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Abstract. In this article, we consider the Hölder continuity of injective maps in Orlicz-Sobolev classes
defined on the unit ball. Under certain conditions on the growth of dilatations, we obtain the Hölder
continuity of the indicated class of mappings. In particular, under certain special restrictions, we show that
Lipschitz continuity of mappings holds. We also consider Hölder and Lipschitz continuity of harmonic
mappings and in particular of harmonic mappings in Orlicz-Sobolev classes. In addition in planar case, we
show in some situations that the map is bi-Lipschitzian if Beltrami coefficient is Hölder continuous.

1. Introduction

It is well known that estimates of the distortion of distances of Hölder and Lipschitz type are one
of the most important objects of modern analysis that allow a qualitative description of the behavior of
mappings. For example, obtaining such estimates can be used to study the local behavior of solutions of the
degenerate Beltrami-type equations, see e.g. [48] and [49]. Recall that K-quasiconformal mappings of the
unit disk onto itself with the normalization condition f (0) = 0 are Hölder continuous with exponent 1/K
and Hölder constant 16 (see, e.g., [2], [32, Theorem 3.2.II] [45] and [59, Theorem 18.2, Remark 18.4]). Quite
simple examples of mappings, such as the quasiconformal homeomorphism f = z|z|1/K−1, f (0) := 0, show
that the Hölder exponent is of optimal order here and, in particular, quasiconformal mappings, generally
speaking, are not Lipschitz. It should be noted that quasiconformal mappings can be Lipschitz in a rather
wide subclass, however, in this case, rather specific conditions for their dilatation must be satisfied (see, e.g.,
[20]). Somewhat later, similar results on Hölder property were also established for maps with branching
(quasiregular mappings), see, for example, [39, Theorem 3.2] and [51, Theorem 1.1.2]. Subsequently, the
corresponding part of theory of mappings has been developed in the direction of weakening the conditions
under which Hölder continuity or some of its analogues still holds. In particular, the study of local
estimates of the distortion of distances has long been associated with the study of mappings with finite
distortion, while Hölder continuity was often replaced by logarithmic distance estimates, see, for example,
[15, Theorems 4 and 5], [22, Theorem 11.2.3], [41, Theorem 7.4], [42, Theorem 3.1], [50, Theorem 5.11]
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and [57, Theorems 1.1.V and 2.1.V]. 1) In a number of previous publications, see, for example, [1], [18], [31],

[30] and [23]–[24] we study the Orlicz-Sobolev classes under the Calderon condition and this article can be
consider as continuation of this study. Here and below, we call the requirement

∞∫
1

(
t
φ(t)

) 1
n−2

dt < ∞, (1)

Calderon’s condition, see [14]. Note that Calderon’s article [14] containing this requirement was published in
an inaccessible journal and was apparently forgotten. Orlicz-Sobolev classes under the Calderon condition,
denoted by W1,φ

loc , are in many respects more general than the mentioned classes of quasiconformal and

quasiregular mappings and, in addition, their properties are very similar to Sobolev classes W1,p
loc, p > n− 1,

which are obtained from the Orlicz-Sobolev classes by choosing the function φ(t) = tp, p > n − 1. In fact,
Calderon’s condition implies W1,φ

loc ⊂W1,n−1
loc , n ≥ 3. As well as in the Sobolev classes, functions in the Orlicz-

Sobolev classes under the Calderon condition are differentiable almost everywhere and are absolutely
continuous on spheres with respect to the (n − 1)-dimensional Hausdorff measure, see, for example, [31,
Theorem 1, Corollary 4], cf. [58, Lemma 3], [51, Theorem 1.2.II]. This property enables to establish upper
bounds for the distortion of the modulus of the families of paths (weighted Poletski inequalities) for W1,φ

loc ,
and then apply the distance distortion estimates already established previously for the corresponding
mappings (see, for example, [41, (7.47)], [50, (4.31)]). In particular, in our recent publication [47] related
to the second and third co-authors, we obtained several similar estimates in the space and in planar case.
We also note that consideration of the Sobolev classes W1,p

loc, p > 1, and Orlicz-Sobolev classes of this type,
in the planar case is not required, but rather simply Sobolev classes, see ibid. This is due, in turn, to
the fact that, by Gehring-Lehto theorem, planar homeomorphisms of Sobolev classes W1,1

loc, without any
additional restrictions, are differentiable almost everywhere and absolutely continuous on almost all circles
with respect to the linear Lebesgue measure, and this is already quite enough to establish upper bounds for
the distortion of the modulus of families of paths (see, for example, [33, Theorem 3.1] and [32, Theorem 3.1]).
The reader should be aware that the situation is completely different in space. Namely, for n ≥ 3, there
is a homeomorphism of class W1,n−1

loc ((−1, 1)n,Rn) such that both f and f−1 are nowhere differentiable. In
the survey [16] the author clarifies the regularity assumptions for a map to be differentiable a.e., and gives
some some auxiliary results when it is not, using the notion of approximate differentiability. When dealing
with mappings of W1,p with p < n − 1, the notion of differentiability (that fails in this setting) can be
replaced by the notion of approximate differentiability in the change of variable formula. However, the
condition (N) plays a fundamental role for these mappings. Indeed for such f , the Luzin condition (N) is
equivalent to the validity of the area formula. If the homeomorphism f satisfies the natural assumption
f ∈ W1,n

loc (G,Rn), then f satisfies the condition (N). This is due to Reshetnjak2), and is a sharp result in the
scale of W1,p(G,Rn)-homeomorphisms thanks to an example of Ponomarev3) of a W1,p-homeomorphisms
f : [0, 1]n

→ [0, 1]n, p < n, violating the Luzin condition (N). Note that estimates of Hölder type have been

investigated for inner points (see, e.g., [31, Theorems 7, 8] and [47, Theorems 1.1, 4.1]) and that this article
deals with the corresponding estimates at the boundary of the domain.

The method of moduli of families of paths is one of the main research tools (see, for example, [31,
Corollary 9], [30, Theorem 2.2], cf. [41, Theorem 7.3] and [50]) in the subject, and distortion estimates are
usually proved with moduli techniques.

In this paper we employ the method of the boundary extension of the studied mappings across the
boundary of a ball using the inversion with respect to its sphere, and then apply known distortion estimates

1)As a rule, Hölder continuity of mappings with finite distortion does not occur, with the exception of very special conditions for
dilatation of mappings considered in this manuscript.

2)(cf. [29] in [16])
3)(cf. [27, 28] in [16])
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for the case of interior points. So in the manuscript practically we do not use the modulus technique directly.
Although there is a developed theory related to extension theorems for Sobolev spaces it seems that in this
context our approach is a novelty. Of course, in addition to the conditions for smoothness of mappings, this
approach also requires analytic conditions that limit the growth of their quasiconformality characteristics.
The article considers several similar analytic conditions which are independently from each other.

There is a huge literature in the subject so it is possible that we have missed to quote some important
papers for which we apologize to the authors in advance.

Throughout this manuscript, unless otherwise specified, D denotes a domain in Rn, n ⩾ 2. We assume
that the reader is familiar with the definitions of Sobolev classes W1,1

loc and some of their basic properties,
see, for example, [51, 2.I]. Here only recall if f : D→ Rm has ACL (absolutely continuous on lines) property
on D we write that f ∈ ACL(D).

We write f ∈W1,φ
loc (D) for a locally integrable vector-function f = ( f1, . . . , fm) of n real variables x1, . . . , xn

if fi ∈W1,1
loc and∫

D ∗

φ
(
|∇ f (x)|

)
dm(x) < ∞ (2)

for every subdomain D ∗ with a compact closure, where |∇ f (x)| =

√∑
i, j

(
∂ fi
∂x j

)2
. If additionally f ∈W1,1(D) and

∫
D

φ
(
|∇ f (x)|

)
dm(x) < ∞ , (3)

we write f ∈W1,φ(D). For a mapping f : D→ Rn having partial derivatives almost everywhere in D,we set

J(x, f ) := det f ′(x), l
(

f ′(x)
)
= min

h∈Rn\{0}

| f ′(x)h|
|h|

, (4)

for the Jacobian and smallest distortion respectively. The inner dilatation of a map f at a point x ∈ D is
defined by the relation

KI(x, f ) =


|J(x, f )|

l( f ′(x))n , J(x, f ) , 0,

1, f ′(x) = 0,
∞, otherwise

. (5)

In what follows, we denote by Bn = {x ∈ Rn : |x| < 1}, and Sn−1 = ∂Bn, respectively the unit n-dimensional
ball and the unit n − 1-dimensional sphere.

Theorem 1.1. Let n ⩾ 3, and let φ : (0,∞) → [0,∞) be a non-decreasing Lebesgue measurable function wich
satisfies Calderon’s condition (1). Suppose also that there exist constants C > 0 and T > 0 such that

φ(2t) ⩽ C · φ(t) ∀ t ⩾ T . (6)

Let Q : Bn
→ [0,∞] be integrable function in Bn. Assume that f is a homeomorphism of Bn onto Bn such

that f ∈W1,φ(Bn) and, in addition, f (0) = 0. Let, moreover, KI(x, f ) ⩽ Q(x) for a.e. x ∈ Bn and, besides that,

sup
ε∈(0,ε0)

1
Ωnεn

∫
Bn∩B(ζ,ε)

Q(x) dm(x) < C ∀ ζ ∈ ∂Bn (7)

holds for some ε0 > 0, where Ωn is the volume of the unit ball in Rn.
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Then f has a homeomorphic extension f : Bn → Bn and, in addition,

| f (x2) − f (x1)| ⩽ 2αnε
−α
0 · |x2 − x1|

α
∀ x1, x2 ∈ ∂B

n : |x2 − x1| < δ0 ,

where δ0 := min
{

1
2 , ε

2
0

}
, ωn−1 is the area of n − 1-dimensional sphere Sn−1 and α :=

(
ωn−1 log 2

Ωn(4n+1)2n+1C

)1/(n−1)
.

Note here that ωn−1 = nΩn.
In the second part of the paper we deal with harmonic mappings and harmonic quasiconformal (shortly

hqc) mappings among the other things. Note that the planar case is very specific and the subject of planar
hqc mappings has been intensively studied by the participants of the Belgrade Analysis Seminar (see, for
example, [37] and [13] for more details and references cited there). For recent development of the subject
in planar and spatial case see [38].

In Section 5 we consider mappings with growth of distortion (dilatations) of bounded mean value. and
local spatial version of Privalov’s theorem for harmonic functions (Theorem 5.3) which has an independent
interest. As application of results obtained in in the first part and spatial version of Privalov’s theorem
we show global Hölder continuity of mappings in considered class. In particular, under certain special
restrictions, we show that Lipschitz continuity of mappings holds.

Proof of Theorem 5.3 is given in Section 6.
Our focus in Section 7, are results related to planar hqc mappings between Lyapunov domains. Kalaj

proved that if h is a hqc mapping of the unit disk onto a Lyapunov domain, then h is Lipschitz (see, e.g.,
[25]). Then in [13] it is proved h is co-Lipschitz. In planar case the condition (52)4) provides sufficient
conditions for Hölder and Lipschitz continuity. Next we show that in some situation if Beltrami coefficient
is Hölder continuous that the map is biLip 5). As application we obtain some version of Kellogg’s theorem
for quasiconformal mappings.

Finally, let us say a few words about the activities that influenced the research contained in this
manuscript:

Remark 1.2. During Belgrade Analysis seminar, winter semester 2019 and 2020, we have considered subject related
to Geometric Function Theory (GFT) and qc mappings and have tried to start some projects related to the subject6).
After writing a final version of this manuscript, in communication with D. Kalaj it becomes clear in particular that
the project is also related to some versions of Kellogg and Warschawski theorem for a class of quasiconformal maps,
and our attention has been turned first to [26] and later to results obtained in [43] and in [11]; see in particular
Theorem 1.3 [11].

Let x0 ∈ D, x0 , ∞,

S(x0, r) = {x ∈ Rn : |x − x0| = r} ,Si = S(x0, ri) , i = 1, 2 ,

A = A(x0, r1, r2) = {x ∈ Rn : r1 < |x − x0| < r2} .

Let Q : Rn
→ Rn be a Lebesgue measurable function satisfying the condition Q(x) ≡ 0 for x ∈ Rn

\ D. The
mapping f : D→ Rn is called a ring Q-mapping at the point x0 ∈ D \ {∞}, if the condition

M( f (Γ(S1,S2,D))) ⩽
∫

A∩D

Q(x) · ηn(|x − x0|) dm(x) (8)

4)see Theorem 4.1 in section 4, p.19.
5)see the section 7 which can be considered as a separate part
6)In particular, the first author has clarified some facts related to Ahlfors book [4] in discussion with V. Božin and M. Arsenović,

and E. Sevost’yanov gave several lectures related to a ring Q-homeomorphism and Orlicz-Sobolev clases. In connection with this the
first author of this manuscript started two independent project a) with M. Arsenović related to regularity properties of solutions of
Beltrami equation, and b) with R. Salimov and E. Sevost’yanov, related Hölder and Lipschitz class in Orlicz-Sobolev clas.
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holds for all 0 < r1 < r2 < d0 := sup
x∈D
|x − x0| and all Lebesgue measurable functions η : (r1, r2)→ [0,∞] such

that
r2∫

r1

η(r)dr ⩾ 1 . (9)

The mapping of f is called a ring Q-mapping in D, if condition (8) is satisfied at every point x0 ∈ D, and a
ring Q-mapping in D, if the condition (8) holds at every point x0 ∈ D. For the properties of such mappings
see [49] and [42].

2. Proof of Theorem 1.1

It is known that if f is K-qc mapping of the unit ball Bn onto itself then f ∈ W1,p(Bn) for some p > n
and it satisfies hypothesis of Theorem 1.1 with φ(t) = tn. On the other hand, Example 2.1 below shows that
there is a map f ∈ W1,3(B3) with unbounded inner distortion KI satisfying the conditions of Theorem 1.1
with Q = KI. We leave the interested reader to generalize this example.

I. Observe that f is a ring Q-mapping in Bn with Q = KI(x, f ), where KI(x, f ) is defined in (5), see [30,
Theorem 2.2], cf. [31, Corollary 9]. According to Corollary 6.1 in [41], the function Q, which satisfies (7),
has a finite mean oscillation at each point x0 ∈ ∂Bn. In this case, it follows from [54, Theorem 1] that there is
continuous extension f̃ of the mapping f onto Sn−1 = ∂Bn. We also note that the map f̃ is a homeomorphism
of the unit ball Bn onto itself, see, for example, [56, Theorem 5].

II. Using conformal transformation ψ(x) = x
|x|2 , we extend the mapping f homeomorphically onto the

whole n-dimensional Euclidean space Rn as follows:

F(x) =
{

f (x), |x| < 1 ,
ψ( f (ψ(x))), |x| ⩾ 1 . (10)

Using the condition, f ∈ W1,φ(Bn), we will show that F ∈ W1,φ(B(0,R)) for any R > 1 (in particular, since
F = f on Bn, the functions |∇F| and φ(|∇F|) are integrable in Bn, but we show more that these functions also
integrable in B(0,R), for any R > 1). For this, we observe that, by the differentiation rule of a superposition
of mappings,

F ′(x) = ψ ′( f (ψ(x)) ◦ f ′(ψ(x)) ◦ ψ ′(x) . (11)

Here we used the fact that homeomorphisms of the Orlicz-Sobolev classes under the Calderon condition
are differentiable almost everywhere, see, for example, [31, Theorem 1]. As usual, put

∥ f ′(x)∥ = max
h∈Rn\{0}

| f ′(x)h|
|h|

.

Using direct calculations, we may establish the inequality

∥ f ′(x)∥ ⩽ |∇ f (x)| ⩽ n1/2
· ∥ f ′(x)∥ (12)

at all points x ∈ D where the map f has formal partial derivatives. Observe that ∥ψ ′(x)∥ = 1
|x|2 (see, e.g., [55,

paragraph 7]). Recall that for two linear mappings 1 and h the relation

∥1 ◦ h∥ ⩽ ∥1∥ · ∥h∥ (13)

holds, and here, equality holds as soon as at least one of the mappings is orthogonal (see, e.g., [51, I.4,
relation (4.13)]). Since f (0) = 0, f (ψ(y)) , 0 for 1 < |y| ⩽ R and for any R > 1. Since the map f (ψ(y)) is
continuous in 1 ⩽ |y| ⩽ R and does not vanish, there is m > 0 such that

| f (ψ(y))| ⩾ m , 1 ⩽ |y| ⩽ R . (14)
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In this case, from (11), (12), (13) and (14), we obtain that∫
1<|x|<R

|∇F(x)| dm(x) ⩽
∫

1<|x|<R

n1/2
· ∥F ′(x)∥ dm(x)

= n1/2
·

∫
1<|x|<R

∥ψ ′( f (ψ(x))∥ · ∥ f ′(ψ(x))∥ · ∥ψ ′(x)∥ dm(x)

= n1/2
·

∫
1<|x|<R

1
| f (ψ(x))|2

· ∥ f ′(ψ(x))∥ ·
1
|x|2

dm(x) ⩽
n1/2

m2 ·

∫
1<|x|<R

∥ f ′(ψ(x))∥ dm(x)

=
n1/2

m2 ·

∫
1/R<|y|<1

∥ f ′(y)∥
|y|2n dm(y) ⩽

n1/2R 2n

m2 ·

∫
1/R<|y|<1

|∇ f (y)| dm(y) < ∞ . (15)

III. Quite similarly, applying the same arguments to the function φ(|∇F|) instead of |∇F|, and taking into
account relation (6) together with the non-decreasing property of the function φ, we obtain that∫

1<|x|<R

φ(|∇F(x)|) dm(x) ⩽ C1 ·

∫
1<|x|<R

φ(∥F ′(x)∥) dm(x)

= C1 ·

∫
1<|x|<R

φ(∥ψ ′( f (ψ(x)))∥ · ∥ f ′(ψ(x))∥ · ∥ψ ′(x)∥) dm(x)

= C1 ·

∫
1<|x|<R

φ

(
1

| f (ψ(x))|2
· ∥ f ′(ψ(x))∥ ·

1
|x|2

)
dm(x) ⩽ C2 ·

∫
1<|x|<R

φ(∥ f ′(ψ(x))∥) dm(x)

= C2 ·

∫
1/R<|x|<1

φ

(
∥ f ′(x)∥
|x|2n

)
dm(x) ⩽ C2R2n

·

∫
1/R<|x|<1

φ(|∇ f (x)|) dm(x) < ∞ . (16)

IV. It follows from (15) and (16) that∫
B(0,R)

|∇F(x)| dm(x) < ∞ ,
∫

B(0,R)

φ(|∇F(x)|) dm(x) < ∞ , R > 1 . (17)

Reasoning in a similar way, we may also obtain similar relations for the inner dilatation of the map F. Indeed,
since the inner dilatation does not change under conformal mapping (see, for example, [51, I.4.(4.15)]), we
obtain that ∫

B(0,R)

KI(x,F) dm(x) =
∫
Bn

KI(x, f ) dm(x) +
∫

1<|x|<R

KI(ψ(x), f ) dm(x) .

Making a change of variables here, and taking into account that KI(x, f ) ∈ L1(Bn) by the assumption, we
obtain that ∫

B(0,R)

KI(x,F) dm(x) =
∫
Bn

KI(x, f ) dm(x) +
∫

1/R<|y|<1

KI(y, f ) ·
1
|y|2n dm(y)

⩽

∫
Bn

KI(x, f ) dm(x) + R2n
·

∫
1/R<|y|<1

KI(y, f ) dm(y) < ∞. (18)
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V. Let us check that F ∈ ACL(Rn). It is known if f ∈ W1,1(Bn), that the unit ball Bn may be divided in a

standard way into no more than a countable number of parallelepipeds Is, s ≥ 1, with disjoint interiors,
such that F is absolutely continuous on almost all coordinate segments in each Is,s ≥ 1. We call a segment
coordinate segment if it is parallel to a coordinate axis. Let us prove:

(A) F is absolutely continuous on almost all segments in Bn, parallel to the coordinate axes.
It is enough to consider segments r for which F is absolutely continuous (shortly AC) on rs := r ∩ Is for

every s ≥ 1. Suppose that r(t) = {x ∈ Rn : x = x0 + te, t ∈ [a, b]} is such a segment in Bn, where e is some
coordinate unit vector, and x0 ∈ Bn.

Two cases are possible: when z0 := x0 + be belongs to the interior of the ball, and when the same point
lies on the unit sphere. Set α(t) = f (x0 + te). In the first case, there are finite number of integers s1, s2, ..., sl
such that r = ∪l

ν=1rsν . Hence F is AC on r.
Note also here that by ACL-characterization of the Sobolev classes (see, e.g., [44, Theorems 1.1.2 and

1.1.3]) and by the fact that for a real-valued functions defined on an interval of the real line, absolute
continuity may be formulated by the validity of the fundamental theorem of calculus in terms of Lebesgue

integration, (see, for example, see [52, Theorem IV.7.4]), we have
b∫

a
α ′(t) dt = α(b) − α(a). Let now z0 ∈ Sn−1.

Then, as it was proved above with respect to the inner points of the ball, for an arbitrary a < c < b we have
that

c∫
a

α ′(t) dt = α(c) − α(a) . (19)

Since it was also proved above, that the map f is a homeomorphism in the closed unit ball Bn, the
passage to the limit on the right-hand side of (19) as c→ b gives that α(b) − α(a).

Since (19) holds for every subinterval of r, we first conclude that F is AC on r, and (A) follows. Now
consider the family J(B(0,R)) of all coordinate segments in B(0,R). It follows from the integrability of the
gradient of the mapping F on B(0,R) (see (17) and by virtue of Fubini’s theorem (see, for example, [52,
Theorem III.8.1]) that the derivative of the function α is integrable on almost all segments in B(0,R) parallel
to the coordinate axes. Without loss of generality, we may assume that a segment r(t) has exactly this
property.

Since the reflection with respect to the unit sphere is C∞ change of variables, and f ∈ W1,1(Bn), we
conclude that F ∈W1,1

(
(B(0,R)\Bn)

)
(see item 1.1.7 [44] and also definitions of Sobolev spaces on manifolds

in literature). Similarly as above, we may verify that:
(B) F is absolutely continuous on almost all segments in Rn

\ Bn, parallel to the coordinate axes.
Since F is continuous on Rn, this immediately implies that F is absolutely continuous on the same

segments in Rn, as required.

VI. Since F ∈ ACL(Rn), by (17) F ∈ W1,φ
loc (B(0,R)) for any R > 1. Thus, by (17) and (18), F is a ring

Q∗-mapping in B(0,R), where Q∗(x) = Q(x) for x ∈ Bn and Q∗(x) = Q(ψ(x)) for x ∈ B(0,R) \ Bn (see, e.g., [30,
Theorem 2.2], cf. [31, Corollary 9]).

VII. Let ζ0 ∈ Sn−1 and r0 > 0. Notice, that

ψ(B+(ζ0, ε)) ⊂ B−(ζ0, ε) ∀ ε ∈ (0, 1) , (20)

where
B+(ζ0, ε) = {x ∈ Rn : ∃ e ∈ Sn−1, t ∈ [0, ε) : x = ζ0 + te, |x| > 1} = B(ζ0, ε) ∩ (Rn

\ Bn) ,

B−(ζ0, ε) = {x ∈ Rn : ∃ e ∈ Sn−1, t ∈ [0, ε) : x = ζ0 + te, |x| < 1} = B(ζ0, ε) ∩ Bn ,
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and, as above, ψ(x) = x
|x|2 . Indeed, for a given x = ζ0 + te ∈ B+(ζ0, ε), computing the square of the module of

the vector by means of the scalar product (·, ·), we obtain that

|ψ(x) − ζ0|
2 =

∣∣∣∣∣ ζ0 + te
|ζ0 + te|2

− ζ0

∣∣∣∣∣2 = 1
|ζ0 + te|2

−
2(1 + t(ζ0, e))
|ζ0 + te|2

+
|ζ0 + te|2

|ζ0 + te|2

=
1 − 2(1 + t(ζ0, e)) + 1 + 2t(ζ0, e) + t2

|ζ0 + te|2
=

t2

|ζ0 + te|2
< t2 ,

that is, |ψ(x) − ζ0| < t, as required.
VIII. Let 0 < r < 1/2. Now, by (20) and by formula for the change of variable in the integral (see, e.g.,

[17, Theorem 3.2.5]) we obtain that∫
B(ζ0,r)∩(Rn\Bn)

Q∗(y) dm(y) =
∫

B(ζ0,r)∩(Rn\Bn)

Q(ψ(y)) dm(y)

⩽

∫
B(ζ0,r)∩Bn

Q(y) ·
1
|y|2n dm(y) . (21)

Let y ∈ B(ζ0, r)∩Bn.Now y = ζ0+et,where e ∈ Sn−1 and 0 ⩽ t < r < 1/2.Hence, by the Cauchy-Bunyakovsky
inequality, we have that

|y|2 = |ζ0 + et|2 = 1 + 2t(ζ0, e) + t2 ⩾ 1 − 2t + t2 = (1 − t)2 ⩾ 1/4 . (22)

By (21) and (22),∫
B(ζ0,r)∩(Rn\Bn)

Q∗(y) dm(y) ⩽ 4n
·

∫
B(ζ0,r)∩Bn

Q(y) dm(y) . (23)

It immediately follows from (23) that∫
B(ζ0,r)

Q∗(y) dm(y) ⩽ (4n + 1) ·
∫

B(ζ0,r)∩Bn

Q(y) dm(y) < ∞ , (24)

because Q is integrable in Bn by the assumption.

IX. Denote by FQ the family of all homeomorphisms of the class W1,φ(Bn) of the unit ball onto itself
satisfying the condition f (0) = 0, for which KI(x, f ) ⩽ Q(x) a.e. x ∈ Bn.According to point VI, every mapping
F defined by formula (10), where f satisfies the hypothesis of the theorem, belongs to the class FQ.Note also
that all such mappings obviously do not take the values 0 and∞ in the domain Rn

\ {0}. Let h be a chordal
metric in Rn,

h(x,∞) =
1√

1 + |x|2
, h(x, y) =

|x − y|√
1 + |x|2

√
1 + |y|2

, x , ∞ , y ,

and let h(E) := sup
x,y∈E

h(x, y) be a chordal diameter of a set E ⊂ Rn (see, e.g., [59, Definition 12.1]). Based on

the above formula, h(Rn
\ {0}) = 1. We note that all the statements obtained in the proof of this theorem up

to and including point VIII hold. By (24) and (7),

sup
ε∈(0,ε0)

1
Ωnεn

∫
B(ζ,ε)

Q ∗(x) dm(x)
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⩽ (4n + 1) · sup
ε∈(0,ε0)

1
Ωnεn

∫
Bn∩B(ζ,ε)

Q(x) dm(x) < (4n + 1) · C .

By Lemma 3.1 in [47] for C∗ = (4n + 1) · C and φ(t) = 1,∫
A(x0,ε,ε0)

Q∗(x) dm(x)
|x − x0|

n ⩽
Ωn(4n + 1)2nC

log 2

(
log

1
ε

)
, ∀ ε ∈ (0, ε0) , ∀ x0 ∈ ∂B

n .

Observe that log 1
ε

log( ε0
ε ) = 1 +

log 1
ε0

log( ε0
ε ) < 2 for ε ∈ (0, δ0), where δ0 > 0 is the number defined in the conditions of

the theorem. Now (
log

(
ε0

ε

))−1
·

∫
A(x0,ε,ε0)

Q∗(x) dm(x)
|x − x0|

n

⩽
Ωn(4n + 1)2nC

log 2
log 1

ε

log
(
ε0
ε

) ⩽ Ωn(4n + 1)2n+1C
log 2

. (25)

Applying Lemma 4.9 in [50] for ψ(t) = 1/t we obtain by (25) that

h(F(x),F(x0)) ⩽ αn

(
|x − x0|

ε0

)α
,

for every x ∈ B(x0, ε0) and any x0 ∈ Rn
\{0},where α =

(
ωn−1 log 2

Ωn(4n+1)2n+1C

)1/(n−1)
and αn is some constant depending

only on n. This inequality also remains valid at the origin, since the same arguments and the assertion of
Lemma 4.9 in [50] apply to the map f : Bn

→ Bn. Finally, since h(x, y) ⩾ |x−y|
1+r2

0
for x, y ∈ B(0, r0), and F|Bn = f ,

we obtain that
| f (x) − f (x0)| ⩽ 2αnε

−α
0 |x − x0|

α .

Theorem is proved. □

Example 2.1. We give an example of a map satisfying the conditions and the conclusion of Theorem 1.1 for which the
function Q under the conditions of this theorem is not bounded. We consider the infinite partition of the segment [0, 1]
by points

[
k

k+1 ,
k+1
k+2

]
, k = 0, 1, 2, . . . . We consider the following function β : [0, 1)→ R, defined as follows:

β(t) =

 1, t ∈
⋃
k⩾1

[
k

k+1 ,
k+1
k+2 − 2−4k−1

]
,

2k, t ∈
(

k+1
k+2 − 2−4k−1, k+1

k+2

)
, for some k > 0

k = 0, 1, 2, . . . . We show that for an arbitrary number a ∈ [0, 1] the function β satisfies the condition

1∫
a

β(t) dt ⩽ 2(1 − a) . (26)

In fact, we fix such a number a. Then there is k0 ∈N such that a ∈
(

k0
k0+1 ,

k0+1
k0+2

]
. In this case, we obtain that

1∫
a

β(t) dt =

k0+1
k0+2∫
a

β(t) dt +

1∫
k0+1
k0+2

β(t) dt
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=
k0 + 1
k0 + 2

− a +
∞∑

k=k0+1

k+1
k+2−2−4k−1∫

k
k+1

dt +
∞∑

k=k0+1

k+1
k+2∫

k+1
k+2−2−4k−1

2k dt

⩽

1∫
a

dt +
∞∑

k=k0+1

k+1
k+2∫

k+1
k+2−2−4k−1

2k dt ⩽ 1 − a +
∞∑

k=k0+1

2−3k−1

= 1 − a +
2−3k0−1

7
⩽ 1 − a + 2−k0−2 . (27)

Observe that the inequality 2−k0−2 ⩽ 1 − a is equivalent to a ⩽ 1 − 2−k0−2. In turn, according to the choice of
a, a ⩽ k0+1

k0+2 = 1 − 1
k0+2 . However, 1 − 1

k0+2 ⩽ 1 − 2−k0−2 is equivalent to the obvious inequality k0 + 2 ⩽ 2k0+2,
k0 = 0, 1, 2, . . . . It follows from what has been said that

a ⩽
k0 + 1
k0 + 2

= 1 −
1

k0 + 2
⩽ 1 − 2−k0−2 ,

so that by (27) we obtain that

1∫
a

β(t) dt ⩽ 2(1 − a) . (28)

The relation (26) is proved. Choosing now ε ∈ (0, 1) and setting a := 1 − ε, from (28) we obtain that

1∫
1−ε

β(t) dt ⩽ 2ε . (29)

Now put Q(x) = β(|x|). We show now that condition (7) is fulfilled for the indicated function Q. For simplicity, we
further consider the case n = 3.

Choose an arbitrary point ζ0 ∈ S2, and let 0 < ε < 1. We estimate the integral over the intersection of the ball
B(ζ0, ε) with B3 using the Fubini theorem and using some geometric considerations. Using the formula S = 2πrh for
the spherical cap lying on the sphere of the radius r and of the hight h, we may verify thatH2(B(ζ0, ε) ∩ S2) = πε2,
whereH2 denotes 2-dimensional Hausdorff measure on S2.

Now, By Fubini’s theorem (see, for example, [52, Theorem III.8.1]) we will have that∫
B(ζ0,ε)∩B3

Q(x) dm(x) ⩽

1∫
1−ε

∫
S(0,r)∩B(ζ0,ε)

Q(x) dH2 dr

=

1∫
1−ε

β(r)
∫

S(0,r)∩B(ζ0,ε)

dH2 dr ⩽

1∫
1−ε

β(r)
∫

S2∩B(ζ0,ε)

dH2 dr

⩽ πε2

1∫
1−ε

β(r) dr . (30)

It follows from (29) and (30) that

3
4πε3

∫
B(ζ0,ε)∩B3

Q(x) dm(x) ⩽
3
2
.
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Thus, for the function Q, condition (7) is satisfied.
Guided by Proposition 6.15 in [48], by analogy, we construct the desired spatial map as follows:

f (x) =
x
|x|

e

|x|∫
1

(β(t)/t) dt
, f (0) := 0 .

Note that the map f , defined in this way, is a homeomorphism. We verify that all the conditions of Theorem 1.1 are
satisfied. Indeed, guided by Proposition 6.3 in [41], we may calculate the tangential, radial, inner dilatations of the
map f and the matrix norm of f ′(x) using the following formulas:

δτ(x) =
| f (x)|
|x|
= e

|x|∫
1

(β(t)/t) dt
, δr(x) =

∂| f (x)|
∂|x|

= e

|x|∫
1

(β(t)/t) dt
·
β(|x|)
|x|

,

∥ f ′(x)∥ = max{δτ, δr} = e

|x|∫
1

(β(t)/t) dt
·
β(|x|)
|x|

, KI(x, f ) = β(|x|) .

Note that the norm of the map f ′(x) is locally bounded in B3
\ {0}; therefore, by virtue of inequality (12), all partial

derivatives of the mapping that exist almost everywhere are also locally bounded. From this, in particular, it follows
that the map f belongs to the class ACL in B3.

Observe that the function φ(t) = t3 satisfies the Calderon condition (1). Let us verify that the map f belongs to
the class W1,φ(B3). Indeed, by Fubini theorem,

∫
B3

∥ f ′(x)∥3 dm(x) =
∫
B3

e
3
|x|∫
1

(β(t)/t) dt
·
β3(|x|)
|x|3

dm(x)

=

∫
0<|x|<1/2

e
3
|x|∫
1

(β(t)/t) dt
·
β3(|x|)
|x|3

dm(x) +
∫

1/2<|x|<1

e
3
|x|∫
1

(β(t)/t) dt
·
β3(|x|)
|x|3

dm(x)

⩽
π
6
+ 8π

1∫
1/2

β3(t) dt < ∞ . (31)

In (31), we took into account that
1∫

1/2
β3(t) dt < ∞. Indeed, by the construction,

1∫
1/2

β3(t) dt ⩽

1∫
1/2

dt +
∞∑

k=0

2−4k−1
· 23k = 1/2 + 1 = 3/2 < ∞ .

Since f ∈ ACL, it follows from (31) that f ∈ W1,φ(B3). Using Hölder’s inequality, it may also be obtained from
inequalities (31) that f ∈W1,1(B3).

We show that also Q(x) = KI(x, f ) = β(|x|) ∈ L1(Bn). In fact,

∫
B3

KI(x, f ) dm(x) = 4π

1∫
0

t2
· β(t) dt < ∞

by (26). Thus, all the conditions of Theorem 1.1 are satisfied. Note that the map f is even Lipschitz on the unit sphere.
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Example 2.2. For comparison, we will also construct a similar example on the plane. Note that this example is
related to Lemma 4.2 and Theorem 4.1 in [47].

Let β be the function constructed in Example 2.1. Now put Q(z) = β(|z|). Choose an arbitrary point ζ0 ∈ S1, and
let 0 < ε < 1. We are going to estimate the integral over the intersection of the disk B(ζ0, ε) with B2 using the Fubini
theorem and using some geometric considerations. Set

θ1 = inf
z∈B(ζ0,ε)∩B2

arg z , θ2 = sup
z∈B(ζ0,ε)∩B2

arg z ,

L(r, θ1, θ2) = {z ∈ S(0, r) : z = reiθ, θ1 < θ < θ2} .

By Fubini’s theorem (see, for example, [52, Theorem III.8.1]) we will have that

∫
B(ζ0,ε)∩B2

Q(z) dm(z) ⩽

1∫
1−ε

∫
S(0,r)∩B(ζ0,ε)

Q(z) |dz|dr

=

1∫
1−ε

β(r)
∫

L(r,θ1,θ2)

|dz|dr =

1∫
1−ε

β(r)r(θ2 − θ1) dr

⩽

1∫
1−ε

β(r)(θ2 − θ1) dr . (32)

It follows from (32) that

1
πε2

∫
B(ζ0,ε)∩B2

Q(z) dm(z) ⩽
1
πε2

1∫
1−ε

β(r)(θ2 − θ1) dr . (33)

Through direct geometric calculations, it can be found that θ2 − θ1 = 2 arccos
(

2−ε2

2

)
∼ 2ε as ε → 0. Now,

(θ2 − θ1)/ε ⩽ 3 for sufficiently small ε > 0. Thus, by (29) and (33)

1
πε2

∫
B(ζ0,ε)∩B2

Q(z) dm(z) ⩽
3
πε

1∫
1−ε

β(r) dr ⩽
6
π

:= c , 0 < ε < ε0 (34)

for some ε0 > 0. Thus, for the function Q, condition (7) is satisfied. According to Proposition 6.15 in [48], the
mapping

w = f (reiθ) = e
iθ+

r∫
1

(β(t)/t) dt

is a homeomorphism of the Sobolev class W1,1
loc(C) and has a dilatation KI(z, f ) equal to β(|z|). Note that this map takes

the unit disk onto itself; moreover, f |S1 is Hölder continuous with an arbitrary exponent on S1 since f (z) = z at the
points z ∈ S1.

3. On Hölder type estimates for mappings with a condition on the mean value

Given a Lebesgue measurable function Q : Bn
→ [0,∞] we set Q∗(x) = Q(x) for x ∈ Bn and Q∗(x) =

Q(ψ(x)) for x ∈ B(0,R) \ Bn, where ψ(x) = x/|x|2. Put

qx0 (r) :=
1

ωn−1rn−1

∫
|x−x0 |=r

Q(x) dHn−1 , (35)
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q∗x0
(r) :=

1
ωn−1rn−1

∫
|x−x0 |=r

Q∗(x) dHn−1 , (36)

where r > 0, ωn−1 is the area of the unit sphere Sn−1 in Rn, and Hn−1 denotes the (n − 1)-dimensional
Hausdorff measure. When calculating the value of qx0 (r) in (35), we assume that Q is extended by zero
outside the unit ball. We prove one more important result.

Theorem 3.1. Let α ∈ (0, 1]. Suppose that under the conditions of Theorem 1.1, instead of requirement (7), the
relation

lim sup
t→0

ε0∫
t

α − 1

q∗ 1/(n−1)
x0

(r)

 · dr
r
< +∞ (37)

holds for some x0 ∈ Bn and some 0 < ε0 < 1/2, where q∗x0
(r) is defined in (36), and KI(x, f ) ⩽ Q(x) for a.e. x ∈ Bn. If

f has a homeomorphic extension f : Bn → Bn, then there exists C > 0 and 0 < ε̃0 < ε0 depending only on n, x0 and
Q such that

| f (x) − f (x0)| ⩽ C|x − x0|
α
∀ x ∈ B(x0, ε̃0) ∩ Bn . (38)

Proof. The proof verbatim builds points II-VI of Theorem 1.1, in particular, the possibility of extending
the mapping f to the whole space to a mapping F from the same class as the original map. Based on
considerations similar to the proof of this theorem, the map F is a ring Q∗-map.

Denote by FQ the family of all homeomorphisms of the class W1,φ(Bn) of the unit ball onto itself satisfying
the condition f (0) = 0, for which KI(x, f ) ⩽ Q(x) a.e. x ∈ Bn. In accordance with the above, every mapping
F defined by formula (10), where f is taken from the hypothesis of the theorem, belongs to the class FQ.
Note also that all such mappings obviously do not take the values 0 and∞ in the domain Rn

\ {0}. Let h be
a chordal metric in Rn,

h(x,∞) =
1√

1 + |x|2
, h(x, y) =

|x − y|√
1 + |x|2

√
1 + |y|2

, x , ∞ , y ,

and let h(E) := sup
x,y∈E

h(x, y) be a chordal diameter of a set E ⊂ Rn (see, e.g., [59, Definition 12.1]). Based on the

above formula, h(Rn
\ {0}) = 1. Let ε0 > 0 be the number from the hypothesis of the theorem, then by [50,

Theorem 4.16] we have the estimate

h(F(x),F(x0)) ⩽ αn · exp

−
ε0∫

|x−x0 |

dr

rq ∗
1

n−1
x0

(r)

 , (39)

for x ∈ B(x0, ε0) and any x0 ∈ Rn
\ {0}, where αn depends only on n. Note that a similar estimate holds for

the point x0 = 0, since the same reasoning is applicable to the mapping f in the unit ball Bn, in addition,
h(Rn \ Bn) = 1. Since h(x, y) ⩾ |x−y|

1+r2
0

for x, y ∈ B(0, r0), and F|Bn = f , it follows from (39) that

| f (x) − f (x0)| ⩽ 2αn · exp

−
ε0∫

|x−x0 |

dr

rq ∗
1

n−1
x0

(r)

 (40)

where αn depends only on n. Observe that

exp

− ε0∫
t

dr

rq
1

n−1
x0

(r)


tα
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exp

− ε0∫
t

dr

rq
1

n−1
x0

(r)


exp

−α 1∫
t

dr
r


= exp


ε0∫

t

αdr
r
−

ε0∫
t

dr

rq
1

n−1
x0

(r)

 (41)

= exp


ε0∫

t

α − 1

q1/(n−1)
x0

(r)

 · dr
r

 .
Dividing the left side of (40) by |x − x0|

α and taking into account (41), we obtain that

| f (x) − f (x0)|
|x − x0|

α
⩽ C̃n · exp


ε0∫

|x−x0 |

α − 1

q ∗ 1/(n−1)
x0

(r)

 · dr
r

 , (42)

where C̃n = 2αn.
By (37) there exists M0 > 0, depending only on n, α and Q such that

exp


ε0∫

|x−x0 |

α − 1

q ∗ 1/(n−1)
x0

(r)

 · dr
r

 ⩽M0 ∀ x ∈ B(x0, ε̃0) \ {x0} (43)

for some 0 < ε̃0 < ε0. Now, by (42) and (43) we obtain that

| f (x) − f (x0)| ⩽ C · |x − x0|
α
∀ x ∈ B(x0, ε̃0) ,

where C = C̃n ·M0. Theorem is proved.

Corollary 3.2. Let α ∈ (0, 1] and letφ : (0,∞)→ [0,∞) be a non-decreasing Lebesgue measurable function with (1).
Let Q : Bn

→ [0,∞] be integrable function in Bn. Suppose also that there exist C > 0 and T > 0 such that (6) holds.
Assume that f is a homeomorphism of Bn onto Bn such that f ∈W1,φ(Bn) and, in addition, f (0) = 0. Let, moreover,
KI(x, f ) ⩽ Q(x) for a.e. x ∈ Bn and, besides that, the relation (37) holds for any x0 ∈ Bn, some 0 < ε0 < 1/2, where
q∗x0

(r) is defined in (36). Then f has a homeomorphic extension f : Bn → Bn. Moreover, for any x0 ∈ Bn there exists
C > 0 and 0 < ε̃0 < ε0 depending only on n, x0 and Q such that (38) holds.

Proof. Taking into account (37) and (41), we obtain that

exp

− ε0∫
t

dr

rq
1

n−1
x0

(r)


tα

⩽ exp


ε0∫

t

α − 1

q∗ 1/(n−1)
x0

(r)

 · dr
r

 . (44)

It follows from (44) that
ε0∫
t

dr

rq
1

n−1
x0

(r)
→ ∞ as t → 0 for any x0 ∈ Bn. Indeed, the function α(t) :=

exp

− ε0∫
t

dr

rq
1

n−1
x0

(r)

 is monotone by t, thus, it has a limit as t → 0. Assume that α(t) → A and A , 0,

now

exp

− ε0∫
t

dr

rq
1

n−1
x0

(r)


tα

→∞
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as t → 0. Now, by (44) we obtain that exp
{ ε0∫

t

(
α − 1

q∗ 1/(n−1)
x0

(r)

)
·

dr
r

}
→ ∞ as t → 0, that contradicts (37). The

contradiction obtained above prove that α(t) → 0, which implies
ε0∫
t

dr

rq
1

n−1
x0

(r)
→ ∞ as t → 0, that is desired

conclusion.

By [30, Theorem 2.2] the map f is a ring Q-map at each point x0 ∈ Bn for Q = KI(x, f ). In this case, the
possibility of homeomorphic extension of the mapping f onto Sn−1 = ∂Bn follows by [54, Theorem 1]. We
also note that the map f extends to a homeomorphism of the unit ball Bn onto itself, see, for example, [56,
Lemma 6]. In this case, the desired conclusion follows from Theorem 3.1.

Example 3.3. We give an example of a mapping whose characteristic satisfies condition (37) with α = 1. Of course,
an arbitrary conformal mapping is such, since its inner and outher dilatations are equal to 1, in addition, the map
itself belongs to the class W1,n

loc and, therefore, also belongs to the class W1,φ
loc for example, for φ = tp, p > n − 1 (see

e.g. [51, 3.I]). Since examples of such mappings are elementary, we will not dwell on them. We give an example of a
map corresponding to condition (37) with α = 1, the dilatations of which are not bounded in a neighborhood of the
point under consideration. For this purpose, we use the idea used in the construction of Example 2.1. We restrict
ourselves to the case n = 3.

We consider the infinite partition of the segment [0, 1] by points
[

1
k+1 ,

1
k

]
, k = 1, 2, 3, . . . .We consider the following

function β : (0, 1]→ R, defined as follows:

β(t) =

 1,
[

1
k+1 ,

1
k − 2−4k−1

]
2k−1, t ∈

(
1
k − 2−4k−1, 1

k

)
,

(45)

k = 1, 2, 3, . . . . Setting Q(x) = β(|x|), we obtain by (35) that q0(r) = q ∗0(r) = β(r). Set ε0 := 1/4 and 0 < a < 1. Let
k0 ∈N be a number such that a ∈

(
1

k0+1 ,
1
k0

]
. Let us verify the fulfillment of condition (37) for α = 1 and ε0 = 1/4 at

x0 = 0. We obtain that

ε0∫
a

dr

rq1/2
0 (r)

=

k0−1∑
k=4

1
k−2−4k−1∫

1
k+1

dr
r
+

k0−1∑
k=4

1
k∫

1
k−2−4k−1

2(1−k)/2 dr
r

+

1
k0∫

a

dr
rβ1/2(r)

⩾
k0−1∑
k=4

1
k−2−4k−1∫

1
k+1

dr
r
. (46)

Observe that
k0−1∑
k=4

1
k−2−4k−1∫

1
k+1

dr
r
=

k0−1∑
k=4

1
k∫

1
k+1

dr
r
−

k0−1∑
k=4

1
k∫

1
k−2−4k−1

dr
r

= ln
k0

4
−

k0−1∑
k=4

1
k∫

1
k−2−4k−1

dr
r
⩾ ln

k0

4
−

k0−1∑
k=4

2−4k−1

1
k − 2−4k−1

⩾ ln
k0

4
− c (47)

for some 0 < c < ∞ because the series
∞∑

k=4

2−4k−1

1
k−2−4k−1 =

∞∑
k=4

k·2−4k−1

1−k·2−4k−1 converges, for example, on the Cauchy principle.

Thus, by (46),
ε0∫

a

dr

rq1/2
0 (r)

⩾ ln
k0

4
− c . (48)
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By (48),

exp

−
ε0∫

a

dr

rq1/2
0 (r)

 ⩽ e c
· (4/k0) = 4e c

·
k0 + 1

k0(k0 + 1)
⩽

8e c

k0 + 1
⩽ 8e c

· a , (49)

because a ⩾ 1/(k0 + 1) by the choice of a. Thus, by (49)

lim
a→+0

exp
{
−

ε0∫
a

dr
rq1/2

0 (r)

}
a

⩽ 8e c < ∞ , (50)

as required. Finally, the fulfillment of relation (37) follows on the basis of (44) and (50). It should also be noted that
condition (37) is satisfied in the neighborhood of any point of the unit sphere, since in some of its neighborhood the
map f is identical, and the corresponding function Q is 1.

Guided by Proposition 6.15 in [48], by analogy, we construct the desired spatial map as follows:

f (x) =
x
|x|

e

|x|∫
1

(β(t)/t) dt
, f (0) := 0 .

Note that the map f , defined in this way, is a homeomorphism. We verify that all the conditions of Theorem 3.1 are
satisfied. Indeed, by [41, Proposition 6.3], we may calculate the tangential, radial, inner dilatations of the map f and
the matrix norm of f ′(x) using the following formulas:

δτ(x) =
| f (x)|
|x|
= e

|x|∫
1

(β(t)/t) dt
, δr(x) =

∂| f (x)|
∂|x|

= e

|x|∫
1

(β(t)/t) dt
·
β(|x|)
|x|

,

∥ f ′(x)∥ = max{δτ, δr} = e

|x|∫
1

(β(t)/t) dt
·
β(|x|)
|x|

, KI(x, f ) = β(|x|) .

Note that the norm of the map f ′(x) is locally bounded in B3
\ {0}; therefore, by virtue of inequality (12), all partial

derivatives of the mapping that exist almost everywhere are also locally bounded. From this, in particular, it follows
that the map f belongs to the class ACL in B3.

We now note that the function φ(t) = t3 satisfies the Calderon condition (1). Let us verify that the map f belongs
to the class W1,φ(B3). Indeed, by Fubini theorem,

∫
B3

∥ f ′(x)∥3 dm(x) =
∫
B3

e
3
|x|∫
1

(β(t)/t) dt
·
β3(|x|)
|x|3

dm(x)

= 4π

1∫
0

e
3

r∫
1

(β(t)/t) dt
·
β3(r)

r
dr = 4π

∞∑
k=1

1
k−2−4k−1∫

1
k+1

r2 dr + 4π
∞∑

k=1

1
k∫

1
k−2−4k−1

e
3

r∫
1

(β(t)/t) dt
·
β3(r)

r
dr

⩽ 4π

1∫
0

r2 dr + 4π
∞∑

k=1

1
k∫

1
k−2−4k−1

23k−3

r
dr

⩽ (4/3)π + 4π
∞∑

k=1

23k−3

1
k − 2−4k−1

· 2−4k−1 < ∞ . (51)
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Since f ∈ ACL, it follows from (51) that f ∈W1,φ(B3).

We show that also Q(x) = KI(x, f ) = β(|x|) ∈ L1(B3). In fact,

∫
B3

KI(x, f ) dm(x) = 4π

1∫
0

r2
· β(r) dr

= 4π
∞∑

k=1

1
k−2−4k−1∫

1
k+1

r2 dr + 4π
∞∑

k=1

1
k∫

1
k−2−4k−1

r2
· 2k−1 dr

⩽ (4π)/3 + 4π
∞∑

k=1

2−4k−1
· 2k−1 < ∞ .

Thus, all the conditions of Theorem 3.1 are satisfied. Note that the map f is even Lipschitz on the unit sphere, since
it identically maps in some neighborhood of it. According to this theorem, the map f is Lipschitz at the point 0, and
also on the boundary of the unit ball.

4. An extended version of Theorem 3.1 in planar case

On the plane, Theorem 3.1 looks somewhat simpler; in particular, in approximately the same classes of
mappings, the Calderon condition (1) is not required. To state an analogue of this theorem, we introduce
the following notations.

Let D be a domain in C. In what follows, a mapping f : D → C is assumed to be sense-preserving. The
following result is fairly close to [47, Theorem 1.1], although here, in contrast to [47], the corresponding
property is established at the boundary rather than the inner point of the domain.

Theorem 4.1. Let α ∈ (0, 1], and let f be a homeomorphism of B2 onto B2 such that f ∈W1,1
loc(B2) and f (0) = 0. Let,

moreover,

lim sup
t→0

ε0∫
t

(
α −

1
q∗z0

(r)

)
·

dr
r
< +∞ (52)

for some 0 < ε0 < 1/2 and some z0 ∈ B2, where q∗z0
(r) is defined for Q ∈ L1(B2) in (36), and KI(z, f ) ⩽ Q(z) a.e. in

B2. If f has a homeomorphic extension f : B2 → B2, then there is C > 0 and 0 < ε̃0 < ε0 depending only on z0 and
Q such that

| f (z) − f (z0)| ⩽ C|z − z0|
α
∀ z ∈ B(z0, ε̃0) ∩ B2 . (53)

Proof. I. Using conformal transformation ψ(z) = z
|z|2 , we extend the mapping f homeomorphically onto C

as follows:

F(z) =
{

f (z), |z| < 1 ,
ψ( f (ψ(z))), |z| ⩾ 1 .

As usual, put

∥ f ′(z)∥ = max
h∈C\{0}

| f ′(z)h|
|h|

.

By condition, f ∈ W1,1
loc(B2), therefore also F ∈ W1,1

loc(B2). We show more, namely, that F ∈ W1,1
loc(B(0,R)) for

any R > 1 (in particular, ∥F ′(z)∥ is not only locally integrable in B2, but also globally integrable).
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II. Since ∥ f ′(z)∥2 = KI(z, f ) · |J(z, f )| a.e., and, in addition, the inner dilatation of f does not change under
conformal mappings (see, e.g., [51, I.4.(4.15)]), by the Hölder inequality we obtain that

∫
B2

∥F ′(z)∥ dm(z) ⩽


∫
B2

KI(z,F) dm(z)


1
2

·


∫
B2

|J(z,F)| dm(z)


1
2

. (54)

Since the map F is a homeomorphism, by [17, Theorems 3.1.4, 3.1.8 and 3.2.5] we obtain that∫
B2

J(z,F) dm(z) ⩽ m(F(B2)) = π . (55)

Since KI(z,F) ∈ L1(B2), it follows from (54) and (55) that

∫
B2

∥F ′(z)∥ dm(z) ⩽

π
∫
B2

KI(z, f ) dm(z)


1
2

< ∞ . (56)

Reasoning in a similar way, we may also obtain similar relations for the inner dilatation of the map F.
Indeed, by (11) and (13), for any R > 1 we obtain that∫

B(0,R)

∥F ′(z)∥ dm(z) =
∫
B2

∥ f ′(z)∥ dm(z) +
∫

1<|z|<R

( f (ψ(z)))−2
· ∥F ′(ψ(z))∥ · |ψ(z)|−2 dm(z)

⩽

∫
B2

∥ f ′(z)∥ dm(z) + C ·
∫

1<|z|<R

∥F ′(ψ(z))∥ dm(z)

for some C > 0.Making a change of variables here, and taking into account that KI(z, f ) ∈ L1(B2),we obtain
that ∫

B(0,R)

∥F ′(z)∥ dm(z) ⩽
∫
B2

∥ f ′(z)∥ dm(z) + C
∫

1/R<|y|<1

∥ f ′(y)∥ ·
1
|y|4

dm(y)

⩽

∫
B2

∥F ′(z)∥ dm(z) + CR4
·

∫
1/R<|y|<1

∥ f ′(y)∥ dm(y) < ∞. (57)

III. By virtue of Fubini’s theorem and by (see, for example, [52, Theorem III.8.1]) that the derivative of
the function φ = f (z0 + te), t ∈ [a, b], e ∈ S1, is integrable on almost all segments in B(0,R) parallel to the
coordinate axes. In this case, arguing in a similar way to the proof of item V of Theorem 1.1, we may show
that F ∈ ACL(C).

IV. Since F ∈ ACL(C), by (17) F ∈ W1,1
loc(B(0,R)) for any R > 1. In this case, F is a ring Q∗-map at each

point z0 ∈ B(0,R) with Q∗ = Q in B2 and Q∗(y) = Q
( y
|y|2

)
otherwise (see, e.g., [33, Theorem 3.1], cf. [53,

Theorem 3.1]).

V. In view of item IV and using again [50, Theorem 4.16], we may show that

| f (z) − f (z0)|
|z − z0|

α
⩽ C̃ · exp


ε0∫

|z−z0 |

(
α −

1
q ∗z0

(r)

)
·

dr
r

 . (58)
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By (52), there exists M0 > 0, depending only on α and Q such that

exp


ε0∫

|z−z0 |

(
α −

1
q ∗z0

(r)

)
·

dr
r

 ⩽M0 ∀ z ∈ B(z0, ε̃0) \ {z0} . (59)

Combining (58) and (59), we arrive at the desired relation (53) with C = C̃ ·M0.

In particular, Theorem 4.1 implies the following statement.

Corollary 4.2. Let α ∈ (0, 1], let z0 ∈ S1 = ∂B2, and let f be a homeomorphism ofB2 ontoB2 such that f ∈W1,1
loc(B2)

and f (0) = 0. Let, moreover, (52) holds for some 0 < ε0 < 1/2 and any z0 ∈ B2, where q∗z0
(r) is defined for Q ∈ L1(B2)

in (36), and KI(z, f ) ⩽ Q(z) a.e. in B2. Then f has a homeomorphic extension f : B2 → B2. Moreover, for any
z0 ∈ B2 there is C > 0 and 0 < ε̃0 < ε0 depending only on z0 and Q such that (53) holds.

The proof of Corollary 4.2 almost literally repeats the proof of Corollary 3.2, and therefore is omitted.

Example 4.3. We have already constructed an example of a map satisfying the conditions and the conclusion of
Theorem 3.1 for n = 3. For comparison, we will also construct a similar example on the plane. Let β be the function
defined in (45). Now put Q(z) = β(|z|).Now, by (35) we obtain that q0(r) = q ∗0(r) = β(r). Set ε0 := 1/4 and 0 < a < 1.

Arguing similarly to (46), we obtain that
ε0∫
a

dr
rq0(r) ⩾

k0−1∑
k=4

1
k−2−4k−1∫

1
k+1

dr
r . Now, by (47)

ε0∫
a

dr
rq0(r) ⩾ ln k0

4 − c. Thus, similarly

to (48) and (49),

lim
a→+0

exp
{
−

ε0∫
a

dr
rq0(r)

}
a

⩽ C < ∞ (60)

for some 0 < C < ∞. Thus, the condition (37) holds for α = 1 at 0.
According to Proposition 6.15 in [48], the mapping

w = f (z) =
z
|z|

e

|z|∫
1

(β(t)/t) dt

is a homeomorphism of the Sobolev class W1,1
loc(C) and has a dilatation KI(z, f ) equal to β(|z|). Note that this map takes

the disk B2 onto itself and moreover, f |S1 ≡ z. Moreover,

∫
B2

KI(z, f ) dm(z) = 2π

1∫
0

r · β(r) dr

= 2π
∞∑

k=1

1
k−2−4k−1∫

1
k+1

r dr + 2π
∞∑

k=1

1
k∫

1
k−2−4k−1

r · 2k−1 dr (61)

⩽ π + 2π
∞∑

k=1

2−4k−1
· 2k−1 < ∞ .
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Reasoning similarly to (55)–(56), we may obtain from (61) that∫
B2

∥ f ′(z)∥ dm(z) < ∞ . (62)

By (62), f ∈ W1,1(B2). Thus, the mapping f satisfies all the conditions of Theorem 4.1, and the conclusion of this
theorem at the point z0 = 0 is applicable for this mapping with α = 1.

5. On Hölder continuity of harmonic mappings on the unit ball in Rn

In this section, we provide initial results related to harmonic functions and plan to publish further results
in a future article.

In order to discuss the subject we first need a few basic definitions and results.

Definition 5.1. Let U be an open subset ofRn. A harmonic function (real valued) is a twice continuously differentiable
function f : U→ R that satisfies Laplace’s equation, that is,

∆ f :=
∂2 f
∂x2

1

+
∂2 f
∂x2

2

+ · · · +
∂2 f
∂x2

n
= 0

everywhere on U. In physics notations often we write ∇2 f instead of ∆ f and this is usually written as ∇2 f = 0. A
function f = ( f1, f2, ..., fm) : U → Rm is called vector valued harmonic function if fi, i = 1, 2, ...,m, are real valued
harmonic functions.

In two dimensions harmonic functions form a useful, strictly larger class of functions including holomorphic
functions.

For example, harmonic functions still enjoy a mean-value property, as holomorphic functions do:
The mean value property: If B(x, r) is a ball with center x and radius r which is completely contained in the
open set G ⊂ Rn, then the value u(x) of a harmonic function u : U → R at the center of the ball is given by
the average value of u on the surface of the ball; this average value is also equal to the average value of u
in the interior of the ball.

To get an orientation what we can expect concerning Hölder continuity of functions in Orlicz-Sobolev
classes (and the place of these classes with respect to Sobolev classes) it seems useful to have in mind the
following classical result.

5.1. Morrey’s theorem

Let G ⊂ Rn be a bounded open set with C1 boundary. Assume n < p < ∞ and set α = 1 − n/p > 0. Then
every function f ∈ W1,p coincides a.e. with a function f̃ ∈ C0,α(G). Moreover, there exists a constant C such
that

| f̃ |C0,α ⩽ C| f |W1,p for all f ∈W1,p(G),

where | f |W1,p is Sobolev norm of f on G. In statement of Morrey’s theorem it is supposed that W1,p, p > n,
i.e., (h − 1) (see below Proposition 5.2) holds for particular choice of φ(t) = tp, p > n. Recall some relations
between Sobolev and Orlicz-Sobolev spaces. If p > n and lim inft→+∞ φ(t)/tp > c > 0, G bounded then
W1,φ

⊂ W1,p. If in addition G ⊂ Rn is a bounded open set with C1 boundary and f ∈ W1,φ(G), then f is
α-Hölder on G, where α = 1− n/p > 0. By this in mind, it seems natural question to consider what is a right
version of Morrey’s theorem for Orlicz-Sobolev spaces ?

We start with the following proposition which determines the places of Orlicz-Sobolev classes with
respect to Sobolev classes.



M. Mateljević et al. / Filomat 36:16 (2022), 5359–5390 5379

Proposition 5.2. Introduce the hypothesis (h1): Let n ⩾ 3, α ∈ (0, 1], and let φ : (0,∞) → [0,∞) be a non-
decreasing Lebesgue measurable function

(h2):

∞∫
1

(
t
φ(t)

) 1
n−2

dt < ∞. (63)

Then:

(S1) W1,p(D), p > n − 1, is in Orlicz-Sobolev class for φ(t) = tp.

(S2) Suppose that φ satisfies (h1). If p > n and lim inft→+∞ φ(t)/tp > c > 0, G bounded then W1,φ
⊂ W1,p. If in

addition G ⊂ Rn is a bounded open set with C1 boundary and f ∈ W1,φ(G), then f is α-Holder on G, where
α = 1 − n/p > 0.

(S3) Suppose that φ satisfies (h1) and (h2) and D is a bounded domain in Rn, n ⩾ 3, and that f ∈ W1,φ(D). Then
W1,φ(D) ⊂W1,n−1(D).

Proof. (i) is readable. Note that (ii) follows from Morrey’s theorem. Let us prove (iii).

Set A(t) =
(

t
φ(t)

) 1
n−2 . Since integral

∞∫
1

A(u)du < ∞, then
2t∫
t

A(u)du = o(1), when t→∞. Further A(t) ⩽ A(u)

for t ⩽ u and therefore tA(t) → 0 and by elementary consideration φ(t) = M(t)tn−1, where M(t) → ∞ when
t → ∞. Hence there is t0 > 1 such that φ(t) ⩾ tn−1 for t ⩾ t0. Next we conclude |∇ f (x)|n−1 ⩽ φ

(
|∇ f (x)|

)
if

|∇ f (x)| ⩾ t0. Hence it is readable W1,φ(D) ⊂W1,n−1(D).

Our approach in this section is based on the following results which we call local spatial version of
Privalov theorem for harmonic functions and which has an independent interest.

Theorem 5.3. Suppose that 0 < α < 1, h is a Euclidean harmonic mapping from Bn, and continuous on Bn.
Let x0 ∈ Sn−1 and |h(x)−h(x0)| ⩽M|x−x0|

α for x ∈ Sn−1. Then there is a constant Mn such that (1−r)1−α
|h′(rx0)| ⩽Mn,

0 ⩽ r < 1.

For some global results of this type see for example [7] and literature cite there.
As we mention, recall that we can get some versions of the previous theorems in Sections 1-4 for

harmonic maps which are immediate corollary of Theorem 5.3:

Corollary 5.4. If f ∈ W1,φ(Bn) satisfies the condition of Theorem 1.1 and it is in addition harmonic in the sense of
Definition 5.1, then f is α-Höllder on Bn.

Theorem 5.5. The following statements are true:

(i) If under the condition in statement of Theorem 3.1 (with respect to point x0) in addition f is harmonic, then
there is a constant Mn such that
(I-1) (1 − r)1−α

| f ′(rx0)| ⩽Mn, 0 ⩽ r < 1.

(ii) If under conditions of Theorem 4.1 (with respect to point z0) in addition f is harmonic, then (I-1) holds for
n = 2 with z0 instead of x0.

(iii) If under the conditions of Corollary 3.2 in addition f is harmonic, then f is α-Hölder on Bn.

(iv) Under the conditions of Corollary 4.2, in addition f is harmonic, then f is α-Hölder on B2.

In addition we prove Propositions 5.6 and 5.8.
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5.2. Propositions 5.6 and 5.8
Set Qε(x0) the mean value of Q over ball B(x0, ε) and Q+(x0) supremum of Qε(x0) over 0 < ε < ε0.
Kalaj and the first author study mappings in plane and space which satisfy the Poisson differential

inequality:
(h3) |△u| ⩽ a|∇u|2 + b.
We start with the planar case which has some very specific properties with respect to spatial case. Note

that the subject of harmonic quasiconformal (shortly hqc) mappings has been intensively studied by the
participants of the Belgrade Analysis Seminar (see for example [13] and [37] for more details). In particular
Kalaj proved that if h is a hqc mapping of the unit disk onto a Lyapunov domain, then h is Lipschitz
(see [25]). Recently in [13] it is proved h is co-Lipschitz.

Hence

Proposition A. Suppose h : U→ D is a hqc homeomorphism, where D is a Lyapunov domain with C1,µ boundary.
Then h is bi-Lipschitz (shortly bi-Lip).

Here we prove for example the following:

Proposition 5.6. Let D be a Lyapunov planar domain and f = 1+ h injective harmonic presenting orientation ofD
onto D (or more generally C2 homeomorphism which satisfiies (h3)) and either (i): (7) holds a.e. on S with Q = Kµ
and constant C = K1 or (ii): qz(r) ⩽ c1 for almost all z ∈ D. Then f is bi-Lip.

Our proof is based on the Hardy spaces theory.

Proof. Since f injective harmonic presenting orientation ofD onto D, |µ(z)| < 1 for z ∈ D, where µ = µ f . Let
E be the set of points z0 on S for which the finite radial limit µ∗ exists. From the Hardy spaces theory it is
known then the radial limit µ∗ exist a.e. on S.

Suppose that (i) holds and denote by E0 ⊂ S the set on which (i) holds. Note that the set S \ (E∩ E0) is of
measure 0.

Let z0 ∈ E ∩ E0 and D(z0, r) is the intersection of disk B(z0, r) with D. Let Q(r, z0) be the mean vale of Q
over B(z0, r). Since the angular limit K∗µ(z0) of Kµ also exists at z0 we conclude that Q(r, z0) tends to K∗µ(z0)/2
from (1.7) that K∗µ(z0)/2 ⩽ K1.

Hence if we set K = 2K1 and k = K−1
K+1 , we conclude that |µ∗| ⩽ k a.e. on S. Next since |µ| = |h′/1′| and

h′/1′ is holomorphic function then from Hardy spaces theory |µ| ⩽ k on D. Hence f is K-qc and therefore
by Proposition A bi-Lip onD.

If we suppose that (ii) holds on the set E1 ⊂ S and let γr be the part of the circle |z − z0| = r in D. If
z0 ∈ E∩E1 then as the above we first conclude that qz0 (r) tends to K∗µ(z0)/2 and from (ii) that K∗µ(z0)/2 ⩽ c1.

Now we will consider a spatial version of Proposition 5.6. We first need some simple properties.
Suppose that h is a vector Euclidean harmonic mapping from Bn into BM. Then

(i) If h(0) = 0, then

(1) |h(x)| ⩽M1|x|.

(ii) h is Lipschitz on any ball B(0, r0), r0 ∈ [0, 1).

(iii) In particular if, h is harmonic function on some domain G ⊂ Rn, h is locally Lipschitz at every point
x0 ∈ G.

(i) It is clear that there is M > 0 such that |h(x)| ⩽ 2M|x| for |x| ⩾ 1/2 . Next on B1/2 partial derivatives of
h are bounded and therefore (1) follows.

(ii) partial derivatives of h are bounded B(0, r0) and hence (ii) follows.
(iii) follows from (ii).
The following lemma shows that the above properties hold in more general setting:
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Lemma 5.7. Let f : U → Rm be a differentiable function (where U ⊂ Rn is open) and F compact subset of U and
suppose that (h6): partial derivatives are bounded on F (in particular (h6) is satisfied if f is C1 on U). Then f is Lip
on F.

Proof. Note that d = dist (F, ∂U) > 0. Let x, y ∈ F and set h = y−x. If |h| ⩽ d, then by the Mean value theorem in
several variables one finds points x+ tih on the line segment [x, y] satisfying fi(x + h) − fi(x) = ∇ fi(x + tih) · h.
By hypothesis (h6) there is a constant M > 0 such that |∇ fi(x)| ⩽M on F. Hence fi is Lip on F if |y − x| ⩽ d.

Suppose now that |y − x| ⩾ d. Note first since F is compact and f is continuous on U, then there is a
constant M1 > 0 such that | f | is bounded on F. Next the ratio of | f y − f x| and |y − x| is bounded by 2M1d−1

and we conclude that therefore fi is Lip on F and therefore f is Lip on F.

In order to formulate a spatial version of Proposition 5.6 we need some definitions and a result.
For x0 ∈ Rn and 0 ⩽ r1 < r2 we define A(x0, r1, r2) = {x : r1 < |x − x0| < r2} which call a spherical ring. If

x0 = 0 we write simply A(r1, r2).
Let G be an open subset of Rn and f : G → Rn. We say that f has finite distortion if, first of all if

f ∈W1,1
loc(G,Rn) and there is a function K(x) = K(x, f ), 1 ⩽ K(x) < ∞, defined a.e. in G such that

(i) ∥ f ′(x)∥n ⩽ K(x)J(x, f ) a.e. G.
The smallest K = K f satisfying (i) is called the outer dilatation function of f .
Kalaj and the first author study mappings in plane and space which satisfy the Poisson differential

inequality:
(h3) |△u| ⩽ a|∇u|2 + b.
In [27] Kalaj proved (see also subsection 6.1, Further results) for a more general result)

Theorem K. A quasiconformal mapping of the unit ball onto a domain with C2 smooth boundary, satisfying the
Poisson differential inequality, is Lipschitz continuous.

Proposition 5.8. Let G ⊂ Rn be C2 domain. If f : Bn onto
−−→ G harmonic homeomorphism (or more generally C2

homeomorphism which satisfies (h3)) and there are a r0 ∈ (0, 1) and non negative function Q defined a.e. on the ring
A(r0, 1) such that K(x, f ) ⩽ Q(x) for a.e. x ∈ Bn and (h4): Q+ is bounded on ring A(r0, 1), then f is Lipschitz on Bn.

Proof. The hypothesis (h4) implies that there is K ⩾ 1 such that K f ⩽ K on the ring A(r0, 1). Hence by
Theorem K, f is Lipschitz on A(r0, 1). Since by Lemma 5.2, f is Lipschitz on B(0, r0) the result follows.

5.3. Local spatial version of Privalov theorem for harmonic functions
First we need some definitions and properties of spherical cap. Recall by ωn−1 we denote the surface of

n − 1-dimensional sphere Sn−1 (pay attention that some authors prefer notation Sn for (n − 1)-dimensional
sphere and ωn for its area). Then the surface (n − 1)-dimensional measure of sphere S(0, r) of radius r is
P(r) = ωn−1rn−1.

Definition 5.9. (Spherical-polar cap). We can define the spherical cap in terms of the so-called contact angle (the
angle between the normal to the sphere at the bottom of the cap and the base plane). More precisely, we use the
following notations x̂ = x/|x| and 0̂ = e1, S(x̂, γ) = {y ∈ Sn : ⟨y, x̂⟩ ⩾ cosγ} for the polar cap with center x̂, where γ
is the spherical angle of it. In a similar way in planar case we define C(x̂, γ) = {y ∈ S1 : ⟨y, x̂⟩ ⩾ cosγ}.

If f is a function on Sn−1 which is constant on ∂Sφ = {t ∈ Sn−1 : tn = cosφ} for 0 ⩽ φ ⩽ π we say that f
depends only on φ. Let 0 ⩽ φ ⩽ π; the surface of spherical (polar) cap Sφ of radius φ is

A(φ) = ωn−1

sinφ∫
0

rn−2

xn
dr .
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By change of variables r = sinθ, dr = cosθ dθ , xn = cosθ in the previous formula, we find

A(φ) = ωn−1

φ∫
0

sinn−2 θ dθ . (64)

See also proof of Theorem 2 and formula (11) in Section V in L. Ahlfors book [4].

Proposition 5.10. If f is a function on Sn−1 which depends only on φ, then∫
Sn−1

f dσ =
π∫

0
f (φ) A′(φ) dφ = ωn−1

π∫
0

f (φ) sinn−2(φ) dφ.

We only outline a proof. Let 0 = φ0 < φ1 < φ2 < . . . φn = π, φk−1 < ξk < φk and

Sn =
n∑

k=1
f (ξk)

(
A(φk) − A(φk−1)

)
. Then Sn →

∫
Sn−1

f dσ and Sn →

π∫
0

f (φ) A′(φ) dφ when n→∞. Hence since

A′(φ) = ωn−1 sinn−2 φ the proof follows.

6. Proof of Theorem 5.3

Before to proceed to the proof we need a few definition and some elementary propererties of spatial
harmonic functions.

Definition 6.1. Recall if x, y ∈ Rn by |x − y| we denote Eucledian distance between x and y.
Further in this definition, we suppose that (i) G is a domain in Rn and f : G→ Rm.

1. We say f is locally Hölder (α -Hölder) at x0 ∈ G if
L fα(x0) = lim sup

G∋x→x0

| f (x) − f (x0)/|x − x0|
α < ∞ when G ∋ x→ x0.

If α = 1 we say that f is locally Lipschitz at x0. We write L f (x0) instead L fα(x0). We can adapt the above
definition for f : Sn−1

→ Rm.
We say that f is Hölder continuous, when there are nonnegative real constants C and α, 0 < α ≤ 1, such that

| f (x) − f (y)| ≤ C|x − y|α

for all x and y in the domain G of f . The number α is called the exponent of the Hölder condition and we also
say f is α-Hölder continuous and write f ∈ Lipα(G,Rm). By | f |C0,α we denote the smallest constant for which
the pervious inequality holds and call the Hölder norm of f on G.

2. If α = 1 in the previous inequality, then we say that the function satisfies a Lipschitz condition or it is Lipschitz
continuous (shortly Lip) on G with multiplicative constant C. If m = n in (i) and f is homeomorphism and
both f and f−1 are Lipschitz we say that f is bi-Lipschitz (shortly bi-Lip).

3. If the function f and its derivatives up to order k ∈N are bounded on the closure of G and α-Hölder continuous,
then we say that f belongs to the Hölder space Ck,α(G).

4. Let γ be a closed rectifiable Jordan planar curve of length s0, G domain enclosed by γ and s an arc length
parametar on γ, and γ0(s), s ∈ [0, s0], arc length parametarization of γ. We say that G is Ck,α domain if γ0 is
Ck,α on [0, s0]. In the literature planar domain D is called Lyapunov domain if D has smooth C1,α- boundary
for some 0 < α < 1.

In the proof of next theorem we use the representation of harmonic functions (see formula (65) below)
by means the Poisson kernel for harmonic functions on the unit ball Bn which is given by

P(x, η) =
1 − |x|2

ωn−1|x − η|n
,
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where x ∈ Bn and η ∈ Sn−1, and positive Borel measure dσ on Sn−1. By dσ we denote positive Borel measure
on Sn−1 invariant with respect to orthogonal group O(n) normalized such that σ(Sn−1) = 1.

First recall the statement of Theorem 5.3.

Theorem 6.2. Suppose that 0 < α < 1, h is a Euclidean harmonic mapping from Bn which is continuous on Bn ,
and
(h1) Let x0 ∈ Sn−1 and |h(x) − h(x0)| ⩽M|x − x0|

α for x ∈ Sn−1.
Then there is a constant Mn such that
(1 − r)1−α

|h′(rx0)| ⩽Mn, 0 ⩽ r < 1.

Proof. Let hb denote the restriction of h on Sn−1. Since h is harmonic on Bn and continuous on Bn, then

h(x) =
∫
Sn−1

P(x, η)hb(η)dσ(η) (65)

for every x ∈ Bn. Set d := d(x) = 1−|x|2. By computation ∂xk P(x, t) = −( 2xk
|x−t|n +d(x)n xk−tk

|x−t|n+2 ). Hence if d ⩽ |x− t|,
then

(1) |∂xk P(x, t)| ⩽ c1
1
|x−t|n .

Let x = ren and θ the angle between t and en. Then s := |x − t|2 = 1 − 2r cosθ + r2 depends only on θ for
fixed x. Next since

∫
Sn−1

∂kP(x, t)h(en)dσ(t) = 0, we find

∂xk h(x) =
∫
Sn−1

∂kP(x, t)
(
h(t) − h(en)

)
dσ(t) . (66)

Hence by (1) and the hypothesis (h1), we get

|∂xk h(x)| ⩽ c2

∫
Sn−1

|en − t|α

|x − t|n
dσ(t) . (67)

Therefore the proof of Theorem 6.2 is reduced to the proof of the following proposition.

Proposition 6.3. Suppose that 0 < α < 1 and x = ren, 0 < r < 1. Then

Iα(ren) =:
∫
Sn−1

|en − t|α

|x − t|n
dσ(t) ⩽ c ·

1
(1 − r)1−α ,

where c = c(α,n) is a positive constant which depends only on n and α.

Using similar approach if ω is a majorant one can prove

Iω(ren) =:
∫
Sn−1

ω(|en − t|)
|x − t|n

dσ(t) ⩽ c ·
ω(δr)
δr

.
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Proof. We use spherical cups Sθ defined by tn > cosθ and integration with parts. Since for a fixed θ ∈ [0, π],
|en− t| ⩽ θ for t ∈ Sθ, by an application of Proposition 5.10 to f (t) = |en−t|α

|x−t|n , we get (see also Remark 6.4 below)

Iα(ren) ⩽ c3

π∫
0

|θ|n−2
|θ|α

((1 − r)2 + 4r
π2θ2)n/2

dθ < (68)

c4

∞∫
0

θα+n−2(
(1 − r)2 + 4r

π2 θ2
)n/2 dθ . (69)

Next using (1 + 4r
π2 u2)−1 ⩽ c5(1 + u2)−1 for 1

2 ⩽ r < 1 and the change of variable θ = (1 − r)u, we find

Iα(ren) ⩽ c6(1 − r)α−1

∞∫
0

uα+n−2

(1 + u2)n/2 du . (70)

Denote by J(α) the last expression on the right hand side of previous formula. Hence since 1(u) = uα+n−2

(1+u2)n/2 ∼

uα−2 for u→ +∞ and by hypothesis 0 < α < 1 and therefore α− 2 < −1, the integral J(α) converges and and
therefore

(i) Iα(ren) ⩽ c7(1 − r)α−1 for 1
2 ⩽ r < 1.

(1 − r)1−αA(r) is continuous on [0, 1/2] and attains a maximum c8, that is
(ii) Iα(ren) ⩽ c9(1 − r)α−1 for 0 ⩽ r ⩽ 1

2 , where c9 = c3c8.
Hence from (i) and (ii) with c = max{c7, c9} the proof of Proposition follows.

Combining Proposition 6.3 and (67) we get proof of Theorem.

Remark 6.4. It is convenient to denote expressions by A(r) and B(r) that appear on the right-hand side in formula (68)
and (69) without constants c3 and c4 respectively. Note that A(0) is finite and that B(0) = +∞. In order to estimate
A(r) we use the change of variable θ = (1 − r)u and therefore the integral A(r) can be transformed to integral over
[0, a(r)] with respect to u, where a(r) = π(1− r)−1. Since a(r)→∞ if r→ 1, it is convenient to estimate integral A(r)
by integral B(r) over interval [0,∞).

Remark 6.5. Instead of (ii) we can based the proof of Theorem on the following inequality:

|∂xk h(x)| ⩽ c7 ·
1

(1 − r)1−α

for 1
2 ⩽ |x| < 1. Hence since on B1/2 partial derivatives are bounded readably proof of Theorem 6.2 follows. Note that

the above proof breaks down for α = 1 because J(1) = ∞. Moreover, for each n = 2, there is a Lipschitz continuous
map f : Sn−1

→ Rn such that u = P[ f ] is not Lipschitz continuous. In planar case, consider f = u + iv such
that z f ′ = − log(1 − z). u′θ is bounded while its harmonic conjugate ru′r is not bounded. In spatial case, consider
U(x1, x2, ...xn) = u(x1 + ix2, x3, ...xn).

6.1. Further results
Using an approach as in [6], we can prove further results. Here we only announce the following results:

Theorem 6.6. Suppose that f : Sn−1
→ Rn is locally Lipschitz (Lip-1) at x0 ∈ S, f ∈ L∞(Sn−1) and h = P[ f ] is a

Euclidean harmonic mapping from Bn.
Then
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S4)
|h′(rx0)T| ⩽M

for every 0 ⩽ r < 1 and unit vector T which is tangent on Sn−1
r at rx0, where M depends only on n, | f |∞ and

L f (x0).

If we suppose in addition that h is K-quasiregular (shortly K-qr) mapping along [o, x0), then

S5)
|h′(rx0)| ⩽ K M

for every 0 ⩽ r < 1.

We can extend our results to class of moduli functions which include ω(δ) = δα (0 < α ⩽ 1), so our result
generalizes earlier results on Hölder continuity (see [46]) and Lipschitz continuity (see [6]).

In addition, concerning further research we suggest some possibility. Suppose that domains D and Ω
are bounded domains in Rn and its boundaries belong to class Ck,α, 0 ⩽ α ⩽ 1, k ⩾ 2 (more generally C2).
Suppose further that 1 and 1′ are C1 metric on D and Ω respectively. Using inner estimate (cf. Theorem
6.14 [19][10]) we can prove

Theorem MM (Theorem 6.9 [36]). If u : D → Ω is a qc (1, 1′)-harmonic map (or satisfies (h3)), then u is
Lipschitz on D.

We discussed this result at Workshop on Harmonic Mappings and Hyperbolic Metrics, Chennai, India,
Dec. 10-19, 2009, and in [36], where a proof is outlined. For more details see [38].

We now present a few open questions.
Using Theorem MM or Theorem K we can prove.

Theorem B. Let G ⊂ Rn be C2 domain. If f : Bn onto
−−→ G harmonic homeomorphism and there is a r0 ∈ (0, 1)

such that (h4): Q+ is bounded on ring A(r0, 1), then f is Lipschitz on Bn.

Question 1. If we suppose instead of (h4) only (h5): Q+ is bounded on Sn−1, whether f is Lipschitz on Bn?
What is right version of Theorem 1.1 and 4.1 if in addition it is supposed that f is harmonic?

7. On Bi-Lipschitz qc maps

Recall that the condition (52) provides sufficient conditions for Hölder and Lipschitz continuity. In this
section we show that in some situation if Beltrami coefficient is Hölder continuous that the map is bi-Lip.
In order to discuss the subject we first need some preliminaries.

Definition 7.1. 1. Let f be a complex valued function defined an open set planar set V. We use notation z = x+ iy
for complex numbers and for complex partial derivatives fz := ( fx − i fy)/2 and fz := ( fx + i fy)/2, where fx and
fy are partial derivatives with respect coordinates x and y. In the literature frequently notation ∂ f and ∂ f are
used instead fz and fz respectively.
In this section let Ω denote a planar domain.

2. An equation

∂ f = µ∂ f , (71)

where µ is a complex valued measurable function defined a.e. on Ω and ||µ||∞ < 1 is essential supremum with
respect to L∞-norm, is called µ-Beltrami equation on Ω.

3. If a homeomorphism f : Ω onto
−−→ Ω∗ ⊂ C satisfies

(i) f is ACL on Ω, and

(ii) | fz| ⩽ k | fz| almost everywhere in Ω, where k = K−1
K+1 ∈ [0, 1),

we say that f is a K- quasiconformal (shortly qc); more precisely K-qc in analytic sense.
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The last item 3. of the definition is equivalent to requirement that:
(A) f is homeomorphism and it has locally integrable distributional derivatives which satisfy (ii).

Theorem 7.2. (Existence theorem) Let µ be a measurable function in a domain Ω with ||µ||∞ < 1. Then there is a
qc mapping of Ω whose complex dilatation agrees with µ a.e.

In this setting we say that f is solution of Beltrami equation for µ. The complex dilatation at z0 is

µ f =
fz
fz
. (72)

Frequently the notation Belt( f ) is also used instead of µ f .

Theorem 7.3. Let f and 1 be qc map of a domain Ω whose complex dilatations agree a.e. in Ω. Then f ◦ 1−1 is a
conformal mapping.

In order to get a feeling of the subject we first consider some examples.
Let f0 be a branch of

√
z. Then µ f0 = 0 and f0 has a singularity at 0 and µ1 = 0 a.e. on C. Next, by

Theorem 7.3, 1 is a Möbius transformation A = f0 ◦ 1−1 is a conformal mapping. Thus f0 = A ◦ 1 is a
conformal mapping. More precisely if G is a simple connected domain which does not contain 0, A ◦ 1 is a
conformal mapping on G.

The following known example shows that qc with continuous Beltrami coefficient are not C1 in general.

Example 7.4. [10, 12] Consider f (z) = −z ln |z|2 for |z| ⩽ r0 = e−2. Then f : B(0, r0)→ B(0, 4r0) and

fz̄ = −
z
z
, fz = −1 − log |z|2, µ f =

z
z̄(1 + log |z|2)

.

Hence it is qc with continuous Beltrami coefficient, and fz̄ and fz are discontinuous at 0, and therefore yet f is not
C1.

Note that in planar case we frequently use notation S instead of S1 andU instead of B2.
We can modify this example to show that there is f ∈ QC(U) such that µ f is continuous on U, but fz̄

and fz are discontinuous at some point z0 ∈ U. We will show that if in addition the second dilatation ν f is
anti holomorphic on U and f is C1 up to the boundary, then f is biLipschitz and µ f continuous up to the
boundary.

Example 7.5. Consider f0(z) = z
log |z|2 . We check that (log |z|2)z = 1/z,

p =
1

log |z|2
−

z
(log |z|2)2 /z =

1
log |z|2

A(z),

where A(z) = 1 − 1
log |z|2 . Next

q = −
z

(log |z|2)2 1/z = −
z
z

1
(log |z|2)2

and therefore

µ f0 = −
z
z

1
log |z|2

B(z),

where B = 1/A. For r0 small enough f0 is qc on B(0, r0), p(0) = q(0) = µ f (0) = 0, µ f0 and ν f0 are continuous f0 is C1,
but there is no finite ( f−1

0 )x at 0. Next if B = B(z0, s0) is an arbitrary planar disk using the mapping f (z) = f0(λ(z−z0))
with λs0 = r0, we conclude that there is a qc C1 map f on B such that µ f and ν f are continuous on B, but f−1 has no
finite derivatives at w0 = f (z0). But note that if both µ f and ν f are α Hölder continuous on B, then f and f−1 are
C1,α.
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The following example shows that the Beltrami coefficient µ f of a qc f is uniformly α -Hölder (and
therefore f is C1,α up to the boundary) but it does not imply in general that f−1 has continuous extension.

Example 7.6. Let 0 < α < β < 1, γ = β − α and 0 < k < 1. Solve equation fz = (1 − z)α and fz = k(1 − z)α. Then
check that (i): f is C1,α up to the boundary of the unit disk, but µ f is discontinuous at 1 if α = β and µ f is γ -Hölder
on unit diskU if α < β. We can write f = 1 ◦ T, where T(z) = 1 − z, and

1(w) =
wα+1

α + 1
+ k

wβ+1

β + 1
.

Now consider 1 on B = B(0, 1). We are going to show that 1 has corresponding properties from which (i) follows.
Check that µ1 = k wβ

wα is γ -Hölder and |µ1| ⩽ k on the closed disk B. Let ϕ be conformal mapping of G = 1(B) onto B
with ϕ(0) = 0 and set h = ϕ ◦ 1. Thus h is a qc mapping which maps B onto itself such that µh = µ1 and h(0) = 0.
In addition, µh = µ1 is γ -Hölder on B, but (ii): partial derivatives of 1−1 do not have continuous extension to 0. At
this point it seems natural to check whether partial derivatives of h−1 have continuous extension to h(0) = 0; we leave
it to the reader and note that Theorem 7.7 below shows that it is the case.
Warning: Note here that h(B) = B is smooth domain and G = 1(B) is not smooth (precisely only at a point 0).
Therefore there is an essential difference between 1 and h: 1 does not satisfy the hypotheses of Theorem 7.7 below and
h does it.

Note further that hypothesis that µ is a compactly supported function in Hölder spaces completely
changes the situation. Namely, there is a classical result that goes back to Schauder which asserts that f is
of class C1,ϵ provided µ is a compactly supported function in Lipε(C,C), stated here as (see, for example,
Theorem 2.10 and 2.12, Ch II, $ 5, p.93 in Vekua’s book [60] and [10, Chapter 15]):

Theorem S. If µ is a complex valued compactly supported ϵ- Hölder continuous function onC, 0 < ϵ < 1,
with |µ|∞ < 1, than principal solution f of µ-Beltrami equation is of class C1,ϵ.

In order to discuss some version of Kellogg and Warschawski theorem for a class of quasiconformal
maps we first need some definition and results.

Recall in the literature planar domain D is called Lyapunov domain if D has smooth C1,α- boundary
for some 0 < α < 1. We first recall the classical result of Kellogg and Warschawski related to Riemann
conformal mapping.

Kellogg’s theorem. Let γ be a Jordan curve. By the Riemann mapping theorem there exists a Riemann
conformal mapping of the unit disk onto the Jordan domain G = intγ. By Caratheodory’s theorem it has a
continuous extension to the boundary. Moreover, if γ ∈ Cn,α, n ∈N, 0 ⩽ α < 1, then the Riemann conformal
mapping has a Cn,α extension to the boundary (this result is known as Kellogg’s theorem).

In [26] Kalaj gives some extensions of classical results of Kellogg and Warschawski to a class of quasi-
conformal (q.c.) mappings. Among the other results the author states the following:

Theorem 7.7. Suppose that (H1): f is a q.c. mapping between two planar domains G and G′ with smooth C1,α

boundaries. Then the following conditions are equivalent:
(A) f together with its inverse mapping f−1, is C1,α up to the boundary.
(B) the Beltrami coefficient µ f is uniformly α Hölder continuous (0 < α < 1).

It our impression that this result can be related with some resent results. For example, we derive a small
extension of this result (see Theorem 7.8 below) and we also can get from this result Theorem 1.3 [11].

It is interesting that Theorem 7.7 is related to a result of Mateu, Orobitg and Verdera (Theorem MOV
below) proved in [43]:

Theorem MOV. Principal solution of Beltrami equation with Hölder continuous Beltrami coefficient supported
on a Lyapunov domain is bi-Lipschitz.

Now we are ready to prove the following:

Theorem 7.8. Let f be a q.c. mapping between two planar domains G and G′ with smooth C1,α, 0 < α < 1,
boundaries. Then the following conditions are equivalent:
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(A) f together with its inverse mapping f−1, is C1,α up to the boundary.
(B) the Beltrami coefficient µ f is uniformly α Hölder continuous (0 < α < 1).
(C) f = ϕ ◦ f0, where ϕ is conformal mapping from Lyapunov domain f0(G) onto G′ and f0 is bi-Lipschitz.

Proof. Suppose (B). We first prove that (B) implies (C). Using Kellogg’s theorem without loss of generality
we can reduce the proof to the case G = B2. In this setting for given r0 > 1 there is Hölder continuous µ0
supported on B = B(0, r0), r0 > 1, such that µ0 = µ f onB2. Namely extend µ f to µ by reflection µ(z) = µ f (Jz),
where Jz = 1/z. Next let φ ∈ C2

0(B), φ = 1 on B2 and set µ0 = φµ. If f0 is principal solution of µ0-Beltrami
equation, then we have f = ϕ ◦ f0, where ϕ is conformal mapping from G0 := f0(B2) onto G′. Since µ0 is
Hölder continuous on B2, by Theorem S we conclude that p0 := ( f0)z and q0 := ( f0)z are Hölder continuous
on B2 and by Theorem MOV that f0 is bi-Lipschitz. Hence there are 0 < l0 < L0 such that l0 ⩽ |p0| − |q0|

and |p0| + |q0| ⩽ L0 on B2. Next by abusing of notation write f ′0(t) instead of ( f0)′b(t), where ( f0)b(t) = f0(eit),
0 ⩽ t ⩽ 2π. If γ(t) = f0(eit), 0 ⩽ t ⩽ 2π and s an arc length parametar on γ, then γ′(s) = f ′0(t)/| f ′0(t)|, where
f ′0(t) = ( f0)′b(t). Since f ′0(t) = i(p0eit

− q0e−it), l0 ⩽ | f ′0(t)| and therefore γ′(s) is Hölder continuous on [0, s0],
where s0 is length of curve γ. Therefore we have proved (C).

Now we prove that (C) implies (A). By Kellogg’s theorem ϕ and ϕ−1 have a continuous extension to G0

and G′ respectively and therefore ϕ is bi-Lipschitz. Hence from (C) it follows that f is bi-Lipschitz.
Recall that we suppose that G = B2. Next p := fz is α- Hölder onB2 and there is m0 > 0 such that |p| ⩾ m0

on B2 and since

1/p(z1) − 1/p(z2) =
p(z2) − p(z1)

p(z1)p(z2)
,

we get
|1/p(z1) − 1/p(z2)| ⩽ C|z2 − z1|

α/m2
0

and therefore 1/p is α- Hölder on B2. Hence also the second dilatation ν f = µ f
p
p is α- Hölder up to the

boundary of G = B2. Finally, since f is bi-Lipschitz and µ f−1 = −ν f ◦ f−1, we conclude that µ f−1 is α- Hölder
up to the boundary. Hence (A) follows.

For further discussion we first need the following definition: if f : G → G′ is differentiable at z0 and
J f (z0) , 0 we say that f is regular at z0.

Remark 7.9. After writing final version of this manuscript, Kalaj turned our attention on the following results.
Theorem LK (Theorem 7.1 [32], p. 232). Let G and G′ be domains in C and w : G → G′ a qc with complex

dilatation χ, where |χ(z)| ≤ k < 1 a.e. in G. If there is χ0 such that∫
B(z0,r0)

|χ(z) − χ0|

|z − z0|
2 dA < +∞ (73)

for some r0 > 0, then w is regular at z0 and χ(z0) = χ0.
If χ satisfies the condition (73) we say that χ satisfies the integral growth condition at z0, and if χ satisfies the

integral growth condition at every point of G we say that χ satisfies the integral growth condition on G.
It is interesting that this result infer simple proof of a few results including, Theorem MOV,and Astala, Prats,

and Saksman Theorem 1.3 [11] stated here as
Theorem ASP. Let 0 < s < 1, let G be a simply connected, bounded C1,s-domain and let 1 : G → G be a

µ-quasiconformal mapping, with supp(µ) ⊂ G and µ ∈ Cs(G). Then 1 ∈ C1,s(G).
Further from Theorem LK we can also infer the following:

Proposition 7.10. If f : C→ C is a C1 qc with complex dilatation χ, where |χ(z)| ≤ k < 1 a.e. in C, f (∞) = ∞, and
χ satisfies the integral growth condition at C, then f is Bi-Lip on every compact subset of C.

If in addition suppχ is bounded set then f is Bi-Lip on C.
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We can consider Proposition 7.10 as a generalization of Theorem MOV.

Acknowledge . We are indebted to professor Kalaj who turned our attention on Theorem LV and an anony-
mous referee for careful reading the manuscript and useful suggestion which improved exposition.
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