
Filomat 36:16 (2022), 5521–5538
https://doi.org/10.2298/FIL2216521S

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this article, by making use of a q-analogue of the familiar Borel distribution, we introduce
two new subclasses:

S
α,λ,q
symmetric(b,A,B) and S

α,λ,q
conjugate(b,A,B)

of starlike and convex functions in the open unit disk ∆ with respect to symmetric and conjugate points.
We obtain some properties including the Taylor-Maclaurin coefficient estimates for functions in each of
these subclasses and deduce various corollaries and consequences of the main results. We also indicate
relevant connections of each of these subclasses Sα,λ,qsymmetric(b,A,B) and Sα,λ,qconjugate(b,A,B) with the function
classes which were investigated in several earlier works. Finally, in the concluding section, we choose to
comment on the recent usages, especially in Geometric Function Theory of Complex Analysis, of the basic
(or q-) calculus and also of its trivial and inconsequential (p, q)-variation involving an obviously redundant
(or superfluous) parameter p.
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1. Introduction, Motivation and Definitions

In his survey-cum-expository review article, Srivastava [32] presented, and motivated the readers
for further researches on the usage of the q-calculus in Geometric Function Theory, by means of a brief
expository overview of the importance of classical q-analysis and the triviality and inconsequential nature
of its so-called (p, q)-variant with an obviously redundant (or superfluous) forced-in parameter p (see,
for details, [32, p. 340]; see also [33, Section 5 (pp. 1510–1512]). In the literature, one can find several
families of such extensively- and widely-investigated linear convolution operators as (for example) the the
Dziok-Srivastava, the Srivastava-Wright and the Srivastava-Attiya linear convolution operators (see also
[29], [30] and [31]), together with their extended and generalized versions. The usages of the q-calculus
and the fractional q-calculus in geometric function theory of complex analysis are believed to encourage
and motivate significant further developments on these and other related topics (see also Srivastava and
Karlsson [37, pp. 350–351]).

Our main objective in this article is apply a q-analogue of the familiar Borel distribution to introduce and
investigate several properties of two new subclasses Sα,λ,qsymmetric(b,A,B) and S

α,λ,q
conjugate(b,A,B) of starlike

and convex functions in the open unit disk ∆with respect to symmetric and conjugate points.
LetA denote the class of functions of the following normalized form:

f (z) = z +
∞∑

k=2

ak zk, (1)

which are analytic in the open unit disk

∆ := {z : z ∈ C and |z| < 1}.

If the function 1 ∈ A is given by

1(z) = z +
∞∑

k=2

bk zk (z ∈ ∆), (2)

then the Hadamard product (or convolution) of the functions f and 1 is defined by

( f ∗ 1)(z) := z +
∞∑

k=2

ak bk zk =: (1 ∗ f )(z) (z ∈ ∆). (3)

If f and F are analytic functions in ∆, we say that f is subordinate to F, written as f ≺ F or f (z) ≺ F(z) if
there exists a Schwarz function w, which is analytic in ∆ with w(0) = 0 and |w(z)| < 1 (∀ z ∈ ∆), such
that

f (z) = F
(
w(z)

)
(z ∈ ∆).

Furthermore, if the function F is univalent in ∆, then we have the following equivalence (see [7] and [20]):

f (z) ≺ F(z) ⇐⇒ f (0) = F(0) and f (∆) ⊂ F(∆). (4)

In the year 1959, Sakaguchi [27] introduced the class S∗s of functions starlike with respect to symmetric
points, which consists of functions f ∈ A satisfying the following inequality:

ℜ

(
z f ′(z)

f (z) − f (−z)

)
> 0 (z ∈ ∆).

Obviously, the above class S∗s of univalent functions, which are starlike with respect to symmetric points,
include the classes of convex functions and odd functions starlike with respect to the origin (see [27]).
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Aouf et al. [3] introduced and studied the classS∗s,nT(1, 1) of functions n-starlike with respect to symmetric
points, which consists of functions f ∈ Awith ak ≦ 0 for k ≧ 2, and satisfying the following inequality:

ℜ

(
D

n+1 f (z)
Dn f (z) −Dn f (−z)

)
> 0 (z ∈ ∆),

whereDn is the Sălăgean operator [28].
El-Ashwah and Thomas [8] introduced and studied the class S∗c consisting of functions starlike with

respect to conjugate points if it satisfies the following condition:

ℜ

 z f ′ (z)

f (z) + f (z)

 > 0 (z ∈ ∆)

and Aouf et al. [3] introduced and studied the class S∗c,nT(α, β) of functions n-starlike with respect to
conjugate points, which (for α = β = 1) consists of functions f ∈ A with ak ≦ 0 (k ≧ 2) and satisfies the
following inequality:

ℜ

 Dn+1 f (z)

Dn f (z) +Dn f (z)

 > 0 (z ∈ ∆).

Definition 1. Let Ω be the family of functions w(z) which are analytic in ∆ and satisfy the following
conditions:

w(0) = 0 and |w(z)| < 1 (z ∈ ∆).

Also, for arbitrary fixed numbers A and B such that −1 ≦ B < A ≦ 1, we denote by P[A,B] the family of
functions normalized by

p(z) = 1 + b1z + b2z2 + · · · , (5)

which are analytic in ∆, and are such that p(z) ∈ P[A,B] if and only if

p(z) ≺
1 + Az
1 + Bz

and p(z) =
1 + Aw(z)
1 + Bw(z)

(6)

for some function w(z) ∈ Ω and for every z ∈ ∆.

We recall here that the function
1 + Az
1 + Bz

maps ∆ conformally onto a disk symmetrical with respect to the
real axis, which is centered at the point

1 − AB
1 − B2 (B , ±1)

and with radius equal to

A − B
1 − B2 (B , ±1).

In the year 1973, Janowski [16] introduced the following subclass of starlike functions:

S
∗(A,B) :=

{
f : f ∈ A and

z f ′(z)
f (z)

≺
1 + Az
1 + Bz

(−1 ≦ B < A ≦ 1; z ∈ ∆)
}
, (7)

which has indeed been involved in several recent developments on the usages of the q-analysis in Geometric
Function Theory of Complex Analysis (see, for example, [18] and [25]). On the other hand, Nasr and Aouf
[22] introduced the subclass S(b) of starlike functions of complex order b ∈ C∗ := C \ {0} as follows:

S(b) :=
{

f : f ∈ A and ℜ

(
1 +

1
b

(z f ′(z)
f (z)

− 1
))
> 0 (b ∈ C∗ := C \ {0}; z ∈ ∆)

}
.



H. M. Srivastava, S. M. El-Deeb / Filomat 36:16 (2022), 5521–5538 5524

Earlier in 1982, Goel and Mehrok [13] introduced a subclass S∗s (A,B) of the above-mentioned Sakaguchi
class S∗s as follows:

S
∗

s (A,B) :=
{

f : f ∈ A and
2z f ′(z)

f (z) − f (−z)
≺

1 + Az
1 + Bz

(−1 ≦ B < A ≦ 1; z ∈ ∆)
}
.

More recently, for −1 ≦ B < A ≦ 1, b ∈ C∗ and z ∈ ∆, Aouf et al. [4] introduced a subclass S∗s (b,A,B) of the
Sakaguchi class S∗s as follows:

S
∗

s (b,A,B) :=
{

f : f ∈ A and 1 +
1
b

(
2z f ′(z)

f (z) − f (−z)
− 1

)
≺

1 + Az
1 + Bz

(b ∈ C∗; z ∈ ∆)
}
. (8)

On the other hand, Arif et al. [5] introduced another subclassC∗s (b,A,B) of the Sakaguchi classS⋆s as follows:

C
∗

s (b,A,B) :=
{

f : f ∈ A and 1 +
1
b

 2
(
z f ′(z)

)′(
f (z) − f (−z)

)′ − 1

 ≺ 1 + Az
1 + Bz

(−1 ≦ B < A ≦ 1; b ∈ C∗; z ∈ ∆)
}
.

Such probability distributions as the Poisson, the Pascal, the Logarithmic, the Binomial, and other
distributions have recently alleared in various context in the Geometric Function Theory of Complex
Analysis mainly from a theoretical viewpoint (see [2, 9, 23, 24]). We recall that a discrete random variable x
is said to have a Borel distribution if it takes on the values 1, 2, 3, · · · with the following probabilities:

e−λ

1!
,

2λe−2λ

2!
,

9λ2e−3λ

3!
, · · · ,

respectively, where λ is the parameter involved.
Recently, Wanas and Khuttar [44] introduced the Borel distribution (BD) whose probability mass function

is given by

Prob{x = ρ} =
(
ρλ

)ρ−1 e−λρ

ρ!
(ρ = 1, 2, 3, · · · ).

Wanas and Khuttar [44] also introduced the following seriesM(λ; z) whose coefficients are probabilities of
the Borel distribution (BD):

M(λ; z) := z +
∞∑

k=2

[λ (k − 1)]k−2 e−λ(k−1)

(k − 1)!
zk

= z +
∞∑

k=2

ϕk(λ) zk (0 < λ ≦ 1), (9)

where, for convenience,

ϕk(λ) :=
[λ (k − 1)]k−2 e−λ(k−1)

(k − 1)!
.

A linear operator B(λ; z) for functions f : A→A is now recalled as follows (see [11, 21, 35]):

B(λ; z) f (z) =M(λ; z) ∗ f (z)

= z +
∞∑

k=2

[λ (k − 1)]k−2 e−λ (k−1)

(k − 1)!
ak zk (0 < λ ≦ 1) . (10)
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Motivated essentially by the work of Srivastava [32], who made use of various operators of q-calculus
and fractional q-calculus, we now recall some definitions and notations of the classical q-calulus. First of
all, the q-Pochhammer symbol (λ; q)n is defined, for λ, q ∈ C and n ∈N0 :=N ∪ {0}, by

(λ; q)n :=


1 (n = 0)

(1 − λ)
(
1 − λq

)
· · ·

(
1 − λqn−1

)
(n ∈N)

(11)

and (
λ; q

)
∞
=

∞∏
k=0

(
1 − λqk

) (∣∣∣q∣∣∣ < 1
)
.

In terms of the q-gamma function Γq(z) defined by (see [12])

Γq(z) =
(
1 − q

)1−z
(
q; q

)
∞(

qz; q
)
∞

(∣∣∣q∣∣∣ < 1; z ∈ C
)
,

it is easily seen from (11) that(
qλ; q

)
n
=

(
1 − q

)n Γq (λ + n)
Γq (λ)

(n ∈N0) .

The q-gamma function Γq(z) is known to satisfy the following recurrence relation:

Γq(z + 1) = [z]q Γq(z),

where [λ]q denotes the basic (or q-) number defined as follows:

[λ]q :=



1 − qλ

1 − q
(λ ∈ C)

1 +
n−1∑
j=1

q j (n ∈N).

(12)

Using the definition (12), the q-factorial [n]q! is given by

[n]q! :=


1 (n = 0)

n∏
j=1

[ j]q (n ∈N).

For λ ∈ C, we shall also make use of the following notation for the basic (or q-) Pochhammer symbol
defined above in (11):

(
qλ; q

)
n

:=


1 (n = 0)

(1 − qλ)(1 − qλ+1) · · · (1 − qλ+n−1) (n ∈N)

and, for convenience, we write

[λ]q,n :=


1 (n = 0)

(qλ; q)n

(1 − q)n =
n∏

j=1
[λ + j − 1]q (n ∈N)

(13)
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in terms of the q-numbers [λ]q defined by (12). Clearly, from the definition (13), it is easy to see for the
familiar Pocchammer symbol (λ)n that

lim
q→1−

{
[λ]q,n

}
= lim

q→1−


(
qλ; q

)
n(

1 − q
)n

 = (λ)n

and, for the classical (Euler’s) gamma function Γ (z), we have

lim
q→1−

{
Γq (z)

}
= Γ (z) .

For 0 < q < 1 and the function B(λ; z) f (z) given by (10), when we apply the q-derivative operator Dq
defined by (see [15]; see also [1] and [14])

Dq

(
f (z)

)
:=


f (z) − f (qz)

1 − q
(0 < q < 1)

f ′(z) (q→ 1−),

we get

Dq

(
B(λ; z) f (z)

)
:=
B(λ; z) f (z) − B(λ; z) f (qz)

(1 − q)z

= 1 +
∞∑

k=2

[k]q
[λ (k − 1)]k−2 e−λ(k−1)

(k − 1)!
ak zk−1

= 1 +
∞∑

k=2

Υk ak zk−1 (0 < λ ≦ 1; z ∈ ∆) ,

where the function f (z) is given by (1).

Definition 2. For α > −1 and 0 < q < 1, the linear operator Bα,qλ for functions f : A → A is defined as
follows:

B
α,q
λ f (z) ∗ Nq,α+1(z) = z Dq

(
B(λ; z) f (z)

)
(z ∈ ∆),

where the functionNq,α+1 is given by

Nq,α+1(z) := z +
∞∑

k=2

[α + 1]q,k−1

[k − 1]q!
zk (z ∈ ∆).

A simple computation shows that

B
α,q
λ f (z) := z +

∞∑
k=2

[k]q! [λ (k − 1)]k−2 e−λ(k−1)

[α + 1]q,k−1 (k − 1)!
ak zk

= z +
∞∑

k=2

Υk ak zk (0 < λ ≦ 1; α > −1; 0 < q < 1; z ∈ ∆), (14)

where

Υk =
[k]q! [λ (k − 1)]k−2 e−λ(k−1)

[α + 1]q,k−1 (k − 1)!
. (15)
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We also note that

Υ2 =
[2]q! e−λ

[α + 1]q,1
and Υ3 =

[3]q! [λ] e−2λ

[α + 1]q,2
. (16)

From the definition (14), we can easily verify that each of the following relations holds true for all f ∈ A:

[α + 1]q B
α,q
λ f (z) = [α]qB

α+1,q
λ f (z) + qα z Dq

(
B
α+1,q
λ f (z)

)
(z ∈ ∆) (17)

and

R
α
λ f (z) := lim

q→1−

{
B
α,q
λ f (z)

}
= z +

∞∑
k=2

k [λ (k − 1)]k−2 e−λ(k−1)

(α + 1)k−1
ak zk

= z +
∞∑

k=2

Ωk ak zk (z ∈ ∆), (18)

where

Ωk =
k [λ (k − 1)]k−2 e−λ(k−1)

(α + 1)k−1
. (19)

The function class defined in (8) can now generalized by introducing the next class of functions which
are defined with the aid of the operator Bα,qλ .

Definition 3. A function f ∈ A is said to be in the class Sα,λ,qsymmetric(b,A,B) if and only if

1 +
1
b

 2z
(
B
α,q
λ f (z)

)′
B
α,q
λ f (z) − Bα,qλ f (−z)

− 1

 ≺ 1 + Az
1 + Bz

(20)

(
−1 ≦ A ≦ B ≦ 1; 0 < λ ≦ 1; α > −1; 0 < q < 1; b ∈ C∗

)
.

Upon letting q→ 1− in the class Sα,λ,qsymmetric(b,A,B), we have

lim
q→1−

{
S
α,λ,q
symmetric(b,A,B)

}
= Gα,λs (b,A,B),

where

G
α,λ
s (b,A,B) :=

{
f : f ∈ A and 1 +

1
b

 2z
(
R
α
λ f (z)

)′
R
α
λ f (z) − Rαλ f (−z)

− 1

 ≺ 1 + Az
1 + Bz

(−1 ≦ A ≦ B ≦ 1; 0 < λ ≦ 1; α > −1; b ∈ C∗)
}
.

Next, by using the operator Bα,qλ , we define another function class given by Definition 4 below.

Definition 4. A function f ∈ A is said to be in the class Sα,λ,qconjugate(b,A,B) if and only if

1 +
1
b

 2z
(
B
α,q
λ f (z)

)′
B
α,q
λ f (z) +Bα,qλ f (z)

− 1

 ≺ 1 + Az
1 + Bz

(21)

(
−1 ≦ A ≦ B ≦ 1; 0 < λ ≦ 1; α > −1; 0 < q < 1; b ∈ C∗

)
.



H. M. Srivastava, S. M. El-Deeb / Filomat 36:16 (2022), 5521–5538 5528

If we let q→ 1− in the function class Sα,λ,qconjugate(b,A,B), we find that

lim
q→1−

{
S
α,λ,q
conjugate(b,A,B)

}
= Gα,λc (b,A,B),

where

G
α,λ
c (b,A,B) :=

{
f : f ∈ A and 1 +

1
b

 2z
(
R
α
λ f (z)

)′
R
α
λ f (z) + Rαλ f (z)

− 1

 ≺ 1 + Az
1 + Bz

(−1 ≦ A ≦ B ≦ 1; 0 < λ ≦ 1; α > −1; b ∈ C∗)
}
.

The following lemmas will be needed to prove our results.

Lemma 1. (see [13, Lemma 2]) If

p(z) = 1 + p1z + p2z2 + · · · ∈ P[A,B],

then ∣∣∣pn

∣∣∣ ≦ A − B (n ∈N; −1 ≦ A ≦ B ≦ 1).

Lemma 2. (see [13, Lemma 3]) If the function N is analytic and the function M is starlike functions in ∆ with
N(0) =M(0) = 0, then the following condition:∣∣∣∣∣ N′(z)

M′(z)
− 1

∣∣∣∣∣∣∣∣∣∣∣A − B
(

N′(z)
M′(z)

)∣∣∣∣∣∣
< 1 (z ∈ ∆; −1 ≦ A ≦ B ≦ 1)

implies that∣∣∣∣∣ N(z)
M(z)

− 1
∣∣∣∣∣∣∣∣∣∣∣A − B

(
N(z)
M(z)

)∣∣∣∣∣∣
< 1 (z ∈ ∆; −1 ≦ A ≦ B ≦ 1).

2. Properties of the Subclass Sα,λ,q
symmetric

(b,A,B)

Unless otherwise mentioned, we shall assume in the remainder of this paper that

−1 ≦ B ≦ A ≦ 1, 0 < λ ≦ 1, α > −1, 0 < q < 1 and b ∈ C∗

and also that the complex powers are understood as principal values. Throughout this work, we assume
that an empty sum is 0 and an empty product is 1.

One of our main results in this section is stated as Theorem 1 below.

Theorem 1. Let f (z) ∈ Sα,λ,qsymmetric(γ,A,B). Then the following condition:

1 +
1
b

z
(
B
α,q
λ ψ(z)

)′
B
α,q
λ ψ(z)

− 1

 ≺ 1 + Az
1 + Bz

(22)

is satisfied for the odd function ψ given by

ψ(z) :=
1
2

[ f (z) − f (−z)]. (23)
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Proof. If f ∈ Sα,λ,qsymmetric(b,A,B), then there exists a function h ∈ P[A,B] such that

h(z) = 1 +
1
b

 2z
(
B
α,q
λ f (z)

)′
B
α,q
λ f (z) − Bα,qλ f (−z)

− 1

 , (24)

that is, that

b[h(z) − 1] =
2z

(
B
α,q
λ f (z)

)′
B
α,q
λ f (z) − Bα,qλ f (−z)

− 1 (25)

and

b[h(−z) − 1] =
−2z

(
B
α,q
λ f (−z)

)′
B
α,q
λ f (z) − Bα,qλ f (−z)

− 1, (26)

which, together, imply that

1
2

[h(z) + h(−z)] = 1 +
1
b

z
(
B
α,q
λ ψ(z)

)′
B
α,q
λ ψ(z)

− 1

 . (27)

On the other hand,

h(z) ≺
1 + Az
1 + Bz

and 1+Az
1+Bz is univalent. Thus, by (4), we have

1
2

[h(z) + h(−z)] ≺
1 + Az
1 + Bz

.

This leads us to the assertion (22) of Theorem 1. The proof of Theorem 1 is thus completed.

In the limit case when q→ 1− in Theorem 1, we obtain the following corollary.

Corollary 1. Let f (z) ∈ Gα,λs (b,A,B). Then the following condition:

1 +
1
b

z
(
R
α
λψ(z)

)′
R
α
λψ(z)

− 1

 ≺ 1 + Az
1 + Bz

.

is satisfied for the odd function ψ given by (23).

Theorem 2. A function f ∈ Sα,λ,qsymmetric(b,A,B) if and only if there exists a function p ∈ P[A,B] such that

(
B
α,q
λ f (z)

)′
=

(
b[h(z) − 1] + 1

)
exp

(
b
2

∫ z

0

h(t) + h(−t) − 2
t

dt
)
. (28)

Proof. In our proof of Theorem 1, we have (27), which implies that(
B
α,q
λ ψ(z)

)′
B
α,q
λ ψ(z)

=
1
z
+

b
2

(
h(z) + h(−z) − 2

z

)
,
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which, upon integration, yields

B
α,q
λ ψ(z) = z exp

(
b
2

∫ z

0

h(t) + h(−t) − 2
t

dt
)
. (29)

Since f ∈ Sα,λ,qsymmetric(b,A,B), we find from (24) that

z
(
B
α,q
λ f (z)

)′
=

(
b[h(z) − 1] + 1

)
B
α,q
λ ψ(z)

Using (29) and this last equation, we get (28). This evidently completes the proof of Theorem 2.

Taking q→ 1− in Theorem 2, we obtain the following corollary.

Corollary 2. A function f ∈ Gα,λs (b,A,B) if and only if there exists a function p ∈ P[A,B] such that(
R
α
λ f (z)

)′
=

(
b[h(z) − 1] + 1

)
exp

(
b
2

∫ z

0

h(t) + h(−t) − 2
t

dt
)
.

Theorem 3. Let f (z) ∈ Sα,λ,qsymmetric(b,A,B). Then, for all n ≧ 1,

|a2n| ≦
|b| (A − B)
2n n! |Υ2n|

n−1∏
k=1

(
|b| (A − B) + 2k

)
(30)

and

|a2n+1| ≦
|b| (A − B)

2n n! |Υ2n+1|

n−1∏
k=1

(
|b| (A − B) + 2k

)
, (31)

where Υk (∀ k ≧ 2) are given by (15).

Proof. Since f ∈ Sα,λ,qsymmetric(b,A,B), Definition 3 yields

1 +
1
b

 2z
(
B
α,q
λ f (z)

)′
B
α,q
λ f (z) − Bα,qλ f (−z)

− 1

 = 1 + Aw(z)
1 + Bw(z)

, (32)

which can be simplified to the following form:

2z
(
B
α,q
λ f (z)

)′
=

[
B
α,q
λ f (z) − Bα,qλ f (−z)

] 1 + b
∞∑

k=1

ckzk

 , (33)

where we have assumed that

h(z) = 1 +
∞∑

k=1

ckzk =
1 + Aw(z)
1 + Bw(z)

(34)

Thus, in view of (33), it follows from (20) that

z + 2Υ2a2z2 + 3Υ3a3z3 + 4Υ4a4z4 + · · · + 2nΥ2na2nz2n

+ (2n + 1)Υ2n+1a2n+1z2n+1 + · · ·

=
(
z + Υ3a3z3 + Υ5a5z5 + · · · + Υ2n−1a2n−1z2n−1 + Υ2n+1a2n+1z2n+1 + · · ·

)
·

(
1 + bc1z + bc2z2 + · · ·

)
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Equating the coefficients of like powers of z in this last equation, we obtain

2Υ2a2 = γc1 and 2Υ3a3 = bc2, (35)

4Υ4a4 = γc3 + γc1Υ3a3 and 4Υ5a5 = bc4 + bc2Υ3a3, (36)

2nΥ2na2n = bc2n−1 + bc2n−3Υ3a3 + bc2n−5Υ5a5 + · · · + bc1Υ2n−1a2n−1 (37)

and

2nΥ2n+1a2n+1 = bc2n + bc2n−2Υ3a3 + bc2n−4Υ5a5 + · · · + bc2Υ2n−1a2n−1. (38)

We prove (30) and (31) by using mathematical induction, together with Lemma 1, (35) and (36). We thus
find that

|a2| ≦
|b|

2 |Υ2|
(A − B) and |a3| ≦

|b|
2 |Υ3|

(A − B) ,

|a4| ≦
|b| (A − B)

8 |Υ4|
[2 + |b| (A − B)]

and

|a5| ≦
|b| (A − B)

8 |Υ5|
[2 + |b| (A − B)] .

It follows that (30) and (31) hold true for n = 1, 2. Equation (37) in conjuction with Lemma 1 yields

|a2n| ≦
|b| (A − B)
2n |Υ2n|

1 +
n−1∑
r=1

|Υ2r+1| |a2r+1|


Next, we assume that (30) and (31) hold true for 3, 4, · · · ,n − 1. Indeed, the above inequality yields

|a2n| ≦
|b| (A − B)
2n |Υ2n|

1 +
n−1∑
r=1

|b| (A − B)
2rr!

r−1∏
k=1

[|b| (A − B) + 2k]

 . (39)

To complete the proof of Theorem 3, it is sufficient to show that

|b| (A − B)
2m |Υ2m|

1 +
m−1∑
r=1

|b| (A − B)
2rr!

r−1∏
k=1

(|b| (A − B) + 2k)


=
|b| (A − B)
2mm! |Υ2m|

m−1∏
k=1

[|b| (A − B) + 2k] (m = 3, 4, · · · ,n). (40)

It easy to see that (40) is valid for m = 3. We now suppose that (40) is true for 4, · · · ,m − 1. Then it follows



H. M. Srivastava, S. M. El-Deeb / Filomat 36:16 (2022), 5521–5538 5532

from (39) that

|b| (A − B)
2m |Υ2m|

1 +
m−1∑
r=1

|b| (A − B)
2rr!

r−1∏
k=1

[|b| (A − B) + 2k)


=
|b| (A − B)
2m |Υ2m|

1 +
m−2∑
r=1

|b| (A − B)
2rr!

r−1∏
k=1

[|b| (A − B) + 2k]

+
|b|) (A − B)

2m−1(m − 1)!

m−2∏
k=1

[|b| (A − B) + 2k]


=

(m − 1) |Υ2m−2|

m |Υ2m|


∣∣∣γ∣∣∣ (A − B)

2m−1(m − 1)! |Υ2m−2|

m−2∏
k=1

(
∣∣∣γ∣∣∣ (A − B) + 2k)

+

∣∣∣γ∣∣∣ (A − B)

2m |Υ2m|

∣∣∣γ∣∣∣ (A − B)

2m−1(m − 1)!

m−2∏
k=1

[
∣∣∣γ∣∣∣ (A − B) + 2k]


=

(m − 1) |Υ2m−2|

m |Υ2m|

 |b| (A − B)
2m−1(m − 1)! |Υ2m−2|

m−2∏
k=1

(|b| (A − B) + 2k)

+
|b| (A − B)
2m |Υ2m|

|b| (A − B)
2m−1(m − 1)!

m−2∏
k=1

[|b| (A − B) + 2k]


=

(m − 1) |b| (A − B)
2m−1m! |Υ2m|

m−2∏
k=1

[|b| (A − B) + 2k]

+
|b| (A − B)

2 |Υ2m|

|b| (A − B)
2m−1m!

m−2∏
k=1

[|b| (A − B) + 2k]

=
|b| (A − B)

2m−1m! |Υ2m|

m−2∏
k=1

(|b| (A − B) + 2k)
(
(m − 1) +

|b| (A − B)
2

)

=
|b| (A − B)

2m−1m! |Υ2m|

m−2∏
k=1

(|b| (A − B) + 2k)
(
|b| (A − B) + 2(m − 1)

2

)

=
|b| (A − B)

2mm! |Υ2m|

m−1∏
k=1

[|b| (A − B) + 2k],

that is, (40) holds true for m = n. From (39) and (40), we obtain (30). Similary, we can prove (31). This
completes the proof of Theorem 3.

Letting q→ 1− in Theorem 3, we obtain the following corollary.

Corollary 3. Let f (z) ∈ Gα,λs (γ,A,B). Then, for all n ≧ 1,

|a2n| ≦
|b| (A − B)
2nn! |Ω2n|

n−1∏
k=1

[|b| (A − B) + 2k]

and

|a2n+1| ≦
|b| (A − B)

2nn! |Ω2n+1|

n−1∏
k=1

[|b| (A − B) + 2k].

where Ωk (∀ k ≧ 2) are given by (19).
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Theorem 4. If the function f ∈ Sα,λ,qsymmetric(b,A,B), then F ∈ Sα,λ,qsymmetric(b,A,B), where

F(z) =
2
z

∫ z

0
f (t) dt. (41)

Proof. It is easy to see from (41) that

1 +
1
b

 2z
(
B
α,q
λ F(z)

)′
B
α,q
λ F(z) − Bα,qλ F(−z)

− 1


=

2zBα,qλ f (z) + (b − 3)
∫ z

0 B
α,q
λ f (t) dt + (b − 1)

∫ z

0 B
α,q
λ f (−t) dt

b
(∫ z

0 B
α,q
λ f (t) dt +

∫ z

0 B
α,q
λ f (−t) dt

) . (42)

If, for convenience, we denote by N and M the numerator and the denominator of the right-hand side of
(42), we get

zM′(z)
M(z)

=
zBα,qλ f (z) − zBα,qλ f (−z)∫ z

0 B
α,q
λ f (t) dt+

∫ z

0 B
α,q
λ f (−t) dt

=
1
2

(
2zG′(z)

G(z) − G(−z)
+

2(−z)G′(−z)
G(−z) − G(z)

)
, (43)

where

G(z) =
∫ z

0
B
α,q
λ f (t) dt.

Since f ∈ Sα,λ,qsymmetric(b,A,B), it follows that

1 +
1
b

(
2zG′′(z)

G′(z) − G′(−z)
− 1

)
≺

1 + Az
1 + Bz

and that
G(z) ∈ C∗s (b,A,B) ⊂ S∗symmetric (b,A,B) ⊂ S∗s.

We see from (43) that M(z) is a starlike function. In addition, we have

N′(z)
M′(z)

= 1 +
1
b

 2z
(
B
α,q
λ f (z)

)′
B
α,q
λ f (z) − Bα,qλ f (−z)

− 1

 ,
so that

N′(z)
M′(z)

=
1 + Aw(z)
1 + Bw(z)

It follows that∣∣∣∣∣ N′(z)
M′(z)

− 1
∣∣∣∣∣ <

∣∣∣∣∣∣A − B
(

N′(z)
M′(z)

)∣∣∣∣∣∣ .
Now, by applying Lemma 2, we have∣∣∣∣∣ N(z)

M(z)
− 1

∣∣∣∣∣ <
∣∣∣∣∣∣A − B

(
N(z)
M(z)

)∣∣∣∣∣∣ ,
which implies that F ∈ Sα,λ,qsymmetric(b,A,B), just as asserted by Theorem 4.

Taking q→ 1− in Theorem 4, we obtain the following corollary:

Corollary 4. If the function f ∈ Gα,λs (b,A,B), then F given by (41) belongs to the class Gα,λs (b,A,B).
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3. Coefficient Bounds for the Subclass Sα,λ,q
conjugate

(b,A,B)

Theorem 5. Let the function f ∈ Sα,λ,qconjugate(b,A,B). Then, for all n ≧ 1,

|a2n| ≦
|b| (A − B)

(2n − 1)! |Υ2n|

2n−2∏
k=1

[|b| (A − B) + k] (44)

and

|a2n+1| ≦
|b| (A − B)
2n! |Υ2n+1|

2n−1∏
k=1

[|b| (A − B) + k], (45)

where Υk (∀ k ≧ 2) are given by (15).

Proof. Since f ∈ Sα,λ,qconjugate(b,A,B), Definition 4 yields

1 +
1
b

 2z
(
B
α,q
λ f (z)

)′
B
α,q
λ f (z) +Bα,qλ f (z)

− 1

 = 1 + Aw(z)
1 + Bw(z)

, (46)

which, upon setting

h(z) = 1 +
∞∑

k=1

ckzk =
1 + Aw(z)
1 + Bw(z)

, (47)

can be written in the following form:

2z
(
B
α,q
λ f (z)

)′
=

(
B
α,q
λ f (z) +Bα,qλ f (z)

) 1 + b
∞∑

k=1

ckzk

 .
It follows from (21) that

z + 2aΥ2z2 + 3Υ3a3z3 + 4Υ4a4z4 + · · · + 2nΥ2na2nz2n

+ (2n + 1)Υ2n+1a2n+1z2n+1 + · · ·

= (z + Υ2a2z2 + Υ3a3z3 + Υ4a4z4 + · · · + Υ2na2nz2n + Υ2n+1a2n+1z2n+1 + · · · )

·

(
1 + bc1z + bc2z2 + · · ·

)
,

which, upon equating the coefficients of like powers of z, yields

Υ2a2 = bc1 and 2Υ3a3 = bc2 + bc1Υ2a2, (48)

3Υ4a4 = bc3 + bc2Υ2a2 + bc1Υ3a3 and 4Υ5a5 = bc4 + bc3Υ2a2 + bc2Υ3a3 + bc1Υ4a4, (49)

(2n − 1)Υ2na2n = bc2n−1 + bc2n−2Υ2a2 + · · · + bc2Υ2n−2a2n−2 + bc1Υ2n−1a2n−1 (50)

and

2nΥ2n+1a2n+1 = bc2n + bc2n−1Υ2a2 + · · · + bc2Υ2n−1a2n−1 + bc1Υ2na2n. (51)

We now apply Lemma 1, together with (48) and (49). We thus obtain

|a2| ≦
|b|
|Υ2|

(A − B) and |a3| ≦
|b| (A − B)

2 |Υ3|

(
1 + |b| (A − B)

)
,
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|a4| ≦
|b| (A − B)

2.3 |Υ4|
(1 + |b| (A − B)) [2 + |b| (A − B)]

and

|a5| ≦
|b| (A − B)
2.3.4 |Υ5|

(1 + |b| (A − B)) (2 + |b| (A − B)) [3 + |b| (A − B)] .

It follows that (44) and (45) hold true for n = 1, 2. Equation (50) in conjuction with Lemma 1 yeilds

|a2n| ≦
|b| (A − B)

(2n − 1) |Υ2n|

1 +
n−1∑
r=1

|Υ2r| |a2r| +

n−1∑
r=1

|Υ2r+1| |a2r+1|



Next, we assume that (44) and (45) hold true for 3, 4, · · · ,n− 1. Thus the above inequality leads us to the
following inequality:

|a2n| ≦
|b| (A − B)

(2n − 1) |Υ2n|

1 +
n−1∑
r=1

|b| (A − B)
(2r − 1)!

2r−2∏
j=1

[ j + |b| (A − B)]

+

n−1∑
r=1

|b| (A − B)
(2r)!

2r−1∏
i=1

(
i + |b| (A − B)

) . (52)

In order to complete the proof of Theorem 5, it is sufficient to show that

∣∣∣γ∣∣∣ (A − B)

(2m − 1) |Υ2m|

1 +
m−1∑
r=1

∣∣∣γ∣∣∣ (A − B)

(2r − 1)!

2r−2∏
i=1

(
i +

∣∣∣γ∣∣∣ (A − B)
)

+

m−1∑
r=1

∣∣∣γ∣∣∣ (A − B)

(2r)!

2r−1∏
j=1

[ j +
∣∣∣γ∣∣∣ (A − B)]


=

|b| (A − B)
(2m − 1)! |Υ2m|

2m−2∏
i=1

(
i + (A − B) |b|

)
. (53)

It easy to see that (53) is valid for m = 3. We now suppose that (53) is true for 4, · · · ,m − 1. Then it follows
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from (52) that

|b| (A − B)
(2m − 1) |Υ2m|

(
1 +

m−1∑
r=1

|b| (A − B)
(2r − 1)!

2r−2∏
j=1

[|b| (A − B) + j]

+

m−1∑
r=1

|b| (A − B)
2r!

2r−1∏
j=1

[|b| (A − B) + j]

=
(2m − 3) |Υ2m−2|

(2m − 1) |Υ2m|

[
|b| (A − B)

(2m − 3) |Υ2m−2|

(
1 +

m−2∑
r=1

|b| (A − B)
(2r − 1)!

2r−2∏
j=1

[|b| (A − B) + j]

+

m−2∑
r=1

|b| (A − B)
(2r)!

2r−1∏
j=1

[|b| (A − B) + j]
)]

+
|b| (A − B)

(2m − 1) |Υ2m|

 |b| (A − B)
(2m − 3)!

2m−4∏
i=1

(|b| (A − B) + i)


+
|b| (A − B)

(2m − 1) |Υ2m|

 |b| (A − B)
(2m − 2)!

2m−3∏
j=1

[|b| (A − B) + j]


=

(2m − 3) |Υ2m−2|

(2m − 1) |Υ2m|

 |b| (A − B)
(2m − 3)! |Υ2m−2|

2m−4∏
j=1

[|b| (A − B) + j]


+
|b| (A − B)

(2m − 1) |Υ2m|

 |b| (A − B)
(2m − 3)!

2m−4∏
i=1

(|b| (A − B) + i)


+
|b| (A − B)

(2m − 1) |Υ2m|

 |b| (A − B)
(2m − 2)!

2m−3∏
j=1

[|b| (A − B) + j]


=

1
(2m − 1) |Υ2m|

|b| (A − B)
(2m − 3)!

2m−4∏
j=1

[|b| (A − B) + j]
)(
|b| (A − B) + 2m − 3

)
+
|b| (A − B)
|Υ2m|

 |b| (A − B)
(2m − 1)!

2m−3∏
j=1

[|b| (A − B) + j]


=

 |b| (A − B)
(2m − 1)! |Υ2m|

2m−3∏
j=1

[|b| (A − B) + j]

 ( |b| (A − B) + 2m − 2
)

=
|b| (A − B)

(2m − 1)! |Υ2m|

2m−2∏
j=1

[|b| (A − B) + j],

that is, (53) holds true for m = n. Hence, from (52) and (53), we obtain (44). Similary, we can prove (45).
The proof of Theorem 5 is thus completed.

4. Concluding Remarks and Observations

In the present investigation, we have successfully made use of a q-analogue of the familiar Borel
distribution in order to introduce and study two new subclasses Sα,λ,qsymmetric(b,A,B) and Sα,λ,qconjugate(b,A,B)
of starlike and convex functions in the open unit disk ∆ with respect to symmetric and conjugate points.
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For functions in each of these subclasses S
α,λ,q
symmetric(b,A,B) and S

α,λ,q
conjugate(b,A,B), we have derived

several properties including the Taylor-Maclaurin coefficient estimates. We have also indicated relevant
connections of each of these subclasses Sα,λ,qsymmetric(b,A,B) and Sα,λ,qconjugate(b,A,B) with the function classes
which were invesigated in several earlier works.

In his survey-cum-expository review article, Srivastava [32] demonstrated how the theories of the
basic (or q-) calculus and the fractional q-calculus have significantly encouraged and motivated further
developments in Geometric Function Theory of Complex Analysis. As a matter of fact, the subject of the
basic or quantum (or q-) analysis has found widespread applications which are based upon the extensive
study of q-series and q-polynomials and, especially, q-hypergeometric functions and q-hypergeometric
polynomials (see, for details, [37, pp. 350–351]). Therefore, with a view to aiding and motivating the
interested reader for further researches on the subject, we choose to cite several recent developments (see,
for example, [6], [17], [19], [26], [34], [36], [38], [39], [40], [42] and [43]) on various usages of the basic or
quantum (or q-) calculus in Geometric Function Theory of Complex Analysis.

In concluding this investigation, we choose to reiterate an important observation, which was presented
in the above-mentioned review-cum-expository review article by Srivastava [32, p. 340], as well as in the
recently-published review article by Srivastava [33, Section 5 (pp. 1510–1512)], who pointed out the fact
that the results for the above-mentioned known or new q-analogues can easily (and possibly trivially) be
translated into the corresponding results for the so-called (p, q)-analogues (with 0 < |q| < p ≦ 1) by applying
some obvious parametric and argument variations, the additional parameter p being superfluous of redun-
dant.

Conflicts of Interest: The authors declare that they have no conflicts of interest.
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[4] M. K. Aouf, R. M. El-Ashwah and S. M. El-Deeb, Fekete-Szegö inequalities for starlike functions with respect to k-symmetric
points of complex order, J. Complex Anal. 2014 (2014), Article ID 131475, 1–10.

[5] M. Arif, K. Ahmad, J.-L. Liu and J. Sokól, A new class of analytic functions associated with Sălăgean operator, J. Function Spaces
2019 (2019), Article ID 6157394, 1–8.

[6] M. Arif, O. Barkub, H. M. Srivastava, S. Abdullah and S. A. Khan, Some Janowski type harmonic q-starlike functions associated
with symmetrical points, Mathematics 8 (2020), Article ID 629, 1–16.
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