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Abstract. In this article, we study a first order nonlinear delay differential equation

x′(t) +
m∑

i=1

pi(t) fi

(
x(τi(t))

)
= 0, t ≥ t0,

where pi(t) and τi(t) are the functions of nonnegative of real numbers and τi(t) are not necessarily monotone
for 1 ≤ i ≤ m. Also, we present new sufficient conditions for the oscillatory solutions of this equation.
Our results essentially improve the conditions in the literature. Finally, we give examples to illustrate our
results.

1. Introduction

In this article, we consider the first-order nonlinear delay differential equation

x′(t) +
m∑

i=1

pi(t) fi
(
x(τi(t))

)
= 0, t ≥ t0, (1)

where the functions fi, pi, τi satisfy the conditions stated below.
Let T0 = min{inf{τi(t) : t0 ≤ t}, 1 ≤ i ≤ m}}. By a solution of (1), we mean a function that is continuous for
t ≥ T0 and differentiable for t ≥ t0. A solution of (1) is called oscillatory if it has arbitrarily large zeros and
otherwise, it is called non-oscillatory. A solution is called eventually positive if there exists a t1 such that
x(t) > 0 for t ≥ t1 (and eventually negative if x(t) < 0).
In this article, we use the following conditions and notations.

(H1) τi ∈ C(R,R), τi(t) ≤ t, limt→∞ τi(t) = ∞ for i = 1, 2, . . . ,m.

σi(t) = sup{τi(s) : t0 ≤ s ≤ t}, σ(t) = max{σi(t) : 1 ≤ i ≤ m}
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(H2) pi ∈ C([t0,∞),R), pi(t) ≥ 0.

(H3) fi ∈ C(R,R), x fi(x) > 0 for x , 0 and

M̃i := lim sup
x→0

x
fi(x)
, 0 < M̃i < ∞.

In (H1), τi(t) are not necessarily monotonic, τi(t) ≤ σi(t) ≤ σ(t) ≤ t and σ is non-decreasing.
When f (x) = x and m = 1, equation (1) becomes the classical linear equation

x′(t) + p1(t)x(τ1(t)) = 0, t ≥ t0. (2)

The first systematic study for the oscillation of all solutions to this equation was made by Myshkis in 1950.
Later, Koplatadze and Chanturija [19], Ladas and Stavroulakis [20], Fukagai and Kusano [17], Ladde et
al. [21] and Györi and Ladas [18] studied this equation and obtained well-known oscillation criteria with
nondecreasing delay. In 2011, Braverman and Karpuz [3] modified the lim sup condition for not necessarily
monotone delay. Moreover, we can see that mathematical modeling with delay differential equations
is widely used for analysis and predictions in various areas of life sciences, for example, epidemiology,
immunology, neural networks, physiology and population dynamics [24].
Sufficient conditions for the oscillation of solutions to nonlinear equations can be found in [1, 2, 14, 15, 17,
21, 23]. There is a misprint in [23], it should be τ(t) = max{τi(t) : 1 ≤ i ≤ m}.

2. Preliminaries

Lemma 2.1 ([16, Lemma 2.1.1]). If (H1) and lim inft→∞
∫ t

τ(t)

∑m
i=1 pi(s)ds > 0 hold, then

lim inf
t→∞

∫ t

τ(t)

m∑
i=1

pi(s)ds = lim inf
t→∞

∫ t

σ(t)

m∑
i=1

pi(s)ds

where τ(t) = max{τi(t) : 1 ≤ i ≤ m}.

Theorem 2.2 ([23, Theorem 2.1, 2.2]). Assume (H1)–(H3), 0 < M̃i < ∞ and one of the following two conditions
hold:

lim inf
t→∞

∫ t

τ(t)

m∑
i=1

pi(s) ds >
M̃∗

e
, (3)

lim sup
t→∞

∫ t

σ(t)

m∑
i=1

pi(s) ds > M̃∗ . (4)

Then, every solution of (1) is oscillatory, where τ(t) = max{τi(t) : 1 ≤ i ≤ m} and M̃∗ = max{M̃i : 1 ≤ i ≤ m}.

In [15] the authors studied the oscillation of solutions to

x′(t) +
m∑

i=1

f̃i
(
t, x(τi(t))

)
= 0 , (5)

where | f̃i(t, x)| ≥ pi(t)1i(x) and 1i satisfies the conditions in (H3) with M̃i < 1. They also assume that∫
∞

0

∑
pi = +∞which we will show that does not need to be explicitly assumed. Our main results are stated

as Theorems 3.3 and 3.4 below.
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3. Main Results

Lemma 3.1 (Grönwall’s inequality). Assume that x(t) is a positive solution of x′(t) +
∑m

i=1 pi(t)x(t) ≤ 0. Then,
we have

x(s) ≥ x(t) exp
( ∫ t

s

m∑
i=1

pi(r) dr
)

for s ≤ t .

Further, assume that x(t) is a negative solution of x′(t) +
∑m

i=1 pi(t)x(t) ≥ 0. Then, we have

x(s) ≤ x(t) exp
( ∫ t

s

m∑
i=1

pi(r) dr
)

for s ≤ t .

Lemma 3.2. Assume (H1)–(H3) hold, and x(t) is an eventually positive solution of (1). If

lim sup
t→∞

∫ t

σ(t)

m∑
i=1

pi(s)
Mi

exp
( ∫ σ(t)

τi(s)

m∑
j=1

p j(r)
M j

dr
)

ds > 0, (6)

then limt→∞ x(t) = 0, where Mi are constants with M̃i <Mi for 1 ≤ i ≤ m.
Also, assume that x(t) is an eventually negative solution of (1). If (6) holds, then lim

t→∞
x(t) = 0.

Proof. Assume that (6) holds. Let x(t) be an eventually positive solution of (1). Then, there exists t1 > t0
such that x(t), x(τi(t)) > 0 for all t ≥ t1 and 1 ≤ i ≤ m. Thus, from (1), we get

x′(t) = −
m∑

i=1

pi(t) fi(x (τi(t))) ≤ 0

for all t ≥ t1, which means that x(t) is nonincreasing and has a limit l > 0 or l = 0. Now, we claim that
lim
t→∞

x(t) = 0. Otherwise, lim
t→∞

x(t) = l > 0. Then, integrating (1) from σ(t) to t, we have

x(t) − x(σ(t)) +

t∫
σ(t)

m∑
i=1

pi(s) fi(x (τi(s)))ds = 0. (7)

From (H3), we can choose Mi with M̃i <Mi for 1 ≤ i ≤ m such that

fi(x(τi(t))) ≥
1

Mi
x(τi(t)). (8)

Using the inequality (8) in (7), we have

x(t) − x(σ(t)) +

t∫
σ(t)

m∑
i=1

pi(s)
Mi

x (τi(s)) ds ≤ 0. (9)

Also, using Lemma 3.1 in (9), we get

x(t) − x(σ(t)) + x(σ(t))

t∫
σ(t)

m∑
i=1

pi(s)
Mi

exp
( ∫ σ(t)

τi(s)

m∑
j=1

p j(r)
M j

dr
)

ds ≤ 0. (10)
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Moreover, (6) implies that there exists at least one sequence {tn} such that tn →∞ as n→∞ and

lim
n→∞

∫ tn

σ(tn)

m∑
i=1

pi(s)
Mi

exp
( ∫ σ(tn)

τi(s)

m∑
j=1

p j(r)
M j

dr
)

ds > 0, (11)

By letting t→ tn and taking limit n→∞ in (10), we get

l lim
n→∞

∫ tn

σ(tn)

m∑
i=1

pi(s)
Mi

exp
( ∫ σ(tn)

τi(s)

m∑
j=1

p j(r)
M j

dr
)

ds ≤ 0,

but this contradicts with (11).
On the other hand, assume that (6) holds. Let x(t) be an eventually negative solution of (1). Then, there
exists t1 > t0 such that x(t), x(τi(t)) < 0 for all t ≥ t1 and 1 ≤ i ≤ m. Thus, from (1), we get

x′(t) = −
m∑

i=1

pi(t) fi(x (τi(t))) ≥ 0

for all t ≥ t1, which means that x(t) is nondecreasing and has a limit l < 0 or l = 0. Now, we claim that
lim
t→∞

x(t) = 0. Otherwise, lim
t→∞

x(t) = l < 0. Then, integrating (1) from σ(t) to t, we have

x(t) − x(σ(t)) +

t∫
σ(t)

m∑
i=1

pi(s) fi(x (τi(s)))ds = 0. (12)

From (H3), we can choose Mi with M̃i <Mi for 1 ≤ i ≤ m such that

fi(x(τi(t))) ≤
1

Mi
x(τi(t)). (13)

Using the inequality (13) in (12), we have

x(t) − x(σ(t)) +

t∫
σ(t)

m∑
i=1

pi(s)
Mi

x (τi(s)) ds ≥ 0. (14)

Also, using Lemma 3.1 in (14), we get

x(t) − x(σ(t)) + x(σ(t))

t∫
σ(t)

m∑
i=1

pi(s)
Mi

exp
( ∫ σ(t)

τi(s)

m∑
j=1

p j(r)
M j

dr
)

ds ≥ 0. (15)

Moreover, (6) implies that there exists at least one sequence {tn} such that tn →∞ as n→∞ and

lim
n→∞

∫ tn

σ(tn)

m∑
i=1

pi(s)
Mi

exp
( ∫ σ(tn)

τi(s)

m∑
j=1

p j(r)
M j

dr
)

ds > 0, (16)

By letting t→ tn and taking limit n→∞ in (15), we get

l lim
n→∞

∫ tn

σ(tn)

m∑
i=1

pi(s)
Mi

exp
( ∫ σ(tn)

τi(s)

m∑
j=1

p j(r)
M j

dr
)

ds ≥ 0,

but this contradicts with l < 0. So, the proof of lemma is completed.
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Theorem 3.3. Assume (H1)–(H3) hold and

lim inf
t→∞

∫ t

τ(t)

m∑
i=1

pi(s)
Mi

exp
( ∫ σ(s)

τi(s)

m∑
j=1

p j(r)
M j

dr
)

ds >
1
e
. (17)

Then all solutions of (1) are oscillatory, where τ(t) = max{τi(t) : 1 ≤ i ≤ m} and Mi are constants with M̃i < Mi for
1 ≤ i ≤ m.

Proof. From Lemma 2.1, the definition of limit inferior, and the strict inequality in (17), there exists a constant
c > 0 such that∫ t

σ(t)

m∑
i=1

pi(s)
Mi

exp
( ∫ σ(s)

τi(s)

m∑
j=1

p j(r)
M j

dr
)

ds ≥ c >
1
e
, ∀t ≥ t1 . (18)

From the continuity of outer integral, there exists t∗ ∈ (σ(t), t) such that∫ t∗

σ(t)

m∑
i=1

pi(s)
Mi

exp
( ∫ σ(s)

τi(s)

m∑
j=1

p j(r)
M j

dr
)

ds >
1
2e

(19)

and ∫ t

t∗

m∑
i=1

pi(s)
Mi

exp
( ∫ σ(s)

τi(s)

m∑
j=1

p j(r)
M j

dr
)

ds >
1
2e
. (20)

Assume, for the sake of contradiction, that there exists an eventually positive solution x of (1). Condition
(17) implies (6), so as in Lemma 3.2, there exists t2 ≥ t1 such that x(t) > 0, x(τi(t)) > 0 and x is non-increasing
for t ≥ t2, and limt→∞ x(t) = 0. From (H3), we can choose t3 ≥ t2 and there are Mi with M̃i <Mi for 1 ≤ i ≤ m
such that

fi(x(τi(t))) ≥
1

Mi
x(τi(t)) for t ≥ t3. (21)

Using this inequality in (1), we have

x′(t) +
m∑

i=1

pi(t)
Mi

x(τi(t)) ≤ 0. (22)

Then using that τi(t) ≤ t and x is non-increasing, we obtain

x′(t) + x(t)
m∑

i=1

pi(t)
Mi
≤ 0. (23)

Therefore by Lemma 3.1,

x(τi(s)) ≥ x(σ(s)) exp
( ∫ σ(s)

τi(s)

m∑
j=1

p j(r)
M j

dr
)
. (24)

Integrating (22) from σ(t) to t∗, and using the inequality above, we have

x(σ(t)) − x(t∗) ≥
∫ t∗

σ(t)

m∑
i=1

pi(s)
Mi

x(σ(s)) exp
( ∫ σ(s)

τi(s)

m∑
j=1

p j(r)
M j

dr
)

ds.
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Since x is non-increasing and σ is non-decreasing, we have

x(σ(t)) − x(t∗) ≥ x(σ(t∗))
∫ t∗

σ(t)

m∑
i=1

pi(s)
Mi

exp
( ∫ σ(s)

τi(s)

m∑
j=1

p j(r)
M j

dr
)

ds .

Then by (19),

x(σ(t)) > x(σ(t)) − x(t∗) > x(σ(t∗))
1
2e
. (25)

Now integrating (22) from t∗ to t, we have

x(t∗) − x(t) ≥
∫ t

t∗

m∑
i=1

pi(s)
Mi

x(σ(s)) exp
( ∫ σ(s)

τi(s)

m∑
j=1

p j(r)
M j

dr
)

ds.

Since x is non-increasing and σ is non-decreasing, we get

x(t∗) − x(t) ≥ x(σ(t))
∫ t

t∗

m∑
i=1

pi(s)
Mi

exp
( ∫ σ(s)

τi(s)

m∑
j=1

p j(r)
M j

dr
)

ds .

Then by (20),

x(t∗) > x(t∗) − x(t) > x(σ(t))
1
2e
. (26)

Substituting (25) in (26), we have

1 ≤
x(σ(t∗))

x(t∗)
< (2e)2 . (27)

Let

u := lim inf
t→∞

x(σ(t))
x(t)

. (28)

Then 1 ≤ u ≤ (2e)2 because for any t we can find a t∗ ∈ [σ(t), t] satisfying (27). Dividing (1) by x(t) and
integrating from σ(t) to t, we have∫ t

σ(t)

x′(s)
x(s)

ds +
∫ t

σ(t)

m∑
i=1

pi(s)
fi(x(τi(s)))

x(s)
ds = 0 .

Then by (21), we have

ln
(x(σ(t))

x(t)

)
=

∫ t

σ(t)

m∑
i=1

pi(s)
fi(x(τi(s)))

x(τi(s))x(s)
x(τi(s)) ds

≥

∫ t

σ(t)

m∑
i=1

pi(s)
Mix(s)

x(τi(s)) ds for t ≥ t3 .

By (24),

ln
(x(σ(t))

x(t)

)
≥

∫ t

σ(t)

m∑
i=1

pi(s)
Mix(s)

x(σ(s)) exp
( ∫ σ(s)

τi(s)

m∑
j=1

p j(r)
M j

dr
)

ds for t ≥ t3 .



J. G. Dix et al. / Filomat 36:16 (2022), 5665–5675 5671

From the mean value theorem for integrals,

ln
(x(σ(t))

x(t)

)
≥

x(σ(ζ))
x(ζ)

( ∫ t

σ(t)

m∑
i=1

pi(s)
Mi

exp
( ∫ σ(s)

τi(s)

m∑
j=1

p j(r)
M j

dr
)

ds

for some value ζ ∈ [σ(t), t]. Now we take the limit inferior on both sides of the above inequality and using
(17) and (28), we have

lim inf
t→∞

ln
(x(σ(t))

x(t)

)
> lim inf

t→∞

x(σ(ζ))
x(ζ)

1
e
, (29)

where we use that lim inf
(
h(t)k(t)

)
≥ lim inf(h(t)) lim inf(k(t)). Therefore, from (28), (29) and ln

(
lim inf x(σ(t))

x(t)

)
≥

lim inf
(

ln x(σ(t))
x(t)

)
, we have

ln u > u/e,

which is not possible for any positive number u. This contradiction indicates that we cannot have a positive
solution.
If y is an eventually negative solution we consider x = −y and f̃ (x) = − f (−x) which satisfies conditions (H2)
and (H3). Then proceed as above.

Theorem 3.4. Assume (H1)–(H3) hold and

lim sup
t→∞

∫ t

σ(t)

m∑
i=1

pi(s)
Mi

exp
( ∫ σ(t)

τi(s)

m∑
j=1

p j(r)
M j

dr
)

ds > 1 . (30)

Then all solutions of (1) are oscillatory, where Mi are constants with M̃i <Mi for 1 ≤ i ≤ m.

Proof. Assume, for the sake of contradiction, that there exists an eventually positive solution x of (1). Since
(30) implies (6), by Lemma 3.2, limt→∞ x(t) = 0. As the proof of Theorem 3.3, we have Lemma 3.1. So, from
Lemma 3.1, we obtain

x(τi(s)) ≥ x(σ(t)) exp
( ∫ σ(t)

τi(s)

m∑
j=1

p j(r)
M j

dr
)
. (31)

Integrating (22) from σ(t) to t using (31), we have

x(σ(t)) − x(t) ≥ x(σ(t))
∫ t

σ(t)

m∑
i=1

pi(s)
Mi

exp
( ∫ σ(t)

τi(s)

m∑
j=1

p j(r)
M j

dr
)

ds .

Dividing by x(σ(t)) we have

1 −
x(t)

x(σ(t))
≥

∫ t

σ(t)

m∑
i=1

pi(s)
Mi

exp
( ∫ σ(t)

τi(s)

m∑
j=1

p j(r)
M j

dr
)

ds,

which implies∫ t

σ(t)

m∑
i=1

pi(s)
Mi

exp
( ∫ σ(t)

τi(s)

m∑
j=1

p j(r)
M j

dr
)

ds < 1, ∀t ≥ t2 .

Taking the limit superior, this contradicts (30); therefore x can not be eventually positive. If y is an eventually
negative solution we consider x = −y and f̃ (x) = − f (−x) which satisfies conditions (H2) and (H3).
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4. Examples and Comparison with the results in literature

In this section, we compare the results which were given before in the literature for the oscillatory
solutions of (1). Also, we present examples to illustrate our main results.
First we rewrite (1) as

x′(t) +
m∑

i=1

qi(t)1i

(
x(τi(t))

)
= 0, t ≥ t0, (32)

where 1i satisfies pi fi = qi1i, x1i(x) > 0 for x , 0, and

M̃i = lim sup
x→0

x
1i(x)

≤ 1 . (33)

In [15], Eq. (1) was studied and some results were obtained for the oscillation of all solutions of (1). Also,
Lemma 1.1 in [15] has the key role to establish these results. But, when we examine the proof of Lemma 1.1
carefully, it can be seen that it is valid when the condition (33) holds. So, the results [15, Theorems 3.1 and
3.2] can be applied for M̃i ≤ 1. They are not applicable when M̃i > 1. Also, in [15, Theorems 3.1 and 3.2], it
was proved that limt→∞ x(t) = 0, under the following assumption∫

∞

t0

m∑
i=1

pi(s) ds = ∞. (34)

Moreover, from Theorem 3.3 and Theorem 3.4 given above, it can be seen that it does not need to have (34)
in [15, Theorems 3.1 and 3.2]. So, we can restated these results as follows.

Theorem 4.1. Assume (H1), (H2), (33), and one of the conditions hold:

lim inf
t→∞

∫ t

τ(t)

m∑
i=1

qi(s) exp
( ∫ σ(s)

τi(s)

m∑
j=1

q j(r) dr
)

ds >
1
e
, (35)

lim sup
t→∞

∫ t

σ(t)

m∑
i=1

qi(s) exp
( ∫ σ(t)

τi(s)

m∑
j=1

q j(r) dr
)

ds > 1 . (36)

Then all solutions of (32) are oscillatory.

Note that by setting qi = pi/Mi and 1i = Mi fi, where Mi are constants with M̃i < Mi the conditions (17)
and (30) imply the conditions (35) and (36), respectively. Hence, when the conditions (35) and (36) hold, we
prove that limt→∞ x(t) = 0. So, it does not need to have the condition (34) in the proof of Theorem 4.1.

Remark 4.2. Let Mi be constants with M̃i < Mi for 1 ≤ i ≤ m. Then, because of the definition of M̃∗ = max{M̃i :
1 ≤ i ≤ m} in the condition (3) and (4), the left part of the conditions (17) and (30) are greater than (3) and (4),
respectively. So we have∫ t

τ(t)

m∑
i=1

pi(s)
Mi

exp
( ∫ σ(s)

τi(s)

m∑
j=1

p j(r)
M j

dr
)

ds ≥
∫ t

τ(t)

m∑
i=1

pi(s)

M̃∗
ds

and ∫ t

σ(t)

m∑
i=1

pi(s)
Mi

exp
( ∫ σ(t)

τi(s)

m∑
j=1

p j(r)
M j

dr
)

ds ≥
∫ t

σ(t)

m∑
i=1

pi(s)

M̃∗
.
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Hence, the conditions (17) and (30) are better results than (3) and (4), respectively.
On the other hand, when M̃i > 1 for 1 ≤ i ≤ m, Theorem 4.1 can not be applied. It is valid only when M̃i ≤ 1 for
1 ≤ i ≤ m. Also, using same facts as above, we have∫ t

τ(t)

m∑
i=1

pi(s)
Mi

exp
( ∫ σ(s)

τi(s)

m∑
j=1

p j(r)
M j

dr
)

ds ≥
∫ t

τ(t)

m∑
i=1

pi(s) exp
( ∫ σ(s)

τi(s)

m∑
j=1

p j(r) dr
)

ds

and ∫ t

σ(t)

m∑
i=1

pi(s)
Mi

exp
( ∫ σ(t)

τi(s)

m∑
j=1

p j(r) dr
)

ds ≥
∫ t

σ(t)

m∑
i=1

pi(s) exp
( ∫ σ(t)

τi(s)

m∑
j=1

p j(r) dr
)

ds.

Therefore, the conditions (17) and (30) are better than (35) and (36), respectively.

Now, we give examples to illustrate these results.

Example 4.3. In this example the conditions of Theorem 3.3 are satisfied, while the conditions of Theorem
2.2 are not. Consider equation (1) with

τ1(t) = t − 1 +
1
6

sin(t), τ2(t) = t −
1
2
+

1
6

sin(t),

f1(x) = x(
1
5
+ x2), f2(x) = x(

1
4
+ x4), p1(t) = 1, p2(t) = 2.5 .

Then, τ(t) = max{τ1(t), τ2(t)} = τ2(t).

M̃1 = lim
x→0

x
f1(x)

= 5, M̃2 = lim
x→0

x
f2(x)

= 4, M̃∗ = 5 .

Condition (3) is not satisfied because

lim inf
t→∞

∫ t

τ(t)
(1 + 2.5) ds = lim inf

t→∞

(1
2
−

1
6

sin(t)
)
(3.5) =

3.5
3
≈ 1.6667

<
M̃∗

e
≈ 1.8394 .

However, we observe that condition (17) is satisfied when M1 = 5.01 and M2 = 4.01. Note that

2∑
j=1

p j

M j
=

1
5.01

+
2.5

4.01
≈ 0.8230 ,

and that∫ σ(s)

τ1(s)
0.8230 dr ≥

∫ τ(s)

τ1(s)
0.8230 dr =

1
2

0.8230,
∫ σ(s)

τ2(s)
0.8230 dr ≥

∫ τ(s)

τ2(s)
dr = 0 .

Then,
2∑

i=1

pi(s)
Mi

exp
( ∫ σ(s)

τi(s)

2∑
j=1

p j(r)
M j

dr
)
≥

1
5.01

e0 +
2.5
4.01

e0.4115
≈ 1.1404 .

In the limit,

lim inf
t→∞

∫ t

τ(t)
1.1404 ds = lim inf

t→∞

(1
2
−

1
6

sin(t)
)
1.1404 ≈ 0.3801 >

1
e
≈ 0.3678 .

Therefore all the conditions of Theorem 3.3 are satisfied. So, all solutions of this equation are oscillatory.
Also, since M̃i > 1, Theorem 4.1 can not be applied for this example.
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Example 4.4. We consider the following first order nonlinear delay differential equation.

x′(t) +
0.5
e

x (τ1(t)) ln(|x (τ1(t))| + 5) +
0.2
e

x (τ2(t)) ln(|x (τ2(t))| + 4) = 0, t ≥ 0, (37)

where

τ1(t) =


t − 1, t ∈ [3k, 3k + 1]
−3t + 12k + 3, t ∈ [3k + 1, 3k + 2]
5t − 12k − 13, t ∈ [3k + 2, 3k + 3]

, k ∈N0

τ2(t) = τ1(t) − 2

and

σ1(t) := sup
s≤t
{τ1(s)} =


t − 1, t ∈ [3k, 3k + 1]
3k, t ∈ [3k + 1, 3k + 2.6]
5t − 12k − 13, t ∈ [3k + 2.6, 3k + 3]

, k ∈N0,

σ2(t) = σ1(t) − 2,

then,

τ(t) = max
1≤i≤m

{τi(t)} = τ1(t).

Also, we find

M̃1 = lim sup
x→0

x (τ1(t))
x (τ1(t)) ln(|x (τ1(t))| + 5)

=
1

ln 5
∼
= 0.62133

and

M̃2 = lim sup
x→0

x (τ2(t))
x (τ2(t)) ln(|x (τ2(t))| + 4)

=
1

ln 4
∼
= 0.72134,

then,

M̃∗ = max
1≤i≤m

{M̃i} = M̃1
∼
= 0.72134.

So,

lim inf
t→∞

t∫
τ(t)

m∑
i=1

pi(s) = lim inf
t→∞

t∫
t−1

0.7
e

ds ∼= 0.25751 <
M̃∗

e
∼
= 0.26536

and

lim inf
t→∞

t∫
σ(t)

m∑
i=1

pi(s) exp


σ(s)∫
τi(s)

m∑
j=1

p j(r)dr

 ds

= lim inf
t→∞

t∫
t−1

0.5e exp


s−1∫

s−1

0.7
e

dr

 + 0.2
e

exp


s−1∫

s−3

0.7
e

dr


 ds
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∼
= 0.30706 <

1
e
∼
= 0.36,

that is, (3) and (35) are not satisfied, respectively.
However, if we take M1 = 0.63 and M2 = 0.73, we obtain

= lim inf
t→∞

t∫
t−1

 0.5
e(0.63)

exp


s−1∫

s−1

( 0.5
e(0.63)

+
0.2

e(0.73)

)
dr

 + 0.2
e(0.73)

exp


s−1∫

s−3

( 0.5
e(0.63)

+
0.2

e(0.73)

)
dr


 ds

∼
= 0.51301 >

1
e

then, the condition (17) is satisfied. So, all the solutions of (37) are oscillatory.
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