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Abstract. In this paper, we study the properties of Gerstewitz nonlinear scalar functional with respect to co-
radiant set and radiant set in real linear space. With the help of nonconvex separation theorem with respect
to co-radiant set, we first obtain that Gerstewitz nonlinear scalar functional is a special co-radiant(radiant)
functional when the corresponding set is a co-radiant(radiant) set. Based on the subadditivity property of
this functional with respect to the convex co-radiant set, we calculate its Fenchel(approximate) subdiffer-
ential. As the applications, we derive the optimality conditions for the approximate solutions with respect
to co-radiant set of vector optimization problem. We also state that this special functional can be used as a
coherent measure in the portfolio problem.

1. Introduction

Let Y be a real linear space, the classical Minkowski functional of an absorbing set A ⊂ Y is defined as

PA(y) = inf{t > 0 : y ∈ tA}.

The convexity of A can guarantee the sublinearity property of this functional. If A is a star set , it also has
the following separation result.

{y ∈ Y : PA(y) < 1} ⊂ A ⊂ {y ∈ Y : PA(y) ≤ 1}.

If Y is a topological vector space and A ⊂ Y is a closed set with nonempty interiors, then the closure of A
equal to the right set, and the interior of A equal to the left set. Especially, when Y is a topological vector
space, D ⊂ Y is a closed convex cone with nonempty interior(that is, the topology interior intD , ∅). For
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e ∈ intD, A = {e} − D is a absorbing convex set and PA(y) = inf{t > 0 : y ∈ te −D}. From the separation
results, it is easy to obtain that

PA(y) ≤ λ⇐⇒ y ∈ λe −D, ∀λ > 0.

Based on the Minkowski functional and the above properties, Gerstewitz and Iwanow [1] first introduced
the following Gerstewitz nonlinear scalar functional

φq,D(y) = inf{t ∈ R : y ∈ tq −D},

where D ⊂ Y be a nonempty subset, q ∈ Y and inf ∅ = +∞.
Since then, many scholars began to study the properties of Gerstewitz nonlinear scalar functional(see

[2 − 11]). Gerth et al [2] gave the separation theorem under non-convex sets in linear topological spaces
and obtain the scalarazation results for weak (proper) efficient solutions. Gpfert et al [3] summarized
many properties and non-convex separation theorems for Gerstewitz non-linear scalar functions. Tammer
[10] introduced the subdifferential and conjugate functions of nonlinear scalar functions in the convex
sense, and points out that this function can theoretically be used as a risk measure function in economy.
At then, this kind of nonlinear scalar function was applied to the nonlinear scalarization methods for
vector optimization problems([12 − 23]). For example, Gutiérrez [12] derived the sufficient and necessary
conditions for approximate effective solutions by nonlinear scalar functions. Bao [18] established new
necessary conditions for pareto minimal in the case where the ordering cone has an empty interior. In
the meantime, the differential form of nonlinear scalar function is also concerned. Dutta [22] gave the
optimality conditions for vector optimization problems by using the nonconvex separation method and the
concept of subdifferential, and gives the concrete subdifferential of φwhich is a proper convex function.

Inspired by the above literature, we study the properties of the nonlinear scalar function based on co-
radiant set and its approximate subdifferential form, and give the optimality conditions of the optimization
problem with approximate normal cone. Finally, it is pointed out that the scalar function can be used
for risk measurement. The structure of this paper is as follows: Section 2, the basic notations, concepts
and results will be introduced. In section 3, the main properties of the nonlinear scalar functional with
respect to the co-radiant set are studied in linear spaces, its subdifferential(approximate subdifferential) is
also investigated in this part. Through the functional, in section 4 we characterize ε−efficient solutions,
involving its necessary conditions, mainly by the approximate normal cone and the subdifferential of
the scalarization function in Asplund spaces. The optimality conditions of approximate solutions in vector
optimization problems are obtained by the ”calculus rules”. In section 5, We briefly introduce the theoretical
application of scalar function in risk measurement.

2. Preliminaries

Throughout this paper, Y denotes a real linear space. Y∗ is the algebraic dual space of Y, which is defined
as the set of all linear mappings from Y into R. A function ⟨x, x∗⟩ = ⟨x∗, x⟩ is a bilinear functional on Y × Y∗.
Let A be a nonempty subset of Y, the cone generated by A is the set coneA :=

⋃
λ≥0 λA. A is said to be a cone

if A = coneA. A is said to a radiant set if for any x ∈ A and λ ∈ (0, 1), λx ∈ A. It is said to a co-radiant set if
for any x ∈ A and λ ≥ 1, λx ∈ A. A is proper if it is nonempty and A , Y, and it is pointed if A ∩ (−A) ⊆ {0}.
The positive polar cone of A denoted by

A+ = {d ∈ Y∗ : ⟨d, c⟩ ⩾ 0,∀c ∈ A}.

The strict positive polar cone of A denoted by

As+ = {d ∈ Y∗ : ⟨d, c⟩ > 0,∀c ∈ A\{0}}.

Let A be a convex set and ε ≥ 0, the normal cone of A and ε-normal cone are defined as

N(x̄,A) = {x∗ ∈ Y∗ : ⟨x∗, x − x̄⟩ ≤ 0,∀x ∈ A}.
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Nε(x̄,A) = {x∗ ∈ Y∗ : ⟨x∗, x − x̄⟩ ≤ ε, ∀x ∈ A}.

Let aff(A) and span(A) denote the affine hull and linear hull of A, respectively. core(A), icr(A) and vcl(A)
stand for the algebraic interior, the relative algebraic interior and the vector closure of A, which are defined
as

core(A) = {y ∈ Y : ∀v ∈ Y,∃λ > 0 s.t. y + [0, λ]v ⊆ A},
icr(A) = {y ∈ A : ∀h ∈ affA − y,∃δ > 0, ∀t ∈ [0, δ], y + th ∈ A},
vcl(A) = {y ∈ Y : ∃v ∈ Y, s.t. ∀λ > 0,∃λ

′

∈ [0, λ], y + λ′v ∈ A}
= {y ∈ Y : ∃v ∈ Y, λn > 0, λn → 0 s.t. y + λnv ∈ A,∀n ∈ N}.

Moreover, for a given q ∈ Y, we denote vclqA the q−vector of closure of A (see [12]), which is defined as

vclqA = {y ∈ Y : ∀λ > 0,∃λ
′

∈ [0, λ], y + λ
′

q ∈ A}.

Let A be a nonempty set of Y, q ∈ Y\{0}. The nonlinear scalar functional φq,A(y) : Y→ R̄ is defined as

φq,A(y) =
{

+∞ i f y < Rq − A
in f {t ∈ R : y ∈ tq − A} otherwise. (1)

For a co-radiant set C ⊆ Y and ε > 0, the sets C(ε) and C(0) are defined as: C(ε) = εC and C(0) =
⋃
ε>0

C(ε).

The following lemma states some properties of the co-radiant set.

Lemma 2.1. Let C ⊆ Y be a proper co-radiant pointed set with nonempty relative algebraic interior, then
(i) C(ε) is a proper pointed co-radiant set, ∀ε > 0.
(ii) C(ε2) ⊆ C(ε1), ∀ε1, ε2 > 0, 0 < ε1 ≤ ε2.
(iii) If C is a convex set, then for any ε ≥ 0, C(0) + C(ε) ⊆ C(ε) and icrC(0) + vclC(ε) ⊆ vclC(ε).

Proof. The proofs of (i), (ii) and C(0) + C(ε) ⊆ C(ε) were given in [23].
From C(0) + C(ε) ⊆ C(ε) and the definition of the vector closure, we can easy to prove that

C(0) + vclC(ε) ⊆ vclC(ε).

Which implies
icrC(0) + vclC(ε) ⊆ vclC(ε).

Recently, Gutiérrez et al. established the following separation theorem.

Lemma 2.2. (Theorem 4, [12]) If q ∈ Y \ {0} and C is a proper subset of Y, then the following equations hold:
(i) {y ∈ Y : φq,C(y) < 0} = (−∞, 0)q − vclqC.
(ii) {y ∈ Y : φq,C(y) ≤ 0} = (−∞, 0]q − vclqC.

3. The properties of Gerstewitz nonlinear scalar functional in real linear spaces

In this section, we investigate the properties of Gerstewitz nonlinear scalar functional with respect to
co-radiant set and radiant set. First, we derive several properties of the co-radiant set.

Lemma 3.1. Let C be a co-radiant set with nonempty relative algebraic interior, then we have the following properties.
(i) For any y ∈ C, aff(C) = aff(C) − y or equivalently aff(C) = span(C) = aff(C − C) = span(C − C) =

span(vclC − vclC).
(ii) icr(C) ⊆ icrC(0).
(iii) If C is a convex set and q ∈ icr(C), then vclqC = vcl(C).
Moreover,

(−∞, 0]q − vclq(C) = −vcl(C), (2)
(−∞, 0)q − vclq(C) ⊆ −icr(C). (3)
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Proof. (i) We only need to prove 0 ∈ affC. Indeed, take y ∈ C, then 3y ∈ C, since C is a co-radiant set. Hence,
0 = 3

2 y + (− 1
2 )3y ∈ affC.

And span(C − C) = span(vclC − vclC) have been proved in [14].
(ii) We first prove aff(C) = affC(0). From (i), we have C(0) ⊆ aff(C) and affC(0) ⊆ aff(C). The converse

conclusion is obvious.
From this result, we can easy to see that icr(C) ⊆ icrC(0).
(iii) From the definition, we only need to prove vclC ⊆ vclqC. Take y ∈ vclC, then there exist v ∈ Y and

tn ∈ R with tn > 0 and tn → 0 such that y + tnv ∈ C.
It is easy to see that v ∈ aff(C). Since q ∈ icr(C), for the vector v, there exists α > 0 such that q − αv ∈ C.

Put q̄ = q − αv, then

y + tnv = y + tn
q − q̄
α
∈ C.

From Lemma 2.1(iii), we have

y +
tn

α
q ∈

tn

α
q̄ + C ⊆ C(0) + C ⊆ C.

Note that tn
α q→ 0, we have y ∈ vclqC. Thus, vcl(C) = vclqC.

Moreover, since C is a convex co-radiant set and q ∈ icr(C), , for any λ > 0,we have

λq ∈ λicr(C) = icr((λC)) ⊆ icr((λC)(0)) = icr(C(0)).

From (ii) and Lemma 2.1(iii), we have

(−∞, 0]q − vclq(C) = (−∞, 0]q − vcl(C) ⊆ (−icrC(0) ∪ {0}) − vcl(C) ⊆ −vcl(C).

And it is obvious that −vcl(C) ⊆ (−∞, 0]q − vcl(C), hence (2) holds.
Now we prove (3). Let k1 ∈ (−∞, 0)q − vclq(C), we have k1 ∈ (−∞, 0)q − vcl(C), then there exist k′ ∈

vclq(C) = vcl(C) and α > 0 such that k1 = −αq − k′. Since q ∈ icr(C), we have for any h ∈ aff(C) − q, there
exists δ > 0 such that q + th ∈ C for any t ∈ [0, δ]. Thus

−k1 + αth = αq + k′ + αth = k′ + α(q + th) ⊆ vcl(C) + αC ⊆ vclC.

Which means that k1 ∈ −icr(vclC) = −icr(C).

Similar to the proof of Lemma 2.9 in Qiu [8], we can get the following nonconvex separation theorem.

Lemma 3.2. Let D ⊆ Y be a proper convex co-radiant set with nonempty relative algebraic interior and q ∈ icrD,
then for any λ ∈ R the following equations hold.

(i) {y ∈ Y : φq,D(y) < λ} = λq − icrD.
(ii) {y ∈ Y : φq,D(y) ≤ λ} = λq − vclD.
(iii) {y ∈ Y : φq,D(y) = λ} = λq − ibdD.

Remark 3.1. (i) When D is a convex cone, Lemma 3.2 will reduce to Theorem 3.1 in [4].
(ii) Qiu [8] established the same result with Lemma 3.1(iii), when D is a convex cone and q ∈ core(D)(see

Proposition 2.3). Notice that, core(D) ⊆ icr(D). And for several convex set icr(D) may be nonempty when
core(D) = ∅. For example, if Y = R2, consider A = {(x1, x2) ∈ R2 : x1 = 0, x2 ≥ 0}.Moreover, a cone is a co-radiant
set, but the converse may not be true.

(iii) We have proved the condition (0,∞)q + vcl(D) ⊆ icr(D) in Lemma 3.1, it satisfies the assumption B in [7],
we still can get the result in Lemma 3.2.

Theorem 3.1. Consider ∅ , A ⊆ Y and q ∈ Y \ {0}. We have the following properties.
(i) If vclqA is a co-radiant set, then φq,A is a co-radiant function, that is

φq,A(λy) ≤ λφq,A(y), ∀y ∈ Y, λ ≥ 1, (4)
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or equivalently,
φq,A(λy) ≥ λφq,A(y), ∀y ∈ Y, λ ∈ (0, 1].

Moreover, if

vclq(A) + (0,∞)q ⊆ vclq(A), (5)

then the converse result of (i) holds.
(ii) φq,A is a co-radiant function if and only if the epigraph epiφq,A is a co-radiant set.
(iii) If A is a convex co-radiant set, then φq,A is a subadditive function.

Proof. (i) Since φq,A = φq,vclqA(see Lemma 3 in [12]), we only need to prove φq,vclqA is a co-radiant function.
For any λ ≥ 1 and y ∈ Y, if φq,vclqA(λy) < +∞, then the definition of φq,vclqA implies that

φq,vclqA(λy) = inf {s ∈ R : λy ∈ sq − vclqA} = inf {s ∈ R : y ∈
s
λ

q −
1
λ

vclqA}

= λ inf {
s
λ
∈ R : y ∈

s
λ

q −
1
λ

vclqA}. (6)

Since vclqA is a co-radiant set, for any λ ≥ 1, we have vclqA ⊆ 1
λvclqA. Hence,

φq,A(λy) = φq,vclqA(λy) ≤ λ inf {s ∈ R : y ∈ sq − vclqA} = λφq,vclqA(y) = λφq,A(y).

If φq,vclqA(λy) = +∞,then the definition of φq,vclqA implies that λy < Rq − vclqA. Since λ ≥ 1 and vclqA is
a co-radiant set, y < Rq − vclqA. In this case, we have

φq,A(λy) = λφq,A(y) = +∞.

If λ ∈ (0, 1], the proof is omitted.
Conversely, assume that (4) holds. Suppose to the contradiction that vclqA is not a co-radiant set, then

there exist λ > 1 and y ∈ vclqA such that λy < vclqA. Since condition (5) is equivalent to

{y ∈ Y : φq,A(y) ≤ 0} = −vclqA,

λy < vclqA implies φq,A(−λy) > 0 and λφq,A(−y) ≤ 0. Which contradicts with (4). Therefore, the converse
result of (i) holds.

(ii) Take any (x, α) ∈ epiφq,A, then for any λ > 1, the inequality (4) implies φq,A(λx) ≤ λφq,A(x) ≤ λα.
Thus, (λx, λα) ∈ epiφq,A, and epiφq,A is a co-radiant set.

Conversely, since (x, φq,A(x)) ∈ epiφq,A, if epiφq,A is a co-radiant set, then for any λ > 1, we have
(λx, λφq,A(x)) ∈ epiφq,A, which implies (4) holds. And the proof is completed.

(iii) For any y1, y2 ∈ Y, we have

φq,A(y1) = inf{s ∈ R : y1 ∈ sq − A}, φq,A(y2) = inf{s ∈ R : y2 ∈ sq − A}.

According to the definition of infimum, for any ε > 0, we have φq,A(y1) > s1 − ε, φq,A(y2) > s2 − ε.
Since A is a convex co-radiant set, y1 + y2 ∈ (s1 + s2)q − 2A ⊆ (s1 + s2)q − A, that is

φq,A(y1 + y2) ≤ s1 + s2 < φq,A(y1) + φq,A(y2) + 2ε.

For the randomicity of ε,

φq,A(y1 + y2) ≤ φq,A(y1) + φq,A(y2).



Y. Gao, L. Tang / Filomat 36:16 (2022), 5615–5629 5620

Remark 3.2. (i) For λ < 1, φq,A(λy) ≤ λφq,A(y) may not be true. See Example 3.2.
(ii) In [24], Rubinov considered a special abstract convex function, which is called ICR function, (that is, increasing

function f defined on Y such that f (αx) ≥ α f (x) for all x ∈ Y and α ∈ [0, 1].) The properties of this special function
has been studied in recent years(see [25-27]).

According to the Theorem 8 in [12], we have that φq,A is A-nondecreasing if and only if

vclqA + A ⊆ [0,+∞)q + vclqA. (7)

Hence, it is easy to see that if A is a convex co-radiant set, then φq,A is A-nondecreasing convex functional. And
even A is not a convex set, (7) may be hold. See the following examples.

Example 3.1. (i) Let D ⊆ Y be a proper pointed convex cone with nonempty relative algebraic interior, q ∈ icrD,
A = D ∩ Y \ (q − D). Then, it is easy to check that A is a co-radiant set, and A satisfies (7). Therefore, φq,A is
A-nondecreasing. But, A may not be a convex set.

(ii) Let Y = R2 and A = {(x, y) ∈ R2 : x2 + y2
≥ 1, x ≥ 0, y ≥ 0}, then A is a co-radiant set and the inclusion (4)

holds. Thus, φq,A is a ICR function. But we note that A is not a convex set and it follows from Lemma 2.1 that φq,A
is not a convex function.

Example 3.2. Let Y = R2,A = {(x, y) ∈ R2 : x + y ≥ 1, x ≥ 0, y ≥ 0}, and q = (1, 2)T, y = (−3,−2)T, λ = 1
3 . It is

easy to check that φq,A(λy) = − 2
9 > −

1
3 = λφq,A(y). If λ = 3, q = (1, 2)T, y = (−1,−2)T, we have φq,A(λy) = − 8

3 <
−2 = λφq,A(y).

Theorem 3.2. Let A be a nonempty subset of Y and q ∈ Y \ {0}. If vclq(A) + (0,∞)q ⊆ vclq(A), the following
statements are equivalent.

(i) vclA is a radiant set.
(ii) φq,A is radiant function, that is

φq,A(λy) ≤ λφq,A(y), ∀y ∈ Y, λ ∈ [0, 1]. (8)

(iii) The epigraph epiφq,A is radiant set.

Proof. Since vclA is a radiant set, for any λ ∈ (0, 1) we have vclA ⊆ 1
λvclA. Hence, it is analogous to the

proof of Theorem 3.1, we can complete the proof.

From Theorem 3.1 we know that φq,A with respect to co-radiant set may not a positively homogeneous
functional.

First, we consider the so-called ICR functions. Let φq,A be a function defined on the co-radiant set A ⊆ Y.
A function φ̂q,A(x, t) defined on Y∗, which is defined as

Y∗ = {(x, t) ∈ Y × R++ : x ∈ Y, t > 0}.

Define the positively homogenous extension of the φq,A as φ̂q,A(x, t) = tφq,A( x
t ) on Y∗. Then, we have the

following relations between φq,A and its positively homogenous extension function.

Theorem 3.3. Suppose that A is a co-radiant set, then the following statements are true.
(i) φ̂q,A(x, t) is positively homogenous function. And φq,A is nondecreasing (that is, if y1 − y2 ∈ A, then

φq,A(y1) ≥ φq,A(y2)) if and only if φ̂q,A(x, λ) is nondecreasing in both variables x and λ.
(ii) φq,A(x) ≤ 0 if and only if for any λ ∈ (0, 1], φ̂q,A(x, λ) ≤ 0.
(iii) φq,A(x) ≥ 0 if and only if for any λ ≥ 1, φ̂q,A(x, λ) ≥ 0.
(iv) φq,A is subadditive if and only if for any λ ∈ (0, 1], φ̂q,A(x, λ) is subadditive.

Proof. (i) The proof is similar to the corresponding proof in Theorem 3.1 of [24], and we omit the proof. The
positive homogenously of φ̂q,A(x, t) is obvious.

(ii) For any λ ∈ (0, 1], it follows from the definition of φ̂q,A and Theorem 3.1(i), we have that φ̂q,A(x, λ) =
λφq,A( x

λ ) ≤ φq,A(x). Thus, if x ∈ Y satisfies φq,A(x) ≤ 0, then φ̂q,A(x, λ) ≤ 0.
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Conversely, when λ = 1, then we have the result.
(iii) For any λ ≥ 1, we have φ̂q,A(x, λ) = λφq,A( x

λ ) ≥ φq,A(x). Thus, if x ∈ Y satisfies φq,A(x) ≥ 0, then
φ̂q,A(x, λ) ≥ 0.

Conversely, when λ = 1, then we have the result.
(iv) Assume that φq,A is subadditive, for any λ ∈ (0, 1], it follows from the definition of φ̂q,A and Theorem

3.1 (i), we have

φ̂q,A(y1 + y2, λ) = λφq,A(
y1 + y2

λ
) ≤ λφq,A(

y1

λ
) + λφq,A(

y2

λ
) = φ̂q,A(y1, λ) + φ̂q,A(y2, λ),

which means that φ̂q,A is subadditive. The converse is omitted.

Lemma 3.3. (i) If A ⊆ Y is a radiant set and A + A ⊆ A, then A is a convex set.
(ii) If A ⊆ Y is a convex co-radiant set, then A + A ⊆ A.

Definition 3.1. Let ε ≥ 0, f be a convex function defined on X, x0 ∈ dom f . The ε−subdifferential of f at x0 is the set

∂ε f (x0) := {x∗ ∈ X∗ : f (x) ≥ f (x0) + ⟨x∗, x − x0⟩ − ε,∀x ∈ X}.

Theorem 3.4. Let A ⊂ Y be a closed proper convex co-radiant set and x̄ ∈ Y. We have the following properties.
(i) If icrA , ∅, then ∂φq,A(x̄) ⊆ A+ \ {0}.
(ii) ∂εφq,A(x̄) ⊆ {ξ : ⟨ξ,u⟩ ≤ ε,∀u ∈ −A}.
(iii) If 0 ∈ A, then ∂εφq,A(x̄) = {ξ ∈ ∂φq,A(0) : ⟨ξ, x̄⟩ ≥ φq,A(x̄) − φq,A(0) − ε}.

Proof. (i) For any ξ ∈ ∂φq,A(x̄), we have ⟨ξ, x − x̄⟩ ≤ φq,A(x) − φq,A(x̄), ∀x ∈ Y. Let u ∈ −A and x = x̄ + u. It’s
obvious that ⟨ξ, x̄ + u − x̄⟩ ≤ φq,A(x̄ + u) − φq,A(x̄), ∀u ∈ −A. Using the (iii) in Theorem 3.1 in [29], we have
the result

⟨ξ,u⟩ ≤ φq,A(x̄) + φq,A(u) − φq,A(x̄) = φq,A(u) ≤ 0, ∀u ∈ −A.

Which means that ∂φq,A(x̄) ⊆ A+.
Next, we prove that 0 < ∂φq,A(x̄),we suppose that 0 ∈ ∂φq,A(x̄), then

φq,A(x) ≥ φq,A(x̄),∀x ∈ Y.

Also since φq,A is subadditive, φq,A(x − x̄) ≥ 0,∀x ∈ Y. That is, for any y ∈ Y, φq,A(y) ≥ 0. According to
Lemma 3.2(i), we have Y = vclA, it contradicts with A is a closed proper set. Hence, ∂φq,A(x̄) ⊆ A+ \ {0}.

(ii) For any ξ ∈ ∂εφq,A(x̄), according to the definition we have ⟨ξ, x− x̄⟩ ≤ φq,A(x)−φq,A(x̄)+ ε, ∀x ∈ Y. Let
x = x̄ + u,∀ u ∈ −A, then

⟨ξ,u⟩ ≤ φq,A(x̄ + u) − φq,A(x̄) + ε ≤ φq,A(u) + ε ≤ ε, ∀u ∈ −A,

which means that ∂εφq,A(x̄) ⊂ {ξ : ⟨ξ,u⟩ ≤ ε,∀u ∈ −A}.
(iii) If ξ ∈ ∂φq,A(0), we have ⟨ξ, x⟩ ≤ φq,A(x) − φq,A(0), ∀x ∈ Y.

⟨ξ, x − x̄⟩ ≤ φq,A(x) − φq,A(x̄) + ε, ∀x ∈ Y,

hence ξ ∈ ∂εφq,A(x̄).
If ξ ∈ ∂εφq,A(x̄), so ⟨ξ, x − x̄⟩ ≤ φq,A(x) − φq,A(x̄) + ε. Let x = 0, that is

⟨ξ, x̄⟩ ≥ φq,A(x̄) − φq,A(0) − ε.

Now let us prove ξ ∈ ∂φq,A(0). Let x = x̄ + ty(t ≥ 1),∀y ∈ Y, we have

t⟨ξ, y⟩ ≤ φq,A(x̄ + ty) − φq,A(x̄) + ε ≤ φq,A(ty) + ε ≤ tφq,A(y) + ε.

Assume t→∞, thus ⟨ξ, y⟩ ≤ φq,A(y) = φq,A(y) − φq,A(0). It means that ξ ∈ ∂φq,A(0).
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The following example illustrate converse inclusion relation in (i) may not hold.

Example 3.3. Consider the co-radiant set A = [1,+∞),Y = R, let q = 1, x̄ = 1. Then φq,A(x) = x + 1, φq,A(x̄) = 2.
If ξ ∈ ∂φq,A(x̄), from the definition we have

⟨ξ, x − x̄⟩ ≤ φq,A(x) − φq,A(x̄), ∀x ∈ Y.

So we get ∂φq,A(x̄) = 1, and obviously, A+ \ {0} = (0,+∞), that is ∂φq,A(x̄) ⊆ A+ \ {0}, while A+ \ {0} ⊈ ∂φq,A(x̄).

Remark 3.3. (i) Since A+ is a closed convex cone, A+ \ {0} = (clconeA)+ \ {0}. Therefore ∂φq,A(x̄) ⊆ A+ \ {0} =
N(clcone(−A), 0) \ {0}.

(ii) If A is a convex cone, we get that φq,A is sublinear function. And Theorem 2.4.14 in [30] implies that

∂εφq,A(0) = ∂φq,A(0).

(iii) If A is a convex cone, ∂εφq,A(x̄) ⊆ −Nε(0,A).

Theorem 3.5. Let A ⊂ Y be a closed proper convex co-radiant set and q ∈ icrA, for every y ∈ Y there exists t ∈ R
such that y + tq < A. Let x̄ ∈ Domφq,A, for every λ ∈ R and x ∈ Y,

Domφq,A = {x ∈ Y : φq,A(x) ≤ λ} = λq − A.

Then
∂εφq,A(x̄) = {ξ ∈ Y∗ : ⟨ξ, q⟩ = 1, ⟨ξ, a⟩ + ⟨ξ, x̄⟩ − φq,A(x̄) + ε ≥ 0,∀a ∈ A}.

Proof. The assumptions ensure that φq,A is convex and proper. An element ξ ∈ ∂εφq,A(x̄) iff

φq,A(x) ≥ ⟨ξ, x⟩ − ⟨ξ, x̄⟩ + φq,A(x̄) − ε,∀x ∈ Y.

This means that for all x ∈ Domφq,A and λ ∈ R with λ ≥ φq,A(x), we have

λ ≥ ⟨ξ, x⟩ − ⟨ξ, x̄⟩ + φq,A(x̄) − ε.

Consequently, for all x ∈ λq − A one has λ ≥ φq,A(x), λ ≥ ⟨ξ, x⟩ − ⟨ξ, x̄⟩ + φq,A(x̄) − ε. This implies that

λ ≥ λ⟨ξ, q⟩ − ⟨ξ, a⟩ − ⟨ξ, x̄⟩ + φq,A(x̄) − ε,∀a ∈ A.

Since ⟨ξ, q⟩ = 1, we have
⟨ξ, a⟩ + ⟨ξ, x̄⟩ − φq,A(x̄) + ε ≥ 0,∀a ∈ A.

For the converse, take ξ ∈ Y∗ such that ⟨ξ, a⟩ + ⟨ξ, x̄⟩ − φq,A(x̄) + ε ≥ 0,∀a ∈ A and ⟨ξ, q⟩ = 1. Fix
x ∈ Domφq,A and take λ = φq,A(x). Then there exists a ∈ A such that x = λq − a. Accordingly,

⟨ξ, x⟩ = λ⟨ξ, q⟩ − ⟨ξ, a⟩ ≤ λ + ⟨ξ, x̄⟩ − φq,A(x̄) + ε.

Since λ = φq,A(x) is arbitrarily chosen, one has

⟨ξ, x⟩ ≤ φq,A(x) + ⟨ξ, x̄⟩ − φq,A(x̄) + ε,∀x ∈ Y,

which implies ξ ∈ ∂εφq,A(x̄).

Remark 3.4. (i) When ε = 0, the conclusion in Theorem 3.5 can reduce to Theorem 2.2 in [22].
(ii) If x̄ = 0, we have

∂εφq,A(0) = {ξ ∈ Y : ⟨ξ, q⟩ = 1, ⟨ξ, a⟩ ≤ ε − δ,∀a ∈ −A}, where δ ∈ [0, ε).

In fact, from Theorem 3.5 we have ∂εφq,A(0) = {ξ ∈ Y : ⟨ξ, q⟩ = 1, ⟨ξ, a⟩ − φq,A(0) + ε ≥ 0,∀a ∈ A}. According to
the result in [31], we have φq,A(0) = δ ∈ [0, ε). Hence, ⟨ξ, a⟩ ≥ −ε + δ,∀a ∈ A.

If A is a closed proper convex cone, we have

∂εφq,A(0) = ∂φq,A(0) = {ξ ∈ −N(0; A) : ⟨ξ, q⟩ = 1}.

(iii) We can find that Theorem 3.4(iii) is closely related to the result of Theorem 3.5. Actually, from Theorem 3.5
we have ∂φq,A(0) = {ξ ∈ Y : ⟨ξ, q⟩ = 1, ⟨ξ, a⟩ ≥ φq,A(0),∀a ∈ A}, together with the result of Theorem 3.4(iii), that is

∂εφq,A(x̄) = {ξ ∈ Y : ⟨ξ, q⟩ = 1, ⟨ξ, a⟩ + ⟨ξ, x̄⟩ − φq,A(x̄) + ε ≥ 0,∀a ∈ A},

which is the result of Theorem 3.5.
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4. Application to Vector Optimization Problems

In this section, we establish the Lagrange multiplier rules for ε-efficient solutions of vector optimization
problem.

Let X be a Asplund space with dual X∗. A Banach space X is called an Asplund space if every continuous
convex function defined on an open convex subset A of X is Fréchet differentiable at each point of a dense
subset of A. Let F : X⇒ X∗, the supremum of F is defined as follows.

lim sup
x→x̄

F(x) = {x∗ ∈ X∗ : ∃xk → x̄, x∗k
w∗
−→ x∗, x∗k ∈ F(xk),∀k ∈ N}.

Definition 4.1. [32] Let ε ≥ 0, Ω be a nonempty subset of X and x ∈ clΩ.
(i) The Frechet ε−normal to Ω at x is defined by

N̂ε(x,Ω) = {x∗ ∈ X∗ : lim sup
u
Ω
−→x

⟨x∗,u − x⟩
∥u − x∥

≤ ε}.

When ε = 0, the set of N̂(x,Ω) is called the Fréchet normal cone to Ω at x.
(ii) The basic (or limiting, or Mordukhovich) normal cone to Ω at x̄ is

NL(x̄,Ω) = lim sup
x
Ω
−→x̄

N̂ε(x,Ω),

which means that ∃ εn ↓ 0, xn
Ω
−→ x̄, x∗n

w∗
−→ x∗, x∗n ∈ N̂εn (xn,Ω), ∀n ∈ N, where u Ω

−→ x̄ means u ∈ Ω and u→ x̄. It
is important to note that if X is an Asplund space, we have

NL(x̄,Ω) = lim sup
x
Ω
−→x̄

N̂(x,Ω),

If Ω is a convex set, then N̂ε(x̄,Ω) and (N̂(x̄,Ω)) coincide with the normal cone in the usual sense of
convex analysis, that is,

N̂ε(x̄,Ω) = {x∗ ∈ X∗ : ⟨x∗, x − x̄⟩ ≤ ε∥x − x̄∥, ∀x ∈ Ω}.

N(x̄,Ω) = {x∗ ∈ X∗ : ⟨x∗, x − x̄⟩ ≤ 0, ∀x ∈ Ω}.

Definition 4.2. [32] Let φ : X→ R ∪ {+∞} be a given function and x0 ∈ domφ. The set

∂Lφ(x̄) = {x∗ ∈ X∗ | (x∗,−1) ∈ NL((x̄, φ(x̄)); epiφ)}

is called the Mordukhovich subdifferential of φ at x̄.

Definition 4.3. [32] Let φ : X → R ∪ {+∞} be a lower-semicontinuous function. Then for ε ≥ 0 the limiting
ε−subdifferential is given as

∂L
εφ(x̄) = lim sup

x
φ
−→x̄

∂F
εφ(x),

where ∂F
εφ(x̄) denotes the Frechet ε−subdifferential of φ at x̄ ∈ domφ is given as follows

∂F
εφ(x) = {x∗ ∈ X∗ : lim inf

u→x

φ(u) − φ(x) − ⟨x∗,u − x⟩
∥u − x∥

≥ −ε}.

Note that if φ is a lower semicontinuous convex function, then ∂F
εφ(x̄) = ∂L

εφ(x̄) = ∂φ(x̄)+ εBX∗ . Further-
more, from the Theorem 1.93 in [32], if φ : X→ R is convex and finite at x̄, we have

∂F
εφ(x̄) = {x∗ ∈ X∗ : ⟨x∗, x − x̄⟩ ≤ φ(x) − φ(x̄) + ε∥x − x̄∥, ∀x ∈ X}.

Combining with proof of Theorem 3.4(ii), it concludes that

∂F
εφ(x̄) ⊆ {ξ : ⟨ξ,u⟩ ≤ ε∥u∥,∀u ∈ −A}. (9)
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Lemma 4.1. [33] Let X,Z be Asplund space, f , 1 : X → R ∪ {+∞} be two lower semicontinuous proper functions,
one of them being locally Lipschitzian.

(i) For each x ∈ dom f ∩ dom1 and each ε > 0, then

∂L
ε( f + 1)(x0) ⊆ ∂L

ε f (x0) + ∂L
ε1(x0).

(ii)Let F : X→ Z be a strictly Lipschitzian at x0, then

∂L
ε(1 ◦ F)(x0) ⊆

⋃
y∗∈∂L1(F(x0))

∂L
ε(y∗ ◦ F)(x0).

Definition 4.4. [23] Let ε ≥ 0, Ω ⊂ X, C be a co-radiant set of X.
(i) It is said that ȳ ∈ Ω is an ε−efficient point with respect to C, if

Ω ∩ (ȳ − C(ε)) ⊆ {ȳ}.

(ii) It is said that ȳ ∈ Ω is a weakly ε-efficient point with respect to C, if

Ω ∩ (ȳ − intC(ε)) ⊆ {ȳ}.

(iii) It is said that ȳ ∈ Ω is a properly ε-efficient point with respect to C, if

clcone(Ω+ C(ε) − ȳ) ∩ −C(ε) ⊆ {0}.

The ε-efficient point, weakly ε-efficient point, properly ε-efficient point ofΩ are respectively denoted by AE[Ω,C(ε)],
WAE[Ω,C(ε)],PAE[Ω,C(ε)].

Consider the following optimization problem

Min Φ(x) s.t. x ∈ Ω,

where, ∅ , Ω ⊆ X and Φ : Ω→ R.
Let ε ≥ 0, x̄ ∈ Ω. x̄ is called ε−minimizer of the above optimization problem, if

Φ(x) ≥ Φ(x̄) − ε, ∀x ∈ Ω.

In the following results, we will use the approximate normal cone of nonconvex set to obtain the
optimality conditions for approximate points.

We consider the following set

Dη,e = cone(B(e, η)) = {t · z : t ≥ 0, z ∈ B(e, η)}, η ∈ (0, ∥e∥),

where B(e, η) is a closed ball with the center e and the radius η.

Theorem 4.1. Let ε ≥ 0, 0 < C be a convex co-radiant set. Assume that the epigraphical set of Ω with respect to
C(ε) and Ω+ C(ε) are locally closed at z̄. For z̄ ∈ C(ε) ∩ (Ω+ C(ε)) and every e ∈ C(ε) \ {0} satisfying

−e < clcone(Ω+ C(ε) − z̄),

there exist z0 ∈ C(ε) ∩ (Ω+ C(ε)) and z∗ ∈ X∗ such that ∥z0 − z̄∥ ≤ 1 and

−z∗ ∈ NL(z0;Ω) ∩ N̂ϵ(0; Dη,e).

Proof. Since −e < clcone(Ω+ C(ε) − z̄), there exists η ∈ (0, ∥e∥) such that

clcone(Ω+ C(ε) − z̄) ∩ −B(e, η) ⊆ {0},
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that is
clcone(Ω+ C(ε) − z̄) ∩ −Dη,e ⊆ {0}.

Which means that Ω+ C(ε) − z̄ ⊈ −Dη,e. And φe,Dη,e (p + e − z̄) ≥ 0, ∀p ∈ Ω, e ∈ C(ε).
Since φe,Dη,e is sublinear, we have

0 ≤ φe,Dη,e (p + e − z̄) ≤ φe,Dη,e (p − z̄) + φe,Dη,e (e), ∀p ∈ Ω, e ∈ C(ε).

According to the definition of Dη,e, there exists q ∈ Dη,e ∩ C(ε) such that φe,Dη,e (q) ≥ 0 and φe,Dη,e (p − z̄) ≥
−φe,Dη,e (q). Take ϵ = φe,Dη,e (q), we have

φe,Dη,e (p − z̄) ≥ −ϵ, ∀p ∈ Ω.

Hence, z̄ is an ϵ−minimizer of the scalarzation function φe,Dη,e (z − z̄) over Ω.
According to the optimality conditions of Theorem 3.1 in [34], there exists z0 ∈ C(ε)∩Ω+C(ε) such that

∥z0 − z̄∥ ≤ 1 and
0 ∈ ∂L

ϵφe,Dη,e (· − z̄)(z0) +NL(z0,Ω) = ∂F
ϵφe,Dη,e (z0 − z̄) +NL(z0,Ω).

From (9) we have

∂F
ϵφe,Dη,e (z0 − z̄) ⊂ {z∗ ∈ X∗ : ⟨z∗, z⟩ ≤ ϵ∥z∥,∀z ∈ −Dη,e} = −N̂ϵ(0; Dη,e).

Which implies z∗ ∈ ∂F
ϵφe,Dη,e (z0 − z̄) and −z∗ ∈ NL(z0;Ω) ∩ N̂ϵ(0; Dη,e).

The following example illustrates −e < clcone(Ω+ C(ε) − z̄) is necessary.

Example 4.1. Considering the setΩ := {(x, y)T
∈ R2 : y ≥ −x2+ 1

2 }, C = {0}× [1,+∞). Taking ε = 1
2 , z̄ = (0, 1),we

have z̄ is not the properly ε−efficient point, since

clcone(Ω+ C(ε) − z̄) ∩ −C(ε) ⊈ {0}.

Let z0 = (0, 3
2 ), we can check that ∥z0 − z̄∥ ≤ 1. According to the definition of Mordukhovich normal cone we have

−z∗ = (−5, 0) ∈ NL(z0,Ω).

Take q = (0, 1) ∈ Dη,e and ϵ = 1. It is obvious that −e ∈ clcone(Ω + C(ε) − z̄) for any e ∈ C(ε) and −z∗ <
N̂ϵ(0; Dη,e). Thus the necessary condition in Theorem 4.1 is not applicable to this example.

Remark 4.1. (i) If the cone(Ω + C(ε) − z̄) is closed at the origin, every ε−efficient point with respect to C(ε) is a
properly ε−efficient point in the sense that

clcone(Ω+ C(ε) − z̄) ∩ −C(ε) ⊆ {0}.

(ii) The closedness of the cone(Ω + C(ε) − z̄) and the set itself are different. Let C = {(x, y)T
∈ R2

| x ≥
1, y ≥ 1}, Ω := {(x, y)T

∈ R2 : y ≥ x2)}. Taking ε = 1
2 , z̄ = ( 1

2 ,
1
2 ), we have that Ω + C(ε) − z̄ is a closed set,

while cone(Ω + C(ε) − z̄) is not a closed set. If Ω := {(x, y)T
∈ R2 : x ≥ (y − 1)2

− 1, x < y} ∪ {0}, then Ω is not a
closed set. But cone(Ω+ C(ε) − z̄) is a closed set.

Lemma 4.2. Let ε ≥ 0, 0 < C be a convex co-radiant set, z̄ ∈ Ω+C(ε). If z̄ ∈ AE[Ω,C(ε)], then z̄ ∈ AE[Ω+C(ε),C(ε)].

Proof. Suppose to the contrary that z̄ < AE[Ω+ C(ε),C(ε)], we have

(Ω+ C(ε) − z̄) ∩ −C(ε) ⊈ {0}.

There exists p ∈ −C(ε)\{0} such that p ∈ Ω + C(ε) − z̄. That is, there exist e ∈ Ω and q ∈ C(ε) such that
p = e+ q− z̄.Hence, 0 , e− z̄ = p− q ∈ −C(ε)−C(ε) ⊆ −C(ε). Which is a contradiction to z̄ ∈ AE[Ω,C(ε)].
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Next,we will improve Theorem 4.1 to obtain the following result.

Corollary 4.1. Let ϵ ≥ 0, z̄ ∈ Ω+C(ε) and z̄ ∈ AE[Ω,C(ε)]. Assume thatΩ+C(ε) is locally closed at z̄ and cone(Ω+
C(ε) − z̄) is closed, then for every e ∈ C(ε) \ {0}, there exist z0 ∈ C(ε) ∩Ω+ C(ε), z∗ ∈ X∗ such that ∥z0 − z̄∥ ≤ 1 and

−z∗ ∈ NL(z0;Ω) ∩ N̂ϵ(0; Dη,e).

Proof. If z̄ ∈ Ω+ C(ε) and z̄ ∈ AE[Ω,C(ε)], Lemma 4.2 implies that z̄ ∈ AE[Ω+ C(ε),C(ε)]. Therefore,

(Ω+ C(ε) − z̄) ∩ −C(ε) ⊆ {0}.

Which implies cone(Ω+C(ε)−z̄)∩−C(ε) ⊆ {0}. Since the cone(Ω+C(ε)−z̄) is closed, then for any e ∈ C(ε)\{0},we
have −e < clcone(Ω+ C(ε), z̄). By using Theorem 4.1 we can get the result.

Let Z be a Asplund space. We consider the following vector optimization problem.

(VP)

minimize f (x)
s.t. x ∈ S

where S be a nonempty subset of X , f : S→ Z.

Definition 4.5. Let x̄ ∈ S, ϵ ≥ 0 and C ⊆ Z be a convex co-radiant set.
(i) x̄ is an ε−efficient solutions of (VP), if

f (x̄) ∈ AE[ f (S),C(ε)].

(ii) x̄ is a weakly ε−efficient solutions of (VP), if

f (x̄) ∈WAE[ f (S),C(ε)].

(iii) x̄ is a properly ε−efficient solutions of (VP) , if

f (x̄) ∈ PAE[ f (S),C(ε)].

Theorem 4.2. Assume that x̄ ∈ S, ϵ ≥ 0, f (x) is Lipschitz continuous at x̄, S is locally closed around x̄. If x̄ is
an ε−efficient solutions of (VP), then for every e ∈ C(ε) \ {0} satisfying −e < clcone( f (S) + C(ε) − f (x̄)), there exist
x ∈ B(x̄,

√
ϵ) ∩ S and z∗ ∈ −N(0,Dη,e) such that

0 ∈ ∂L(z∗ ◦ f )(x) +NL(x,S) +
√
ϵBX∗ .

Proof. Similar to the proof of Theorem 4.1, we have

clcone( f (S) + C(ε) − f (x̄)) ∩ −Dη,e ⊆ {0}.

Therefore, we have
φe,Dη,e ( f (x) + e − f (x̄)) ≥ 0, ∀x ∈ S, e ∈ C(ε).

Let G(x) := f (x) − f (x̄). According to the proof of Theorem 4.1, there exists ϵ > 0 such that

φe,Dη,e (z) ≥ −ϵ, ∀z ∈ G(x).

Which implies that x̄ is an ϵ−minimal of

Min(φe,Dη,e ◦ G)(x), s.t. x ∈ S.

Using the Ekeland variational principle for φe,Dη,e ◦G on S, we can get x ∈ B(x̄,
√
ϵ)∩S. Which is a minimum

solution of the function φe,Dη,e ◦ G(·) +
√
ϵ ∥ · − x ∥ on S. And from Theorem 3.2 in [36] we have
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0 ∈ ∂L(φe,Dη,e ◦ G(·) +
√
ϵ ∥ · − x ∥ +NL(x,S)

⊆ ∂L(φe,Dη,e ◦ G)(x) +
√
ϵBX∗ +NL(x,S)

⊆

⋃
z∗∈∂Lφe,Dη,e ( f (x)− f (x̄))

∂L(z∗ ◦ f )(x) +
√
ϵBX∗ +NL(x,S).

Since φe,Dη,e is a convex function,

∂Lφe,Dη,e ( f (x) − f (x̄)) = ∂φe,Dη,e ( f (x) − f (x̄)) ⊂ −N(0,Dη,e).

Therefore, there exists z∗ ∈ −N(0,Dη,e) such that

0 ∈ ∂L(z∗ ◦ f )(x) +NL(x,S) +
√
ϵBX∗ .

5. Risk Measure

Risk management is an important branch in the financial field, its basic work is to select appropriate
risk metrics and scientific calculation methods to measure risk. So far, there are numerous results on risk
measurement. In 1952, Markowitz pioneered the theory of mean-variance portfolio, but due to the poor
fitting effect of the model, scholars further improved the model to mean-semivariance and even more
general forms. As research advances, scholars have found that investors are paying more attention to
downstream risk measurement such as VaR and CVaR. Therefore, the relevant theories have developed
rapidly. However, VaR is not meeting sub-additives, that is inconsistent with the basic principle that
portfolio investment will reduce risk. This prompts scholars to seek better risk metrics.

In 1999, Artzner et al. [35] introduced a coherent risk measure function and gave a reasonable explanation
in the economic sense.

Definition 5.1. The risk measure satisfies the following four axioms as a coherent risk measure ρ(y):
(P1) ρ(y1) ≤ ρ(y2) if y1 ≥ y2, (Monotonicity)
(P2) ρ(λy) = λρ(y) for all y ∈ Y and λ ≥ 0, (Positive Homogeneity)
(P3) ρ(y1 + y2) ≤ ρ(y1) + ρ(y2) for all y1, y2 ∈ Y, (Subadditivity)
(P4) ρ(y + tq) = ρ(y) − t for q ∈ Y \ {0} (Translation Invariance).

Let Λ be a linear space of random variables, Ω be a set of elementary events. Then a future payment
of an investment is a random variable y : Ω → R, positive payment in the future are wins, negative ones
are loses. But modern people are no longer satisfied with this, investment is bound to want more money,
so we stipulate that y(w) ≥ m(w ∈ Ω) is a better return, and 0 < y(w) < m is not a very desirable income, if
no investment is being done, then y(w) takes on the value zero. In order to evaluate such investments, we
introduce an ordering relation which defined by a set Λ and acceptable set Γ.

(i) {y : y(w) ≥ m,w ∈ Ω} ⊂ Γ,m ∈ R+,
(ii) {y : y(w) < m,w ∈ Ω} ∩ Γ = ∅,m ∈ R+,
(iii) Γ is a convex co-radiant set.
In particular, if we take Λ = D + ε{e}, where D is a convex cone and e := (1, · · ·, 1)T, then
(i) {y : y(w) ≥ ε,w ∈ Ω} ⊂ Γ,
(ii) {y : y(w) < ε,w ∈ Ω} ∩ Γ = ∅,
For this case, we can introduce the following weak risk measure to investigate the risk measurement.

Definition 5.2. If a real-valued function µ : Λ→ R satisfy the following properties
(P1) µ(y1) ≤ µ(y2) if y1 ≥ y2, (Monotonicity)
(P2′) µ(λy) ≤ λµ(y) for all y ∈ Λ and λ ≥ 1,
(P3) µ(y1 + y2) ≤ µ(y1) + µ(y2) for all y1, y2 ∈ Λ, (Subadditivity)
(P4) µ(y + tq) = µ(y) − t for q ∈ Λ \ {0} (Translation Invariance),

then µ : Λ→ R is a weak risk measure.
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6. Conclusion

In this paper, the nonlinear scalarization function defined on a cone is extended to co-radiant in linear
spaces, and its corresponding properties and subdifferential forms are obtained. we also find the relationship
between scalar function and co-radiant(radiant) function. Consequently, the optimality condition of the
ε−efficient point is studied by the approximate normal cone and the nonlinear scalarization function in
multiobjective optimization. Ultimately, we get the optimality conditions of ε−efficient solutions by use of
the ”calculus rules” in vector optimization. In the following work, we can consider the application of the
nonlinear scalar function in the actual risk measurement.
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