Filomat 36:16 (2022), 5493–5501 https://doi.org/10.2298/FIL2216493L

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The Weakly Rothberger Property of Pixley–Roy Hyperspaces

Zuquan Li^a

^aDepartment of Mathematics, Hangzhou Normal University, Hangzhou 311121, P.R. China

Abstract. Let PR(X) denote the hyperspace of nonempty finite subsets of a topological space X with Pixley–Roy topology. In this paper, by introducing closed-miss-finite networks and using principle ultrafilters, we proved that the following statements are equivalent for a space X:

(1) PR(*X*) is weakly Rothberger;

(2) X satisfies $S_1(\Pi_{rcf}, \Pi_{wrcf})$;

(3) *X* is separable and $X - \{x\}$ satisfies $S_1(\prod_{cf}, \prod_{wcf})$ for each $x \in X$;

(4) X is separable and each principal ultrafilter $\mathcal{F}[x]$ in PR(X) is weakly Rothberger in PR(X).

We also characterize the weakly Menger property and the weakly Hurewicz property of PR(X).

1. Introduction

Throughout the paper all spaces are assumed to be infinite and T_1 . N denotes the set of natural numbers. ω is the first infinite ordinal.

For a space *X*, let PR(X) be the family of all <u>nonempty</u> finite subsets of *X*. For $A \in PR(X)$ and an open set $U \subset X$, let

$$[A, U] = \{B \in PR(X) : A \subset B \subset U\}.$$

The family $\{[A, U] : A \in PR(X), U \text{ is open in } X\}$ is a base of PR(X) for the *Pixley–Roy topology* [9] on PR(X).

Let \mathcal{A} and \mathcal{B} be collections of sets of an infinite set X.

 $S_1(\mathcal{A}, \mathcal{B})$ denotes the selection principle: for each sequence $\{A_n : n \in \mathbb{N}\}$ of elements of \mathcal{A} there is a sequence $\{b_n : n \in \mathbb{N}\}$ such that $b_n \in A_n$ for each $n \in \mathbb{N}$ and $\{b_n : n \in \mathbb{N}\}$ is an element of \mathcal{B} .

 $S_{fin}(\mathcal{A}, \mathcal{B})$ denotes the selection principle: for each sequence $\{A_n : n \in \mathbb{N}\}$ of elements of \mathcal{A} there is a sequence $\{B_n : n \in \mathbb{N}\}$ such that B_n is a finite subset of A_n for each $n \in \mathbb{N}$ and $\bigcup_{n \in \mathbb{N}} B_n \in \mathcal{B}$.

We recall that an open cover \mathcal{U} of a space X is called an ω -cover of X if every finite subset of X is contained in a member of \mathcal{U} and X is not a member of \mathcal{U} . A family ξ of subsets of a space X is called a π -network of X[3] if for each open set U of X, there exists $M \in \xi$ such that $M \subset U$.

²⁰²⁰ Mathematics Subject Classification. Primary 54B20; Secondary 54D20

Keywords. Pixley–Roy topology, weakly Rothberger, weakly Menger, weakly Hurewicz, principal ultrafilter, *cf*-network, *rcf*-network, weakly *cf*-network, weakly *rcf*-network

Received: 06 October 2021; Revised: 20 January 2022; Accepted: 22 January 2022

Communicated by Ljubiša D.R. Kočinac

Email address: hzsdlzq@sina.com (Zuquan Li)

For a space *X*, we write

- Ω : the collection of *ω*-covers of *X*;
- \mathcal{D} : the collection of dense subsets of *X*;
- Π_{ω} : the collection of π -networks of X consisting of finite subsets of X;
- Π_k : the collection of π -networks of *X* consisting of compact subsets of *X*.

In the theory of selection principles, π -networks and ω -covers play important roles. Some well-known weakly-versions of selection principles of Pixley–Roy space PR(X) were established in terms of ω -covers or π -networks of X. P. Daniels [2] introduced the weakly Rothberger property and the weakly Menger property and proved that for a metrizable space X, PR(X) is weakly Rothberger (resp., weakly Menger) if and only if X satisfies $S_1(\Omega, \Omega)$ (resp., $S_{fin}(\Omega, \Omega)$). M. Sakai [11] and M. Bonanzinga, F. Cammaroto, B.A. Pansera, B. Tsaban [1] gave that for a countable space X, PR(X) is weakly Rothberger (resp., weakly Menger) if and only if X satisfies $S_1(\Omega, \Omega)$ (resp., $S_{fin}(\Omega, \Omega)$) if and only if every finite power of X satisfies $S_1(\Pi_{\omega}, \Pi_{\omega})$). M. Scheepers [12] obtained that for a subset X of the real line, PR(X) is weakly Rothberger (resp., weakly Menger) if and only if X satisfies $S_1(\Omega, \Omega)$ (resp., $S_{fin}(\Omega, \Omega)$).

On the other hand, we find that ω -covers or π -networks doesn't completely characterize the dual properties of these weak selection principles between a general space *X* and its hyperspace PR(*X*) ([7], Examples 2.9, 2.14 and Remark 2.15). We should introduce new networks or covers different from π -networks or ω -covers of *X* to be dual to selection principles in the hyperspace PR(*X*).

For a general space X, the characterizations of the weakly Rothberger property, the weakly Menger property and the weakly Hurewicz property of PR(X) are unknown. So the following natural questions arise.

Question 1.1. For a space X, find the collections \mathcal{A} and \mathcal{B} of subsets of X such that:

PR(X) is weakly Rothberger if and only if X satisfies $S_1(\mathcal{A}, \mathcal{B})$; PR(X) is weakly Menger if and only if X satisfies $S_{fin}(\mathcal{A}, \mathcal{B})$; PR(X) is weakly Hurewicz if and only if X satisfies $S_{fin}(\mathcal{A}, \mathcal{B})$.

G.Di Maio, Lj.D.R. Kočinac and E. Meccariello [3] investigated the Rothberger property in 2^X under co-compact topology F^+ and co-finite topology Z^+ . They proved that for a space X, $(2^X, F^+)$ (resp., $(2^X, Z^+)$) has the Rothberger property if and only if X satisfies $S_1(\Pi_k, \Pi_k)$ (resp., $S_1(\Pi_\omega, \Pi_\omega)$).

In this paper, motivated by co-subset ideas of [3], we introduced a new kind of hit-and-miss networks: rcf-network, weakly rcf-network, cf-network and weakly cf-network. We obtain weakly selection principles of PR(X). We prove that PR(X) is weakly Rothberger (resp., weakly Menger and weakly Hurewicz) if and only if X satisfies $S_1(\Pi_{rcf}, \Pi_{wrcf})$ (resp., $S_{fin}(\Pi_{rcf}, \Pi_{wrcf})$ and $S_{fin}(\Pi_{rcf}, \Pi_{wrcf})$) if and only if X is separable and $X - \{x\}$ satisfies $S_1(\Pi_{cf}, \Pi_{wcf})$ (resp., $S_{fin}(\Pi_{cf}, \Pi_{wcf})$ and $S_{fin}(\Pi_{cf}, \Pi_{wcf})$) for each $x \in X$ if and only if X is separable and each principal ultrafilter $\mathcal{F}[x]$ in PR(X) is weakly Rothberger in PR(X) (resp., weakly Menger and weakly Hurewicz).

2. Main results

Definition 2.1. ([1, 4, 8, 11]) A space *X* is said to be weakly Rothberger if for every sequence $\{\mathcal{U}_n : n \in \mathbb{N}\}$ of open covers of *X*, there exists $U_n \in \mathcal{U}_n$ such that $\bigcup_{n \in \mathbb{N}} U_n$ is dense in *X*.

Definition 2.2. ([1, 2, 4, 8]) A space *X* is said to be weakly Menger if for every sequence $\{\mathcal{U}_n : n \in \mathbb{N}\}$ of open covers of *X*, there exists a finite subset $\mathcal{V}_n \subset \mathcal{U}_n$ such that $\bigcup_{n \in \mathbb{N}} \bigcup \mathcal{V}_n$ is dense in *X*.

Definition 2.3. ([4, 10]) A space *X* is said to be weakly Hurewicz if for every sequence $\{\mathcal{U}_n : n \in \mathbb{N}\}$ of open covers of *X*, there exists a finite subset $\mathcal{V}_n \subset \mathcal{U}_n$ such that for every nonempty open $U \subset X$, $U \cap (\bigcup \mathcal{V}_n) \neq \emptyset$ for all but finitely many $n \in \mathbb{N}$.

Lemma 2.4. If *PR*(*X*) is weakly Menger, then *X* is separable.

Proof. Let $\mathcal{U}_n = \{[\{x\}, X] : x \in X\}$. Then $\{\mathcal{U}_n : n \in \mathbb{N}\}$ is a sequence of open covers of PR(X). There exists a finite subset $\mathcal{V}_n \subset \mathcal{U}_n$ for each $n \in \mathbb{N}$ such that $PR(X) = \bigcup_{n \in \mathbb{N}} \bigcup \mathcal{V}_n$. Denote

$$\mathcal{V}_n = \{ [\{x_{n,m}\}, X] : 1 \le m \le k_n \}.$$

We prove that $\{x_{n,m} : n \in \mathbb{N}, 1 \le m \le k_n\}$ is a countable dense subset of *X*. In fact, for each open subset *V* of *X*, pick $y \in V$, then $[\{y\}, V]$ is an open subset of PR(*X*). Thus $[\{y\}, V] \cap (\bigcup_{n \in \mathbb{N}} \bigcup \mathcal{V}_n) \neq \emptyset$. There exists

$$x_{n_0,m_0} \in \{x_{n,m} : n \in \mathbb{N}, 1 \le m \le k_n\}$$

such that

 $[\{y\}, V] \cap [\{x_{n_0, m_0}\}, X] \neq \emptyset.$

Thus $x_{n_0,m_0} \in V$. So *X* is separable. \square

In order to give characterizations of PR(*X*) being weakly Rothberger, we define *rcf*-networks and weakly *rcf*-networks of *X*.

A pair (*C*, *F*) of subsets of *X* is called a *closed-miss-finite pair of X*, if *C* is closed and *F* is nonempty finite with $C \cap F = \emptyset$. A *closed-miss-finite family of X* is a family of closed-miss-finite pairs of *X*.

Recall that a subset *U* of *X* is called a *co-finite subset of X* [7] if $0 < |X - U| < \omega$. A family \mathcal{U} consisting of co-finite subsets of *X* is said to be a co-finite family of *X*. Let $Y \subsetneq X$. A subset *U* of *Y* is called a *co-finite subset of Y* [7] if $0 \le |Y - U| < \omega$. A family \mathcal{U} consisting of co-finite subsets of *Y* is called a co-finite family of *Y*.

Definition 2.5. A closed-miss-finite family ξ of *X* is called a *regular closed-miss-finite network* (briefly, *rcf-network*) of *X*, if for each co-finite subset *U* of *X*, there exists $(C, F) \in \xi$ such that $C \subset U$ and $F \cap U = \emptyset$.

Definition 2.6. A closed-miss-finite family ξ of *X* is called a *weakly rcf-network of X*, if for each co-finite subset *U* of *X* and $C \subset U$ closed in *X*, there exists $(C', F') \in \xi$ such that $C' \subset U$ and $F' \cap C = \emptyset$.

An *rcf*-network of *X* is a weakly *rcf*-network of *X*. We write

- Π_{rcf} : the collection of *rcf*-networks of *X*;
- Π_{wrcf} : the collection of weakly *rcf*-networks of *X*.

Theorem 2.7. For a space *X*, the following are equivalent:

- (1) PR(X) is weakly Rothberger;
- (2) X satisfies $S_1(\Pi_{rcf}, \Pi_{wrcf})$;

Proof. (1) \Rightarrow (2) Let { $\xi_n : n \in \mathbb{N}$ } be a sequence of *rcf*-networks of *X*. For each $n \in \mathbb{N}$, let

$$\mathcal{U}_n = \{ [F, X - C] : (C, F) \in \xi_n \}.$$

Then each \mathcal{U}_n is an open cover of PR(X). Indeed, let $A \in PR(X)$, then $A^c = X - A$ is a co-finite subset of X. There exists $(C, F) \in \xi_n$ such that

$$C \subset A^c$$
 and $F \cap A^c = \emptyset$.

Then $A \in [F, X - C]$. By (1), pick $[F_n, X - C_n] \in \mathcal{U}_n$ such that

$$\overline{\bigcup_{n\in\mathbb{N}}}[F_n,X-C_n]=\mathrm{PR}(X).$$

Then $(C_n, F_n) \in \xi_n$ and $\{(C_n, F_n) : n \in \mathbb{N}\}$ is a weakly *rcf*-network of *X*. In fact, let *U* be a co-finite subset of *X* and $C \subset U$ closed in *X*, then $[U^c, X - C]$ is an open subset of PR(*X*). There is some $k \in \mathbb{N}$ such that

$$[U^c, X - C] \cap [F_k, X - C_k] \neq \emptyset.$$

5495

Thus $C_k \subset U$ and $F_k \cap C = \emptyset$. So X satisfies $S_1(\prod_{rcf}, \prod_{wrcf})$.

(2)⇒(1) Let { $\mathcal{U}_n : n \in \mathbb{N}$ } be a sequence of open covers of PR(*X*). Without loss of generality, suppose that each \mathcal{U}_n is a family of basic open sets. For each $n \in \mathbb{N}$, put

$$\xi_n = \{ (X - V, A) : [A, V] \in \mathcal{U}_n \}$$

Let *U* be a co-finite subset of *X*, there is some $[A, V] \in \mathcal{U}_n$ such that $U^c \in [A, V]$. Thus $X - V \subset U$ and $A \cap U = \emptyset$. So $\{\xi_n : n \in \mathbb{N}\}$ is a sequence of *rcf*-networks of *X*. There exists $(X - V_n, A_n) \in \xi_n$ such that $\{(X - V_n, A_n) : n \in \mathbb{N}\}$ is a weakly *rcf*-network of *X*. It is clear that $[A_n, V_n] \in \mathcal{U}_n$ for $n \in \mathbb{N}$ and $\bigcup_{n \in \mathbb{N}} [A_n, V_n] = PR(X)$. \Box

A space *X* is said to be *weakly Lindelöf* [3] if for every open cover \mathcal{U} of *X*, there exists a set $\{U_n : n \in \mathbb{N}\} \subset \mathcal{U}$ such that $\bigcup_{n \in \mathbb{N}} U_n$ is dense in *X*.

Using *rcf*-networks and weakly *rcf*-networks, we can obtain a characterization of the weakly Lindelöf property of PR(*X*).

Theorem 2.8. For a space *X*, the following are equivalent:

(1) PR(X) is weakly Lindelöf;

(2) For each rcf-network ξ of X, there exists a set $\{(C_n, F_n) : n \in \mathbb{N}\} \subset \xi$ such that $\{(C_n, F_n) : n \in \mathbb{N}\}$ is a weakly rcf-network of X.

Next, we define *cf*-networks and weakly *cf*-networks of a subset *Y* of *X*. Let *Y* be a subset of *X*. A *closed-miss-finite family* ξ *of Y* denotes the following family.

 $\xi = \{(C, F) : C, F \subset Y, C \text{ is closed in } X \text{ and } F \text{ is finite with } C \cap F = \emptyset\}.$

Definition 2.9. Let $Y \subsetneq X$. A closed-miss-finite family ξ of Y is called a *closed-miss-finite network* (briefly, *cf-network*) of Y, if for each co-finite subset U of Y, there exists $(C, F) \in \xi$ such that $C \subset U$ and $F \cap U = \emptyset$.

Definition 2.10. Let $Y \subsetneq X$. A closed-miss-finite family ξ of Y is called a *weakly cf-network of* Y, if for each co-finite subset U of Y and $C \subset U$ closed in X, there exists $(C', F') \in \xi$ such that $C' \subset U$ and $F' \cap C = \emptyset$.

A *cf*-network of *Y* is a weakly *cf*-network of *Y*. We write

• Π_{cf} : the collection of *cf*-networks of each $Y \subsetneq X$;

• Π_{wcf} : the collection of weakly *cf*-networks of each $Y \subsetneq X$.

Theorem 2.11. *For a space X, the following are equivalent:*

- (1) X satisfies $S_1(\prod_{rcf}, \prod_{wrcf})$;
- (2) *X* is separable and $X \{x\}$ satisfies $S_1(\prod_{cf}, \prod_{wcf})$ for each $x \in X$;

Proof. (1) \Rightarrow (2) By Lemma 2.4, X is separable since the weakly Menger property is weaker than the weakly Rothberger property. Let { $\xi_n : n \in \mathbb{N}$ } be a sequence of *cf*-networks of $X - \{x\}$. For each (*C*, *A*) $\in \xi_n$, put

$$\zeta^{(n)}_{(C,A)} = \left\{ \begin{array}{ll} \{(C,A)\}, & \text{if } A \neq \emptyset; \\ \{(C,F): F \in [X-C]^{<\omega} \setminus \{\emptyset\}\}, & \text{if } A = \emptyset. \end{array} \right.$$

For each $n \in \mathbb{N}$, let

$$\zeta_n = \bigcup_{(C,A)\in\xi_n} \zeta_{(C,A)}^{(n)}$$

Then each ζ_n is an *rcf*-network of *X*. In fact, let *U* be a co-finite subset of *X*, then $U \cap (X - \{x\})$ is a co-finite subset of $X - \{x\}$. There exists $(C, A) \in \xi_n$ such that

$$C \subset U \cap (X - \{x\}) \text{ and } A \cap (U \cap (X - \{x\})) = \emptyset.$$

Case 1. If $A \neq \emptyset$, then $(C, A) \in \zeta_n$. Since $A \subset X - \{x\}$, then

$$C \subset U$$
 and $A \cap U = (A \cap (X - \{x\})) \cap U = A \cap (U \cap (X - \{x\})) = \emptyset$

Case 2. If $A = \emptyset$, take

$$F = X - U \in [X - C]^{<\omega} \setminus \{\emptyset\}.$$

Then $(C, F) \in \zeta_{(C,A)}^{(n)} \subset \zeta_n$ such that $C \subset U$ and $F \cap U = \emptyset$. By (1), there exists $(C_n, F_n) \in \zeta_n$ for $n \in \mathbb{N}$ such that $\{(C_n, F_n) : n \in \mathbb{N}\}$ is a weakly *rcf*-network of *X*. One readily check that each $(C_n, A_n) \in \zeta_n$. We show that $\{(C_n, A_n) : n \in \mathbb{N}\}$ is a weakly *cf*-network of $X - \{x\}$. Let *U* be a co-finite subset of $X - \{x\}$ and $C \subset U$ closed in *X*, then *U* is a co-finite subset of *X*. There exists some $(C_k, F_k) \in \{(C_n, F_n) : n \in \mathbb{N}\}$ such that

$$C_k \subset U$$
 and $F_k \cap C = \emptyset$.

Then $C_k \subset U$ and $A_k \cap C \subset F_k \cap C = \emptyset$.

(2) \Rightarrow (1) Let { $\xi_n : n \in \mathbb{N}$ } be a sequence of *rcf*-networks of *X* and rearrange { $\xi_n : n \in \mathbb{N}$ } as { $\xi_{n,m} : n, m \in \mathbb{N}$ }. Suppose that { $x_m : m \in \mathbb{N}$ } is a countable dense subset of *X*. For each $m \in \mathbb{N}$, let

$$\zeta_{n,m} = \{ (C, A \cap (X - \{x_m\})) : (C, A) \in \xi_{n,m} \text{ and } C \subset X - \{x_m\} \}.$$

Then $\{\zeta_{n,m} : n \in \mathbb{N}\}$ is a sequence of *cf*-networks of $X - \{x_m\}$. In fact, for each co-finite *U* of $X - \{x_m\}$, then *U* is a co-finite subset of *X*. There exists $(C, A) \in \xi_{n,m}$ such that

$$C \subset U \subset X - \{x_m\}$$
 and $A \cap U = \emptyset$.

Thus $(C, A \cap (X - \{x_m\})) \in \zeta_{n,m}$ such that

$$C \subset U$$
 and $[A \cap (X - \{x_m\})] \cap U = \emptyset$.

By (2), for each $n \in \mathbb{N}$, there exists

$$(C_{n,m}, A_{n,m} \cap (X - \{x_m\})) \in \zeta_{n,m}$$

such that $\{(C_{n,m}, A_{n,m} \cap (X - \{x_m\})) : n \in \mathbb{N}\}$ is a weakly *cf*-network of $X - \{x_m\}$. One readily check that $(C_{n,m}, A_{n,m}) \in \xi_{n,m}$ for each $m, n \in \mathbb{N}$. We show that $\{(C_{n,m}, A_{n,m}) : m, n \in \mathbb{N}\}$ is a weakly *rcf*-network of *X*. Indeed, let *U* be a co-finite subset of *X* and $C \subset U$ closed in *X*.

Case 1. $U - C \neq \emptyset$. Take $x_m \in (X - C) \cap U$, then

$$C \subset U - \{x_m\} \subset X - \{x_m\}.$$

Since $U - \{x_m\}$ is a co-finite subset of $X - \{x_m\}$, there exists

$$(C_{n,m}, A_{n,m} \cap (X - \{x_m\})) \in \zeta_{n,m}$$

such that

$$C_{n,m} \subset U - \{x_m\}$$
 and $[A_{n,m} \cap (X - \{x_m\})] \cap C = \emptyset$.

Hence $C_{n,m} \subset U$ and $A_{n,m} \cap C = \emptyset$ since $x_m \notin C$. **Case 2.** C = U. Take $x_m \in X - C$, then

$$C \subset U \subset X - \{x_m\}.$$

Since *U* is a co-finite subset of $X - \{x_m\}$, there exists

$$(C_{n,m}, A_{n,m} \cap (X - \{x_m\}) \in \zeta_{n,m}$$

such that

$$C_{n,m} \subset U$$
 and $[A_{n,m} \cap (X - \{x_m\})] \cap C = \emptyset$.

Hence $C_{n,m} \subset U$ and $A_{n,m} \cap C = \emptyset$. So *X* satisfies $S_1(\prod_{rcf}, \prod_{wrcf})$. \Box

5497

Finally, for a subset *Y* of *X*, we define the weakly Rothberger property, the weakly Menger property and the weakly Hurewicz property of *Y*.

Definition 2.12. A subset *Y* of a space *X* is said to be *weakly Rothberger* in *X* if for every sequence $\{\mathcal{U}_n : n \in \mathbb{N}\}$ of covers of *Y* sets open in *X*, there exists $U_n \in \mathcal{U}_n$ such that $Y \subset \bigcup_{n \in \mathbb{N}} U_n$.

Definition 2.13. A subset *Y* of a space *X* is said to be *weakly Menger* in *X* if for every sequence $\{\mathcal{U}_n : n \in \mathbb{N}\}$ of covers of *Y* sets open in *X*, there exists a finite subset $\mathcal{V}_n \subset \mathcal{U}_n$ such that $Y \subset \bigcup_{n \in \mathbb{N}} \bigcup \mathcal{V}_n$.

Definition 2.14. A subset *Y* of *X* is said to be *weakly Hurewicz* in *X* if for every sequence $\{\mathcal{U}_n : n \in \mathbb{N}\}$ of covers of *Y* sets open in *X*, there are finite subfamilies $\mathcal{V}_n \subset \mathcal{U}_n$ such that for every nonempty open *U* of *X* with $U \cap Y \neq \emptyset$, $U \cap (\bigcup \mathcal{V}_n) \neq \emptyset$ for all but finitely many $n \in \mathbb{N}$.

Let \mathcal{R} be a family of sets. By a *filter in* \mathcal{R} [5] we means a subfamily $\mathcal{F} \subset \mathcal{R}$ satisfying the following conditions:

(1) $\emptyset \notin \mathcal{F}$;

(2) If $A_1, A_2 \in \mathcal{F}$, then $A_1 \cap A_2 \in \mathcal{F}$;

(3) If $A \in \mathcal{F}$ and $A \subset A_1$, then $A_1 \in \mathcal{F}$.

A filter \mathcal{F} is called an *ultrafilter in* \mathcal{R} , if every filter \mathcal{F}' in \mathcal{R} that contains \mathcal{F} we have $\mathcal{F}' = \mathcal{F}$. Let \mathcal{F} be an ultrafilter. If $\bigcap \mathcal{F} \neq \emptyset$, then \mathcal{F} is called a *principal ultrafilter*.

For $x \in X$, Let

 $\mathcal{F}[x] = \{A \in \mathrm{PR}(X) : x \in A\}.$

Then $\mathcal{F}[x]$ is a principal ultrafilter since $\bigcap \mathcal{F}[x] = \{x\}$.

Theorem 2.15. *For a space X, the following are equivalent:*

(1) X is separable and $X - \{x\}$ satisfies $S_1(\prod_{cf}, \prod_{wcf})$ for each $x \in X$;

(2) X is separable and each principal ultrafilter $\mathcal{F}[x]$ in PR(X) is weakly Rothberger in PR(X).

Proof. (1) \Rightarrow (2) Let { $\mathcal{U}_n : n \in \mathbb{N}$ } be a sequence of base open covers of $\mathcal{F}[x]$ in PR(X). For each $n \in \mathbb{N}$, put

$$\xi_n = \{ (X - V, A \cap (X - \{x\})) : [A, V] \in \mathcal{U}_n \}.$$

Then $\{\xi_n : n \in \mathbb{N}\}$ is a sequence of *cf*-networks of $X - \{x\}$. In fact, let *U* be a co-finite subset of $X - \{x\}$, then $U^c \in \mathcal{F}[x]$. There exists $[A, V] \in \mathcal{U}_n$ such that $U^c \in [A, V]$. Then

$$X - V \subset U$$
 and $(A \cap (X - \{x\})) \cap U = A \cap U = \emptyset$

By (1), there exists $(X - V_n, A_n \cap (X - \{x\})) \in \xi_n$ for each $n \in \mathbb{N}$ such that $\{(X - V_n, A_n \cap (X - \{x\})) : n \in \mathbb{N}\}$ is a weakly *cf*-network of $X - \{x\}$. Then each $[A_n, V_n] \in \mathcal{U}_n$. We show that $\mathcal{F}[x] \subset \bigcup_{n \in \mathbb{N}} [A_n, V_n]$. Indeed, let $B \in \mathcal{F}[x]$ and [A, V] a neighbourhood of *B* in PR(*X*), then $X - V \subset X - B \subset X - \{x\}$. There exists $(X - V_k, A_k \cap (X - \{x\}))$ such that

$$X - V_k \subset X - B$$
 and $(A_k \cap (X - \{x\})) \cap (X - V) = A_k \cap (X - V) = \emptyset$.

Thus

$$A \subset B \subset V_k$$
 and $A_k \subset V$.

So $A \cup A_k \subset V \cap V_k$. It implies that $[A, V] \cap [A_k, V_k] \neq \emptyset$.

(2) \Rightarrow (1) Suppose that { $\xi_n : n \in \mathbb{N}$ } is a sequence of *cf*-networks of $X - \{x\}$. For each $n \in \mathbb{N}$, let

$$\mathcal{U}_n = \{ [F \cup \{x\}, X - C] : (C, F) \in \xi_n \}.$$

Then \mathcal{U}_n is an open cover of $\mathcal{F}[x]$ in PR(X). In fact, let $B = B_1 \cup \{x\} \in \mathcal{F}[x]$, where $B_1 \in [X - \{x\}]^{<\omega}$, then $(X - \{x\}) - B_1$ is a co-finite subset of $X - \{x\}$. There exists $(C, F) \in \xi_n$ such that

$$C \subset (X - \{x\}) - B_1$$
 and $F \cap ((X - \{x\}) - B_1) = \emptyset$.

Since $(X - \{x\}) - B_1 = X - B$, we have

 $C \subset X - B$

and

$$(F \cup \{x\}) \cap (X - B) = (F \cup \{x\}) \cap ((X - \{x\}) - B_1) = F \cap ((X - \{x\}) - B_1) = \emptyset.$$

So $B \in [F \cup \{x\}, X - C]$. By (2), there exists $[F_n \cup \{x\}, X - C_n] \in \mathcal{U}_n$ such that

$$\mathcal{F}[x] \subset \overline{\bigcup_{n \in \mathbb{N}} [F_n \cup \{x\}, X - C_n]}.$$

Then each $(C_n, F_n) \in \xi_n$ and $\{(C_n, F_n) : n \in \mathbb{N}\}$ is a weakly cf-network of $X - \{x\}$. Indeed, for a co-finite subset U of $X - \{x\}$ and $C \subset U$ closed in X, $[U^c, X - C]$ is a neighbourhood of $U^c \in \mathcal{F}[x]$. There exists $[F_k \cup \{x\}, X - C_k]$ such that

 $[U^c, X - C] \cap [F_k \cup \{x\}, X - C_k] \neq \emptyset.$

Then $U^c \subset X - C_k$ and $F_k \cup \{x\} \subset X - C$. So $C_k \subset U$ and $F_k \cap C = \emptyset$. \Box

Corollary 2.16. *For a space X, the following are equivalent:*

(1) PR(X) is weakly Rothberger;

(2) *X* satisfies $S_1(\Pi_{rcf}, \Pi_{wrcf})$;

(3) X is separable and X – {x} satisfies $S_1(\Pi_{cf}, \Pi_{wcf})$ for each $x \in X$;

(4) X is separable and each principal ultrafilter $\mathcal{F}[x]$ in PR(X) is weakly Rothberger in PR(X).

Using the methods of Theorems 2.7, 2.11 and 2.15, we can obtain the following.

Theorem 2.17. For a space X, the following are equivalent:

(1) PR(X) is weakly Menger;

(2) X satisfies $S_{fin}(\Pi_{rcf}, \Pi_{wrcf})$;

(3) *X* is separable and $X - \{x\}$ satisfies $S_{fin}(\Pi_{cf}, \Pi_{wcf})$ for each $x \in X$;

(4) X is separable and each principal ultrafilter $\mathcal{F}[x]$ in PR(X) is weakly Menger in PR(X).

Motivated by groupability ideas of [6], we introduced *p*-*rcf*-networks and weakly *p*-*cf*-networks to characterize the weakly Hurewicz property.

Definition 2.18. A partitioned closed-miss-finite family $\xi = \bigcup_{n \in \mathbb{N}} \xi_n$ of *X* is said to be a *weakly p-rcf-network* of *X*, if for each co-finite subset *U* of *X* and closed set $C \subset U$, there exists $(C_n, F_n) \in \xi_n$ such that $C_n \subset U$ and $F_n \cap C = \emptyset$ for all but finitely many $n \in \mathbb{N}$.

Denote Π^p_{wrcf} the collection of weakly *p*-*rcf*-networks of *X*.

Theorem 2.19. For a space X, the following are equivalent: (1) PR(X) is weakly Hurewicz; (2) X satisfies $S_{fin}(\Pi_{rcf}, \Pi^p_{wrcf})$.

Proof. (1) \Rightarrow (2) Let { $\xi_n : n \in \mathbb{N}$ } be a sequence of *rcf*-networks of *X*. For each $n \in \mathbb{N}$,

 $\mathcal{U}_n = \{ [F, X - C] : (C, F) \in \xi_n \}$

is an open cover of PR(X). By (1), pick a finite subset $\mathcal{V}_n \subset \mathcal{U}_n$ for each $n \in \mathbb{N}$ such that for every nonempty open $W \subset PR(X)$, $W \cap \bigcup \mathcal{V}_n \neq \emptyset$ for all but finitely many $n \in \mathbb{N}$. Let

$$\zeta_n = \{ (C, F) : [F, X - C] \in \mathcal{V}_n \}.$$

Then $\zeta_n \subset \xi_n$ is finite. We show that $\bigcup_{n \in \mathbb{N}} \zeta_n$ is a weakly *p*-*rcf*-network of *X*. Let *U* be a co-finite subset of *X* and $C \subset U$ closed in *X*, then $[U^c, X - C]$ is an open subset of PR(*X*). There exists $[F_n, X - C_n] \in \mathcal{V}_n$ such that

$$[U^c, X - C] \cap [F_n, X - C_n] \neq \emptyset$$

for all but finitely many $n \in \mathbb{N}$. So $(C_n, F_n) \in \zeta_n$ such that $C_n \subset U$ and $F_n \cap C = \emptyset$ for all but finitely many $n \in \mathbb{N}$.

(2)⇒(1) Let { $\mathcal{U}_n : n \in \mathbb{N}$ } be a sequence of open covers of PR(*X*). For each $n \in \mathbb{N}$, suppose that \mathcal{U}_n is a family of base open sets of PR(*X*). Let

$$\xi_n = \{ (X - V, A) : [A, V] \in \mathcal{U}_n \}.$$

Then $\{\xi_n : n \in \mathbb{N}\}\$ is a sequence of *rcf*-networks of *X*. For each $n \in \mathbb{N}$, there exists a finite subset $\zeta_n \subset \xi_n$ such that $\bigcup_{n \in \mathbb{N}} \zeta_n$ is a weakly *p*-*rcf*-network of *X*. Let

$$\mathcal{V}_n = \{ [A, V] : (X - V, A) \in \zeta_n \}.$$

Then $\mathcal{V}_n \subset \mathcal{U}_n$ is finite. For every nonempty open [B, U] of PR(X), X - B is a co-finite subset of X and $X - U \subset X - B$ is closed in X. There exists $(X - V_n, A_n) \in \zeta_n$ such that

$$X - V_n \subset X - B$$
 and $A_n \cap (X - U) = \emptyset$

for all but finitely many $n \in \mathbb{N}$. Thus $[B, U] \cap [A_n, V_n] \neq \emptyset$, i.e., $[B, U] \cap \bigcup \mathcal{V}_n \neq \emptyset$ for all but finitely many $n \in \mathbb{N}$. So PR(*X*) is weakly Hurewicz. \Box

Definition 2.20. Let $Y \subsetneq X$. A partitioned closed-miss-finite family $\xi = \bigcup_{n \in \mathbb{N}} \xi_n$ of Y is called a *weakly p*-*cf*-*network* of Y, if for each co-finite subset U of Y and $C \subset U$ closed in X, there exists $(C_n, F_n) \in \xi_n$ such that $C_n \subset U$ and $F_n \cap C = \emptyset$ for all but finitely many $n \in \mathbb{N}$.

We write \prod_{wcf}^{p} the collection of weakly *p-cf*-networks of each subset $Y \subsetneq X$. From Theorem 2.19, in a similar way of Theorems 2.7, 2.11 and 2.15, one can prove the following.

Theorem 2.21. For a space X, the following are equivalent:

- (1) PR(X) is weakly Hurewicz;
- (2) X satisfies $S_{fin}(\Pi_{rcf}, \Pi^p_{wrcf})$;
- (3) *X* is separable and $X \{x\}$ satisfies $S_{fin}(\Pi_{cf}, \Pi_{wcf}^p)$ for each $x \in X$;
- (4) X is separable and each principal ultrafilter $\mathcal{F}[x]$ in PR(X) is weakly Hurewicz in PR(X).

In [4], G. Di Maio and Lj.D.R. Kočinac introduced the definitions of the quasi-Rothberger property, the quasi-Menger property and the quasi-Hurewicz property. They pointed that a space *X* is quasi-Rothberger (resp., quasi-Menger and quasi-Hurewicz) if and only if every closed subspace of *X* is weakly Rothberger (resp., weakly Menger and weakly Hurewicz). So we ask:

Question 2.22. For a space X, find the collections \mathcal{A} and \mathcal{B} of subsets of X such that:

PR(X) is quasi-Rothberger if and only if X satisfies $S_1(\mathcal{A}, \mathcal{B})$; PR(X) is quasi-Menger if and only if X satisfies $S_{fin}(\mathcal{A}, \mathcal{B})$; PR(X) is quasi-Hurewicz if and only if X satisfies $S_{fin}(\mathcal{A}, \mathcal{B})$.

References

- [1] M. Bonanzinga, F. Cammaroto, B.A. Pansera, B. Tsaban, Diagonalizations of dense families, Topology Appl. 165 (2014) 12–25.
- [2] P. Daniels, Pixley-Roy spaces over subsets of the reals, Topology Appl. 29 (1988) 93-106.
- [3] G. Di Maio, Lj.D.R. Kočinac, E. Meccariello, Selection principles and hyperspace topologies, Topology Appl. 153 (2005) 912–923.
- [4] G. Di Maio, Lj.D.R. Kočinac, A note on quasi-Menger and similar spaces, Topology Appl. 179 (2015) 148-155.
- [5] R. Engelking, General Topology, 2nd Edition, Sigma Ser. Pure Math., Vol. 6, Heldermann, Berlin, 1989.
 [6] Lj.D.R. Kočinac, M. Scheepers, Combinatorics of open covers (VII): Groupability, Fund. Math. 179 (2003) 131–155.
- [7] Z. Li, Remarks on R-separability of Pixley–Roy hyperspaces, Filomat, in press.
- [8] B. Pansera, Weaker forms of the Menger property, Quaest. Math. 35 (2012) 161-169.
- [9] C. Pixley, P. Roy, Uncompletable Moore spaces, in: Proc. Auburn Topology Conf. (1969) 75-85.
- [10] M. Sakai, The weak Hurewicz property of Pixley-Roy hyperspaces, Topology Appl. 160 (2013) 2531-2537.
- [11] M. Sakai, Selective separability of Pixley–Roy hyperspaces, Topology Appl. 159 (2012) 1591–1598.
 [12] M. Scheepers, Combinatorics of open covers (V): Pixley–Roy spaces of sets of reals, and ω-covers, Topology Appl. 102 (2000) 13-31.