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Existence of ω-Periodic Solutions for Second Order Delay Differential
Equation in Banach Spaces
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Abstract. The propose of the paper is devoted to study the existence of ω-periodic solutions for second-
order delay differential equation in abstract Banach space. Firstly, we build a new maximum principle for
the ω-periodic solutions of the corresponding linear equation. Secondly, with the help of this maximum
principle, we study the existence of the minimal and maximal periodic solutions for our concerns problem
by means of perturbation method and monotone iterative technique of the lower and upper solutions. In
addition, an example is presented to show the application of our main results.

1. Introduction

The existence of periodic solutions is an important aspect of functional differential equation, many
mathematicians have studied it via different tools and methods, for example the fixed point theory [1–
3, 8, 26], the method of upper and lower solutions and the monotone iterative technique [9, 16, 26], the
continuation method of topological degree [21, 22, 25]. Recently, Wang and Luo [28] discussed the existence
of positive periodic solutions for the second order differential equation

−u′′(t) + b(t)u(t) = 1(t) f (t,u(t),u(t − τ)), t ∈ R,

where 1(t) ∈ C(R,R), f (t, x) ∈ C(R × [0,∞), [0,∞)), 1(t + ω) = 1(t) and f (t + ω,u) = f (t,u). By using the
fixed point index theory of cones, the existence results of singular positive periodic solutions and multiple
positive periodic solutions are obtained.

Delay differential equation theory is an important branch of differential equation theory. It has a
wide range of physical, biological, economic, engineering background and practical mathematical model.
Therefore, in the past few decades, they have emerged as an important research field and studied many
properties of their solutions, we refer to [12, 29]. The problem of periodic solutions of delay differential
equations is an important research field, because they can consider the seasonal fluctuations in the model,
and some researchers have studied it in recent years. In particular, when E = R, several authors have
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been consider the existence of periodic solutions of the second-order differential equations with delays,
we refer to the reader to see [29]-[30]. More authors have discussed the existence of periodic solutions
for second-order differential equations without delay in the scalar space R or general abstract space E, see
[7]-[32].

It is well known that the monotone iterative method for upper and lower solutions is an effective
and flexible mechanism. The monotone sequence between the upper and lower approximate solutions
converged to the upper and lower solutions of the minimum and maximum solution is obtained. In
[14, 15], Jiang et.al considered the periodic problem of the second-order functional differential equation
with time delay

−u′′(t) = f (t,u(t),u(t − τ)), t ∈ R,

where f ∈ C(R3,R), τ ∈ C(R, [0,+∞)) and τ(t) = τ(t + ω). By exploring monotone iterative technique, they
obtained the existence results of ω-periodic solutions.

In [4], authors investigated the existence of positive periodic solutions for a class of nonlinear second
order ordinary differential equations of the form

−u′′(t) + b(t)u(t) = 1(t) f (t,u(t)), t ∈ R,

where b(t) and 1(t) are continuous ω-periodic positive functions, and f ∈ C(R × [0,∞), [0,∞)).
In [20], authors investigated the existence of positive periodic solutions for a class of second order

delayed differential equations in Banach spaces

−u′′(t) = f (t,u(t),u(t − τ)), t ∈ R,

By using monotone iterative technique, they obtained the existence of ω-periodic solutions.
Inspired and motivated by the jobs mentioned above, in this paper, we deal with the existence of

ω-periodic solutions for second-order functional differential equation with delay in E

−u′′(t) + b(t)u(t) = 1(t) f (t,u(t),u(t − τ)), t ∈ R, (1.1)

where E is an ordered Banach space, f : R × E × E → E is a continuous function which is ω-periodic in t
and τ is a positive constant which denotes the time delay, b(t) and 1(t) are continuous ω-periodic positive
functions. Here, by an ω-periodic positive solution, we mean a function u∗(t) which satisfies (1.1) and
u∗(t + ω) = u∗(t),u∗(t) > 0 for t ∈ (0, ω).

The highlights and advantages of this paper are presented in two aspects. on the one hand, we
construct two monotone iterative sequences and prove that the sequences monotonically converge to the
minimal and maximal periodic solutions for delayed differential equations. In this paper, the technology
we use is different from those in [4, 20]. Our results are more general than those in [4, 20]. As well as
we considered the periodic problem(1.1)in more general Banach space, therefore, it has more extensive
application background. On the other hand, by means of the perturbation theorem of unit operator, we
establish a new maximum principle for theω-periodic solutions of the corresponding linear delay equation,
it improves and improves the result of paper [4, 20].

The paper is organized as follows: In Section 2, we introduce some notations and build a maximum
principle for the corresponding linear equation. In Section 3 we present existence result for our concern
problem (1.1). In Section 4, we give an example to illustrate the feasibility of our results.

2. Preliminaries

Throughout this paper, let E be an ordered Banach space, whose positive cone K = {u ∈ E|u ≥ θ}
is normal with normal constant N. Denote Cm

ω(R,E) the m-th order continuous differentiable ω-periodic
E-value function space for m ∈N. Let Cω(R,E) denote the space {u ∈ C(R,E)|u(t+ω) = u(t), t ∈ R} endowed
the maximum norm ∥u∥C = maxt∈[0,ω] ∥u(t)∥. Evidently, Cω(R,E) is an order Banach space with the partial
order ” ≤ ” deduced by the positive cone KC = {u ∈ Cω(R,E)|u(t) ≥ θ, t ∈ R} and PC is also normal with the



H.-D. Gou / Filomat 36:16 (2022), 5347–5358 5349

normal constant N. For v,w ∈ Cω(R,E) with v ≤ w, we use [v,w] to denote the order interval {u|v ≤ u ≤ w} in
Cω(R,E), [v(t),w(t)] to denote the order interval {u(t)|v(t) ≤ u(t) ≤ w(t), t ∈ R} in E. We define the following
constants:

l =
√

min
0≤t≤ω

b(t), L =
√

max
0≤t≤ω

b(t).

Firstly, we consider the second-order differential equation with delay in E:

−u′′(t) + b(t)u(t) +Mu(t − τ) = h(t), t ∈ R, h ∈ Cω(R,E), (2.1)

where M ≥ 0.
By Lemma 2.1 in [19], for any h ∈ Cω(R,E), the second-order linear differential equation

−u′′(t) + L2u(t) = h(t), t ∈ R

has a unique ω-periodic solution u(t) which is given by

u(t) =
∫ t

t−ω
Ψ(t − s)h(s)ds := T0h(t), t ∈ R, (2.2)

where

Ψ(t) =
cosh L(t − ω2 )

2L sinh Lω
2

(2.3)

is unique solution of linear second order boundary value problem{
−u′′(t) + L2u(t) = h(t),
u(0) = u(ω), u′(0) = u′(ω) − 1, (2.4)

From (2.3), we compute that

0 ≤
1

2L sinh Lω
2

≤ Ψ(t) ≤
cosh Lω

2

2L sinh Lω
2

, t ∈ [0, ω]. (2.5)

Clearly, the solution operator T0 : Cω(R,E)→ Cω(R,E) is a positive linear continuous operator.
Next, by simple computation, for every h ∈ Cω(R,E), we can get

∥T0h(t)∥ =
∥∥∥∥∫ t

t−ω
Ψ(t − s)h(s)ds

∥∥∥∥
≤

∫ t

t−ω
Ψ(t − s)ds∥h∥C

=

∫ ω

0
Ψ(ω − s)ds∥h∥C

=
1
L2 ∥h∥C.

Thus, ∥T0∥ ≤
1
L2 .

On the other hand, we can choose e0 ∈ E with e0 , θ, let h0(t) = e0, then h0 ∈ Cω(R,E) and ∥h0∥C = ∥e0∥,
so

∥T0h0(t)∥ = ∥
∫ t

t−ω
Ψ(t − s)h0(s)ds∥ =

∫ ω

0
Ψ(s)ds · ∥e0∥ =

1
L2 ∥h0∥C,

Thus, we can get

∥T0∥ =

∫ ω

0
Ψ(s)ds =

1
L2 . (2.6)
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Moreover, for every h ∈ Cω(R,P), from (2.5) we can get

T0h(t) =
∫ t

t−ω
Ψ(t − s)h(s)ds ≥

1
2L sinh Lω

2

∫ ω

0
h(s)ds,

and on the other hand, we have

T0h(t) =
∫ t

t−ω
Ψ(t − s)h(s)ds ≤

cos Lω
2

2L sinh Lω
2

∫ ω

0
h(s)ds.

This implies that

T0h(t) ≥
1

cosh Lω
2

T0h(s), ∀ t, s ∈ R. (2.7)

Lemma 2.1. For any h ∈ Cω(R,E), if L2

2 ≤ M < l2 ≤ σ2L2,
(
σ = 1

cosh Lω
2

)
, then the differential Eq.(2.1) exists a

unique ω-periodic solution u := Th ∈ Cω(R,E). Moreover, the solution operator T : Cω(R,E) → Cω(R,E) is a
positive bounded linear operator with the spectral radius r(T) ≤ 1

l2−M .

Proof. From (2.2), it is well that for u ∈ Cω(R,E) is an ω-periodic solution of Eq. (2.1) if and only if

u(t) =
∫ t

t−ω
Ψ(t − s)(h(s) −Mu(s − τ) − b(s)u(s) + L2u(s))ds, t ∈ R. (2.8)

Define an operator B1 : Cω(R,E)→ Cω(R,E) as following

B1u(t) =Mu(t − τ). (2.9)

Clearly, B1 : Cω(R,E)→ Cω(R,E) is a positive linear bounded operator with ∥B1∥ =M.
Define the operator P : Cω(R,E)→ Cω(R,E) by

Pu(t) = (L2
− b(t))u(t), u ∈ Cω(R,E).

Then, P is a positive linear bounded operator and ∥P∥ ≤ L2
− l2.

Thus, from (2.3), (2.8) and (2.9), we have

(I + T0B1 − T0P)u(t) = T0h(t), t ∈ R. (2.10)

By (2.5), we have

∥T0B1 − T0P∥ ≤ ∥T0∥ · ∥B1∥ + ∥T0∥ · ∥P∥ ≤
M
L2 +

L2
− l2

L2 =
M + L2

− l2

L2 < 1.

By the perturbation theorem of unit operator, I + T0B1 − T0P has a bounded inverse operator (I + T0B1 −

T0P)−1 which is represented as

(I + T0B1 − T0P)−1 =

∞∑
i=0

(−1)i(T0B1 − T0P)i =

∞∑
i=0

(T0B1 − T0P)2i(I − T0B1 + T0P),

and

∥(I + T0B1 − T0P)−1
∥ ≤

1
1 − ∥T0B1 − T0P∥

≤
L2

l2 −M
. (2.11)
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Thus, operator Eq. (2.10) has unique solution given by

u(t) = (I + T0B1 − T0P)−1T0h(t)

= (I + T0B1 − T0P)−1
∫ t

t−ω
Ψ(t − s)h(s)ds

:= Th(t), t ∈ R, (2.12)

it is also ω-periodic solution of the linear Eq. (2.1). Clearly, T : Cω(R,E) → Cω(R,E) is a bounded linear
operator. By (2.11) and (2.12), we have

∥(Th)(t)∥ ≤
∥∥∥∥(I + T0B1 − T0P)−1

∫ t

t−ω
Ψ(t − s)h(s)ds

∥∥∥∥
≤

L2

l2 −M

∫ ω

0
Ψ(t − s)h(s)ds

≤
1

l2 −M
∥h∥C, (2.13)

which implies that ∥T∥ ≤ 1
l2−M . Therefore, r(T) < ∥T∥ ≤ 1

l2−M .
On the other hand, we need prove that the operator T is positive. From (2.11) and (2.12), we only need

to prove (I − T0B1 + T0P)T0 is positive. For h ∈ Cω(R,K), let v0 = T0h(0) ∈ K, then v0 can be regarded as a
constant function in Cω(R,K). From (2.7), it follows that

T0h ≥ σv0, T0h ≤
1
σ

v0, h ∈ Cω(R,P).

By the definitions of B1,P, and L2

2 ≤M < l2 ≤ σ2L2, for ∀u ≥ 0, we have

(B1 − P)u =Mu − (L2
− b(t))u ≥ (M + l2 − L2)u ≥ 0.

Thus, we obtain B1 − P is positive. And positivity of T0, we get T0B1 − T0P is also positive. Hence, we have

(T0B1 − T0P)T0h ≤
M
σL2 v0.

Thus, by the assumption of Lemma , we have

(I − T0B1 + T0P)T0h = T0h − (T0B1 − T0P)T0h

≥
1

cosh Lω
2

v0 − cosh
Lω
2
·

M
L2 v0

=
( 1
cosh Lω

2

− cosh
Lω
2
·

M
L2

)
v0 ≥ θ,

which implies (I − T0B1 + T0P)T0 is positive. Thus, T : Cω(R,E)→ Cω(R,E) is a positive operator. □

Lemma 2.2. Let L2

2 ≤M ≤ l2 ≤ σ2L2, if u ∈ C2
ω(R,E) satisfies

−u′′(t) + b(t)u(t) +Mu(t − τ) ≥ θ, t ∈ R,

then u(t) ≥ θ, t ∈ R.

Let α(·) denote the Kuratowski measure of noncompactness of the bounded set. For the detail of the
definition and properties of the measure of noncompactness, see [1,3,5], For any D ⊂ Cω(R,E) and t ∈ R,
set D(t) = {u(t)|u ∈ D} ⊂ E. If D is bounded in Cω(R,E), then D(t) is bounded in E and α(D(t)) ≤ α(D).
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Lemma 2.3. [13] Let E be a Banach space and let D ⊂ C(J,E) be bounded and equicontinuous, where J is a finite
closed interval in R. Then α(D(t)) is continuous on J and

α(D) = max
t∈J
α(D(t)) = α(D(J)).

Lemma 2.4. [6] Let E be a Banach space, D = {un} ⊂ C(J,E) be a bounded and countable set. Then α(D(t)) is
Lebesgue integrable on J and

α
({ ∫

J
un(s)ds

})
≤

∫
J
α(D(t))dt.

3. Main results

Definition 3.1. If a function v0 ∈ C2
ω(R,E) and satisfies

−α
′′

(t) + b(t)α(t) ≤ 1(t) f (t, α(t), α(t − τ)), t ∈ R, (3.1)

we call it an ω-periodic lower solution of Eq.(1.1). If the inequality of (3.1) is inverse, we call it an ω-periodic upper
solution of the Eq.(1.1).

Theorem 3.1. Let E be an ordered Banach space, whose positive cone K is normal cone, f : R × E × E → E be
continuous and f (t, x, y) be ω-periodic in t for every x, y ∈ E, and 1(t) is continuous ω-periodic positive functions.
Assume that the problem (1.1) has lower and upper ω-periodic solutions v0,w0 ∈ C2

ω(R,E) with v0 ≤ w0 and the
following conditions

(H1) there exist constants 0 ≤M < l2 < σ2L2 such that

1(t) f (t, x2, y2) − 1(t) f (t, x1, y1) ≥ −M(y2 − y1)

for all t ∈ R, v0(t) ≤ x1 ≤ x2 ≤ w0(t), v0(t − τ) ≤ y1 ≤ y2 ≤ w0(t − τ),

(H2) there exist constants m,m1 ≥ 0,m +m1 < l2−M
2 such that

α({1(t) f (t,un(t),un(t − τ)) +Mun(t − τ))} ≤ mα({un(t)}) +m1α({un(t − τ)})

for any t ∈ R and monotonous sequence {un} ⊂ [v0,w0]

hold, then Eq.(1.1) has minimal and maximal ω-periodic solution u,u between v0 and w0, which can be obtained by
monotone iterative sequences starting from v0 and w0.

Proof. For any h ∈ [v0,w0],we consider the following equation

−u′′(t) + b(t)u(t) +Mu(t − τ) = 1(t) f (t,u(t),u(t − τ)) +Mh(t − τ), t ∈ R. (3.2)

From Lemma 2.1, it implies that Eq.(3.2) exists unique ω-periodic solution u ∈ Cω(R,E), which can be
given as

u(t) = (I + T0B1 − T0P)−1
∫ t

t−ω
Ψ(t − s)(1(s) f (s, h(s), h(s − τ))

+Mh(s − τ))ds := (Qh)(t), t ∈ R. (3.3)

Clearly, the Q : [v0,w0]→ Cω(R,E) is continuous. We rewrite Eq.(1.1) in the following form

−u′′(t) + b(t)u(t) +Mu(t − τ) = 1(t) f (t,u(t),u(t − τ)) +Mu(t − τ), t ∈ R. (3.4)

Hence, we can claim that u ∈ [v0,w0] is the ω-periodic of Eq.(3.4) if and only if u is the fixed point of the
operator Q. Now, we will divide into four steps to complete the proof.
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Step 1.We will prove that the operator Q : [v0,w0] → Cω(R,E) is equicontinuous. For any u ∈ [v0,w0],
by the periodicity of u, we consider it on [0, ω]. Let 0 ≤ t1 < t2 ≤ ω,we obtain

(Qu)(t2) − (Qu)(t1) = (I + T0B1 − T0P)−1
∫ t2

t2−ω
Ψ(t2 − s)

× (1(s) f (s,u(s),u(s − τ)) +Mu(s − τ))ds

− (I + T0B1 − T0P)−1
∫ t2

t2−ω
Ψ(t1 − s)(1(s) f (s,u(s),u(s − τ)) +Mu(s − τ))ds

= (I + T0B1 − T0P)−1
∫ t2

t1−ω
(Ψ(t2 − s) −Ψ(t1 − s))(1(s) f (s,u(s),u(s − τ)) +Mu(s − τ))ds

− (I + T0B1 − T0P)−1
∫ t1−ω

t2−ω
Ψ(t1 − s)(1(s) f (s,u(s),u(s − τ)) +Mu(s − τ))ds

+ (I + T0B1 − T0P)−1
∫ t1

t2

Ψ(t2 − s)(1(s) f (s,u(s),u(s − τ)) +Mu(s − τ))ds

=: I1 + I2 + I3.

This means that
∥(Qu)(t2) − (Qu)(t1)∥ ≤ ∥I1∥ + ∥I2∥ + ∥I3∥. (3.5)

Therefore, we only need to check tend to 0 independently of u ∈ [v0,w0] when t2 − t1 → 0, i = 1, 2, 3.
For any u ∈ [v0,w0], and by the condition (H1), we have

1(t) f (t, v0(t), v0(t − τ)) +Mv0(t − τ) ≤ 1(t) f (t,u(t),u(t − τ)) +Mu(t − τ)
≤ 1(t) f (t,w0(t),w0(t − τ)) +Mw0(t − τ), t ∈ R.

And combine with the normality of the cone P, then there exists M1 > 0 such that

∥1(t) f (t,u(t),u(t − τ)) +Mu(t − τ)∥ ≤M1, t ∈ R, u ∈ [v0,w0].

Hence, we get

∥I1∥ ≤ ∥(I + T0B1 − T0P)−1
∥ ·

∫ t2

t1−ω
∥(Ψ(t2 − s) −Ψ(t1 − s))(1(s) f (s,u(s),u(s − τ)) +Mu(s − τ))∥ds

≤
L2M1

l2 −M

∫ t2

t1−ω
∥(Ψ(t2 − s) −Ψ(t1 − s))∥ds

≤
L2M1

l2 −M

∫ t1+ω−t2

0
∥(Ψ(t2 − t1 + s) −Ψ(s))∥ds

→ 0,

when t2 − t1 → 0.

∥I2∥ ≤ ∥(I + T0B1 − T0P)−1
∥ ·

∫ t1−ω

t2−ω
∥Ψ(t1 − s)(1(s) f (s,u(s),u(s − τ)) +Mu(s − τ))∥ds

≤
L2M1

l2 −M

∫ t2−ω

t1−ω
∥Ψ(t1 − s)∥ds

→ 0,
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when t2 − t1 → 0.

∥I3∥ ≤ ∥(I + T0B1 − T0P)−1
∥ ·

∫ t1

t2

Ψ(t2 − s)(1(s) f (s,u(s),u(s − τ)) +Mu(s − τ))ds

≤
L2M1

l2 −M

∫ t2

t1

∥Ψ(t2 − s)∥ds

→ 0,

when t2 − t1 → 0.
As a result, ∥(Qu)(t2) − (Qu)(t1)∥ tends to 0 independently of u ∈ [v0,w0] as t2 − t1 → 0, this means that

Q : [v0,w0]→ Cω(R,E) is equicontinuous.
Step 2.We demonstrate that the operator Q satisfies the following properties.

(i) v0 ≤ Qv0, Qw0 ≤ w0,

(ii) For any u1,u2 ∈ [v0,w0] with u1 ≤ u2, Qu1 ≤ Qu2.

Let v1 = Qv0, v = v0 − v1, by the definition 3.1, (H1) and (2.2), we have

−v′′(t) + b(t)v(t) +Mv(t − τ) = −v′′0 (t) + b(t)v0(t) +Mv0(t − τ) + v′′1 − b(t)v1(t) −Mv1(t − τ)
≤ 1(s) f (s, v0(s), v0(s − τ)) +Mv0(s − τ) − 1(s) f (s, v0(s), v0(s − τ)) −Mv0(s − τ)
= θ,

by Lemma 2.2, it follows that v(t) ≤ θ for t ∈ R, we have v0 ≤ Qv0. Similarly, we can prove that Qw0 ≤ w0.
Therefore, (i) holds. For any u1,u2 ∈ [v0,w0] with u1 ≤ u2 and t ∈ R, by the condition (H1), we obtain

1(t) f (t,u1(t),u1(t − τ)) +Mu1(t − τ) ≤ 1(t) f (t,u2(t),u2(t − τ)) +Mu2(t − τ),

by (3.3), it follows that Qu1 ≤ Qu2. Thus, (ii) holds.
Step 3.We define two sequences {vn} and {wn} in [v0,w0] by the iterative scheme

vn = Qvn−1, wn = Qwn−1, n = 1, 2. . . . . (3.6)

Then from the monotonicity of the operator Q,we have

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ · · · ≤ wn ≤ · · · ≤ w2 ≤ w1 ≤ w0. (3.7)

Clearly, {vn}, {wn} ⊂ [v0,w0] are equicontinuous in R. Next, we prove that {vn} and {wn} are convergent
in Cω(R,E). Because {vn} is a bounded and countable set, combine Lemma 2.4 with the condition (H2), we
have

α({vn(t)}) = α({Qvn−1(t)})

= α
({

(I + T0B1 − T0P)−1
∫ t

t−ω
Ψ(t − s)(1(s) f (s, vn−1(s), vn−1(s − τ)) +Mvn−1(s − τ))ds

})
≤ 2∥(I + T0B1 − T0P)−1

∥ ·

∫ t

t−ω
Ψ(t − s)α({1(s) f (s, vn−1(s), vn−1(s − τ)) +Mvn−1(s − τ)})ds

≤ 2∥(I + T0B1 − T0P)−1
∥ ·

∫ t

t−ω
Ψ(t − s)(mα({vn−1(s)}) +m1α({vn−1(s − τ)}))ds,
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and by the periodicity of vn−1 and definition of measure of noncompactness, we haveα({vn−1(s)}) = α({vn−1(s−
τ)}), thus,

α({vn(t)}) ≤ 2(m +m1) · ∥(I + T0B1 − T0P)−1
∥ ·

∫ t

t−ω
Ψ(t − s)α({vn−1(s)}))ds

≤ 2(m +m1) · ∥(I + T0B1 − T0P)−1
∥ ·

∫ ω

0
Ψ(s)ds max

t∈[0,ω]
α({vn−1(t)})

≤
2(m +m1)

l2 −M
α({vn}).

Since {vn} is equicontinuous, by Lemma 2.3, we get

0 ≤ α({vn}) ≤
2(m +m1)

l2 −M
α({vn}).

when 2(m+m1)
l2−M < 1, hence α({vn}) = 0. Similarly, we prove that α({wn}) = 0. Thus, {vn} and {wn} are relatively

compact in Cω(R,E), so there are convergent subsequences in {vn} and {wn}, respectively. Combining this
with the monotonicity and the normality of the cone PC, it is easy to see than {vn} and {wn} themselves are
convergent,i.e., there are u,u ∈ Cω(R,E) such that limn→∞ vn = u and limn→∞ wn = u.

Taking limit in (3.6), we obtain
u = Qu, u = Qu. (3.8)

Hence u,u ∈ Cω(R,E) are fixed points of Q.
Step 4.We will show that the minimal and maximal property of u,u. Assume that
ũ is a fixed point of Q with ũ ∈ [v0,w0]. For every t ∈ R, v0 ≤ ũ(t) ≤ w0(t).

v1(t) = (Qv0)(t) ≤ (Qũ)(t) = ũ(t) ≤ (Qw0)(t) = w1(t), t ∈ R. (3.9)

Similarly, v1(t) ≤ ũ(t) ≤ w1(t) for t ∈ R. Thus, we have

vn ≤ ũ ≤ wn, n = 1, 2, . . . . (3.10)

Taking limit in (3.10) as n → ∞, we have u ≤ ũ ≤ u. Thus, u,u are minimal and maximal ω-periodic
solutions of Eq.(1.1), and u,u can be obtained by the iterative sequences defined in (3.6) starting from v0
and w0. □

Next, we discuss the existence of solutions for Eq. (1.1) without the assumption that the lower and
upper solutions of Eq. (1.1) exist.

Theorem 3.2. Let E be an ordered Banach space, whose positive cone P is normal cone, f : R × E × E → E be
continuous and f (t, x, y) be ω-periodic in t for every x, y ∈ E and 1(t) is continuous ω-periodic positive functions. If
the following conditions

(H1)’ there exist constant 0 ≤M < l2 < σ2L2 such that

1(t) f (t, x2, y2) − 1(t) f (t, x1, y1) ≥ −M(y2 − y1)

for all t ∈ R, xi, yi ∈ E(i = 1, 2) with x1 ≤ x2, y1 ≤ y2.

(H2)’ there exist constant m,m1 ≥ 0, m +m1 < l2−M
2 such that

α({1(t) f (t,un(t),un(t − τ))} +Mun(t − τ)) ≤ mα({un(t)}) +m1α({un(t − τ)})

for any t ∈ R and monotonous sequence {un} ⊂ Cω(R,E),

(H3) there exist constants L1 ≥ 0 with L1 < σ2l2 and h ∈ Cω(R,E), h(t) ≥ θ such that for u1,u2 ∈ Cω(R,E)
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(i) 1(t) f (t,u,u1) ≤ L1u1 + h(t), u1 ≥ θ,

(ii) 1(t) f (t,u,u1) ≥ L1u1 − h(t), u1 ≤ θ,

hold, then Eq.(1.1) has minimal and maximal ω-periodic solution u,u, which can be obtained by monotone iterative
sequences starting.

Proof. Consider the existence of ω-periodic solution for the linear equation in E

−u′′(t) + b(t)u(t) = h(t) + L1u(t − τ), t ∈ R, (3.11)

where h ∈ Cω(R,E). Define an operator B2 : Cω(R,E)→ Cω(R,E) as following

B2u(t) = L1u(t − τ), (3.12)

thus B2 : Cω(R,E)→ Cω(R,E) is a linear bounded operator and ∥B2∥ ≤ L1. Similar to the proof of Lemma 2.1,
we obtain the ω-periodic solution of the linear Eq. (3.11) is equivalent to the solution of operator equation

(I − T0B2 − T0P)u(t) = T0h(t), t ∈ R. (3.13)

Therefore, by the condition (H3), we get ∥T0B2 + T0P∥ ≤ 1 which implies that I − T0B2 − T0P has a bounded
inverse operator (I−T0B2−T0P)−1, similar to the proof of Lemma 2.1, we also can prove that (I−T0B2−T0P)−1

is positive. Thus, operator equation (3.12) has unique solution u = (I−T0B2−T0P)−1T0h, which isω-periodic
solution of the equation (3.14) and u(t) ≥ θ by h(t) ≥ θ for t ∈ R. i.e., the Eq. (3.11) has a unique positive
solution ũ ∈ C2

ω(,E).
Let v0 = −ũ and w0 = ũ, combine with the condition (H3), we have

−v′′(t) + b(t)u(t) = L1v0(t − τ) − h(t) ≤ 1(t) f (t, v0(t), v0(t − τ)), t ∈ R,

and
−w′′(t) + b(t)u(t) = L1v0(t − τ) − h(t) ≥ 1(t) f (t,w0(t),w0(t − τ)), t ∈ R,

Hence, we can state that v0 and w0 are lower solution and upper solution of Eq. (1.1), respectively. Thus,
our conclusion follows from Theorem 3.1. □

4. Applications

In this section, we give an example to illustrate our main results.

Example 4.1. Consider the differential equation

−u′′(t) +
1
20

(3 + cos t)u(t) = f (x, t,u(x, t),u(x, t − τ)), x ∈ J, t ∈ R, (4.1)

where J = [0, ω], ω = 2π, f : J × R × R × R → R is continuous function which is ω-periodic in t, τ is positive
constant which denotes the time delay. Here we have b(t) = 1

20 (3 + cos t), 1(t) = 1.

Further,

L =
√

max
0≤t≤ω

b(t) =

√
1
5
∈ (0,

π
ω

).

We will use our new results to prove that the equation has a positive solution. We have the following
results.

Theorem 4.1. (F0) let f (x, t, 0, 0) ≥ 0 for (x, t) ∈ J ×R and there exist a function w = w(x, t) ∈ C1,2(J ×R) which
is ω-periodic in t such that

−
∂2

∂t2 w(x, t) ≥ f (x, t,w(x, t),w(x, t − τ)), (x, t) ∈ J ×R,
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(F1) there exist constants M satisfying 0 ≤M < l2 < σ2L2, such that

f (x, t, y0, y1) − f (x, t, z0, z1) ≥ −M(y1 − z1), x ∈ J, t ∈ R

for 0 ≤ z0 ≤ y0 ≤ w(u, t) and 0 ≤ z1 ≤ y1 ≤ w(u, t − τ),

(F2) there exist constants m,m1 ≥ 0,m +m1 < l2−M
2 such that

α({ f (x, t,un(u, t),un(x, t − τ))) +Mun(x, t − τ)} ≤ mα({un(x, t)}) +m1α({un(x, t − τ)})

for any t ∈ R and monotonous sequence {un} ⊂ [0,w] hold, then Eq.(4.1) has minimal and maximal positive ω-
periodic solution u,u between 0 and w, which can be obtained by monotone iterative sequences starting from 0 and w,
respectively.

Proof. Let u(t) = u(·, t), and f̃ (t,u(t),u(t − τ)) = f (·, t,u(·, t − τ)), then the periodic problem (4.1) can be
reformulated as the abstract Eq. (1.1) in E. Condition (F0) implies that v0 ≡ 0 and w0 = w(x, t) are the
lower and upper solutions of the problem (1.1) with v0 ≤ w0. From the assumptions of function f and the
conditions (F1) and (F2), it is easy to see that the conditions of Theorem 3.1 hold. By Theorem 3.1, the
periodic problem (4.1) has minimal and maximal ω-periodic solution, between v0 and w0, which can be
obtained by monotone iterative sequences starting from v0 and w0, respectively. The positivity is clear. This
completes the proof of Theorem.
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