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Abstract. We introduce a new normal distribution on time scales. Based on this generalized normal
distribution, a Brownian motion is introduced and its quadratic variation is derived.

1. Introduction

Probability theory on time scales is still in development, see [20] for general theory, [4, 13, 18] for
investigations of time scales analogues of distributions, [1, 2, 5, 10–12, 14, 19] for stochastic calculus on time
scales, and see [16, 17] for papers on stochastic time scales, meaning the time scale is generated by sampling
a random variable. See also [7, 15] as general references to relevant material.

One major deficit in probability theory on time scales is the lack of a normal distribution. The first
attempt at such a distribution on time scales appears in [6] which presented a possible Gaussian bell as the
solution to the dynamic equation y∆ = ⊖(t ⊙ 1)y with initial condition y(t0) = 1, but it was shown that this
solution is not even square integrable on all isolated time scales.

We investigate a different approach for the normal distribution on time scales which is defined for all
time scales with a finite lower bound and all isolated time scales. Therefore, our distribution will generalize
the truncated normal distribution to all time scales and generalize the whole normal distribution for isolated
time scales.

After proving its existence and the existence of its expected value and variance, we then show how
it can be used as a basis for a Brownian motion on time scales. We emphasize that our construction is
different than that in [1, 8, 9] which used the classical normal distribution restricted to a time scale to define
a Brownian motion instead of a normal distribution dependent on the time scale for its definition.

2. A Generalized Normal Distribution

Throughout this paper, we will use the notation and basic definitions of classical probability theory. In
this section, we will introduce a normal distribution for time scales. Let T be a time scale with forward
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jump operator and delta differentiation operator σ and ∆, respectively. Suppose that m ∈ T, p ∈ R, and

p , 0. For convenience of notation, let w1(t) =
t −m

p2 and w2(t) = −w1(t), and define

q(t) =


(⊖w1) (t), t ≥ m,

(⊖w2) (t), t < m.

With this q, we define

N1(t; m, p) =


eq(σ(t),m), t ≥ m,

eq(m, t), t < m.

(a) T = Z, m = 0. (b) T = 1.5Z, m = 1.

(c) T is comprised of a mixture of isolated points and
intervals, m = 0.

(d) T is generated by sampling a normal distribution,
m = −4.

Figure 1: Plots of the normal distribution on two different time scales.1)

Example 2.1. Let T = Z, m = 0, p = 1. Then

N1(t; 0, 1) =



∏
s∈[0,σ(t))

1
1 + s

=
1

(t + 1)!
, t ≥ 0,

∏
s∈[t,0)

1
1 − s

=
1

(|t| + 1)!
, t < 0.

1)Figures made using the timescalecalculus Python package, commit 96e1faa, see https://github.com/tomcuchta/
timescalecalculus
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In this case, we obtain integrability over the time scale and one can compute∫
Z

N1(t; 0, 1)∆t = 1 +
−1∑

k=−∞

1
|k|!
+

∞∑
k=1

1
k!
= 2e − 3.

Lemma 2.2. If t > m, then t 7→ N1(t; m, p) is strictly decreasing and if t < m, then t 7→ N1(t; m, p) is strictly
increasing.

Proof. At right-dense points t , m, eq is clearly decreasing, so assume that µ(t) > 0 for the remainder of the
proof. First compute

1 + µ(t)q(t) =


p2

p2 + µ(t)(t −m)
, t ≥ m,

p2

p2 + µ(t)(m − t)
, t < m,

and from both pieces, we observe that 1 + µ(t)q(t) > 0. Hence q ∈ R+ and so eq > 0. For all t > m, we see

0 < 1 + µ(t)q(t) =
p2

p2 + µ(t)(t −m)
< 1. From here, we conclude that t 7→ eq(t,m) is a nonincreasing function.

If t < m, then

N∆(t; m, p) = e∆q (m, t) = e∆⊖q(t,m) = (⊖q)(t)eq(m, t) =
m − t

p2 eq(m, t) > 0,

completing the proof.

In the next result, we use the notation N1(t; m, p,T) to denote the normal distribution on the time scale T.

Lemma 2.3. Let L ∈ T be a limit point of T with L > m. Let also V ⊂ R be an open set containing L, with
u = ρ(min(V ∩ T)) > m, and w = σ(max(V ∩ T)). Then∫ w

u
N1(τ; m, p,T)∆τ <

∫ w

u
N1(τ; m, p,T \ V)∆τ.

Proof. By Lemma 2.2, we see that t 7→ N1(t; m, p,T) is decreasing on (u,w), for all the points t1 < t2 < t3 <
. . . ∈ V ∩ T:

N1(u; m, p,T) > N1(t1; m, p,T) > N1(t2; m, p,T) > . . . > N1(w; m, p,T).
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Figure 2: A left-dense limit point L. The lightly shaded area corresponds to
∫ v

u
N1(τ; m, p,T \ V)∆τ,

while the darkly shaded area corresponds to
∫ v

u
N1(τ; m, p,T)∆τ.

We compute ∫ w

u
N1(τ; m, p,T \ V)∆τ = µ(u)eq(u,m;T \ V) = (w − u)eq(u,m;T \ V).

On the other hand, since N1(u; m, p,T) = N1(u; m, p,T \ V),∣∣∣∣∣∫ w

u
N1(τ; m, p,T)∆τ

∣∣∣∣∣ ≤ ∫ w

u

∣∣∣N1(τ; m, p,T)
∣∣∣∆τ

<

∫ w

u

∣∣∣N1(u; m, p,T)
∣∣∣∆τ

= (w − u)
∣∣∣N1(u; m, p,T \ V)

∣∣∣
=

∫ w

u
N1(τ; m, p,T \ V)∆τ,

completing the proof for u > m.

Lemma 2.4. IfT is a time scale of isolated points, then t 7→ eq(t,m) is integrable on [m,∞)∩T and on (−∞,m]∩T.

Proof. We necessarily have µ(t) ≥ c for some fixed positive real number c, else the time scale is no longer
contains only isolated points. Express the relevant portion of the time scale as T̃ = {m = t0, t1, t2, . . .} with
tk+1 > tk for all k = 0, 1, 2, . . .. We will show that∣∣∣∣∣∫ ∞

m
eq(σ(τ),m)∆τ

∣∣∣∣∣ < ∞. (1)

We compute∫
∞

m
eq(σ(τ),m)∆τ =

∞∑
k=0

µ(tk)eq(tk+1,m)

=

∞∑
k=0

µ(tk)
k∏
ℓ=0

[
1 + ⊖

(
tℓ −m

p2

)
µ(tℓ)

]
=

∞∑
k=0

µ(tk)
k∏
ℓ=0

[
1 −

(tℓ −m)µ(tℓ)
p2 + µ(tℓ)(tℓ −m)

]
=

∞∑
k=0

µ(tk)
k∏
ℓ=0

1
p2 + µ(tℓ)(tℓ −m)

.
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By the ratio test,

lim
k→∞

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
µ(tk+1)

k+1∏
ℓ=0

1
p2 + µ(tℓ)(tℓ −m)

µ(tk)
k∏
ℓ=0

1
p2 + µ(tℓ)(tℓ −m)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= lim

k→∞

∣∣∣∣∣∣ µ(tk+1)
µ(tk)(p2 + µ(tk+1)(tk+1 −m))

∣∣∣∣∣∣

= lim
k→∞

∣∣∣∣∣∣∣∣ 1

µ(tk)
( p2

µ(tk+1) + (tk+1 −m)
)
∣∣∣∣∣∣∣∣ .

which equals zero since the graininess cannot approach zero in a time scale of isolated points and hence (1)
converges. The proof for integrability on (−∞,m] ∩ T is the same.

Theorem 2.5. If T is a time scale with the property that infT , −∞, then
∣∣∣∣∣∫
T

N1(τ; m, p,T)∆τ
∣∣∣∣∣ < ∞.

Proof. Since infT > −∞, we know that
∫ m

infT
N1(t; m, p,T)∆t is finite since it is an integral of a continuous

function on a compact domain. If supT < ∞, then the proof is trivial since the whole time scale is compact.
Assume that supT = ∞. Lemma 2.3 shows that there is a time scale T+iso with infT+iso = m containing only
isolated points where for all t ∈ T+iso,

N1(t; m, p,T) ≤ N1(t; m, p,T+iso). (2)

Finally, Lemma 2.4 shows that the upper bound in (2) is integrable, completing the proof.

Theorem 2.5 shows that lim
t→∞

N1(t; m, p) = 0 and Lemma 2.4 additionally shows that for isolated time

scales, lim
t→−∞

N1(t; m, p) = 0. Now we are prepared to define the normal distribution on time scales. Since

q ∈ R+, Theorem 2.5 shows that if infT > −∞, then CT =
∫
T

N1(t; m, p,T)∆t is finite and positive. Lemma 2.4

shows the same for isolated time scales.

Definition 2.6. We define the probability density of the time scale normal distribution with parameters m and p

by N(t; m, p) =
N1(t; m, p,T)

CT
. The support of this random variable is the entire time scale. We say that a random

variable with this density is time scale normally distributed.

Example 2.7. Let T = Z with m = 0 and p = 1. Let X be normally distributed with density N(t; 0, 1) =
1

2e − 3
N1(t; 0, 1), where N1 is defined as in Example 2.1. We may compute the expected value

E [X] =
∑
k∈Z

kN(k; 0, 1)

=
1

2e − 3

 −1∑
k=−∞

k
(|k| + 1)!

+

∞∑
k=0

k
(k + 1)!

 = 0.
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Similarly, compute the variance

Var[X] =
1

2e − 3

∑
k∈Z

k2N(k; 0, 1)

=
1

2e − 3

 −1∑
k=−∞

k2

(|k| + 1)!
+

∞∑
k=0

k2

(k + 1)!


=

(e − 1) + (e − 1)
2e − 3

=
2e − 2
2e − 3

≈ 1.4104.

On the other hand, consider T = 1.5Z with m = 1 and p = 1. In this case, µ(t) = 0.5t and

q(t) =


1 − t

1 + 0.5t(t − 1)
, t ≥ 1,

t − 1
1 + 0.5t(1 − t)

, t < 1.

Therefore if t = 1.5k
∈ T for some k ∈ Z, then

N1(t; 1, 1) =


eq(σ(t), 1) =

k∏
j=0

(
1 +

0.5(1.5 j)(1 − 1.5 j)
1 + 0.5(1.5 j)(1.5 j − 1)

)
, t ≥ 1,

eq(1, t) =
−1∏
j=k

1

1 + 0.5(1.5 j)(1.5 j−1)
1+0.5(1.5 j)(1−1.5 j)

, t < 1.

=



k∏
j=0

1
1 + 0.5(1.5 j)(1.5 j − 1)

, t ≥ 1,

−1∏
j=k

(
1 + 0.5(1.5 j)(1 − 1.5 j)

)
, t < 1.

We compute the normalizing constant

CT =

∫
1.5
Z

N1(t; 1, 1)

=

∞∑
k=−∞

0.5(1.5)kN1(1.5k; 1, 1)

= 0.5
−1∑

k=−∞

1
(1.5)|k|

−1∏
j=k

(
1 + 0.5(1.5k)(1 − 1.5k)

)
+ 0.5

∞∑
k=0

(1.5)k
k∏

j=0

(
1

1 + 0.5(1.5 j)(1.5 j − 1)

)

≈ 1.23 + 1.50 = 2.73.

Therefore we have theT = 1.5Z normal distribution N(t; 1, 1) ≈
1

2.73
N1(t; 1, 1). Estimation of the mean and variance

follow as

E[X] =
1

2.73

∞∑
k=−∞

(1.5)2kN(1.5k; 1, 1) ≈ 2.68
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and

Var[X] =
1

2.73

∞∑
k=−∞

(1.5)3kN(1.5k; 1, 1) ≈ 5.09.

Theorem 2.8. If infT > −∞ and X is a random variable with density N(t; m, p), then it has expected value E[X] =

m+
p2

CT
ew2 (infT,m) and it has variance Var[X] = ν1+ν2−

p4

C2
T

(ew2 (infT,m))2, where ν1 :=
1

CT

∫ m

infT
(t−m)2eq(m, t)∆t

and ν2 :=
1

CT

∫
∞

m
(t −m)2eq(σ(t),m)∆t.

Proof. Compute∫
∞

m
(t −m)N(t; m, p)∆t =

1
CT

∫
∞

m
(t −m)eq(σ(t),m)∆t

=
1

CT

∫
∞

m
(t −m)(1 + µ(t)(⊖w1)(t))e⊖w1 (t,m)∆t

=
1

CT

∫
∞

m

p2(t −m)
p2 + (t −m)µ(t)

e⊖w1 (t,m)∆t

=
−p2

CT

∫
∞

m
e∆⊖w1

(t,m)∆t

= −
p2

CT
e⊖w1 (t,m)

∣∣∣∣∣∣
∞

m

=
p2

CT
.

Similarly, since w2 = −w1 =
m − t

p2 , we get

∫ m

infT
(t −m)N(t; m, p) =

1
CT

∫ m

infT
(t −m)e⊖w2 (m, t)∆t

=
−p2

CT

∫ m

infT

m − t
p2 ew2 (t,m)∆t

=
−p2

CT

∫ m

infT
e∆w2

(t,m)∆t = −
p2

CT

(
1 − ew2 (infT,m)

)
.

Therefore,

E[X] =

∫
∞

infT
tN(t; m, p)∆t =

∫
∞

infT
(t −m +m)N(t; m, p)∆t

=

(∫ m

infT
+

∫
∞

m

)
(t −m)N(t; m, p)∆t +m

∫
∞

infT
N(t; m, p)∆t

= −
p2

CT

(
1 − ew2 (infT,m)

)
+

p2

CT
+m

= m +
p2

CT
ew2 (infT,m) ,

completing the proof for the expected value. It is clear that ν1 < ∞ since [infT,m] is compact. Now compute

ν2 :=
∫
∞

m
(t −m)2e⊖w1 (σ(t),m)∆t

=

∫
∞

m
(t −m)2 p2

p2 + (t −m)µ
e⊖w1 (t,m)
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= p2
∫
∞

m
(m − t)(⊖w1)e⊖w1 (t,m)∆t

= p2
∫
∞

m
(m − t)e∆⊖w1

(t,m)∆t

= p2
∫
∞

m
e⊖w1 (σ(t),m)∆t

≤ p2
∫
∞

m
e⊖w1 (t,m)∆t.

Finally, we compute

E[X2] =

∫
∞

infT
t2N(t; m, p)∆t

=
1

CT

∫
∞

infT
(t −m +m)2N1(t; m, p)∆t

=
1

CT

∫
∞

infT

[
(t −m)2 + 2m(t −m) +m2

]
N1(t; m, p)∆t

= ν1 + ν2 + 2mE[X] −m2

= ν1 + ν2 + 2m
(
m +

p2

CT
ew2 (infT,m)

)
+m2

= ν1 + ν2 +m2 + 2m
p2

CT
ew2 (infT,m).

Therefore,

Var[X] = E[X2] − E[X]2 = ν1 + ν2 −
p4

C2
T

(ew2 (infT,m))2.

By the same proof on an isolated time scale, we obtain the following result whose proof we omit due to
similarity with the proof of Theorem 2.8.

Theorem 2.9. If T is an isolated time scale with infT = −∞ and X is a random variable with density N(t; m, p),
then it has expected value E[X] = m and it has variance Var[X] = ν1 + ν2.

3. Brownian Motion on General Time Scale

In this section, we define a time scales Brownian motion and examine some of its properties.

Definition 3.1. A time scale Brownian motion (or time scale Wiener process) is a stochastic process {Wt}t∈T with the
following properties:

1. if t0 ≤ t1 < t2 < . . . < tn for ti ∈ T, i = 0, . . . ,n, the random variables Wt2 −Wt1 , . . ., Wtn −Wtn−1 are indepen-
dent,

2. for all t ≥ s ≥ t0, Wt −Ws is time scale normally distributed with mean 0 and

Var

Wt −Ws −
∑

u∈[s,t)∩T
σ(u)>u

(
Wσ(u) −Wu

) = t − s −
∑

u∈[s,t)∩T
σ(u)>u

µ(u),
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3. the process starts almost surely at 0, i.e. Wt0 = 0 with probability one, and

4. the paths of the process Wt are all continuous.

We point out here that the set of all right-scattered points of T is at most countable [3, Lemma 3.1], so we
do not have to consider uncountable sums. Immediately from the definition, we observe that

E[Wt] = 0, Var[Wt] = t + ht0 (t),

where

ht0 (t) = E


∑

u∈[t0,t)∩T
σ(u)>u

((
Wσ(u) −Wu

)2
− µ(u)

) . (3)

When T = R, note that Definition 3.1 part 2 reduces so that both summations are zero and the variance
becomes simply t − s, consistent with the classical Brownian motion.

Theorem 3.2. If {Wt}t∈T is a time scale Brownian motion, then for s, t ∈ T with s, t ≥ t0,

E[WtWs] = min{s, t} + ht0 (min{s, t}).

Proof. Without loss of generality, assume that t ≥ s ≥ t0. By Definition 3.1, Wt −Ws is independent of Ws, so
compute

E[WtWs] = E [(Wt −Ws +Ws)Ws]

= E
[
W2

s + (Wt −Ws)Ws

]
= E[W2

s ] + E [(Wt −Ws)Ws]

= s + E


∑

u∈[t0,s)∩T
σ(u)>u

(
(Wσ(u) −Wu)2

− µ(u)
) + E(Wt −Ws)E(Ws)

= min{s, t} + E


∑

u∈[t0,min{s,t})∩T
σ(u)>u

(
(Wσ(u) −Wu)2

− µ(u)
) ,

completing the proof.

Now we are prepared to define a time scale Paley-Wiener-Zygmund integral.

Definition 3.3. Suppose that 1 : [a, b] ∩ T → R is ∆-integrable, 1∆ exists and it is continuous on [a, b] ∩ T, and
1(a) = 1(b) = 0. We define a time scale Paley-Wiener-Zygmund integral as follows:∫ b

a
1∆Wt = −

∫ b

a
1∆(t)Wt∆t.

Lemma 3.4. If t ≥ t0 is right-scattered, then

h∆t0
(t) = E


(
Wσ(t) −Wt

)2

µ(t)
− 1

 , (4)

where ht0 is given by (3).
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Proof. Since t is right-scattered, we have

h∆t0
(t) =

ht0 (σ(t)) − ht0 (t)
µ(t)

=
1
µ(t)

E


∑
u∈[t0,σ(t))∩T
σ(u)>u

((
Wσ(u) −Wu

)2
− µ(u)

) −E


∑
u∈[t0,t)∩T
σ(u)>u

((
Wσ(u) −Wu

)2
− µ(u)

)


=
1
µ(t)
E

[((
Wσ(t) −Wt

)2
− µ(t)

)]
,

completing the proof.

Since
∫ b

a
1∆Wt is a random variable, it is of interest to compute its expected value and the expected value

of its square.

Theorem 3.5. If 1 : [a, b] ∩ T→ R is ∆-integrable, 1∆ exists and is continuous on [a, b] ∩ T, and 1(a) = 1(b) = 0,
then

(i) E
[∫ b

a
1∆Wt

]
= 0, and

(ii) if ha(t) given by (3) is ∆-differentiable for all t ∈ [a, b] ∩ T, then

E

(∫ b

a
1∆Wt

)2 =

∫ b

a

(
1(σ(t))

)2 (
1 + h∆a (t)

)
∆t.

In particular, if all points of T are right-scattered, then

E

(∫ b

a
1∆Wt

)2 = ∑
t∈[a,b)

(
1(σ(t))

)2
E

[(
Wσ(t) −Wt

)2
]
.

Proof. Definition 3.1 and Definition 3.3 imply

E

[∫ b

a
1∆Wt

]
= E

[
−

∫ b

a
1∆(t)Wt∆t

]
= −

∫ b

a
1∆(t)E[Wt]∆t = 0,

completing the proof of (i). For (ii), Definition 3.3 and Theorem 3.2 imply

E

(∫ b

a
1∆Wt

)2 = E

[∫ b

a
1∆(t)Wt∆t

∫ b

a
1∆(s)Ws∆s

]
=

∫ b

a

∫ b

a
1∆(t)1∆(s)E [WtWs]∆s∆t

=

∫ b

a

∫ b

a
1∆(t)1∆(s)

(
min{s, t} + E


∑

u∈[a,min{s,t})∩T
σ(u)>u

((
Wσ(u) −Wu

)2
− µ(u)

) )
∆s∆t


=

∫ b

a

∫ b

a
1∆(t)1∆(s) min{s, t}∆s∆t +

∫ b

a

∫ b

a
1∆(t)1∆(s)ha (min{s, t})∆s∆t =: L1 + L2.

(5)



Ü. Aksoy et al. / Filomat 36:16 (2022), 5391–5404 5401

For L1, we apply integration by parts twice, the hypothesis, and the fundamental theorem of calculus to
compute

L1 =

∫ b

a
1∆(t)

(∫ t

a
s1∆(s)∆s +

∫ b

t
t1∆(s)∆s

)
∆t

=

∫ b

a
1∆(t)

(
t1(t) − a1(a) −

∫ t

a
1(σ(s))∆s + t1(b) − t1(t)

)
∆t

=

∫ b

a
1∆(t)

(
−

∫ t

a
1(σ(s))∆s

)
∆t

=

∫ b

a

(
1(σ(t))

)2 ∆t.

Similarly for L2, we compute

L2 =

∫ b

a

∫ b

a
1∆(t)1∆(s)ha(min{s, t})∆s∆t

=

∫ b

a
1∆(t)

(∫ t

a
1∆(s)ha(s)∆s +

∫ b

t
1∆(s)ha(t)∆s

)
∆t

=

∫ b

a
1∆(t)

(∫ t

a
1∆(s)ha(s)∆s + ha(t)

∫ b

t
1∆(s)∆s

)
∆t

=

∫ b

a
1∆(t)

(
1(t)ha(t) −

∫ t

a
1(σ(s))h∆a (s)∆s − 1(t)ha(t)

)
∆t

= −

∫ b

a
1∆(t)

∫ t

a
1(σ(t))h∆a (s)∆s∆t

=

∫ b

a

(
1(σ(t))

)2
h∆a (t)∆t.

Now suppose that all points of T are right-scattered. Then, we apply (4) to (5) and compute

E

(∫ b

a
1∆Wt

)2 = L1 + L2 =

∫ b

a

(
1(σ(t))

)2
E

[
1
µ(t)

(
Wσ(t) −Wt

)2
]
∆t.

Now writing the integral as a sum completes the proof.

Theorem 3.5 assumes that the function 1 is integrable on [a, b] ∩ T. It is simple to extend to L2 functions as
we now explain. If 1 ∈ L2 ([a, b] ∩ T) with 1(a) = 1(b) = 0 and h is ∆-differentiable for every t ∈ (a, b) ∩ T,
then we can take a sequence of functions 1n as in Definition 3.3 such that as n→∞,∫ b

a

(
1n(σ(t)) − 1(σ(t))

)2 (
1 + h∆a (t)

)
∆t→ 0.

By Theorem 3.5(ii), we get

E

(∫ b

a
1m∆Wt −

∫ b

a
1n∆Wt

)2 = ∫ b

a

(
1m(σ(t)) − 1n(σ(t))

)2 (
1 + h∆a (t)

)
∆t.

Therefore
{∫ b

a
1n∆Wt

}
n∈N0

is a Cauchy sequence in L2 so we can define
∫ b

a
1∆Wt = lim

n→∞

∫ b

a
1n∆Wt, and

the extended definition satisfies Theorem 3.5. We now use this concept to pursue quadratic variation.
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Let P ([a, b) ∩ T) =
{
P : P = {a = t0 < t1 < . . . < tn = b}

}
be a collection of partitions. We include b as part

of these partitions because the rightmost endpoint is absent when calculating ∆-integrals.

Lemma 3.6. If [a, b) ∩ T contains infinitely many points and for all n ∈ N0, Pn ∈ P([a, b) ∩ T) with Pn ⊊ Pn+1,
then

lim
n→∞

n−1∑
i=0

(
Wti+1 −Wti

)2 = b − a + ha(b),

where the convergence is in L2 sense.

Proof. Let Qn =

n−1∑
i=0

(Wti+1 −Wti )
2. For arbitrary δ > 0, we write

Qn − (b − a) − ha(b) =
∑

tk+1−tk≤δ

((
Wtk+1 −Wtk

)2
− (tk+1 − tk)

) ∑
tk+1−tk>δ

((
Wtk+1 −Wtk

)2
− (tk+1 − tk)

)
− ha(b)

=: A1 + A2 − ha(b).

Take the expected value of both sides and apply (x + y)2
≤ 2(x2 + y2) to compute

E
[
(Qn − (b − a) − ha(b))2

]
≤ 2E

[
A2

1

]
+ 2E

[
(A2 − ha(b))2

]
.

In the following, when k , j, the expectation is zero because the variables are independent, leading to the
k = j terms remaining, so compute

E
[
A2

1

]
=

∑
tk+1−tk≤δ
t j+1−t j≤δ

E
[((

Wtk+1 −Wtk

)2
− (tk+1 − tk)

) ((
Wt j+1 −Wt j

)2
−

(
t j+1 − t j

))]

=
∑

tk+1−tk≤δ

E
[((

Wtk+1 −Wtk

)2
− (tk+1 − tk)

)2
]

=
∑

tk+1−tk≤δ

E

( (Wtk+1 −Wtk )
2

tk+1 − tk
− 1

)2

(tk+1 − tk)2

→ 0,

as k goes to ∞. Moreover, when tk+1 − tk > δ and k goes to ∞, and since δ is arbitrary we consider
δ → 0 and observe that sums of the form

∑
tk+1−tk>δ

(·) limit to sums of the form
∑
σ(t)−t>0

(·). Therefore we have

E
[
(A2 − ha(b))2

]
→ 0. Hence, Qn → b − a + ha(b) in L2 sense, which completes the proof.

Remark 3.7. When the time scale is chosen as the set of real numbers, i.e. T = R, then the collection of right-scattered

points is empty and
∞∑

i=0

(
Wti+1 −Wti

)2 converges to the length of the interval, b − a, in L2 sense.

Proposition 3.8. If [a, b)∩T contains infinitely many points, and for all n ∈N0,Pn ∈ P([a, b)∩T) withPn ⊊ Pn+1,
and τk ∈ [tk, tk+1) ∩ T for k ∈ {0, . . . ,n − 1}, then in L2 sense,

n−1∑
k=0

Wτk

(
Wtk+1 −Wtk

)
−→

W2
b −W2

a

2
+

(
α −

1
2

)
((b − a) + ha(b)) .
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Proof. We express τk = (1 − α)tk + αtk+1 for some α ∈ [0, 1) since τk ∈ [tk, tk+1). The sum
n−1∑
k=0

Wτk

(
Wtk+1 −Wtk

)
can be decomposed as follows:

n−1∑
k=0

Wτk

(
Wtk+1 −Wtk

)
=

n−1∑
k=0

(
Wτk −Wtk +Wtk

) (
Wtk+1 −Wτk +Wτk −Wtk

)
=

n−1∑
k=0

(
Wτk −Wtk

)2 +

n−1∑
k=0

(
Wτk −Wtk

) (
Wtk+1 −Wτk

)
+

1
2

n−1∑
k=0

(
W2

tk+1
−W2

tk

)
−

1
2

n−1∑
k=0

(
Wtk+1 −Wtk

)2

:= A + B +
1
2

C −
1
2

D.

Observe that by telescoping sum, C =
n−1∑
k=0

(
W2

tk+1
−W2

tk

)
= W2

b − W2
a , using Lemma 3.6, we have D =

n−1∑
k=0

(
Wtk+1 −Wtk

)2
−→ (b − a) + ha(b), and similarly, A =

n−1∑
k=0

(
Wτk −Wtk

)2
−→ α

(
(b − a) + ha(b)

)
. By the

independent increment property in Definition 3.1,

E

n−1∑
k=0

[(
Wτk −Wtk

) (
Wtk+1 −Wτk

)]2


=

n−1∑
k=0

E
[(

Wτk −Wtk

)2
]
E

[(
Wtk+1 −Wτk

)2
]

=

n−1∑
k=0

α(tk+1 − tk)(1 − α)(tk+1 − tk) +
n−1∑
k=0

α(tk+1 − tk)E


∑

t∈[τk,tk+1)∩T
σ(τk)>τk

(
(Wσ(t) −Wt)2

− µ(t)
)

+

n−1∑
k=0

(1 − α)(tk+1 − tk)E


∑

t∈[tk ,τk)∩T
σ(tk)>tk

(
(Wσ(t) −Wt)2

− µ(t)
)

+

n−1∑
k=0

E


∑

t∈[τk ,tk+1)∩T
σ(τk)>τk

(
(Wσ(t) −Wt)2

− µ(t)
)E


∑

t∈[tk ,τk)∩T
σ(tk)>tk

(
(Wσ(t) −Wt)2

− µ(t)
)

≤ K∥Pn∥ −→ 0.

Here, K is a constant depending on a, b, and α, and ∥Pn∥ is the norm of the partition Pn. Hence

B =
n−1∑
k=0

(
Wτk −Wtk

) (
Wtk+1 −Wτk

)
→ 0,

which completes the proof.
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4. Conclusion

We defined a time scale normal distribution for isolated time scales and time scales such that infT > −∞.
We investigated Brownian motion using this time scale normal distribution and deduced some of its
properties. We gave definition for generalized Paley-Wiener-Zygmund integral and computed the quadratic
variation of this time scale Brownian motion. Further work could include investigations of the cumulative
distribution function and stochastic dynamic equations.
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