⇒ ” Assume that a ∈ RSEP. Then a ∈ REP and aa∗a+ = a# by [17, Theorem 1.5.3]. Noting that
a ∈ REP. Then a+aa# = a#, this shows aa∗a+ = a+aa#.

” ⇐= ” Assume that aa∗a+ = a+aa#, then a+aa#(1 − aa+) = aa∗a+(1 − aa+) = 0, it follows a+aa# = a+, one
obtains aa∗a+ = a+. Hence a ∈ RSEP by [17, Theorem 1.5.3].

The following lemma is inspired by [17, Lemma 1.3.4], which proof is routine.

Lemma 2.2. Let a ∈ R#
∩ R+. Then

1) aa∗a+ ∈ REP with (aa∗a+)+ = a(a#)∗a+;
2) a+aa#

∈ REP with (a+aa#)+ = a+a2.

Lemma 2.1 and Lemma 2.2 imply the following theorem.

Theorem 2.3. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if a(a#)∗a+ = a+a2.

Noting that a ∈ RSEP if and only if a∗ ∈ RSEP. Hence, stating a∗ instead of a in Theorem 2.3, one obtains
the following theorem.

Theorem 2.4. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if a∗a#(a+)∗ = aa+a∗.

Applying the involution on the equality of Theorem 2.4, one has

Corollary 2.5. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if a+(a#)∗a = a2a+.

It is well known that a ∈ RSEP if and only if a+ ∈ RSEP. Also, we have a+ ∈ R# with (a+)# = (aa#)∗a(aa#)∗.
Hence, a+ instead of a in Corollary 2.5, one yields

Theorem 2.6. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if aa∗aa#a+ = a+a+a.

Noting that a ∈ REP if and only if a ∈ R#
∩ R+ and a+ = a+a+a. Hence Theorem 2.6 leads to the following

corollary.

Corollary 2.7. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if aa∗aa#a+ = a+.
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3. Consistency of certain equations

Corollary 2.7 inspires us to construct the following equation.

aa∗xa+ = a+. (1)

Lemma 3.1. Let a ∈ R#
∩ R+. Then a ∈ REP if and only if Eq.(1) is consistent.

Proof. ” =⇒ ” Assume that a ∈ REP. Then aa∗(a+)∗a+a+ = aa+aa+a+ = aa+a+ = a+. Hence x = (a+)∗a+ is a
solution, which implies Eq.(1) is consistent.

”⇐= ” Assume that Eq.(1) is consistent. Then a+ = aa+a+, it follows that a ∈ REP.

Theorem 3.2. Let a ∈ R#
∩R+. Then a ∈ RSEP if and only if Eq.(1) is consistent and the general solution is given by

x = aa# + u − aa+ua+a, where u ∈ R. (2)

Proof. ” =⇒ ” Assume that a ∈ RSEP. Then aa∗aa#a+ = a+ by Corollary 2.7. It follows that aa∗(aa# + u −
aa+ua+a)a+ = aa∗aa#a+ = a+. Hence Eq.(2) is the solution of Eq.(1). Now let x = x0 be any solution of Eq.(1).
Then aa∗x0a+ = a+. Choose u = x0 − aa#. Then we have aa+ua+a = aa+(x0 − aa#)a+a = aa+x0a+a − aa# =
(a+)∗(a∗x0a+)a − aa# = (a+)∗a+(aa∗x0a+)a − aa# = (a+)∗a+a+a − aa#. Noting that a ∈ RSEP, then (a+)∗ = a and
a+a+a = a+ = a#. Hence aa+ua+a = aa#

− aa# = 0. One yields x0 = aa# + x0 − aa# = aa# + u = aa# + u − aa+ua+a.
Therefore the general solution of Eq.(1) is given by Eq.(2).

”⇐= ” From the assumption, one obtains aa∗(aa# + u − aa+ua+a)a+ = a+, this gives aa∗aa#a+ = a+. Hence
a ∈ RSEP by Corollary 2.7.

Now, we construct equation as follows

a+xa+a2a+ = a+. (3)

Proposition 3.3. Let a ∈ R#
∩ R+. Then the general solution of Eq.(3) is given by (2).

Proof. First, we have a+(aa# + u − aa+ua+a)a+a2a+ = a+aa#a+a2a+ + a+ua+a2a+ − a+aa+ua+aa+a2a+ = a+. Hence
the formula(2) is the solution of Eq.(3). Next, let x = x0 be any solution of Eq(3). Then a+x0a+a2a+ = a+.
Noting that aa+x0a+a = a(a+x0a+a2a+)a#a = aa+a#a = a#a. Hence x0 = aa# + x0 − aa+x0a+a, this implies the
general solution of Eq.(3) is given by Eq.(2).

The following corollary follows from Proposition 3.3 and Theorem 3.2.

Corollary 3.4. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if Eq.(1) and Eq.(3) have the same solution.

Eq.(3) induces us to construct the following equation.

a+xa+a2a+ = a∗. (4)

Theorem 3.5. Let a ∈ R#
∩ R+. Then a ∈ RPI if and only if the general solution of Eq.(4) is given by (2).

Proof. ” =⇒ ” Assume that a ∈ RPI. Then a∗ = a+, it follows that Eq.(4) is the same as Eq.(3). Hence, by
Proposition 3.3, the general solution of Eq.(4) is given by (2).

”⇐= ” From the assumption, one has

a+(aa# + u − aa+ua+a)a+a2a+ = a∗,

this gives a+ = a∗. Hence a ∈ RPI.

Similar to Proposition 3.3, we have the following proposition.
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Proposition 3.6. Let a ∈ R#
∩ R+. Then the general solution of Eq.(4) is given by

x = aa∗aa# + u − aa+ua+a,where u ∈ R. (5)

Corollary 3.7. Let a ∈ R#
∩ R+. Then the general solution of Eq.(4) is given by

x = u + aa+(aa∗aa#
− u)a+a,where u ∈ R. (6)

Proof. It is an immediate result of Proposition 3.6.

Corollary 3.8. Let a ∈ R#
∩ R+. Then the general solution of Eq.(4) is given by

x = u + aa−(aa∗aa#
− aa+ua+a)a−a, f or u ∈ R and some inner inverse a− o f a. (7)

Proof. It is an immediate result of Proposition 3.6.

We don′t know whether we can change some inner inverse a− to any inner inverse?

Theorem 3.9. Let a ∈ R#
∩R+. Then a ∈ RSEP if and only if Eq.(1) is consistent and the general solution is given by

x = av + u − aa+ua+a, where u ∈ R, v ∈ R−1 with v−1 = a + 1 − a+a. (8)

Proof. ” =⇒ ” Since a ∈ RSEP, the general solution of Eq.(1) is given by x = aa# + u − aa+ua+a by Theorem
3.2. Choose v = a# + 1 − a+a. Noting that a ∈ REP. Then v is invertible with v−1 = a + 1 − a+a. Hence
x = av + u − aa+ua+a, we are done.

” ⇐= ” From the assumption, we have (a + 1 − a+a)v = 1, this gives aa# = aa#(a + 1 − a+a)v = av. Hence
a+ = aa∗(av + u − aa+ua+a)a+ = aa∗ava+ = aa∗aa#a+. By Corollary 2.7, a ∈ RSEP.

Observing Theorem 3.9, we have a = a2v. Hence we have the following corollary.

Corollary 3.10. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if Eq.(1) is consistent and the general solution is given

by

x = av + u − aa+ua+a, where u ∈ R, v ∈ R−1 with av−1 = a2. (9)

4. Univariate equation

If we multiply the equality in Theorem 2.3 on the left by a#a#, we have a# = a#(a#)∗a+, so we have the
following Theorem.

Theorem 4.1. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if a#(a#)∗a+ = a#.

Proof. ” =⇒ ” It is evident.
” ⇐= ” Let a# = a#(a#)∗a+. Then a#aa+ = a#(a#)∗a+aa+ = a#(a#)∗a+ = a#, this infers a ∈ REP. It follows

a+a2 = a2a+ = a2a# = a2a#(a#)∗a+ = a(a#)∗a+. Hence a ∈ RSEP by Theorem 2.3.

Noting that a# = a#a+a. Hence Theorem 4.1 inspires us to give the following equation.

x(a#)∗a+ = xa+a. (10)

Theorem 4.2. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if Eq.(10) has at least one solution in χa={a, a#, a+, a∗,

(a+)∗, (a#)∗}.
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Proof. ” =⇒ ” Assume that a ∈ RSEP. Then, by Theorem 4.1, we obtain a#(a#)∗a+ = a# = a#a+a. It follows that
x = a# is a solution.

” ⇐= ” 1)If x = a is a solution, then a(a#)∗a+ = aa+a = a. Pre-multiplying the equality by (a#)2, one gets
a#(a#)∗a+ = a#. Hence a ∈ RSEP by Theorem 4.1;
2)If x = a#, then a#(a#)∗a+ = a#a+a = a#, which infers a ∈ RSEP by Theorem 4.1;
3)If x = a+, then a+(a#)∗a+ = a+a+a. Noting that (a#)∗ = a+a(a#)∗. Then we have a+a+a(a#)∗a+ = a+a+a. By [27,
Lemma 3.11], one yields (a#)∗a+ = a+a. Hence a# = a#a+a = a#(a#)∗a+, which gives a ∈ RSEP by Theorem 4.1.
4)If x = a∗, then a∗(a#)∗a+ = a∗a+a, e.g, a+ = a∗a+a. By [17, Theorem 1.5.3], a ∈ RSEP.
5)If x = (a#)∗, then (a#)∗(a#)∗a+ = (a#)∗a+a. Pre-multiplying the equality by (a∗)2, one gets a∗(a#)∗a+ = a∗a+a. By
4), we have a ∈ RSEP.
6)If x = (a+)∗, then (a+)∗(a#)∗a+ = (a+)∗a+a = (a+)∗. Pre-multiplying the equality by aa∗, one obtains a(a#)∗a+ = a.
Hence a ∈ RSEP by 1).

Noting that a# = aa+a#. Hence Theorem 4.1 induces the following equation.

x(a#)∗a+ = aa+x. (11)

Similar to Theorem 4.2, we have the following theorem.

Theorem 4.3. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if Eq.(11) has at least one solution in χa.

It is known that a ∈ RSEP if and only if a∗ ∈ RSEP. Hence a∗ instead of a in Eq.(11), we have

xa#(a+)∗ = a+ax. (12)

Also Theorem 4.3 implies the following theorem.

Theorem 4.4. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if equation (12) has at least one solution in χa.

5. Bivariate equations

We can generalize Eq.(12) as follows:

xa#(a+)∗ = a+ay. (13)

Theorem 5.1. Let a ∈ R#
∩ R+. Then the general solution of Eq.(13) is given byx = a+ap + u − uaa+

y = pa#(a+)∗ + v − a+av
,where u, v, p ∈ R. (14)

Proof. Noting that

(a+ap + u − uaa+)a#(a+)∗ = a+apa#(a+)∗ = a+a(pa#(a+)∗ + v − a+av).

Then the formula (14) is the solution of Eq.(13).
Now, let{

x = x0

y = y0

be any solution of Eq.(13). Then we have x0a#(a+)∗ = a+ay0, it follows that

x0aa+ = x0a#a2a+ = x0a#aa+a2a+ = x0a#(a+)∗a∗a2a+ = a+ay0a∗a2a+.

Choose p = a+ay0a∗a2a+. Then x0aa+ = a+ap, which gives x0 = a+ap + x0 − x0aa+.
Since

pa#(a+)∗ = a+ay0a∗a2a+a#(a+)∗ = a+ay0a∗aa#(a+)∗

= a+ay0a∗(a+)∗ = a+ay0a+a = x0a#(a+)∗a+a = x0a#(a+)∗ = a+ay0

one gets y0 = pa#(a+)∗ + y0 − a+ay0. Hence the general solution of Eq.(13) is given by (14).
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Theorem 5.2. Let a ∈ R#
∩ R+. Then a ∈ RPI if and only if the general solution of Eq.(13) is given byx = a∗ap + u − uaa+

y = pa#(a+)∗ + v − a+av
,where u, v, p ∈ R. (15)

Proof. ” =⇒ ” Assume that a ∈ RPI. Then a+ = a∗, it follows that the formula (15) is the same as the formula
(14). Hence, by Theorem 5.1, the general solution of Eq.(13) is given by Eq.(15).

”⇐= ” From the assumption, we get (a∗ap + u − uaa+)a#(a+)∗ = a+a(pa#(a+)∗ + v − a+av), e.g. a∗apa#(a+)∗ =
a+apa#(a+)∗ for all p ∈ R. Especially, choose p = 1, one yields a+a = a+(a+)∗, it follows that a = aa+a =
aa+(a+)∗ = (a+)∗. Hence a ∈ RPI.

Theorem 5.3. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if the general solution of Eq.(13) is given byx = a#(a+)∗p + u − uaa+

y = pa#(a+)∗ + v − a+av
,where u, v, p ∈ R. (16)

Proof. ” =⇒ ” Assume that a ∈ RSEP. Then a# = a∗ and a = (a+)∗. Hence, by Theorem 5.1, we are done.
”⇐= ” From the assumption, we have

(a#(a+)∗p + u − uaa+)a#(a+)∗ = a+a(pa#(a+)∗ + v − a+av),

this gives a#(a+)∗pa#(a+)∗ = a+apa#(a+)∗ for all p ∈ R. Choose p = a∗a, we get a#(a+)∗ = a+a. Pre-multiplying the
last equality by a+a, one has a+(a+)∗ = a+a. Hence a ∈ RPI by Theorem 5.2. It follows that a+a = a#(a+)∗ = a#a,
which infers a ∈ RSEP.

Which equation whose general solution is given by the formula (16)? To do this, we construct the
following equation.

xa#(a+)∗ = a#(a+)∗y. (17)

Evidently, we have the following theorem.

Theorem 5.4. Let a ∈ R#
∩ R+. Then the general solution of Eq.(17) is given by Eq.(16).

The following theorem follows from Theorem 5.3 and Theorem 5.4.

Theorem 5.5. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if Eq.(13) and Eq.(17) have the same solution.

6. Constructing (b, c)-inverse to characterize SEP elements

Let a, b, c ∈ R. If there exists y ∈ R such that y ∈ bRy∩yRc; yab = b; cay = c, then a is called (b, c)−invertible
[8], and y is called (b, c)−inverse of a.

It is well known that if y exists, it is unique and is denoted by a||(b,c). Many studies on (b, c)−inverses
appears in [3, 12, 13].

Evidently, a||(b,c) exists if and only if b ∈ bRcab and c ∈ cabRc.
Theorem 4.1 implies the following theorem.

Theorem 6.1. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if

(
a#
)∗||(a+,a#)

= a#.

Proof. ” =⇒ ” If a ∈ RSEP, then, by Theorem 4.1, a# = a#(a#)∗a+ and a# = a+. By a routine verification, we

have
(
a#
)∗||(a+,a#)

= a#.

”⇐= ” If
(
a#
)∗||(a+,a#)

= a#, then a#(a#)∗a+ = a+, it follows that a#aa+ = a#aa#(a#)∗a+ = a#(a#)∗a+ = a+. Hence
a ∈ REP, which implies a# = a+ = a#(a#)∗a+. By Theorem 4.1, we have a ∈ RSEP.
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Corollary 6.2. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if

(
a#
)∗||(a+,a#)

= a+.

Proof. ” =⇒ ” If a ∈ RSEP, then, by Theorem 6.1,
(
a#
)∗||(a+,a#)

= a#. Noting that a# = a+. Then
(
a#
)∗||(a+,a#)

= a+.

”⇐= ” Assume that
(
a#
)∗||(a+,a#)

= a+. Then a# = a#(a#)∗a+. Hence a ∈ RSEP by Theorem 4.1.

Lemma 6.3. Let a, b, c ∈ R. Then a||(b,c) exists if and only if{
b = bxcab
c = cabxc

has at least one solution.

Proof. ” =⇒ ” Let a||(b,c) = y. Then y ∈ bRy ∩ yRc and yab = b, c = cay. Set y = bsy = ytc. Then
b = yab = bsyab = bsytcab = b(syt)cab, c = caytc = cabsytc = cab(syt)c. Hence{

b = bxcab
c = cabxc

has a solution whcih is x = syt.
”⇐= ” Let x = x0 be a solution. Then {

b = bx0cab
c = cabx0c

Choose y = bx0c, then b = yab, c = cay. For y = bx0c = bx0cay ∈ bRy, y = bx0c = yabx0c ∈ yRc. Hence
a||(b,c) = y.

Theorem 6.4. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if

a+ = a+xa#(a#)∗a+

a# = a#(a#)∗a+xa#

a+ = a+xa#

(18)

has a solution.

Proof. ” =⇒ ” Assume that a ∈ RSEP, then by Theorem 6.1, we have
(
a#
)∗||(a+,a#)

= a#. By Lemma 6.3, we geta+ = a+xa#(a#)∗a+

a# = a#(a#)∗a+xa#

has a solution.
By Theorem 4.1, we know a# = a#(a#)∗a+, then a+ = a+xa+

a# = a#xa#

has a solution. Hence Eq.(18) has a solution.
”⇐= ” If Eq.(18) has a solution x = x0, then we havea# = a#(a#)∗a+x0a#

a+ = a+x0a#

Then a# = a#(a#)∗a+. Hence a ∈ RSEP by Theorem 4.1.
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7. Constructing invertible elements to characterize SEP elements

Theorem 7.1. Let a ∈ R#
∩R+. Then a ∈ RSEP if and only if a# = u(a#)∗a+, where u is invertible with u−1 = a+1−a+a.

Proof. ” =⇒ ” If a ∈ RSEP, then a# = a#(a#)∗a+ by Theorem 4.1. Choose u = a# + 1 − a+a. Then u is invertible
and u−1 = a + 1 − a+a. Also, u(a#)∗a+ = (a# + 1 − a+a)(a#)∗a+ = a#(a#)∗a+ = a#.

” ⇐= ” Assume that a# = u(a#)∗a+, and u−1 = a + 1 − a+a. Then a#aa+ = u(a#)∗a+aa+ = u(a#)∗a+ = a#, this
gives a ∈ REP. Hence a+ = a#. Since (a + 1 − a+a)u = u−1u = 1, a# = a#(a + 1 − a+a)u = a#au, which gives
a# = a#aa# = a#au(a#)∗a+ = a#(a#)∗a+. Hence a ∈ RSEP by Theorem 4.1.

Theorem 7.2. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if a# = u(a#)∗v, where u, v are invertible with

u−1 = a + 1 − a+a, v−1 = a + 1 − aa+ and av = ua.

Proof. ” =⇒ ” Assume that a ∈ RSEP. Then, by Theorem 7.1, we have a# = u(a#)∗a+, where u−1 = a + 1 − a+a.
Choose v = a+ + 1 − aa+. Then v = a# + 1 − aa# because a ∈ REP. Clearly, v−1 = a + 1 − aa# = a + 1 − aa+ and
u(a#)∗v = u(a#)∗(a+ + 1 − aa+) = u(a#)∗a+ = a#. Noting that u−1 = v−1. Then av = ua.

”⇐= ” Assume that a# = u(a#)∗v, where u−1 = a+ 1− a+a, v−1 = a+ 1− aa+ and av = ua. Then u−1a = av−1,
it follows that a+a2 = a2a+, aa+ = a#a2a+ = a#a+a2 = a#a. Hence a ∈ REP. Noting that v(a + 1 − aa+) = vv−1 = 1,
a+ = v(a + 1 − aa+)a+ = vaa+, then a# = a#aa+ = u(a#)∗vaa+ = u(a#)∗a+. Hence a ∈ RSEP by Theorem 7.1.

Theorem 7.3. Let a ∈ R#
∩R+. Then a ∈ RSEP if and only if a# = a#ua+, where u is invertible with u−1 = a∗+1−a+a.

Proof. ” =⇒ ” If a ∈ RSEP, then a# = a#(a#)∗a+ and a# = a+. Choose u = (a#)∗+1− a+a, then u(a∗+1− a+a) = 1 =
(a∗ + 1 − a+a)u. It infers u is invertible with u−1 = a∗ + 1 − a+a. Also, we have a#ua+ = a#((a#)∗ + 1 − a+a)a+ =
a#(a#)∗a+ = a#.

” ⇐= ” By the assumption, we have u(a∗ + 1 − a+a) = 1, this gives (a#)∗ = u(a∗ + 1 − a+a)(a#)∗ = u(aa#)∗.
Since a+ = (aa#)∗a+, a# = a#ua+ = a#u(aa#)∗a+ = a#(a#)∗a+. Hence a ∈ RSEP by Theorem 4.1.
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