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Abstract. Applications of Fréchet derivative emerge in the sensitivity analysis of matrix functions. Our
work extends the generalized complex step approximation using the complex computation f (A + eiθhE) as
a tool to matrix case, and combines it with finite difference formula to estimate the Fréchet derivative. We
provide numerical results for the approximation to the first and the second order Fréchet derivative of the
matrix exponential and matrix square root.

1. Introduction

Matrix functions such as matrix square root, matrix exponential, matrix logarithm and matrix sign
functions are mappings from a set of matrices onto a set of matrices f : Cn×n

→ Cn×n. They play an important
role in a variety of applications such as the solution of fractional partial differential equations [11], quantum
graphs [9], network analysis [10, 15, 24], exponential integrators [21] and computer animation [32]. In
the computation of matrix functions A is subject to small perturbations where we can measure the effect
of these perturbations by condition numbers. Since we can express the condition number by the Fréchet
derivative we are interested in its computation. In addition to the sensitivity analysis the Fréchet derivative
has applications in image reconstruction in tomography [31], the computation of choice probabilities [2],
the analysis of carcinoma treatment [16], computing the matrix geometric mean and Karcher mean [22].
Second order Fréchet derivative is used in the extension of iterative methods to solve a nonlinear scalar
equation to Banach spaces [8]. There are numerical algorithms evaluating the Fréchet derivative for the
exponential [3, 23], logarithm [6], fractional power [12, 19]. Noferini gave an explicit expression for the
Fréchet derivative of generalized matrix functions [30] by using Daleckiǐ-Kreǐn formula. Computation of
higher order Fréchet derivatives was proposed in [20], in which the kth order Fréchet derivative and a
Kronecker form of the kth Fréchet derivative cost O(8kn3) and O(8kn3+2k), respectively.

Approximation to the derivatives of f (x) using the complex arithmetic as a tool in scalar case was first
introduced in [28, 29]. Trapp also compared the complex step (CS) approximation to the central difference
formula in his work [33]. The complex step approach for the computation of higher order derivatives was
given by [1, 25–27]. For the matrix case, our aim in this work is to extend the generalized complex step
approximation using the formula f (A + eiθhE) to the computation of the first and second order Fréchet
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derivative of matrix functions and compare the approximations for different choice of θ values. In matrix
case for θ = π/2, the method was applied to approximate the first order Fréchet derivatives of matrix
functions by Al-Mohy and Higham [5]. Higher order Fréchet derivatives are estimated by using the
complex step approximation and mixed derivative in [7] with an efficient computation. We approximate
the first Fréchet derivative using the imaginary parts of f (A + eiθhE) and test approaches for different θ
values for the matrix exponential and the matrix square root. We also combine the method with finite
difference formula to approximate the second order Fréchet derivative.

The paper is organized as follows. Section 2 reviews the first and the higher order Fréchet derivative
of matrix functions and its relation to the condition number. Section 3 gives the generalized complex
step approximation for the scalar and matrix cases. We also establish our main contribution extending
the generalized complex step approximation to the higher order Fréchet derivatives of matrix functions
with the approximation order and the computational cost for different choice of θ. Section 4 presents the
numerical tests and provides results for the first and the second Fréchet derivative of the matrix exponential
and the matrix square root. The final section gives the concluding remarks of our work.

2. Higher order Fréchet derivative

The Fréchet derivative of f at A is a linear map L f : Cn×n
→ Cn×n such that

∥ f (A + E) − f (A) − L f (A,E)∥ = o(∥E∥) (1)

for all E ∈ Cn×n. Applying the vec operator to L f (A,E) gives

vec(L f (A,E)) = K f (A)vec(E), (2)

where K f (A) ∈ Cn2
×n2

is called the Kronecker form of the Fréchet derivative and the vec operator stacks the
columns of a matrix into one column vector. The absolute condition number of f (A) is given by

cond( f ,A) = lim
ϵ→0

sup
∥E∥≤ϵ

∥ f (A + E) − f (A)∥
ϵ

, (3)

where ∥ · ∥ is any matrix norm. The condition number (3) can be expressed in terms of the norms of the
Fréchet derivative.

cond( f ,A) = max
E,0

∥L f (A,E)∥
∥E∥

.

When the Fréchet derivative of f at A exists, it is unique. In that case we have that [17, Thm. 3.1]

cond( f ,A) = ∥L f (A)∥.

If we specialize to the Frobenius norm we obtain

cond( f ,A) = max
E,0

∥L f (A,E)∥F
∥E∥F

= max
E,0

∥vec(L f (A,E))∥2
∥vec(E)∥2

= ∥K f (A)∥2,

where we use the fact that for A ∈ Cn×n, ∥A∥F = ∥vec(A)∥2.
The kth order Fréchet derivative of f : Cn×n

→ Cn×n at A ∈ Cn×n in the direction matrices Ei ∈ Cn×n,
i = 1 : k, is defined as the unique multilinear operator L(k)

f (A) that satisfies

∥L(k−1)
f (A + Ek,E1, · · · ,Ek−1)−L(k−1)

f (A,E1, · · · ,Ek−1) − L(k)
f (A,E1, · · · ,Ek)∥ = o(∥Ek∥), (4)

where L(0)
f (A) = f (A) and L(1)

f (A,E1) is the first order Fréchet derivative. For E = E j, j = 1 : k, we denote

the kth Fréchet derivative of f at E by L(k)
f (A,E); that is, L(k)

f (A,E) = L(k)
f (A,E1,E2, · · · ,Ek). For simplicity let

Ek denote the k-tuple (E1,E2, · · · ,Ek) regardless of the order of Ek since the multilinear operator L(k)
f (A, ·) is

symmetric. For the monomial Xr, where r is any nonnegative integer, write a recurrence for L(k)
xr (A,Ek).
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Lemma 2.1 ([7, Lem. 2.1]). The kth Fréchet derivative of Xr is given by

L(k)
xr (A,E1,E2, · · · ,Ek) = AL(k)

xr−1 (A,E1,E2, · · · ,Ek) +
k∑

j=1

E jL
(k−1)
xr−1 (A,E1, · · · ,E j−1,E j+1, · · · ,Ek) (5)

with L(k)
xr (A,E1,E2, · · · ,Ek) = 0 if k > r.

To test our approximation we use the following theorem to compute the ‘exact’ first and second order
Fréchet derivatives.

Theorem 2.2 ([20, Thm. 3.5]). Let A ∈ Cn×n whose largest Jordan block is of size p and whose spectrum lies in an
open subsetD ⊂ C. Let f : D→ C be 2kp − 1 times continuously differentiable on an openD. Then the kth Fréchet
derivative L(k)

f (A) exists and L(k)
f (A,Ek) is continuous in A and E1,E2, . . . ,Ek ∈ C

n×n. Moreover the upper right n×n

block of f (Xk) is L(k)
f (A,Ek). The matrix Xk is defined recursively

Xk = I2 ⊗ Xk−1 +

[
0 1
0 0

]
⊗ I2k−1 ⊗ Ek, X0 = A, (6)

where the symbol ⊗ denotes the Kronecker product [17, Chap. 12] and Im denotes the m ×m identity matrix.

3. Generalized complex step approximation

3.1. Scalar case

We review the generalized complex step approximation [25] to estimate the first and the second order
derivatives and extend it to the higher order derivatives. If f (x) is a real function with real variables and is
analytic then it can be expanded in a Taylor series

f (x + ih) = f (x) + ih f ′(x) − h2 f ′′ (x)
2!
− ih3 f (3)(x)

3!
+ · · · . (7)

In Taylor series expansion Im( f (x+ ih))/h and Re( f (x+ ih)) give an approximation to f ′(x) and f (x), respec-
tively with an approximation error O(h2). The approximation to f ′(x) using the imaginary part avoids the
subtractive cancellation. Numerical results obtained by numerical algorithm design in metrology showed
that the accuracy is obtained even with h = 10−100 [13].

The following theorem states the generalized complex step approximation for the scalar case.

Theorem 3.1. Let f : D ⊂ C → C be an analytic function in an open subset D. Assume that x, h ∈ R. We also
assume that x + eiθh ∈ D. Then we approximate the kth order derivative of a function by the imaginary part of the
(k − 1)th order of derivative.

f (k)(x) =
Im
(

f (k−1)(x + eiθh)
)

h sinθ
+O(h2) (8)

f (k−1)(x) = Re
(

f (k−1)(x + eiθh)
)
+O(h2). (9)

Proof. Taking eiθ instead of i in the power series expansion (7) and differentiating repeatedly lead to

f (k−1)(x + eiθh) = f (k−1)(x) + eiθh f (k)(x) +
(eiθh)2

2!
f (k+1)(x) + · · · .

We derive equations (8) and (9) by equaling the imaginary and the real parts of f (k−1)(x+eiθh), respectively.
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For the first and the second order derivative approximations we can obtain the followings.

f ′(x) ≈
Im
[

f (x + eiθh)
]

h sinθ

f ′′(x) ≈
Im
[

f ′(x + eiθh)
]

h sinθ

In the next theorem we obtain an alternative form of the generalized complex step approximation for
the scalar case.

Theorem 3.2. Let f : D ⊂ C → C be an analytic function in an open subset D. Assume that x, h ∈ R. We also
assume that x + eiθh ∈ D. Then we obtain the followings.

f (k−1)(x + eiθh) − f (k−1)(x + ei(θ+π)h) = 2
∞∑
j=1

(eiθh)2 j−1

(2 j − 1)!
f (k+2 j−2)(x) (10)

f (k−1)(x + eiθh) + f (k−1)(x + ei(θ+π)h) = 2
∞∑
j=0

(eiθh)2 j

(2 j)!
f (k+2 j)(x) (11)

Proof. Power series of f (x + eiθh) and f (x + ei(θ+π)h) are given as follows.

f (x + eiθh) = f (x) + eiθh f ′(x) +
(eiθ)2

2!
h2 f

′′

(x) +
(eiθ)3

3!
h3 f (3)(x) + · · ·

f (x + ei(θ+π)h) = f (x) − eiθh f ′(x) +
(eiθ)2

2!
h2 f

′′

(x) −
(eiθ)3

3!
h3 f (3)(x) + · · ·

Differentiating both sides of the power series repeatedly and then subtracting and adding these equations
give respectively equations (10) and (11).

For the first and the second derivative approximations we can deduce that

f ′(x) ≈
Im
[

f (x + eiθh) − f (x + ei(θ+π)h)
]

2h sinθ

f ′′(x) ≈
Im
[

f (x + eiθh) + f (x + ei(θ+π)h)
]

h2 sinθ

We should note that in the alternative form the approximations are supposed to subtractive error.

3.2. Matrix case
Assume that A and Ei, i = 1 : k, are real matrices and f is a real function. Replacing the matrix Ek in the

definition of the kth Fréchet derivative (4) by eiθhEk, where h is a positive real number, and exploiting the
linearity of the operator L(k)

f (A), we have

L(k−1)
f (A + eiθhEk,Ek−1) − L(k−1)

f (A,Ek−1) − eiθhL(k)
f (A,Ek) = o(h).

Since L(k)
f (A,Ek) is real, we obtain the CS approximation of L(k)

f (A, ·) via L(k−1)
f (A, ·) as

L(k)
f (A,Ek) = lim

h→0

Im
(
L(k−1)

f (A + eiθhEk,Ek−1)
)

h sinθ
. (12)
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For a sufficiently small scalar h this yields

L(k−1)
f (A,Ek−1) ≈ Re

(
L(k−1)

f (A + eiθhEk,Ek−1)
)
.

With stronger assumptions on f , the next theorem reveals the rate of convergence of the approximation as
h goes to zero.

Theorem 3.3. Let f : D ⊂ C → C be an analytic function in an open subset D containing the spectrum of A.
Assume that A,Ei ∈ Rn×n, i = 1 : k, f is real-valued at real arguments. Let h be a sufficiently small real number such
that the spectrum of A + eiθhEk lies inD. Then we get

L(k)
f (A,Ek) =

Im
(
L(k−1)

f (A + eiθhEk,Ek−1)
)

h sinθ
+O(h2) (13)

L(k−1)
f (A,Ek−1) = Re

(
L(k−1)

f (A + eiθhEk,Ek−1)
)
+O(h2). (14)

Proof. The analyticity of f on D implies that f has a power series expansion there. Thus in view of [5,
Thm. 3.1], we have

f (A + eiθhEk) =

∞∑
j=0

(eiθh) j

j!
L( j)

f (A,Ek) (15)

= f (A) + eiθhL f (A,Ek) +
(eiθh)2

2
L(2)

f (A,E(2)
k ) +O(h3).

Here E( j)
k denotes the j-tuple (Ek,Ek, . . . ,Ek). Since the power series converges uniformly to f (A) on D, we

can repeatedly Fréchet differentiate the series (15) term by term in the directions E1,E2, . . . ,Ek−1 and obtain

L(k−1)
f (A + eiθhEk,Ek−1) = L(k−1)

f (A,Ek−1) +
∞∑
j=1

(eiθh) j

j!
L( j+k−1)

f (A,E( j)
k ,Ek−1)

= L(k−1)
f (A,Ek−1) + eiθhL(k)

f (A,Ek) +
(eiθh)2

2
L(k+1)

f (A,E(2)
k−1,Ek−1)

+O(h3)

and (13) and (14) follow immediately by equaling the imaginary and real parts of the series, respectively.

The following theorem extends Theorem 3.2 to the higher order Fréchet derivative of matrix functions.

Theorem 3.4. Let f : D ⊂ C→ C be an analytic function in an open subsetD obtaining the spectrum of A. Assume
that A,Ei ∈ Rn×n, i = 1 : k, f is real-valued at real arguments. Let h be a sufficiently small real number such that the
spectrum of A + eiθhEk and A + ei(θ+π)hEk lie inD. Then we obtain

L(k−1)
f (A + eiθhEk,Ek−1) − L(k−1)

f (A + ei(θ+π)hEk,Ek−1) = 2
∞∑
j=1

(eiθh)2 j−1

(2 j − 1)!
L(k+2 j−2)

f (A,E(2 j−2)
k ,Ek)

L(k)
f (A + eiθhEk+1,Ek) + L(k)

f (A + ei(θ+π)hEk+1,Ek) = 2
∞∑
j=0

(eiθh)2 j

(2 j)!
L(k+2 j)

f (A,E(2 j)
k ,Ek).

Proof. Since the function f is analytic onDwe can write the power series expansions.

f (A + eiθhEk) = f (A) + eiθhL(1)
f (A,Ek) +

(eiθ)2

2!
h2L(2)

f (A,E(2)
k ) +

(eiθ)3

3!
h3L(3)

f (A,E(3)
k ) + · · ·

f (A + ei(θ+π)hEk) = f (A) − eiθhL(1)
f (A,Ek) +

(eiθ)2

2!
h2L(2)

f (A,E(2)
k ) −

(eiθ)3

3!
h3L(3)

f (A,E(3)
k ) + · · · .

Taking the Fréchet derivative of power series expansions repeatedly and then subtracting/adding them,
respectively yields the given equalities.
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3.3. Approximation to the first order Fréchet derivative

For the approximation to the first order Fréchet derivative we use equation (13)

L̂(1)
f (A,E1) = lim

h→0

Im
(

f (A + eiθhE1)
)

h sinθ
(16)

with different θ values. Taking θ = π/4, θ = π/3 and θ = π/2 give the following approximations, which
require one matrix function evaluation.

θ = π/4, L̂(1)
f (A,E1) =

2 Im
(

f (A + i1/2hE1)
)

√
2h

+O(h)

θ = π/3, L̂(1)
f (A,E1) =

2 Im
(

f (A + i2/3hE1)
)

√
3h

+O(h)

θ = π/2, L̂(1)
f (A,E1) =

Im
(

f (A + ihE1)
)

h
+O(h2)

The first equality in Theorem 3.4 leads to

L̄(1)
f (A,E1) = lim

h→0

Im
(

f (A + eiθhE1) − f (A − eiθhE1)
)

2h sinθ
.

Substituting θ = π/4, θ = π/3 and θ = π/2 gives the following approximations.

θ = π/4, L̄(1)
f (A,E1) =

Im
(

f (A + i1/2hE1) − f (A + i5/2hE1)
)

√
2h

+O(h2)

θ = π/3, L̄(1)
f (A,E1) =

Im
(

f (A + i2/3hE1) − f (A + i8/3hE1)
)

√
3h

+O(h4)

θ = π/2, L̄(1)
f (A,E1) =

Im
(

f (A + ihE1) − f (A − ihE1)
)

2h
+O(h2)

The estimation L̄(1)
f (A,E1) with θ = π/3 provides O(h4) approximation error but it requires two matrix

function evaluations.

Table 1: The approximation to the first order Fréchet derivative of f (A) in the direction E1 for different values of θ.

θ L̂(1)
f (A,E1) L̄(1)

f (A,E1)

π/4
2 Im

(
f (A + i1/2hE1)

)
√

2h

Im
(

f (A + i1/2hE1) − f (A + i5/2hE1)
)

√
2h

π/3
2 Im

(
f (A + i2/3hE1)

)
√

3h

Im
(

f (A + i2/3hE1) − f (A + i8/3hE1)
)

√
3h

π/2
Im
(

f (A + ihE1)
)

h
Im
(

f (A + ihE1) − f (A − ihE1)
)

2h
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3.4. Approximation to the second order Fréchet derivative

To approximate the second order Fréchet derivative L(2)
f (A,E2) we first take equation (13) with different

θ values.

θ = π/4, L̂(2)
f (A,E2) =

2 Im
(
L(1)

f (A + i1/2hE2,E1)
)

√
2h

+O(h)

θ = π/3, L̂(2)
f (A,E2) =

2 Im
(
L(1)

f (A + i2/3hE2,E1)
)

√
3h

+O(h)

θ = π/2, L̂(2)
f (A,E2) =

Im
(
L(1)

f (A + ihE2,E1)
)

h
+O(h2)

We combine the finite difference formula with the generalized complex step approximation (16) in the
following lemma.

Lemma 3.5. Suppose f , A, E1 and E2 satisfy the assumptions of Theorem 2.2. Then

L(2)
f (A,E2) = lim

(h1,h2)→(0,0)

Im
(

f (A + eiθh1E1 + h2E2) − f (A + eiθh1E1 − h2E2)
)

2h1h2 sinθ
. (17)

Proof. Using finite difference formula and (16), we obtain

L(2)
f (A,E2) =

L(1)
f (A + h2E2,E1) − L(1)

f (A − h2E2,E1)

2h2
+O(h2

2)

= h−1
2

 Im
(

f (A + eiθh1E1 + h2E2)
)

h1 sinθ
−

Im
(

f (A + eiθh1E1 − h2E2)
)

2h1 sinθ

 +O(h2
2)

= lim
(h1,h2)→(0,0)

Im
(

f (A + eiθh1E1 + h2E2) − f (A + eiθh1E1 − h2E2)
)

2h1h2 sinθ
.

Thus

L(2)
f (A,E2) ≈

Im
(

f (A + eiθh1E1 + h2E2) − f (A + eiθh1E1 − h2E2)
)

2h1h2 sinθ

for sufficiently small real scalars h1 and h2.

The parameter h1 can be chosen as small as desired. However, the parameter h2 is a finite difference step
and it has to be chosen carefully.

We obtain approximations to the second Fréchet derivative substituting θ = π/4, π/3 and π/2 into
equation (17).

θ = π/4, L̄(2)
f (A,E2) ≈

Im
(

f (A + i1/2h1E1 + h2E2) − f (A + i1/2h1E1 − h2E2)
)

√
2h1h2

θ = π/3, L̄(2)
f (A,E2) ≈

Im
(

f (A + i2/3h1E1 + h2E2) − f (A + i2/3h1E1 − h2E2)
)

√
3h1h2

θ = π/2, L̄(2)
f (A,E2) ≈

Im
(

f (A + ih1E1 + h2E2) − f (A + ih1E1 − h2E2)
)

2h1h2
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Table 2: The approximation to L(2)
f (A,E1,E2) for different values of θ.

θ L̂(2)
f (A,E2) L̄(2)

f (A,E2)

π/4
2 Im

(
L(1)

f (A + i1/2hE2,E1)
)

√
2h

Im
(

f (A + i1/2h1E1 + h2E2) − f (A + i1/2h1E1 − h2E2)
)

√
2h1h2

π/3
2 Im

(
L(1)

f (A + i2/3hE2,E1)
)

√
3h

Im
(

f (A + i2/3h1E1 + h2E2) − f (A + i2/3h1E1 − h2E2)
)

√
3h1h2

π/2
Im
(
L(1)

f (A + ihE2,E1)
)

h

Im
(

f (A + ih1E1 + h2E2) − f (A + ih1E1 − h2E2)
)

2h1h2

4. Numerical results

We will compare the approaches given in Table 1 and Table 2. We use MATLAB R2020b on a machine
with Core i7 to run the experiments. For the matrix exponential we take A = gallery(‘lesp’,10), and
take E1 and E2 to be random matrices of the same size. For the matrix square root we choose random 10×10
matrices with no eigenvalues on R−. The matrix functions f (X1) and f (X2) in equation (6) are evaluated
using [20, Alg. 3.6]. As stated in Theorem 2.2 the upper-right 10 × 10 block of f (X1) and f (X2) gives the
‘exact’ first and the second Fréchet derivative, respectively, namely,[

f (X1)
]

1n = L f (A,E1)
[

f (X2)
]

1n = L(2)
f (A,E1,E2).

We change h from 10−1 to 10−20 in the approximations and show the effect of the choice of h to the relative
error evaluated by

∥
[

f (Xk)
]

1n − L̃(k)
f (A,Ek)∥2

∥
[

f (Xk)
]

1n ∥2
, k = 1, 2

where L̃(k)
f (A,Ek) represents the approximated kth Fréchet derivative. The approximation L̃(k)

f (A,Ek) denotes

either L̂(k)
f (A,Ek) or L̄(k)

f (A,Ek), in which the matrix exponential and its first order Fréchet derivative are
computed by MATLAB expm function and expm frechet based on the algorithms of Al-Mohy and Higham
[4, Alg. 5.1] and [3, Alg. 6.4], respectively. In the approximations to evaluate the matrix square root we
use sqrtm MATLAB function based on the method [14] and its first order Fréchet derivative L f (A,E), is
the solution to the Sylvester equation, XL + LX = E with X = A1/2, that is solved by sylvsol from [18].
In the legend of the figure the subscript values 45, 60 and 90 refer to the θ values of π/4, π/3 and π/2,
respectively. Figure 1(a) and Figure 1(b) give the approximation to the first order Fréchet derivative L̃(1)

f

computed by L̂(1)
f (A,E1) and L̄(1)

f (A,E1) in the direction of E1 for the matrix exponential and the matrix square

root, respectively. Although computing L̄(1)
f (A,E1) for θ = π/3 is subject to subtractive error it gives better

approximation for large values of h. For small h all the approaches give the same accuracy for the matrix
exponential. In the matrix square root the best accuracy is obtained for h = 10−4 and θ = π/3.

The second experiment is presented in Figure 2 and Figure 3, in which the second order Fréchet derivative
L̃(2)

f (A,E2) of the matrix exponential and the square root are approximated by the formulas in Table 2 in
the direction of E2 = (E1,E2). In the top part of Figure 2 we fix h2 = 10−8 and take h1 = 10−r, r = 1 : 20.
It seems the accuracy is the same for h1 values smaller than 10−15 in L̂(2)

f (A,E2) approximations. For the

approximation L̄(2)
f (A,E2) the accuracy is the same for h1 smaller than 10−8. In the bottom part of Figure 2 we
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(a) Matrix exponential
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(b) Matrix square root

Figure 1: Relative error for the first order Fréchet derivative of matrix functions according to the change in h.



B. Arslan, A. H. Al-Mohy / Filomat 36:16 (2022), 5603–5614 5612

fix h1 = 10−16 and h2 = 10−r, r = 1 : 20. Obviously while the change in h2 does not effect the approximation
L̂(2)

f (A,E2) the relative error of L̄(2)
f (A,E2) grows rapidly with the decrease in h2.

In the top part of Figure 3 we again fix h2 = 10−8 and choose h1 = 10−r, r = 1 : 20. The approximations
using the first order Fréchet derivative with the complex step approximation provide better accuracy. For
around h1 = 10−8 the approximation L̂(2)

f (A,E2) give the same results for different θ values. As seen from
the bottom part of Figure 3, where h1 = 10−8 is fixed the drop in finite difference parameter h2 destroys
the accuracy in L̄(2)

f (A,E2). It is apparent from the tables that since the approximation L̂(2)
f (A,E2) does not

depend on h2 the change in h2 does not affect it in both Figure 2 and Figure 3.
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Figure 2: Relative error for the second order Fréchet derivative of matrix exponential according to the change in h1 and h2.

5. Concluding remarks

Theoretical analysis for the generalized complex step approximation using the complex computation
f (A + eiθhE) to approximate the first and the second order Fréchet derivative of matrix exponential and
matrix square root is presented. Generalized complex step approximation is also combined with the finite
difference formula. For different θ values the computations are compared in terms of the accuracy and the
computational cost. Our findings reveal that the approximation L̄(1)

f (A,E1) that combines the complex step
approximation with the finite difference method to the first order Fréchet derivative gives better accuracy
for θ = π/3. In the estimation of the second order Fréchet derivative using the generalized complex
step approximation with the first order Fréchet derivative provides better accuracy since the error in finite
difference formula combined with the generalized complex step approximation is magnified by the decrease
of the finite difference step h2.
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Figure 3: Relative error for the second order Fréchet derivative of matrix square root according to the change in h1 and h2.
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