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Abstract. This paper explores certain best proximity point expansions for a novel class of non-self-mapping
S : P −→ Q and T : Q → P called generalized proximal C-contractions of the first and second kinds. We
expose many examples to justify our obtained results. Considerable fixed point results are evolved as a
consequence of our main theorems.

1. Introduction

The useful classical Banach contraction principle (BCP) states that every contraction mapping on a
complete metric space possesses a unique fixed point. It is considered as the limit of Picard sequence.
Various nice extensions and generalizations of the BCP have been released in the literature. However, the
mappings involved in all these results are self-mappings. So, it is contemplated to give some best proximity
point theorems which furnish non-self mappings analogues of the BCP. Consequently, the results established
in this work ensure the existence of optimal approximate solutions for some fixed point equations when
there is no solution.

Let (M, d) be a metric space. Let (P,Q) be a pair of nonempty subsets on M. A point x ∈ M is named as
a best proximity point of a non self mapping S : P −→ Q if and only if d(x,Sx) = d(P,Q). Best proximity
point theorems are generalizations of fixed point theorems. They provide sufficient conditions that ensure
the existence of approximate solutions which are optimal as well. As a first step, a best proximity point
theorem was proposed by Fan in [1] for a non-self continuous mapping S : P −→ Q, where P is a nonempty
compact convex subset of a Hausdorff locally convex topological vector space. Many generalizations of
Fan’s theorems were performed in the literature, such that Reich [2], Sehgal and Singh [3] and Prolla
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[4]. Basha [5] made an extension of Banach contraction principle by a best proximity theorem under the
hypothesis that N is approximately compact with respect to P. Later on, several best proximity point results
were derived (see e.g., [6]-[19]).

The goal of this paper is an extension of the work of Basha [6].

Theorem 1.1. Let (P,Q) be a pair of nonempty closed subsets of a complete metric space (M, d) such that P0 and Q0
are nonvoid. Let S : P→ Q and T : Q→ P satisfy the following conditions:

1. S and T are proximal contractions of the first kind;
2. S(P0) ⊂ Q0 and T(Q0) ⊂ P0;
3. The pair (S,T) forms a cyclic contraction.

Then S (resp. T) has a unique best proximity point x in P (resp. y in Q). We have d(x, y) = d(P,Q).

A generalized version of such theorem was initiated on [20] for proximal β-quasi contractive mappings
for non-self-mappings S : P → Q and T : Q → P. Furthermore, some best proximity point developments
for a novel class of non-self mappings, called α- proximal Geraghty mappings were investigated in [21].

Our chief aim is to use C- functions introduced first by Ansari in [22]. In Fact, by suggesting the notion
of proximal generalized C-contractive non-self mappings, we can generalize the result of Basha [6] for a
pair of non-self mappings (S,T) forming cyclic contractions in the context of complete metric spaces. As
a conclusion, several fixed point results were derived. We suggest several concrete examples to make our
results valid.

2. Preliminaries

Let (P,Q) be a pair of nonempty subsets of a metric space (X, d). We opt the coming notations:

d(P,Q) := inf{d(a, b) : a ∈ P, b ∈ Q};
P0 := {a ∈ P : ∃ b ∈ Q; d(a, b) = d(P,Q)};
Q0 := {b ∈ Q : ∃ a ∈ P; d(a, b) = d(P,Q)}.

Definition 2.1. [5] Let S : P → Q be a non-self mapping. A point x∗ is called a best proximity point of S if
d(x∗,Sx∗) = d(P,Q).

Definition 2.2. [6] A non-self mapping S : P −→ Q is named as a proximal contraction of the first kind if there is
0 < α < 1 satisfying d(u1,Sx1) = d(P,Q) = d(u2,Sx2) then d(u1,u2) ≤ αd(x1, x2), ∀ x1, x2 ∈ P,u1,u2 ∈ Q.

Definition 2.3. [6] A non-self mapping S : P −→ Q is said to be a proximal contraction of second kind if there exists
0 < α < 1 satisfying d(u1,Sx1) = d(P,Q) = d(u2,Sx2) then d(Su1,Su2) ≤ αd(Sx1,Sx2) for all x1, x2 ∈ P,u1,u2 ∈ Q.

Definition 2.4. [6] Given non-self-mappings S : P→ Q and T : Q→ P. The pair (S,T) is said to form a proximal
cyclic contraction if there is 0 < l < 1 such that:

d(u,Sa) = d(P,Q) and d(v,Tb) = d(P,Q) =⇒ d(u, v) ≤ ld(a, b) + (1 − l)d(P,Q)

for all u, a ∈ P and v, b ∈ Q.

In 2014, the approach of C-class functions was initiated by Ansari [22].

Definition 2.5. [22] A mapping J : [0,∞)2
→ R is named as a C-class function if it is continuous and satisfies the

following assertions:

1. J(u, v) ≤ u;
2. J(u, v) = u⇒ u = 0 or v = 0; for all u, v ∈ [0,∞).

Note for some J, we have that J(0, 0) = 0. The set of C-class functions is denoted by C.
The coming functions J : [0,∞)2

→ R belong to C , for all u, v ≥ 0:



M. I. Ayari et al. / Filomat 36:16 (2022), 5677–5690 5679

1. J(u, v) = u − v, J(u, v) =⇒ v = 0;
2. J(u, v) = mu, 0 < m < 1, J(u, v) = u⇒ u = 0;
3. J(u, v) = u

(1+v)r ; r ∈ (0,∞), J(u, v) = u⇒ u = 0 or v = 0;
4. J(u, v) = log(v + au)/(1 + v), a > 1, J(u, v) = u⇒ u = 0 or v = 0;
5. J(u, v) = ln(1 + au)/2, a > e, J(u, v) = s⇒ s = 0;
6. J(u, v)) = (u + l)1/(1+v)r

− l, l > 1, r ∈ (0,∞), J(u, v) = u⇒ v = 0;
7. J(u, v) = u logv+a a, a > 1, f (u, v) = u⇒ u = 0 or v = 0;
8. J(u, v) = u − ( 1+u

2+u )( v
1+v ), J(u, v) = u⇒ v = 0;

9. J(u, v) = sβ(u), β : [0,∞)→ [0, 1), and is continuous, J(u, v) = u⇒ u = 0;
10. J(u, v) = u − v

k+v , J(u, v) = u⇒ v = 0;
11. J(u, v) = u − φ(v), J(u, v) = u ⇒ u = 0, here φ : [0,∞) → [0,∞) is a continuous function such that

φ(v) = 0⇔ v = 0;
12. J(u, v) = uh(u, v), J(u, v) = u ⇒ u = 0, where h : [0,∞) × [0,∞) → [0,∞) is a continuous function such

that h(u, v) < 1 for all u, v > 0;
13. J(u, v) = u − ( 2+v

1+v )v, J(u, v) = u⇒ v = 0;

14. J(u, v) = n
√

ln(1 + un), J(u, v) = u⇒ u = 0;
15. J(u, v) = ϕ(u), f (s, t) = s ⇒ s = 0, where ϕ : [0,∞) → [0,∞) is a upper semi-continuous function such

that ϕ(0) = 0, and ϕ(v) < v for v > 0,
16. J(u, v) = u

(1+u)r ; r ∈ (0,∞), J(u, v) = u⇒ u = 0 ;
17. J(u, v) = ϑ(u); ϑ : R+ × R+ → R is a generalized Mizoguchi-Takahashi type function , J(u, v) = u ⇒

u = 0;
18. J(u, v) = u

Γ(1/2)

∫
∞

0
e−x
√

x+v
dx, where Γ is the Euler Gamma function.

3. Main developments

In the beginning, we propose the coming concepts:

Definition 3.1. Let (X, d) be a metric space and (P,Q) be a pair of nonempty subsets of X. A non-self mapping
S : P→ Q is called a generalized proximal C-contractive of the first kind, if there exists J ∈ C such that d(u1,Sx1) =
d(P,Q) = d(u2,Sx2) then,

d(u1,u2) ≤ J(d(x1, y1), d(x1, y1)),

for all x1, y1,u1,u2 ∈ P.

Definition 3.2. Let (X, d) be a metric space and (P,Q) be a pair of nonempty subsets of X. A non-self-mapping
S : P → Q is announced a generalized proximal C-contractive of second kind, if there exists J ∈ C such that
d(u1,Sx1) = d(P,Q) = d(u2,Sx2), then

d(Su1,Su2) ≤ J(d(Sx1,Sy1), d(Sx1,Sy1)),

for all x1, y1,u1,u2 ∈ P.

Now, we are ready to suggest the coming best proximity point theorem.

Theorem 3.3. Let (X, d) be a complete metric space, (P,Q) be a pair of nonempty closed subsets and (P0,Q0) be a
pair of nonempty subsets in X. Let S : P −→ Q and T : Q −→ P be two non-self mappings satisfying the following
assertions:

1. S(P0) ⊂ Q0 and T(Q0) ⊂ P0;
2. S and T are generalized proximal C-contractive non-self-mappings of the first kind;
3. The pair (S,T) forms a proximal cyclic contraction.
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Then, S has a unique best proximity point z∗ ∈ P and T has a unique best proximity point t∗ ∈ Q . These best
proximity points verify d(z∗, t∗) = d(P,Q).

Proof. Using the fact P0 is nonempty, there exist z0, z1 ∈ P0 such that d(z1,Sz0) = d(P,Q). As S(P0) ⊂ Q0, there
exits z2 ∈ P0 such that d(z2,Sz1) = d(P,Q). Also S(P0) ⊂ Q0, there exists z3 ∈ P0 such that d(z3,Sz2) = d(P,Q).

In same manner, by induction, we can build a sequence {zn} ⊂ P0 such that

d(zn+1,Szn) = d(P,Q) and for all n ∈N ∪ {0}. (1)

Also, d(zn,Szn−1) = d(P,Q) for all n ∈N. Using the hypothesis that S is generalized proximal C-contractive
of the first kind and the property of J, we obtain that

d(zn+1, zn) ≤ J(d(zn, zn−1), d(zn, zn−1)) ≤ d(zn, zn−1) for all n ∈N. (2)

Thus, the sequence {d(zn+1, zn)} is decreasing. We suppose that there exists k ∈N such that d(zk, zk+1) = 0. In
this case, we get d(zk,Szk) = d(P,Q), and consequently S has a best proximity point, which is zk.

Now, we suppose that d(zn,Szn−1) > 0 for all n ∈ N. So the sequence {d(zn+1, zn)} is decreasing and of
non-negative terms, then there exists σ ≥ 0 such that
σ = lim

n−→∞
d(zn, zn+1). If we suppose that σ > 0, then by letting n −→ +∞ on (2) and using the continuity of f ,

we obtain that
σ ≤ J(σ, σ) ≤ σ.

Consequently, we find that J(σ, σ) = σ, so σ = 0, which is an absurdity.
Now, we declare that the sequence {zn} is a Cauchy sequence. Suppose it not the case. Then there exist

α > 0 and subsequences {zmp } and {znp } such that for all positive integers p with m(p) > n(p) > p, we have
d(zm(p), zn(p)) ≥ α and d(zm(p), zn(p)−1) < α. Using the triangular inequality, we get

α ≤ d(zm(p), zn(p)) ≤ d(zm(p), zm(p)−1) + d(zm(p)−1, zn(p))
≤ α + d(zm(p), zm(p)−1). (3)

Taking limit as p −→ +∞ in the overhead inequality (3), we get

lim
p−→+∞

d(zm(p), zn(p)) = α > 0. (4)

Using additionally the triangular inequality, one writes

d(zm(p), zn(p)) ≤ d(zm(p), zm(p)−1) + d(zm(p)−1, zn(p)−1) + d(zn(p)−1, zn(p)). (5)

If we apply the limit on both sides and using (4), we obtain

lim
p−→+∞

d(zm(p)−1, zn(p)−1) = α. (6)

Using that S is a proximal generalized C-proximal non-self mapping of the first kind, we obtain for all p ≥ 0,

d(zm(p), zn(p)) ≤ J(d(zm(p)−1, zn(p)−1), d(zm(p)−1, zn(p)−1)) ≤ d(zm(p)−1, zn(p)−1). (7)

Letting p −→ +∞ in the above inequality (7), we have

α ≤ f (α, α) ≤ α.

Thus, α = 0 which contradicts (4). Therefore, the sequence {zn} is a Cauchy sequence. Using the closeness
of the subset P of the complete metric space (X, d), there exists z∗ ∈ P such that the sequence {zn} converges
to z∗.
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In view of the fact T(Q0) ⊂ Q0, it is guaranteed that there exists a sequence {tn} ∈ Q0 such that
d(tn+1,Ttn) = d(P,Q). Since T is proximal generalized C- contractive of the first kind, there exists J1 ∈ C such
that

d(tn+1, tn) ≤ J1(d(tn, tn−1), d(tn, tn−1)) ≤ d(tn, tn−1).

Therefore, the sequence {tn} is Cauchy and so it converges to some t∗ ∈ Q. Using the hypothesis that (S,T)
forms a proximal cyclic contraction, we get d(zn+1, tn+1) ≤ kd(zn, tn) + (1 − k)d(P,Q). Letting n −→ +∞, we
get d(z∗, t∗) = d(P,Q). Thus, we guarantee that z∗ ∈ P0 and t∗ ∈ Q0. Since S(P0) ⊂ Q0 and T(Q0) ⊂ P0, there
exist z ∈ P and t ∈ Q such that d(z,Sz∗) = d(t,Tt∗) = d(P,Q). Since S is generalized Proximal C-contractive of
the first kind, we get

d(z, zn+1) ≤ f (d(z∗, zn), d(z∗, zn)) ≤ d(z∗, zn).

Letting n −→ +∞, we get that z = z∗. In a similar fashion, we can demonstrate that t = t∗. Therefore,
d(z∗,Sz∗) = d(t∗,Tt∗) = d(P,Q). We conclude that z∗ and t∗ are best proximity points respectively for S and T.

Concerning the uniqueness, we assume there are two different best proximity points for S such that
d(z∗,S∗) = d(P,Q) = d(x∗,Sx∗). Let r = d(z∗, x∗) > 0. Taking in account that S is generalized proximal
C-contractive of the first kind, then r ≤ J(r, r) ≤ r. It results that r = 0, which is a contradiction.

Theorem 3.4. Let (X, d) be a complete metric space, (P,Q) be a pair of nonempty closed subsets and (P0,Q0) be a
pair of nonvoid subsets in X. Let S : P −→ Q satisfy the following assertions:

1. S(P0) ⊂ Q0;
2. S is generalized proximal C-contractive of the first and second kinds.

Then, S has a unique best proximity point, say u∗ ∈ P.

Proof. As in Theorem 3.3, using the hypothesis (1) such that S(P0) ⊂ Q0, we can build a sequence {un} in P0
such that d(un+1,Sun) = d(P,Q) for all n ∈ N ∪ {0}. Since S is generalized proximal C-contractive of the first
kind, there exits J ∈ C such that

d(un+1,un) ≤ J(d(un,un−1), d(un,un−1)) ≤ d(un,un−1) for all n ∈N.

Now, we prove that {un} is a Cauchy sequence in the closed subset P. Then there exists u∗ such that un −→ u∗.
Again, by considering that S is generalized proximal C-contractive of second kind, we get

d(Sun+1,Sun) ≤ J(d(Sun,Sun−1), d(Sun,Sun−1)) ≤ d(Sun,Sun−1) for all n ∈N.

In a similar way, we can demonstrate that {Sun} is a Cauchy sequence in the closed set Q. Therefore, there
exits v∗ ∈ Q, such that Sun −→ v∗. We write

d(u∗, v∗) = lim
n−→∞

d(un+1,Sun) = d(P,Q). (8)

From (8), we obtain that u∗ ∈ P0. Since S(P0) ⊂ Q0, there is c ∈ P0 such that d(c,Su∗) = d(P,Q).
Therefore, d(un+1,Sun) = d(c,Su∗) = d(P,Q). Again, using the fact that S is generalized proximal C-

contractive of the first kind, it results that there exits h ∈ C such that

d(un+1, c) ≤ h(d(un,u∗), d(un,u∗)) ≤ d(un,u∗). (9)

Letting n −→ ∞ in the above inequality (9), we conclude that u∗ = c, and so u∗ is a best proximity point for
S.

For the uniqueness, we proceed in a similar manner as in proof of Theorem 3.3.
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4. Illustrative examples

This section is devoted to present non-trivial examples to support and strengthen the theoretical results.

Example 4.1. Consider the complete Euclidean space X = R2 with the metric
d((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2|. Let P = {(z, 0), z ∈ [2, 3]} and Q = {(b, 0), t ∈ [ 1

3 ,
1
2 ]}. Consider the non-self

mappings S : P −→ Q and T : Q −→ P such that S(z, 0) = ( 1
z , 0) and T(t, 0) = ( 1

t , 0). Note that S(P) = Q, T(Q) = P
and P and Q are closed subset in the complete space (R2, d). We have d(S(2, 0), (2, 0)) = | 12 − 2| = 3

2 = d(P,Q). Then,
it is to see that P0 = {(2, 0)} and Q0 = {( 1

2 , 0)}. Therefore, S(P0) ⊂ Q0 and T(N0) ⊂ P0. We show the hypothesis (2)
in Theorem 3.3, that is, T is generalized proximal C-contractive of the first kind.

Let (u, 0), (v, 0), (z, 0), (z′, 0) ∈ P = [2, 3] × {0} be such that

d((u, 0),S(z, o)) = d((v, 0),S(z′, 0))

=
3
2
= d(P,Q).

This means that (u, 0) = (z, 0) = (v, 0) = (2, 0) ∈ P. Therefore,

d((u, 0), (v, 0)) = 0 ≤
d((z, 0), (z′, 0))

1 + d((z, 0), (z′, 0))
.

Thus, the hypothesis (2) in Theorem 3.3 is fulfilled for the function J(u, v) = u
1+v . It is the same for T.

Now, it is remaining to prove that the couple (S,T) forms a proximal cyclic contraction. Here, d(u,Sa) =
d(P,Q) = 3

2 means that u = a = (2, 0) ∈ P and d(v,Tb) = d(P,Q) = 3
2 implies that v = b = ( 1

2 , 0) ∈ Q. Since
d(u,Sa) = d((2, 0),S(2, 0)) = 3

2 = d(P,Q) and d(v,Tb) = d( 1
2 , 0),T( 1

2 , 0))) = d(2, 1) = 3
2 = d(P,Q), one considers

3
2
= d(u, v) = d

(
(2, 0),

(1
2
, 0

))
≤ kd

(
(2, 0),

(1
2
, 0

))
+ (1 − k)d(P,Q)

=
3
2

(
k + (1 − k)

)
=

3
2
.

Hence, the pair (S,T) is a proximal cyclic contraction for any 0 ≤ k < 1. Therefore,

d(z∗, t∗) = d
(
(2, 0),

(1
2
, 0

))
=

3
2
= d(P,Q).

Remark 4.2. The mapping S is generalized proximal C-contractive of second kind. In fact, d((u, 0),S(z, o)) =
d((v, 0),S(z′, 0)) = 3

2 = d(P,Q). This means that (u, 0) = (z, 0) = (v, 0) = (2, 0) = (z′, 0) ∈ P. Therefore, we have

d(S(u, 0),S(v, 0)) = 0 ≤
d(S(z, 0),S(z′, 0))

1 + d(S(z, 0),S(z′, 0))
= 0.

Thus, S is generalized proximal C-contractive of second kind with 1(u, v) = u
1+v . Therefore, according to Theorem 3.4,

S has a unique best proximity point, which is eventually in our case the point (2, 0) ∈M.

The propositions below are used in the next examples.

Proposition 4.3. Assume that 1 : [0,∞) → [0,∞) is a function described by 1(τ) = ln(1 + τ), then the inequality
below holds

1(r) − 1(s) ≤ 1(|r − s|), for all r, s ∈ [0,∞).
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Proof. The inequality holds directly if r1 = r2. Let r > s, then we get

1 + r
1 + s

=
1 + r + s − s

1 + s
= 1 +

r − s
1 + s

< 1 + |r − s| .

It follows that

ln(1 + r) − ln(1 + s) < ln(1 + |r − s|).

The same result is satisfied if we take r < s.

Proposition 4.4. For each a, b ∈ R, the inequality below is fulfilled

1
(1 + |a|) (1 + |b|)

≤
1

1 + |a − b|
.

Proof. We have

1 + |a − b| ≤ 1 + |a| + |b|
≤ 1 + |a| + |b| + |ab|
= (1 + |a|) + (1 + |a|).

Example 4.5. Let (R2, d) be a complete metric space, where d is Euclidean metric. Consider

P = {(0, r) : r ∈ R} and Q = {(2, s) : s ∈ R}.

Then d(P,Q) = 2. Define the mappings S : P→ Q and T : Q→ P by

S((0, r)) = (2, ln(1 + |r|)) and T((2, s)) = (0, ln(1 + |s|)).

Then P0 = P, Q0 = Q, S(P) ⊂ Q and T(Q) ⊂ P.
Assume that (0, r1), (0, r2), (0, t1), and (0, t2) are elements in P verifying

d ((0, t1),S(0, r1)) = d(P,Q) = 2 and d ((0, t2),S(0, r2)) = d(P,Q) = 2.

Then we get ti = ln(1+ |ri|) for i = 1, 2. If r1 = r2, we have done. Let r1 , r2, then by Proposition 4.3 and the fact that
1(τ) = ln(1 + τ) is increasing, we get

d ((0, t1), (0, t2)) = d ((0, ln(1 + |r1|), (0, ln(1 + |r2|))
= |ln(1 + |r1|) − ln(1 + |r2|)|
≤ |ln(1 + ||r1| − |r2||)|
≤ |ln(1 + |r1 − r2|)|

=
|ln(1 + |r1 − r2|)|
|r1 − r2|

|r1 − r2|

= md ((0, r1), (0, r2)) ,

where m = |ln(1+|r1−r2 |)|
|r1−r2 |

≤ 1. Thus S is generalized proximal C−contractive of the first kind with J(u, v) = mu. We get
a similar result if we consider the mapping T.

Now, we prove that S is not a proximal contraction of the first kind. So, assume the contrary, that is S is a proximal
contractive of the first kind, then for each (0, p∗), (0, q∗), (0, k∗), (0, l∗) ∈ P, verifying

d
(
(0, p∗),S(0, k∗)

)
= d(P,Q) = 2 and d

(
(0, q∗),S(0, l∗)

)
= d(P,Q) = 2, (10)
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there is ℓ ∈ [0, 1) so that

d
(
(0, p∗), (0, q∗)

)
≤ ℓd ((0, k∗), (0, l∗)) .

Based on (10), we have p∗ = ln(1 + |k∗|) and q∗ = ln(1 + |l∗|) and so

|ln(1 + |k∗|) − ln(1 + |l∗|)| = d
(
(0, p∗), (0, q∗)

)
≤ ℓd ((0, k∗), (0, l∗))
= ℓ |k∗ − l∗| .

Setting l∗ = 0, we get

1 = lim
|k∗ |→0+

|ln(1 + |k∗|)|
|k∗|

≤ ℓ < 1,

a contradiction. Therefore, S is not a proximal contraction of the first kind. By the same method, we conclude that T
is not a proximal contraction of the first kind.

Since ti = ln(1 + |ri|) ≤ |ri| for i = 1, 2, we can write

d (S(0, t1),S(0, t2)) = d ((2, ln(1 + |t1|), (2, ln(1 + |t2|))
= |ln(1 + |t1|) − ln(1 + |t2|)|
≤ |ln(1 + ||t1| − |t2||)|
≤ |ln(1 + |t1 − t2|)|
≤ |ln(1 + ||r1| − |r2||)|
≤ |ln(1 + |r1 − r2|)|

=
|ln(1 + |r1 − r2|)|
|r1 − r2|

|r1 − r2|

= md ((0, r1), (0, r2)) .

This proves that S is a generalized proximal C−contractive of the first kind with J(u, v) = mu, for m = |ln(1+|r1−r2 |)|
|r1−r2 |

≤ 1.
Analogously respect to the mapping T.

Finally, we shall show that the pair (S,T) is a proximal cyclic contraction. Indeed, consider (0,u), (0, x) ∈ P and
(2, v), (2, y) ∈ Q be that

d ((0,u),S(0, x)) = d(P,Q) = 2 and d
(
(2, v),T(2, y)

)
= d(P,Q) = 2,

Then, we get

u = ln(1 + |x|) and v = ln(1 +
∣∣∣y∣∣∣),

the case of x = y is trivial. Let x , y, then we get

d((0,u), (2, v)) = 2 + |u − v|
= 2 +

∣∣∣ln(1 + |x|) − ln(1 +
∣∣∣y∣∣∣)∣∣∣

= 2 +

∣∣∣∣∣∣∣ln
 1 + |x|

1 +
∣∣∣y∣∣∣


∣∣∣∣∣∣∣

= 2 +

∣∣∣∣∣∣∣ln
1 + |x| −

∣∣∣y∣∣∣ + ∣∣∣y∣∣∣
1 +

∣∣∣y∣∣∣

∣∣∣∣∣∣∣

= 2 +

∣∣∣∣∣∣∣ln
1 +

|x| −
∣∣∣y∣∣∣

1 +
∣∣∣y∣∣∣


∣∣∣∣∣∣∣
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≤ 2 +

∣∣∣|x| − ∣∣∣y∣∣∣∣∣∣
1 +

∣∣∣y∣∣∣
≤ 2 +

 1

1 +
∣∣∣y∣∣∣

 ∣∣∣x − y
∣∣∣

= 2(1 − l) + l
(∣∣∣x − y

∣∣∣ + 2
)

= ld(
(
0, x), (0, y)

)
+ (1 − l)d(P,Q),

where l =
(

1
1+|y|

)
< 1. Then the pair (S,T) is a proximal cyclic contraction, therefore all assertions of Theorem 3.3 and

Theorem 3.4 are fulfilled. Moreover, (0, 0) ∈ P and (2, 0) ∈ Q are the unique elements so that

d((0, 0),S(0, 0)) = d((2, 0),T(2, 0)) = d((0, 0), (2, 0)) = d(P,Q) = 2,

this means that (0, 0) and (2, 0) are best proximity points of S and T.

Example 4.6. Let (R2, d) be a complete metric space, where d is described as

d ((r1, r2), (s1, s2)) = |r1 − s1| + |r2 − s2| , for all (r1, r2) , (s1, s2) ∈ R2.

Define

P = {(0, r) : r ∈ R} and Q = {(2, s) : s ∈ R}.

Then d(P,Q) = 2. Define the two mappings S : P→ Q and T : Q→ P by

S((0, r)) =
(
2,

|r|
2(1 + |r|)

)
and T((2, s)) = (0,

|s|
2(1 + |s|)

).

Then P0 = P, Q0 = Q, S(P) ⊂ Q and T(Q) ⊂ P.
Next, we prove that S and T are generalized proximal C−contractive of the first kind. Let (0, r1), (0, r2), (0, t1), (0, t2) ∈

P, justifying

d ((0, t1),S(0, r1)) = d(P,Q) = 2 and d ((0, t2),S(0, r2)) = d(P,Q) = 2.

Then we get

ti =
|ri|

2(1 + |ri|)
for i = 1, 2.

If r1 = r2, nothing is to prove. Let r1 , r2, then by Proposition 4.4, we get

d ((0, t1), (0, t2)) = d
(
(0,

|r1|

2(1 + |r1|)
), (0,

|r2|

2(1 + |r2|)
)
)

=

∣∣∣∣∣ |r1|

2(1 + |r1|)
−

|r2|

2(1 + |r2|)

∣∣∣∣∣
=

∣∣∣∣∣ |r1| − |r2|

2(1 + |r1|)(1 + |r2|)

∣∣∣∣∣
≤

∣∣∣∣∣ r1 − r2

(1 + |r1|)(1 + |r2|)

∣∣∣∣∣
≤

(
1

(1 + |r1 − r2|)

)
|r1 − r2|

= md ((0, r1), (0, r2)) , (11)
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where m = 1
(1+|r1−r2 |)

< 1. Thus S is generalized proximal C−contractive of the first kind with J(u, v) = mu. Similarly,
we can show that T is generalized proximal C−contractive of the first kind.

Now, we shall show that S and T are generalized proximal C−contractive of the second kind, then by (11), and
ti =

|ri |

2(1+|ri |)
≤ |ri| , for i = 1, 2, one can write

d (S(0, t1),S(0, t2)) = d
(
(2,

|t1|

2(1 + |t1|)
), (2,

|t2|

2(1 + |t2|)
)
)

=

∣∣∣∣∣ |t1|

2(1 + |t1|)
−

|t2|

2(1 + |t2|)

∣∣∣∣∣
=

∣∣∣∣∣ |t1| − |t2|

2(1 + |t1|)(1 + |t2|)

∣∣∣∣∣
≤

∣∣∣∣∣ t1 − t2

(1 + |t1|)(1 + |t2|)

∣∣∣∣∣
≤

(
1

(1 + |t1 − t2|)

)
|t1 − t2|

≤

(
1

(1 + |t1 − t2|)

)
||r1| − |r2||

≤

(
1

(1 + |t1 − t2|)

)
|r1 − r2|

= md ((0, r1), (0, r2)) .

Hence, S is generalized proximal C−contractive of the second kind with J(u, v) = mu, for m = 1
(1+|t1−t2 |)

< 1.
Analogously, we consider the mapping T. Ultimately, we will prove that the pair (S,T) is a proximal cyclic contraction.
Assume that (0,u), (0, x) ∈ P and (2, v), (2, y) ∈ Q are so that

d ((0,u),S(0, x)) = d(P,Q) = 2 and d
(
(2, v),T(2, y)

)
= d(P,Q) = 2.

Then, we get

u =
|x|

2(1 + |x|)
and v =

∣∣∣y∣∣∣
2(1 +

∣∣∣y∣∣∣) .
The case of x = y is easy. Let x , y, then we have

d((0,u), (2, v)) = |u − v| + 2

=

∣∣∣∣∣∣∣ |x|
2(1 + |x|)

−

∣∣∣y∣∣∣
2(1 +

∣∣∣y∣∣∣)
∣∣∣∣∣∣∣ + 2

=

∣∣∣∣∣∣∣ |x| −
∣∣∣y∣∣∣

2(1 + |x|)(1 +
∣∣∣y∣∣∣)

∣∣∣∣∣∣∣ + 2

≤

∣∣∣x − y
∣∣∣

2(1 + |x|)(1 +
∣∣∣y∣∣∣) + 2

≤
1
2

∣∣∣x − y
∣∣∣ + 2

= l
(∣∣∣x − y

∣∣∣ + 2
)
+ 2(1 − l)

= ld(
(
0, x), (0, y)

)
+ (1 − l)d(P,Q),

where l = 1
2 < 1. Then the pair (S,T) is a proximal cyclic contraction. Hence, all hypotheses of Theorem 3.3 and 3.4

are satisfied. Here, (0, 0) ∈ P and (2, 0) ∈ Q are best proximity points of S and T.
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5. Some related results

As a consequence of our principal theorems, we suggest the coming two results of Basha.

Corollary 5.1. [6] Let (X, d) be a complete metric space, (P,Q) be a pair of nonempty closed subsets and (P0,Q0) be
a pair of nonempty subsets in X. Let S : P→ Q,T : Q→ P satisfy the following assertions:

1. S and T are proximal contractions of the first kind;
2. S(P0) ⊂ Q0 and T(Q0) ⊂ P0;
3. The pair (S,T) forms a cyclic contraction.

Then, there exist a unique element x∗ in P and a unique element y∗ in Q satisfying the following conditions that
d(x∗,Sx∗) = d(y∗,Ty∗) = d(P,Q) and d(x∗, y∗) = d(P,Q).

Proof. The fact that S and T are proximal contractions of the first kind means that S and T are generalized
proximal C-contractive where J(u, v) = ku with k ∈ (0, 1) and J1(u, v) = αu with α ∈ (0, 1).

Corollary 5.2. [6] “Let (X, d) be a complete metric space, (P,Q) a pair of nonempty closed subsets and (P0,Q0) a pair
of nonempty subsets in X. Let S : P→ Q satisfy the following assertions:

1. S is a proximal contraction of the first and second kind;
2. S(P0) ⊂ Q0.

Then, there exists a unique element x∗ in P and such that d(x∗,Sx∗) = d(P,Q). Further, for any fixed element x0 ∈ P,
the sequence {xn} defined by d(xn+1,Sxn) = d(P,Q), converges to the best proximity x of S.

Proof. It is a clear consequence of Theorem 3.4. Take into the account that S is a proximal contraction of
the first and second kinds, so S is generalized proximal generalized C-contractive with J(u, v) = ku, where
k ∈ (0, 1).

In the following, we can deduce many fixed points results that are known in the literature. A natural
definition of a generalized proximal C-contraction of the first kind for the case of self-mappings is the
following:

Definition 5.3. Let (X, d) a metric space. A self-mapping S : X −→ X is called C-contractive if there exists J ∈ C
such that

d(Sx,Sy) ≤ J(d(x, y), d(x, y))∀x, y ∈ X.

As a consequence of Theorem 3.3, we state the following fixed point result.

Corollary 5.4. Let (X, d) be a complete metric space and S : X → X be a C- contractive mapping. Then S has a
unique fixed point.

Proof. It is a consequence of Theorem 3.3 by suggesting P = Q = X and taking (S,S) as a cyclic contraction.

From this corollary, we propose the following fixed points results.

Corollary 5.5. Let (X, d) be a metric space and S,T : X −→ X be two C- contractive mappings such that

d(Sx,Ty) ≤ kd(x, y), ∀ x, y ∈ X,

where 0 < k < 1. Then S and T have a unique common fixed point.

Proof. Also, this is a direct consequence of Theorem 3.3 by letting P = Q = X and taking the pair (S,T) as a
cyclic contraction. It means that d(Sx,Ty) ≤ kd(x, y).

Our first consequence is the Banach contraction principle [23].
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Corollary 5.6. Let (X, d) be a complete metric space. Let S : X→ X satisfy the following condition:

d(Sx,Sy) ≤ kd(x, y), for each x, y ∈ X, where k ∈ (0, 1).

Then T has a unique fixed point.

Proof. Consider in Corollary 5.4, J(u, v) = ku where k ∈ (0, 1) .

Corollary 5.7. Let (X, d) be a complete metric space. Suppose that there exists a continuous function β : [0,∞) −→
[0, 1) such that the mapping S : X −→ X is such that

d(Sx,Sy) ≤ β(d(x, y))d(x, y), for each x, y ∈ X.

Then S has a unique fixed point.

Proof. Take the function J(u, v) = uβ(v) in Corollary 5.4.

Corollary 5.8. Let (X, d) be a complete metric space. Let S : X→ X satisfy the following condition:

d(Sx,Sy) ≤
d(x, y)

(1 + d(x, y))r , for each x, y ∈ X, where r > 0.

Then S has a unique fixed point.

Proof. By suggesting J(u, v) = u
(1+v)r (where r ∈ (0,∞)) in Corollary 5.4.

Corollary 5.9. Let (X, d) be a complete metric space. Let S : X→ X satisfy the following condition:

d(Sx,Sy) ≤
d(x, y) + ad(x,y)

1 + d(x, y)
, for each x, y ∈ X, where a ∈ (1,∞).

Then S has a unique fixed point.

Proof. We simply take the function J(u, v) = lo1(v+au)
1+v (where a ∈ (1,∞)) in Corollary 5.4.

Corollary 5.10. Let (X, d) be a complete metric space. Let S : X→ X satisfy the following condition:

d(Sx,Sy) ≤
ln(2 + ad(x,y))

2
, for each x, y ∈ X, where a ∈ (e,∞).

Then S has a unique fixed point. Here, e = exp(1).

Proof. Let consider J(u, v) = ln(1+au)
2 (where a ∈ (e,∞)) in Corollary 5.4.

Corollary 5.11. Let (X, d) be a complete metric space. Let S : X→ X satisfy the following condition:

d(Sx,Sy) ≤ d(x, y)lo1d(x,y)+a(a), for each x, y ∈ X, where a ∈ (1,∞).

Then S has a unique fixed point.

Proof. Take J(u, v) = ulo1v+aa (where a ∈ (1,∞)) in Corollary 5.4.

Let Φ = {φ : [0,∞) −→ [0,∞)is a continuous function such thatφ(v) = 0⇔ v = 0}

Corollary 5.12. Let (X, d) be a complete metric space. Let S : X→ X satisfy the following condition:

d(Sx,Sy) ≤ d(x, y) − φ(d(x, y)), for each x, y ∈ X, where φ ∈ Φ.

Then S has a unique fixed point.
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Proof. Take J(u, v) = u − φ(u) (where φ ∈ Φ) in Corollary 5.4.

Corollary 5.13. Let (X, d) be a complete metric space. Let S : X→ X satisfy the following condition:

d(Sx,Sy) ≤ n

√
ln

(
1 + (d(x, y))n

)
, for each x, y ∈ X.

Then S has a unique fixed point.

Proof. Take J(u, v) = n√1 + un in Corollary 5.4.

Corollary 5.14. Let (X, d) be a complete metric space. Let S : X→ X satisfy the following condition:

d(Sx,Sy) ≤ ϕ(d(x, y)), for each x, y ∈ X,

where ϕ : [0,∞) −→ [0,∞) is an upper semi-continuous function such that ϕ(0) = 0 and ϕ(t) < t for t > 0. Then S
has a unique fixed point.

Proof. By considering J(u, v) = ϕ(u) in Corollary 5.4.

Corollary 5.15. Let (X, d) be a complete metric space. Let T : X→ X satisfy the following condition:

d(Tx,Ty) ≤ θ(d(x, y)), for each x, y ∈ X,

where θ : [0,∞) × [0,∞) −→ R is a generalized Mizoguchi-Takahachi Type function. Then T has a unique fixed
point.

Proof. Let consider J(u, v) = θ(u) in Corollary 5.4.

Corollary 5.16. Let (X, d) be a complete metric space. Let S : X→ X satisfy the following condition:

d(Sx,Sy) ≤
d(x, y)(d(x, y) + 1)

2 + d(x, y)
, for each x, y ∈ X.

Then S has a unique fixed point.

Proof. We suggest J(u, v) = u − ( 1+u
2+u )( v

1+v ) in Corollary 5.4.

Corollary 5.17. Let (X, d) be a complete metric space. Let S : X→ X satisfy the following condition:

d(Sx,Sy) ≤
d(x, y)

Γ( 1
2 )

∫
∞

0

e−w

√
w + d(x, y)

dw, for each x, y ∈ X.

Then S has a unique fixed point

Proof. We propose J(u, v) =
u
Γ( 1

2 )

∫
∞

0

e−w

√
w + v

dw in Corollary 5.4.

6. Conclusion

We ensured the existence of best proximity points for a pair of non-self mappings forming cyclic
contractions involving C-class functions in the context of complete metric spaces. The obtained results are
illustrated by some examples. Several related corollaries have been presented. Further results in same
direction could be derived using other auxiliary functions.
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