
Filomat 36:16 (2022), 5405–5416
https://doi.org/10.2298/FIL2216405C

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Generalized Analytic Feynman Integrals via the Operators and its
Applications
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Abstract. In this paper, we introduce a new concept of a generalized analytic Feynman integral combining
the bounded linear operators on abstract Wiener space. We then obtain some Feynman integration formulas
involving the generalized first variation. These formulas are more generalized forms rather than the
formulas studied in previous papers. Finally, we establish a generalized Cameron-Storvick theorem, and
give some examples to illustrate the usefulness of our results and formulas.

1. Introduction

Let H be a real separable infinite-dimensional Hilbert space with the inner product ⟨·, ·⟩H and norm
| · |H =

√
⟨·, ·⟩H. Let ∥ · ∥0 be a measurable norm on H with respect to the Gaussian cylinder set measure ν0 on

H. Let B denote the completion of H with respect to ∥ · ∥0, and i denote the natural injection from H into B.
The adjoint operator i∗ of i is one to one and maps B∗ continuously onto a dense subset H∗, where B∗ and H∗

are topological duals of B and H, respectively. By identifying H∗ with H and B∗ with i∗B∗, we have a triple
B∗ ⊂ H∗ ≈ H ⊂ B. By a well-known result of Gross [11], ν0 ◦ i−1 has a unique countably additive extension ν
to the Borel σ-algebra B(B) of B. The triple (B,H, ν) is called an abstract Wiener space, for a more detailed
study of the abstract Wiener space see [4, 5, 9–13, 16, 17, 19].

Let M(H) be the space of all complex-valued Borel measures on H. Under the total variation norm
and with convolution as multiplication,M(H) is a commutative Banach algebra with identity. The Fourier
transform of f inM(H) is defined by

f̂ (v) =
∫

H
exp{i⟨h, v⟩}d f (h), v ∈ H. (1)

The set of all functionals of the form (1) is denoted by F (H) and is called the Fresnel class of H. It is known
that each functional of the form (1) can be extended to B uniquely by

F(x) =
∫

H
exp{i(h, x)∼}d f (h), x ∈ B, (2)

where (·, ·)∼ is a stochastic inner product between H and B. Then the Fresnel class F (B) of B is the space of
all functionals of the form (2). It is also known that two Fresnel classes F (H) and F (B) are isometric.
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Let F (B2) be the space of all s-equivalence classes of functionals which have the form

F(x1, x2) =
∫

H
exp
{
i

2∑
j=1

(h, x j)∼
}
d f (h), x1, x2 ∈ B, (3)

for some f ∈ M(H). This class is a Banach algebra [2, 16]. Let A1 and A2 be bounded, nonnegative self
adjoint operators on H. In [16] G. Kallianpur and C. Bromley introduced a larger class FA1,A2 of functionals
of the form

F(x1, x2) =
∫

H
exp{i(A1/2

1 h, x1)∼ + i(A1/2
2 h, x2)∼}d f (h), x1, x2 ∈ B, (4)

and proved the existence of the analytic Feynman integral for functionals in FA1,A2 . The map f 7→ [F]
defined by (4) establishes an algebraic isomorphism between M(H) and FA1,A2 if the range of A1 + A2 is
dense in H. In this case, FA1,A2 becomes a Fresnel class under the norm ∥F∥ = ∥ f ∥. Moreover, the two
Fresnel classes F (H) and FA ≡ FA1,A2 are also homeomorphic in this case that A = A1 − A2 where A1 = A+
and A2 = A−. In many papers, fundamental theories of the analytic Feynman integrals were studied and
developed for functionals in F (B) and FA1,A2 involving the Cameron-Storvick theorem [2–5, 10, 16, 17].
These generalizations are very important subject to study the quantum mechanics.

In this paper, we define a more generalized analytic Feynman integral combined with the bounded linear
operators. Its existence is established for functionals in a Fresnel class. We then introduce the generalized
first variation combined with bounded linear operators, and establish some Feynman integration formulas.
Finally, we obtain a Cameron-Storvick theorem with respect to the generalized analytic Feynman integral
with some examples.

2. Definitions and preliminaries

In this section we list some definitions and preliminaries to understand this paper.
A subset E of an abstract Wiener product space B2 is said to be scale-invariant measurable provided

{(ρ1x1, ρ2x2) : (x1, x2) ∈ E} is abstract Wiener measurable for every ρ1 > 0 and ρ2 > 0, and a scale-invariant
measurable set N of B2 is said to be scale-invariant null provided (ν × ν)({(ρ1x1, ρ2x2) : (x1, x2) ∈ N}) = 0 for
any ρ1, ρ2 > 0. A property that holds except on a scale-invariant null set is said to hold scale-invariant almost
everywhere (s-a.e.). A functional F on B2 is said to be scale-invariant measurable provided F is defined on
a scale-invariant measurable set and F(ρ1 · , ρ2 · ) is measurable for any ρ1, ρ2 > 0. If two functionals F and
G on B2 are equal s-a.e., i.e., for any ρ1, ρ2 > 0, (ν × ν)({(x1, x2) ∈ B × B : F(ρ1x1, ρ2x2) , G(ρ1x1, ρ2x2)}) = 0,
then we say that two functionals F and G are coincided s-a.e. [16].

Let {e j}
∞

j=1 be a complete orthonormal set in H with e j’s are in B∗. For each h ∈ H and x ∈ B, we define a
stochastic inner product (h, x)∼ by

(h, x)∼ =

 lim
n→∞

∑n
j=1⟨h, e j⟩H(e j, x), if the limit exists

0, otherwise
,

where (·, ·) is the natural dual paring on B∗ × B. Then it is well known [16] that for each h(, 0) in H, (h, ·)∼

exists for all x ∈ B, is a Gaussian random variable on B with mean zero and variance |h|2H and is essentially
independent of the choice of the complete orthonormal set. The following integration formula is used
several times in this paper. For h ∈ H and x ∈ B,∫

B
exp{iρ(h, x)∼}dν(x) = exp

{
−
ρ2

2
|h|2H
}
, ρ > 0. (1)

Let X and Y be normed spaces and let L(X : Y) be the space of all bounded linear operators from X into
Y. Hence the space L(B : B) is the set of all bounded linear operators from B to B.

We are ready to state the definition of generalized analytic Feynman integral combining the bounded
linear operator.
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Definition 2.1. Let C denote the complex numbers, let C+ = {λ ∈ C : Re(λ) > 0} and let C̃+ = {λ ∈ C : λ ,
0 and Re(λ) ≥ 0}. Give two operators S1 and S2 in L(B : B), let F : B2

−→ C be a functional such that for each
λ1 > 0 and λ2 > 0, the Wiener integral

J(λ1, λ2) =
∫

B2
F(λ−

1
2

1 S1x1, λ
−

1
2

2 S2x2)d(ν × ν)(x1, x2)

exists as a real number. If there exists a function J∗(λ1, λ2) analytic in C+ × C+ such that J∗(λ1, λ2) = J(λ1, λ2)
for all λ1 > 0 and λ2 > 0, then J∗(λ1, λ2) is defined to be the generalized analytic Wiener integral of F over B2 with
parameters λ1 and λ2, and for λ1, λ2 ∈ C+ we write

J∗(λ1, λ2) =
∫ anS1 ,S2

λ1 ,λ2

B2
F(x1, x2)d(ν × ν)(x1, x2).

Let q1 and q2 be nonzero real numbers and let F be a functional such that J∗(λ1, λ2) exists for all λ1, λ2 ∈ C+. If the
following limit exists, we call it the generalized analytic Feynman integral of F with parameters q1, q2 and we write∫ an f S1 ,S2

q1 ,q2

B2
F(x1, x2)d(ν × ν)(x1, x2) = lim

λ1→−iq1
λ2→−iq2

∫ anS1 ,S2
λ1 ,λ2

B2
F(x1, x2)d(ν × ν)(x1, x2)

where λ j approaches −iq j through values in C+, j = 1, 2.

Remark 2.2. When S1 = S2 = I, where I is the identity operator, our generalized analytic Feynman integral is the
analytic Feynman integral, namely,∫ an f I,I

q1 ,q2

B2
F(x1, x2)d(ν × ν)(x1, x2) =

∫ an fq1 ,q2

B2
F(x1, x2)d(ν × ν)(x1, x2).

For a more detailed study of the analytic Feynman integral, see [5, 8–10, 17].

For an operator T in L(H : H), the extension operator T of T on B always exists and is an element of
L(B : H) and so its adjoint operator T

∗

∈ L(H : B∗). Since B∗ ⊂ H, we can consider that T
∗

∈ L(H : H). In
order to develop our theories, let E be the set of all extension operator of an operator in L(H : H), namely,

E = {T : T ∈ L(H : H)}.

Then following proposition which play key roles in this paper. For each h ∈ H, x ∈ B and S ∈ E

(h,Sx)∼ = (S∗h, x)∼. (2)

3. Generalized analytic Feynman integrals

In this section we establish some generalized analytic Feynman integration formulas of functionals in
F (B2).

We first show that the generalized analytic Wiener integral of functionals in F (B2) exist.

Lemma 3.1. Let S1 and S2 in E, and let F be an element of F (B2). Then the generalized analytic Wiener integral∫ anS1 ,S2
λ1 ,λ2

B2 F(x1, x2)d(ν × ν)(x1, x2) exists and is given by the formula∫
H

exp
{
−

2∑
j=1

1
2λ j
|S∗jh|

2
H

}
d f (h). (3)
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Proof. For λ1 > 0 and λ2 > 0, using the Fubini theorem and equations (1) and (2), we have

J(λ1, λ2) ≡
∫

B2
F(λ−

1
2

1 S1x1, λ
−

1
2

2 S2x2)d(ν × ν)(x1, x2)

=

∫
B2

∫
H

exp
{ 2∑

j=1

iλ−
1
2

j (h,S jx j)∼
}
d f (h)d(ν × ν)(x1, x2)

=

∫
H

∫
B2

exp
{ 2∑

j=1

iλ−
1
2

j (S∗jh, x j)∼
}
d(ν × ν)(x1, x2)d f (h)

=

∫
H

exp
{
−

2∑
j=1

1
2λ j
|S∗jh|

2
H

}
d f (h).

Note that for all λ1 > 0 and λ2 > 0,

|J(λ1, λ2)| ≤
∫

H

∣∣∣∣∣exp
{
−

2∑
j=1

1
2λ j
|S∗jh|

2
H

}∣∣∣∣∣|d f (h)| ≤ ∥ f ∥ < ∞.

Now let for λ1, λ2 ∈ C+,

J∗(λ1, λ2) =
∫

H
exp
{
−

2∑
j=1

1
2λ j
|S∗jh|

2
H

}
d f (h).

Then J∗(λ1, λ2) = J(λ1, λ2) for all λ1 > 0 and λ2 > 0. We left to show that the function J∗(λ1, λ2) is analytic
in C2

+. In order to do this, let Γ be any closed contour in C2
+. Then by using the Morera theorem and the

Fubini theorem, we have∫
Γ

J∗(λ1, λ2)dλ1dλ2 =

∫
Γ

∫
H

exp
{
−

2∑
j=1

1
2λ j
|S∗jh|

2
H

}
d f (h)dλ1dλ2

=

∫
H

∫
Γ

exp
{
−

2∑
j=1

1
2λ j
|S∗jh|

2
H

}
dλ1dλ2d f (h)

= 0,

because the function exp
{
−

2∑
j=1

1
2λ j
|S∗jh|

2
H

}
is analytic in C2

+ as a function of (λ1, λ2). Hence we complete the

proof of Lemma 3.1 as desired.

In our next theorem, we establish a formula for the generalized analytic Feynman integral of functionals
in F (B2).

Theorem 3.2. Let q1 and q2 be nonzero real numbers and let S1,S2 and F be as in Lemma 3.1 above. Then the

generalized analytic Feynman integral
∫ an f S1 ,S2

q1 ,q2

B2 F(x1, x2)d(ν × ν)(x1, x2) of F exists and is given by the formula

∫
H

exp
{
−

2∑
j=1

i
2q j
|S∗jh|

2
H

}
d f (h). (4)
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Proof. In Lemma 3.1 above, the existence of generalized analytic Wiener integral was established. To
complete the proof, it suffices to show that

lim
λ1→−iq1
λ2→−iq2

J∗(λ1, λ2) =
∫

H
exp
{
−

2∑
j=1

i
2q j
|S∗jh|

2
H

}
d f (h).

For given nonzero real numbers q j, j = 1, 2, there exist sequences {λnj}
∞

n=1, j = 1, 2, inC+ such thatλnj → −iq j
as n → ∞. By Lemma 3.1, |J∗(λl1, λr2)| ≤ ∥ f ∥ for all l, r = 1, 2, · · · . Hence using the dominated convergence
theorem, for all nonzero real numbers q1 and q2,

lim
λ1→−iq1
λ2→−iq2

J∗(λ1, λ2) = lim
λl1→−iq1
λr2→−iq2

∫
H

exp
{
−

1
2λl1
|S∗1h|2H −

1
2λr2
|S∗2h|2H

}
d f (h)

=

∫
H

exp
{
−

2∑
j=1

i
2q j
|S∗jh|

2
H

}
d f (h),

which establishes equation (4) as desired. Furthermore,∣∣∣∣∣∫ an f S1 ,S2
q1 ,q2

B2
F(x1, x2)d(ν × ν)(x1, x2)

∣∣∣∣∣ ≤ ∥ f ∥ < ∞.

Hence we complete the proof of Theorem 3.2.

From the results in Theorem 3.2 above together with some results in [16], we have the following
equations :

(I) Using equation (4), we have∫ an f S1 ,S2
1,−1

B2
F(x1, x2)d(ν × ν)(x1, x2) =

∫
H

exp
{
−

i
2
|S∗1h|2H +

i
2
|S∗2h|2H

}
d f (h)

=

∫
H

exp
{
−

i
2
⟨S1S∗1h, h⟩H +

i
2
⟨S2S∗2h, h⟩H

}
d f (h).

(5)

In particular, if S1 and S2 are unitary operators on H, then we have∫ an f S1 ,S2
1,−1

B2
F(x1, x2)d(ν × ν)(x1, x2) =

∫
H

exp
{
−

i
2
⟨h, h⟩H +

i
2
⟨h, h⟩H

}
d f (h) = f (H).

(II) If S∗1 = A
1
2
1 and S∗2 = A

1
2
2 , where A

1
2
j is the nonnegative self-adjoint operator introduced by Kallianpur

and Bromley in [16, Proposition 3.3], then we have∫ an f S1 ,S2
1,−1

B2
F(x1, x2)d(ν × ν)(x1, x2) =

∫
H

exp
{
−

i
2
|A

1
2
1 h|2H +

i
2
|A

1
2
2 h|2H
}
d f (h)

=

∫
H

exp
{
−

i
2
⟨A1h, h⟩H +

i
2
⟨A2h, h⟩H

}
d f (h)

=

∫
H

exp
{
−

i
2
⟨Ah, h⟩H

}
d f (h)

(6)

where A = A1 − A2.
(III) The facts (I) and (II) tell us that our formulas and results are more generalized formulas than the

results in [16]. That is to say, many formulas and results of Kallianpur and Bromley are corollaries of
our formulas and results.
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4. Further generalized analytic Feynman integration formulas involving the generalized first variations

In this section we establish some generalized analytic Feynman integrals involving the generalized first
variation.

Definition 4.1. Let S1 and S2 be elements ofL(B : B) and let F be a measurable functional on B2. Then the generalized
first variation δS1,S2 F(x1, x2|u1,u2) of F is defined by the formula

δS1,S2 F(x1, x2|u1,u2) =
∂
∂α1

F(x1 + α1S1u1, x2)
∣∣∣∣∣
α1=0
+
∂
∂α2

F(x1, x2 + α2S2u2)
∣∣∣∣∣
α2=0
, (7)

for x1, x2,u1,u2 ∈ B if it exists.

In Theorem 4.2 below, we show that the generalized first variation of functionals in F (B2) are elements
of F (B2).

Theorem 4.2. Let S1 and S2 be elements of E and let F be an element of F (B2). Let u1 and u2 be in H. Assume that∫
H
|h|H |d f (h)| < ∞. (8)

Then the generalized first variation δS1,S2 F(x1, x2|u1,u2) of F exists, belongs to F (B2) and is given by the formula∫
H

i⟨S∗1h,u1⟩H exp
{
i

2∑
j=1

(h, x j)∼
}
d f (h) +

∫
H

i⟨S∗2h,u2⟩H exp
{
i

2∑
j=1

(h, x j)∼
}
d f (h). (9)

Proof. Using the dominated convergence theorem, equations (4) and (7), equation (9) is obtained as follows:

δS1,S2 F(x1, x2|u1,u2)

=
∂
∂α1

∫
H

exp
{
i(h, x1)∼ + iα1⟨S∗1h,u1⟩H + i(h, x2)∼

}
d f (h)

∣∣∣∣∣
α1=0

+
∂
∂α2

∫
H

exp
{
i(h, x1)∼ + i(h, x2)∼ + iα2⟨S∗2h,u2⟩H

}
d f (h)

∣∣∣∣∣
α2=0

=

∫
H

i⟨S∗1h,u1⟩H exp
{
i

2∑
j=1

(h, x j)∼
}
d f (h) +

∫
H

i⟨S∗2h,u2⟩H exp
{
i

2∑
j=1

(h, x j)∼
}
d f (h).

(10)

In fact, using equation (10), the Hólder inequality and the assumption (8), we have∣∣∣∣∣δS1,S2 F(x1, x2|u1,u2)
∣∣∣∣∣ ≤ ∫

H
|⟨S∗1h,u1⟩H ||d f (h)| +

∫
H
|⟨S∗2h,u1⟩H ||d f (h)|

≤

∫
H
|S∗1h|H |u1|H |d f (h)| +

∫
H
|S∗2h|H |u2|H |d f (h)|

≤

∫
H
∥S∗1∥op |h|H |u1|H |d f (h)| +

∫
H
∥S∗2∥op |h|H |u2|H |d f (h)|,

≤ 2M
∫

H
|h|H |d f (h)| < ∞

where ∥T∥op denotes the operator norm of an operator T and M = max{∥S∗1∥op|u1|H, ∥S∗2∥op|u2|H}. Furthermore,
we note that

δS1,S2 F(x1, x2|u1,u2) =
∫

H
exp
{
i

2∑
j=1

(h, x j)∼
}
d f1(h) +

∫
H

exp
{
i

2∑
j=1

(h, x j)∼
}
d f2(h)

=

∫
H

exp
{
i

2∑
j=1

(h, x j)∼
}
d f̃ (h)
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where f j, j = 1, 2, are complex measures defined by

f j(E) =
∫

E
i⟨S∗jh,u j⟩Hd f (h),

for E ∈ B(H) and f̃ is given as in the proof of Theorem 4.2. It means that the generalized first variation
δS1,S2 F(x1, x2|u1,u2) is an element of F (B2) and hence we complete the proof of Theorem 4.2.

In Theorem 4.3, we give a formula for the generalized analytic Feynman integral involving the general-
ized first variation.

Theorem 4.3. Let S1,S2,S3 and S4 be elements of E and let F be an element of F (B2) such that the condition (8) is

satisfied. Let u1,u2 ∈ H. Then the generalized analytic Feynman integral
∫ an f S1 ,S2

q1 ,q2

B2 δS3,S4 F(x1, x2|u1,u2)d(ν×ν)(x1, x2)
involving the generalized first variation exists and is given by the formula∫

H
i⟨S∗3h,u1⟩H exp

{
−

2∑
j=1

i
2q j
|S∗jh|

2
H

}
d f (h) +

∫
H

i⟨S∗4h,u2⟩H exp
{
−

2∑
j=1

i
2q j
|S∗jh|

2
H

}
d f (h). (11)

Proof. We proved that the generalized first variation δS3,S4 F(x1, x2|u1,u2) exists, belongs toF (B2) and is given
by the formula

δS3,S4 F(x1, x2|u1,u2) =
∫

H
exp
{
i

2∑
j=1

(h, x j)∼
}
d f̃ (h)

where f̃ is in the proof of Theorem 4.2. By using equations (4) and (9), we have∫ an f S1 ,S2
q1 ,q2

B2
δS3,S4 F(x1, x2|u1,u2)d(ν × ν)(x1, x2)

=

∫
H

exp
{
−

2∑
j=1

i
2q j
|S∗jh|

2
H

}
d f̃ (h)

=

∫
H

i⟨S∗3h,u1⟩H exp
{
−

2∑
j=1

i
2q j
|S∗jh|

2
H

}
d f (h) +

∫
H

i⟨S∗4h,u2⟩H exp
{
−

2∑
j=1

i
2q j
|S∗jh|

2
H

}
d f (h).

Hence we complete the proof of Theorem 4.3.

5. Generalized Cameron-Storvick theorem

The Cameron-Storvick theorem says that the (analytic Feynman)Wiener integrals involving the first
variation can be expressed by the ordinary forms without the concept of the first variation. It looks like
the integration by parts formulas. Numerous constructions and theories regarding the Cameron-Storvick
theorem have been studied and applied in various papers [4, 5, 16, 17, 21].

In this section, we establish a more generalized Cameron-Storvick theorem with respect to the our
generalized analytic Feynman integral and the generalized first variation.

The following lemma is the basic translation theorem on abstract Wiener space.

Lemma 5.1. (Translation theorem) Let F be an integrable functional on B and let x0 ∈ H. Then∫
B

F(x + x0)dν(x) = exp
{
−

1
2
|x0|

2
H

}∫
B

F(x) exp{(x0, x)∼}dν(x). (12)
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Using equation (12), we establish a translation theorem to obtain the generalized Cameron-Storvick
theorem.

Lemma 5.2. (Translation theorem with respect to the operators) Let S1 and S2 be elements of E with S1S∗1 = I
on H. Let F be an integrable functional on B and let x0 ∈ H. Then∫

B
F(S1x + S2x0)dν(x) = exp

{
−

1
2
|S∗1S2x0|

2
H

}∫
B

F(S1x) exp{(S∗1S2x0, x)∼}dν(x). (13)

Proof. We first note that for x0 ∈ H, we have S2x0 ∈ H and hence S∗1S2x0 ∈ H. Next, equation (13)
immediately follow from equation (12) by replacing FS1 instead of F, where FS1 (x) = F(S1x) with FS1 (x + θ0)
and θ0 = S∗1S2x0 ∈ H.

Equation (14) is called the generalized Cameron-Storvick theorem.

Theorem 5.3. Let S1,S2,S3,S4,F, f ,u1, and u2 be as in Theorem 4.3 above. Then∫ an f S1 ,S2
q1 ,q2

B2
δS3,S4 F(x1, x2|u1,u2)d(ν × ν)(x1, x2)

= 2
∫ an f S1 ,S2

q1 ,q2

B2
F(x1, x2)d(ν × ν)(x1, x2) − i

2∑
j=1

q j

∫ an f S1 ,S2
q1 ,q2

B2
F j(x1, x2)d(ν × ν)(x1, x2).

(14)

where

F1(x1, x2) = (S1S∗3S1h, x1)∼F(x1, x2)

and

F2(x1, x2) = (S2S∗4S2h, x2)∼F(x1, x2).

Proof. The existence of the right-hand side of equation (14) was established in Theorem 4.3 above. We only
left to show that the equality in equation (14) holds. For λ1 > 0 and λ2 > 0, we have∫

B2
δS3,S4 F(λ−

1
2

1 S1x1, λ
−

1
2

2 S2x2|u1,u2)d(ν × ν)(x1, x2)

=

∫
B2

[
∂
∂α1

F(λ−
1
2

1 S1x1 + α1S3u1, λ
−

1
2

2 S2x2)
∣∣∣∣∣
α1=0
+
∂
∂α2

F(λ−
1
2

1 S1x1, λ
−

1
2

2 S2x2 + α2S4u2)
∣∣∣∣∣
α2=0

]
d(ν × ν)(x1, x2).

Now we apply equation (13) with respect to the first and the second arguments of F, we have∫
B2
δS3,S4 F(λ−

1
2

1 S1x1, λ
−

1
2

2 S2x2|u1,u2)d(ν × ν)(x1, x2)

=
∂
∂α1

[
exp
{
−
λ1α2

1

2
|S∗1S3u1|

2
H

}∫
B2

F(λ−
1
2

1 S1x1, λ
−

1
2

2 S2x2) exp{λ
1
2
1 α1(S∗3S1h, x)∼}d(ν × ν)(x1, x2)

]∣∣∣∣∣
α1=0

+
∂
∂α2

[
exp
{
−
λ2α2

2

2
|S∗2S4u2|

2
H

}∫
B2

F(λ−
1
2

1 S1x1, λ
−

1
2

2 S2x2) exp{λ
1
2
2 α2(S∗4S2h, x)∼}d(ν × ν)(x1, x2)

]∣∣∣∣∣
α2=0

= 2
∫

B2
F(λ−

1
2

1 S1x1, λ
−

1
2

2 S2x2)d(ν × ν)(x1, x2) + λ
1
2
1

∫
B2

(S∗3S1h, x1)∼F(λ−
1
2

1 S1x1, λ
−

1
2

2 S2x2)d(ν × ν)(x1, x2)

+ λ
1
2
2

∫
B2

(S∗4S2h, x2)∼F(λ−
1
2

1 S1x1, λ
−

1
2

2 S2x2)d(ν × ν)(x1, x2)

= 2
∫

B2
F(λ−

1
2

1 S1x1, λ
−

1
2

2 S2x2)d(ν × ν)(x1, x2) + λ1

∫
B2

(S∗3S1h, λ−
1
2

1 S∗1S1x1)∼F(λ−
1
2

1 S1x1, λ
−

1
2

2 S2x2)d(ν × ν)(x1, x2)

+ λ2

∫
B2

(S∗4S2h, λ−
1
2

2 S∗2S2x2)∼F(λ−
1
2

1 S1x1, λ
−

1
2

2 S2x2)d(ν × ν)(x1, x2)
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= 2
∫

B2
F(λ−

1
2

1 S1x1, λ
−

1
2

2 S2x2)d(ν × ν)(x1, x2) + λ1

∫
B2

(S1S∗3S1h, λ−
1
2

1 S1x1)∼F(λ−
1
2

1 S1x1, λ
−

1
2

2 S2x2)d(ν × ν)(x1, x2)

+ λ2

∫
B2

(S2S∗4S2h, λ−
1
2

2 S2x2)∼F(λ−
1
2

1 S1x1, λ
−

1
2

2 S2x2)d(ν × ν)(x1, x2).

It can be analytically continued in (λ1, λ2) ∈ C2
+ by similar methods in the proof of Theorem 3.2, and thus,

letting λ j → −iq j, j = 1, 2, we have∫ an f S1 ,S2
q1 ,q2

B2
δS3,S4 F(x1, x2|u1,u2)d(ν × ν)(x1, x2)

= 2
∫ an f S1 ,S2

q1 ,q2

B2
F(x1, x2)d(ν × ν)(x1, x2) − iq1

∫ an f S1 ,S2
q1 ,q2

B2
F1(x1, x2)d(ν × ν)(x1, x2) − iq2

∫ an f S1 ,S2
q1 ,q2

B2
F2(x1, x2)d(ν × ν)(x1, x2).

Hence we have the desired results.

From Theorem 5.3, we have the following corollary.

Corollary 5.4. (I) If S1 = S3 and S2 = S4, then∫ an f S1 ,S2
q1 ,q2

B2
δS1,S2 F(x1, x2|u1,u2)d(ν × ν)(x1, x2)

= 2
∫ an f S1 ,S2

q1 ,q2

B2
F(x1, x2)d(ν × ν)(x1, x2) − i

2∑
j=1

q j

∫ an f S1 ,S2
q1 ,q2

B2
G j(x1, x2)d(ν × ν)(x1, x2)

where

G1(x1, x2) = (S1h, x1)∼F(x1, x2)

and

G2(x1, x2) = (S2h, x2)∼F(x1, x2).

(II) If S1 = S2 = S3 = S4 ≡ S and q1 = q2 ≡ q, then∫ an f S,S
q,q

B2
δS,SF(x1, x2|u1,u2)d(ν × ν)(x1, x2)

= 2
∫ an f S,S

q,q

B2
F(x1, x2)d(ν × ν)(x1, x2) − iq

2∑
j=1

∫ an f S,S
q,q

B2
L j(x1, x2)d(ν × ν)(x1, x2)

(15)

where

L1(x1, x2) = (Sh, x1)∼F(x1, x2)

and

L2(x1, x2) = (Sh, x2)∼F(x1, x2).

(III) If Si = I on H for all i = 1, 2, 3, 4, then our generalized analytic Feynman integral is the analytic Feynman
integral and hence we have∫ an fq1 ,q2

B2
δS3,S4 F(x1, x2|u1,u2)d(ν × ν)(x1, x2)

= 2
∫ an fq1 ,q2

B2
F(x1, x2)d(ν × ν)(x1, x2) −

2∑
j=1

iq j

∫ an fq1 ,q2

B2
K j(x1, x2)d(ν × ν)(x1, x2)
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where

K1(x1, x2) = (h, x1)∼F(x1, x2)

and

K2(x1, x2) = (h, x2)∼F(x1, x2).

6. Possible results

Though the Sections 3-5, we generalize various formulas for the Feynman integrals and the integration
by parts formulas combining bounded linear operators. We close this paper by giving some possible
examples for the operators through subsequent remarks.

Remark 6.1. We note that H
∥·∥0
= B and B∗

∥·∥H
= H. For any h ∈ H, there exists a sequence {en}

∞

n=1 in B∗ so that
∥en − h∥H → 0 as n→∞. This convergence is independent for the choice of {en}

∞

n=1 in B∗. Now, let

Hn(x) = exp{(en, x)}

and

H(x) = exp{(h, x)∼}.

Then Hn(x) converges to H(x) for ν-a.e. x ∈ B by the Kolmogorov theorem. From this observation, we see that

lim
n→∞

∫
B∗

exp
{
i

2∑
j=1

(en, x j)
}
d f (v) =

∫
H

exp
{
i

2∑
j=1

(h, x j)∼
}
d f (v)

for a.e. (x1, x2) ∈ B2. Hence our results and formulas can be obtained for the functionals of the form∫
B∗

exp
{
i

2∑
j=1

(h, x j)
}
d f (v)

for a.e. (x1, x2) ∈ B2.

Remark 6.2. We give an example of abstract Wiener space, and introduce some operators.

(i) The Hilbert space

C′0 ≡ C′0[0,T] = {v : [0,T]→ R : v(t) =
∫ t

0
zv(s)ds, zv ∈ L2[0,T]}

with the norm ∥ · ∥2C′0[0,T] =
∫ t

0 z2
v(s)ds is being used to explain various theories in mathematics fields. Its

completion with respect to the measurable norm ∥v∥C0[0,T] = supt∈[0,T] |v(t)| is the classical Wiener space C0[0,T].
That is to say, (C′0[0,T],C0[0,T],mw) is an example of abstract Wiener space. Let A1 : C′0[0,T]→ C′0[0,T] be
the linear operator defined by

(A1w)(t) =
∫ t

0
w(s)ds. (16)

Then we see that the adjoint operator A∗1 of A1 is given by

A∗1w(t) = w(T)t −
∫ t

0
w(s)ds =

∫ t

0
[w(T) − w(s)]ds
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and the linear operator P = A∗1A1 is given by

Pw(t) =
∫ T

0
min{s, t}w(s)ds.

Furthermore, we see that P is a self-adjoint operator on C′0[0,T] and that

(w1,Aw2)C′0 = (A1w1,A1w2)C′0 =

∫ T

0
w1(s)w2(s)ds

for all w1,w2 ∈ C′0[0,T]. Hence P is a positive definite operator, i.e., (w,Aw)C′0 ≥ 0 for all w ∈ C′0[0,T]. One
can show that the orthonormal eigenfunction {em} of P are given by

em(t) =
√

2T
(m − 1

2 )π
sin
( (m − 1

2 )π
T

t
)
≡

∫ t

0
αm(s)ds

with corresponding eigenvalues {βm} given by

βm =
( T

(m − 1
2 )π

)2
.

Furthermore, it can be shown that {em} is a basis of C′0[0,T] and so {αm} is a basis of L2[0,T], and that P is
a trace class operator and so A1 is a Hilbert-Schmidt operator on C′0[0,T]. In fact, the trace of P is given by

TrP = 1
2 T2 =

∫ T

0 tdt.
(ii) We next consider the multiplication operator A2 which plays an important role in physics (quantum theories),

see [18]. We define a multiplication operator A2 with t ∈ [0,T] on C′0[0,T] by

(A2(x))(t) ≡ A2(x(t)) = tx(t). (17)

Then we have A2(xy) = tx(t)y(t) and xA2(y) = x(t)ty(t). Also, one can easily check that A∗2v(t) = tv(t) for all
v ∈ C′0. Note that, the expected value or corresponding mean value is

E(x) ≡
∫ T

0
t|x(t)|2dt =

∫ T

0
A2(|x|2)(t)dt,

where x is the state function of a particle in quantum mechanics and
∫ T

0 |x(t)|2dt is the probability that the
particle will be founded in [0,T].

Remark 6.3. We give another example of abstract Wiener space.

(i) Let H ≡ l2 be the space of all sequences of real numbers with
∞∑

n=1
x2

n < ∞. That is

H ≡ l2 =
{
(xn) :

∞∑
n=1

x2
n < ∞

}
.

Its completion with respect to the measurable norm ∥(xn)∥0 =
∞∑

n=1

1
n2 x2

n is

B =
{
(xn) :

∞∑
n=1

1
n2 x2

n < ∞
}
.

Also, note that its dual space is

B∗ =
{
(xn) :

∞∑
n=1

n2x2
n < ∞

}
.
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(ii) Let R : B→ H be a linear operator defined by

R((xn)) =
(1

n
xn

)
.

Now, let A3 = R|H. Then A3 ∈ L(H : H), A3 is a self-adjoint operator and Hilbert-Schdmit operator on H.

Remark 6.4. Using the concept of ν-lifting on abstract Wiener space, the operators A1,A2 and A3 can be extended
on B, for more detailed study for the m-lifting see [5, 8, 11, 12, 18, 19].
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