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Abstract. The goal of the present paper is to analyze sharp type inequalities including the scalar and Ricci
curvatures of slant submersions in complex space forms.

1. Introduction

The intrinsic and extrinsic invariants that determined an inequality including the square mean curva-
ture and the Ricci curvature of a submanifold in a real space form Rn(c) devised by B.-Y. Chen in 1999
(see [5]). Also, for arbitrary submanifolds in an arbitrary Riemannian manifold, a generalization of this
inequality was demonstrated in 2005 by B.-Y. Chen (see [6]). Subsequently, this inequality has been com-
prehensively examined for different ambient spaces by some authors who are achieved some results (see
[3, 4, 6, 14, 16, 20, 21, 24, 29, 35]).

Given a C∞−submersion φ from a (semi)-Riemannian manifold (HM, 1M) onto a (semi)-Riemannian
manifold (HN, 1N), according to the circumstances on the map φ : (HM, 1M) → (HN, 1N) , we get the
following: a slant submersion ( [11, 28]), an almost Hermitian submersion ([22]), a (pseudo)-Riemannian
submersion ([1], [7], [8],[12], [15],[18]), a quaternionic submersion ([13] ), an anti-invariant submersion ( [27])
( [19]), a Clairaut Submersion ([10]), conformal anti-invariant submersion([2]), a semi-invariant submersion
([17]), etc. As far as we know, Riemannian submersions were presented by B. O’Neill ([15]) and A. Gray ([8])
in 1960s, independently. Especially, by utilizing the notion of almost Hermitian submersions, B. Watson
([22]) presented some differential geometric features among fibers, base manifolds, and total manifolds.
Subsequently, many results occur on this topic.

Watson in ([22]) studied Riemannian submersions between almost Hermitian manifolds under the
name of holomorphic submersions. One of the most important consequences of this idea is that vertical
and horizontal distributions are invariant under almost complex structure. He indicated that if the total
manifold is a Kaehler manifold, then the base manifold is a Kaehler manifold. Slant submersions from
almost Hermitian manifolds to Riemannian manifolds was introduced by Şahin in 2011 ([26]). In this article
he showed that the geometry of slant submersions is quite different from holomorphic submersions.
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Let HM be an almost Hermitian manifold with complex structure J of type (1, 1) and HM a Riemannian
manifold isometrically immersed in HM. We can say that submanifolds of a Kaehler manifold are determined
by the tangent bundle of the submanifold under the action of the complex structure of the ambient manifold.
TxHM indicates the tangent space to HM at the point x such that if J(TxHM) ⊂ TxHM , for every x ∈ HM , then
A submanifold HM is called holomorphic (complex). TxH⊥

M
indicates the normal space to HM at the any

point x such that if J(TxHM) ⊂ TxH⊥
M

for every x ∈ HM, then HM is called totally real. Slant submanifolds
which a generalization of holomorphic and totally real submanifolds were introduced by Chen in ([25]).
if for any X ∈ TxHM and x ∈ HM, the angle between TxHM and JX is a constant θ(X) ∈

[
0, π2
]

,then the
submanifold HM is called slant ([25]) i.e, it does not depend on the choice of X ∈ TxHM and x ∈ HM. We can
say that invariant and totally real immersions are slant immersions with θ = 0 and θ = π

2 , respectively. A
slant immersion which is neither invariant nor totally real is called a proper slant immersion.

In ([30]), the authors mainly studied Chen-Ricci inequality for Riemannian submersions from real space
form. They also studied Chen-Ricci inequality for Riemannian maps from real space form and complex
space forms by considering various cases such as anti-invariant, semi-invariant, Lagrangian etc. In this
paper we consider Chen-Ricci inequality for slant Riemannian submersions from complex space forms.
The rest of the paper is organized as follows: After giving some basic definitions and formulas in the sec-
ond part, we research several inequalities including the Ricci and the scalar curvatures on vertical (kerφ∗)
and horizontal ((kerφ∗)⊥) distributions of slant submersions in complex space forms and then, we acquire
Chen-Ricci inequalities on kerφ∗ and (kerφ∗)⊥ of slant submersions in complex space forms.

2. Preliminaries

Let (HM, 1M) be an almost Hermitian manifold. This implies ([23]) that HM admits a tensor field J of
type (1, 1) on HM such that, ∀X1,X2 ∈ χ(HM), we have

J2 = −I, 1M(JX1,X2) = −1M(X1, JX2). (1)

An almost Hermitian manifold HM is called Kaehler manifold if

(∇LC
X1

)X2 = 0, ∀X1,X2 ∈ χ(HM), (2)

here ∇LC is the Levi-Civita connection on HM. If {X1, JX1} spans a plane section, the sectional curvature
FHM (X1) = KHM (X1 ∧ JX1) of span{X1, JX1} is called a sectional curvature. The Riemannian-Christoffel
curvature tensor of a complex space form ([23]) HM(α) of constant sectional curvature α satisfies

RHM (X1,X2,X3,X4) =
α
4
{1M(X1,X4)1M(X2,X3) − 1M(X1,X3)1M(X2,X4)

+ 1M(JX2,X3)1M(JX1,X4) − 1M(JX1,X3)1M(JX2,X4)
+ 21M(X1, JX2)1M(JX3,X4)} (3)

for all X1,X2,X3,X4 ∈ χ(HM).

Let (HM, 1M) and (HN, 1N) be Riemannian manifolds. A Riemannian submersion is a smooth map
φ : HM → HN which is onto and satisfies the following conditions:
(i) φ∗q : TqHM → Tφ(q)HN is onto for all q ∈ HM;
(ii) The fibres φ−1

x , x ∈ HN, are Riemannian submanifolds of HM;
(iii) φ∗q preserves the length of the horizontal vectors.
The vectors tangent to the fibres are called vertical and those normal to the fibres are called horizontal.
The tangent bundle of HM splits as the Whitney sum of two distributions, the vertical one kerφ∗ and the
orthogonal complementary distribution (kerφ∗)⊥ called horizontal, and we denote by h and v the horizontal
and vertical projections, respectively. A horizontal vector field X1 on HM is called as basic if X1 is φ−related
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to a vector field X1∗ on HN([15]). A Riemannian submersion φ : HM → HN specifies two (1, 2) tensor fields
T andA on HM, by the formulae([15]):

T (E,G) = TEG = h∇LC
E vG + v∇LC

E hG (4)

and

A(E,G) = AEG = v∇LC
E hG + h∇LC

E vG (5)

for all E,G ∈ χ(HM).

Lemma 2.1. ([15]) Let φ : (HM, 1M)→ (HN, 1N) be a Riemannian submersion. Then, we have:

AX1 X2 = −AX2 X1, X1,X2 ∈ χ((kerφ∗)⊥); (6)

TU1 U2 = TU2 U1, U1,U2 ∈ χ(kerφ∗); (7)

1M(TU1 X2,X3) = −1M(TU1 X3,X2), U1 ∈ χ(kerφ∗), X2,X3 ∈ χ(HM); (8)

1M(AX1 X2,X3) = −1M(AX1 X3,X2), X1 ∈ χ((kerφ∗)⊥), X2,X3 ∈ χ(HM). (9)

Let RHM ,RHN ,Rkerφ∗ and R(kerφ∗)⊥ stand for the Riemannian curvature tensors of Riemannian manifolds
HM,HN, the vertical distribution kerφ∗ and the horizontal distribution (kerφ∗)⊥, respectively.

Lemma 2.2. ([15]) Let φ : (HM, 1M)→ (HN, 1N) be a Riemannian submersion. Then, we have:

RHM (U1,U2,U3,U4) = Rkerφ∗ (U1,U2,U3,U4) + 1M(TU1 U4,TU2 U3)
− 1M(TU2 U4,TU1 U3), (10)

RHM (X1,X2,X3,X4) = R(kerφ∗)⊥ (X1,X2,X3,X4) − 21M(AX1 X2,AX3 X4)
+ 1M(AX2 X3,AX1 X4) − 1M(AX1 X3,AX2 X4), (11)

RHM (X1,U1,X2,U2) = 1M((∇LC
T )(U1,U2),X2) + 1M((∇LC

A)(X1,X2),U2)
− 1M(TU1 X1,TU2 X2) + 1M(AX2 U2,AX1 U1), (12)

for all X1,X2,X3,X4 ∈ χ((kerφ∗)⊥) and U1,U2,U3,U4 ∈ χ(kerφ∗).

Further, theH mean curvature of every fibre of φ Riemannian submersion is defined

H =
1
s
N , N =

s∑
p=1

TEp Ep, (13)

where {E1,E2, ...,Es} forms an orthonormal basis for the vertical distribution kerφ∗. Also, φ has totally
geodesic fibres if T = 0 on kerφ∗ .

Definition 2.3. ([26]) Let φ be a Riemannian submersion from an almost Hermitian manifold (HM1 , 1M1 , J) onto a
Riemannian manifold (HM2 , 1M2 ). If the angle θ(X) between JX and the space kerφ∗q is a constant for any non-zero
vector X ∈ kerφ∗q; q ∈ HM1 i.e. it is independent of the point q ∈ HM1 and choice of the tangent vector X in kerφ∗q ,
then we say that φ is a slant submersion. In this case, the angle θ is called the slant angle of the slant submersion.
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Example 2.4. Define a map ψ : R4
→ R

2 by

ψ(x1, x2, x3, x4) = (x1 cos a − x3 sin a, x2 sin b − x4 cos b),

here a and b are constant. Then the map ψ is a slant submersion with the slant angle θ with cosθ = |sin(a + b)|,
where J is the canonical complex structure of R4 defined by J(a1, a2, a3, a4) = (−a2, a1,−a4, a3).

Let φ be a Riemannian submersion from an almost Hermitian manifold HM1 with the structure (1M1 , J)
onto a Riemannian manifold (HM2 , 1M2 ). Then for X ∈ Γ

(
kerφ∗

)
,we can write

JX = ϕX + ωX, (14)

here ϕX ∈ Γ(kerφ∗) and ωX ∈ Γ(kerφ∗)⊥. Also for Z ∈ Γ(kerφ∗)⊥, we get

JZ = BZ + CZ, (15)

where BZ and CZ are vertical and horizontal parts of JZ. Using (1), (14) and (15) we get

C2X = −X − ωBX (16)

Example 2.5. ([26]) Every Hermitian submersion from an almost Hermitian manifold onto an almost Hermitian
manifold is a slant submersion with θ = 0.

Example 2.6. ([26]) Every anti-invariant Riemannian submersion from an almost Hermitian manifold to a Rieman-
nian manifold is a slant submersion with θ = π

2 .

Theorem 2.7. ([26]) Let φ be a Riemannian submersion from an almost Hermitian manifold (HM1 , 1M1 , J) onto a
Riemannian manifold (HM2 , 1M2 ). Thenφ is a proper slant submersion if and only if there exists a constant λ ∈ [−1, 0]
such that

ϕ2X = λX (17)

for X ∈ Γ
(
kerφ∗

)
. If φ is a proper slant submersion, then λ = − cos2 θ.

Using the above theorem, we have

1M1 (ϕX, ϕY) = cos2 θ1M1 (X,Y) (18)

1M1 (ωX, ωY) = sin2 θ1M1 (X,Y) (19)

3. Inequalities for slant submersions

Let’s first give the following result:
Since φ is a slant submersion, and using (3) and (10) we get:

Lemma 3.1. (HM(α), 1M) and (HN, 1N) denote a complex space form and a Riemannian manifold and let φ :
(HM(α), 1M)→ (HN, 1N) be a slant submersion. Then, any for U1,U2,U3,U4 ∈ χ(kerφ∗) we obtain

Rkerφ∗ (U1,U2,U3,U4) =
α
4
{1M(U1,U4)1M(U2,U3) (20)

−1M(U1,U3)1M(U2,U4)
+1M(φU1,U4)1M(φU2,U3)
−1M(φU1,U3)1M(φU2,U4)
+21M(U1, φU2)1M(φU3,U4)}
−1M(TU1 U4,TU2 U3) + 1M(TU2 U4,TU1 U3),
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Kkerφ∗ (U1,U2) =
α
4
{12

M(U1,U2) − ∥U1∥
2
∥U2∥

2
− 312

M(φU1,U2)}

− ∥TU1 U2∥
2 + 1M(TU2 U2,TU1 U1), (21)

where Kkerφ∗ is a bi-sectional curvature of kerφ∗.

Let φ : HM(α) → HN be an slant submersion. For every node k ∈ HM, let {E1, ...,E2r, e1, ..., e2n} be an
orthonormal basis of TkHM(α) such that kerφ∗ = span{E1, ...,E2r}, (kerφ∗)⊥ = span{cscθωe1, ..., cscθωe2n}.
Now, if we take U4 = U1 and U2 = U3 = Ei, i = 1, 2, ..., 2r in (20), and using (13) then we arrive at

Rickerφ∗ (U1) =
α
4

{
(2r − 1 + 3 cos2 θ)1M(U1,U1)

}
(22)

−2r1M(TU1 U1,H) +
2r∑

i=1

1M(TEi U1,TU1 Ei).

From here, we get:

Theorem 3.2. Let φ : (HM(α), 1M)→ (HN, 1N) be a slant submersion. Then, we have

Rickerφ∗ (U1) ≥
α
4

{
(2r − 1 + 3 cos2 θ)1M(U1,U1)

}
− 2r1M(TU1 U1,H).

the equality status of the inequality satisfies if and only if every fibre is totally geodesic.

we can state the following result:

Corollary 3.3. Let φ : (HM(α), 1M) → (HN, 1N) be an anti-invariant Riemannian submersion with θ = π
2 . In this

case,

Rickerφ∗ (U1) ≥
α
4
{
(2r − 1)1M(U1,U1)

}
− 2r1M(TU1 U1,H)

the equality status of the inequality satisfies if and only if every fibre is totally geodesic.

Since the fibers are minimal in a Kaehler submersion ([7]), the following result can be written.

Corollary 3.4. Let φ : (HM(α), 1M)→ (HN, JN, 1N) be a Hermitian submersion with θ = 0. In this case,

Rickerφ∗ (U1) ≥
α
2
{
(r + 1)1M(U1,U1)

}
.

From (22), the following result is obtained.

Corollary 3.5. Let φ : (HM(α), 1M)→ (HN, JN, 1N) be a holomorphic Riemannian submersion. Then, the fibers are
Einstein manifolds, i.e,

Rickerφ∗ (U1) =
α
2

(r + 1)1M(U1,U1).

Now, let’s find the scalar curvature of the fiber from equation (22). Taking U1 = E j, j = 1, ..., 2r and using
(7), then we obtain

2scalkerφ∗ =
α
4

{
2r(2r − 1 + 3 cos2 θ)

}
− 4r2

∥H∥
2 +

2r∑
i, j=1

1M(TEi E j,TEi E j). (23)

From here, the following theorem can be written.
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Theorem 3.6. Let φ : (HM(α), 1M)→ (HN, 1N) be a slant submersion. Then, we have

2scalkerφ∗ ≥
α
4

{
2r(2r − 1 + 3 cos2 θ)

}
− 4r2

∥H∥
2.

the equality status of the inequality satisfies if and only if every fibre is totally geodesic.

From (23), the following results can be written.

Corollary 3.7. Let φ : (HM(α), 1M) → (HN, 1N) be an anti-invariant Riemannian submersion with θ = π
2 . In this

case,

2scalkerφ∗ ≥
α
2
{r(2r − 1)} − 4r2

∥H∥
2

the equality status of the inequality satisfies if and only if every fibre is totally geodesic.

Corollary 3.8. Let φ : (HM(α), 1M)→ (HN, JN, 1N) be a Hermitian submersion with θ = 0. In this case,

2scalkerφ∗ ≥ αr(r + 1).

Since φ is a slant submersion, and using (3),(11), (15) We can write the following lemma:

Lemma 3.9. Let φ : (HM(α), 1M) → (HN, 1N) be a slant submersion. Then, for X1,X2,X3,X4 ∈ χ((kerφ∗)⊥) we
have

R(kerφ∗)⊥ (X1,X2,X3,X4) =
α
4
{1M(X1,X4)1M(X2,X3) (24)

−1M(X1,X3)1M(X2,X4)
+1M(CX1,X4)1M(CX2,X3)
−1M(CX1,X3)1M(CX2,X4)
+21M(X1,CX2)1M(CX3,X4)}
+21M(AX1 X2,AX3 X4)
−1M(AX2 X3,AX1 X4)
+1M(AX1 X3,AX2 X4),

K(kerφ∗)⊥ (X1,X2) =
α
4
{12

M(X1,X2) − ∥X1∥
2
∥X2∥

2
− 312

M(CX1,X2)} (25)

+3∥AX1 X2∥
2,

here K(kerφ∗)⊥ is a bi-sectional curvature of (kerφ∗)⊥.

SinceA =0 for Kaehler submersion ([7]), we have:

Corollary 3.10. Let φ : (HM(α), 1M)→ (HN, 1N) be a Hermitian submersion with θ = 0. In this case, we have
i.

R(kerφ∗)⊥ (X1,X2,X3,X4) =
α
4
{1M(X1,X4)1M(X2,X3) − 1M(X1,X3)1M(X2,X4)

+1M(CX1,X4)1M(CX2,X3) − 1M(CX1,X3)1M(CX2,X4)
+21M(X1,CX2)1M(CX3,X4)}

ii.

K(kerφ∗)⊥ (X1,X2) =
α
4
{12

M(X1,X2) − ∥X1∥
2
∥X2∥

2
− 312

M(CX1,X2)}.
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Now, if we take X4 = X1 and X2 = X3 = cscθωe j, j = 1, 2, ..., 2n in (24), and using (6),(16) then we get

Ric(kerφ∗)⊥ (X1) =
α
4
{(2n + 2)1M(X1,X1) + 31M(ωBX1,X1)} (26)

+3
2n∑
j=1

1M(AX1 cscθωe j,Acscθωe j X1).

From here, the following theorem can be written.

Theorem 3.11. Let φ : (HM(α), 1M)→ (HN, 1N) be a slant submersion. Then,

Ric(kerφ∗)⊥ (X1) ≤
α
4
{(2n + 2)1M(X1,X1) + 31M(ωBX1,X1)}

the equality status of the inequality satisfies if and only if horizontal distribution is integrable.

From (26), the following result can be written.

Corollary 3.12. Letφ be a holomorphic Riemannian submersion from a Kaehler manifold (HM(α), 1M) onto a Kaehler
manifold (HN, JN, 1N) with θ = 0. Then,

Ric(kerφ∗)⊥ (X1) =
α
4
{(2n + 2)1M(X1,X1) + 31M(ωBX1,X1)}.

Taking X1 = cscθωei, i = 1, 2, ..., 2n in (26), then we obtain:

2scal(kerφ∗)⊥ =
α
4
{2n(2n + 2) + 6n + 3tr(ωB)} (27)

−3
2n∑

i, j=1

1M(Acscθωei cscθωe j,Acscθωei cscθωe j).

Then, we write

2scal(kerφ∗)⊥ ≤
α
4
{2n(2n + 2) + 6n + 3tr(ωB)}. (28)

Thus, we can give:

Theorem 3.13. Let φ : (HM(α), 1M)→ (HN, 1N) be a slant submersion. Then,

2scal(kerφ∗)⊥ ≤
α
4
{2n(2n + 2) + 6n + 3tr(ωB)}

The equality status of (28) satisfies if and only if (kerφ∗)⊥ horizontal distribution is integrable.

From (27), SinceA =0 for Kaehler submersion, the following result can be written.

Corollary 3.14. Letφ be a holomorphic Riemannian submersion from a Kaehler manifold (HM(α), 1M) onto a Kaehler
manifold (HN, JN, 1N) with θ = 0. Then,

2scal(kerφ∗)⊥ =
α
4
{2n(2n + 2) + 6n + 3tr(ωB)}
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4. Chen-Ricci inequalities for slant submersions

Let (HM(α), 1M) be a complex space form, (HN, 1N) a Riemannian manifold and φ : HM(α) → HN be a
slant submersion. For every node p ∈ HM, let {E1, ...,E2r, cscθωe1, ..., cscθωe2n} be an orthonormal basis of
TpHM(α) such that kerφ∗ = span{E1, ...,E2r} and (kerφ∗)⊥ = span{cscθωe1, ..., cscθωe2n}. Let’s state T t

i j by

T
t
i j = 1M(TEi E j, cscθωet) (29)

where 1 ≤ i, j ≤ 2r and 1 ≤ t ≤ 2n. Similarly, let’s stateAα
i j by

A
α
i j = 1M(Acscθωeie j,Eα) (30)

in which 1 ≤ i, j ≤ 2n and 1 ≤ α ≤ 2r and we employee

δ(N) =
2n∑
i=1

2r∑
k=1

((∇LC
T )Ek Ek, cscθωei). (31)

Now, from (19), we get

2scalkerφ∗ =
α
4

{
2r(2r − 1 + 3 cos2 θ)

}
− 4r2

∥H∥
2 +

2r∑
i, j=1

1M(TEi E j,TEi E j).

Using (7) and (29), we arrive at

2scalkerφ∗ =
α
4

{
2r(2r − 1 + 3 cos2 θ)

}
− 4r2

∥H∥
2 +

2n∑
t=1

2r∑
i, j=1

(T t
i j)

2. (32)

From ([9]), we know that
2n∑
t=1

2r∑
i, j=1

(T t
i j)

2 =
1
2

4r2
∥H∥

2 +
1
2

2n∑
t=1

[
T

t
11 − T

t
22 − ... − T

t
rr

]2
(33)

+2
2n∑
t=1

2r∑
j=2

(T t
1 j)

2
− 2

2n∑
t=1

2r∑
2≤i< j≤2r

[
T

t
iiT

t
j j −
(
T

t
i j

)2]
.

If we put (33) in (32), we obtain

2scalkerφ∗ =
α
4

{
2r(2r − 1 + 3 cos2 θ)

}
− 2r2

∥H∥
2 (34)

+
1
2

2n∑
t=1

[
T

t
11 − T

t
22 − ... − T

t
rr

]2
+ 2

2n∑
t=1

2r∑
j=2

(T t
1 j)

2

−2
2n∑
t=1

2r∑
2≤i< j≤2r

[
T

t
iiT

t
j j −
(
T

t
i j

)2]
.

From here, we have

2scalkerφ∗ ≥
α
4

{
2r(2r − 1 + 3 cos2 θ)

}
− 2r2

∥H∥
2
− 2

2n∑
t=1

2r∑
2≤i< j≤2r

[
T

t
iiT

t
j j −
(
T

t
i j

)2]
. (35)

On the other hand, from (10), taking U1 = U4 = Ei,U2 = U3 = E j and using (29), we have

2
∑

2≤i< j≤2r

RHM (Ei,E j,E j,Ei) = 2
∑

2≤i< j≤2r

Rkerφ∗ (Ei,E j,E j,Ei) + 2
2n∑
t=1

2r∑
2≤i< j≤s

[
T

t
iiT

t
j j −
(
T

t
i j

)2]
.
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From the last equality, (35) can be written as

2scalkerφ∗ ≥
α
4

{
2r(2r − 1 + 3 cos2 θ)

}
− 2r2

∥H∥
2 + 2

∑
2≤i< j≤2r

Rkerφ∗ (Ei,E j,E j,Ei) (36)

−2
∑

2≤i< j≤2r

RHM (Ei,E j,E j,Ei).

Also, we know that

2scalkerφ∗ = 2
∑

2≤i< j≤2r

Rkerφ∗ (Ei,E j,E j,Ei) + 2
2r∑
j=1

Rkerφ∗ (E1,E j,E j,E1),

If we put the last equality in (36), then we have

2Rickerφ∗ (E1) ≥
α
4

{
2r(2r − 1 + 3 cos2 θ)

}
− 2r2

∥H∥
2
− 2

∑
2≤i< j≤2r

RHM (Ei,E j,E j,Ei).

Since HM(α) is a complex space form, curvature tensor RHM of HM provides equation (3), therefore we
acquire

Rickerφ∗ (E1) ≥
α
4

(2r − 1 + 3 cos2 θ) − r2
∥H∥

2.

Thus, we can give the following result:

Theorem 4.1. Letφ : HM(α)→ HN be a slant submersion from a complex space form (HM(α), 1M) onto a Riemannian
manifold (HN, 1N). Then we have

Rickerφ∗ (E1) ≥
α
4

(2r − 1 + 3 cos2 θ) − r2
∥H∥

2

the equality status of the inequality satisfies if and only if

T
t
11 = T

t
22 + ... + T

t
rr

T
t
1 j = 0, j = 2, ..., 2r.

From (23), we have

2scal(kerφ∗)⊥ =
α
4
{2n(2n + 2) + 6n + 3tr(ωB)} − 3

2n∑
i, j=1

1M(Acscθωei cscθωe j,Acscθωei cscθωe j).

Using (16) and (30), then we have

2scal(kerφ∗)⊥ =
α
4
{2n(2n + 2) + 6n + 3tr(ωB)} − 3

2r∑
α=1

2n∑
i, j=1

(Aα
i j)

2. (37)

From (6), then (37) turns into

2scal(kerφ∗)⊥ =
α
4
{2n(2n + 2) + 6n + 3tr(ωB)} − 6

2r∑
α=1

2n∑
j=2

(X1)2
− 6

2r∑
α=1

∑
2≤i< j≤2n

(Aα
i j)

2. (38)
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Moreover, from (11), taking X1 = X4 = cscθωei,X2 = X3 = cscθωe j and using (30) we obtain

2
∑

2≤i< j≤2n

RHM (cscθωei, cscθωe j, cscθωe j, cscθωei) (39)

= 2
∑

2≤i< j≤m

R(kerφ∗)⊥ (cscθωei, cscθωe j, cscθωe j, cscθωei) + 6
2r∑
α=1

∑
2≤i< j≤2n

(Aα
i j)

2

If we consider (34) in (33), then we obtain

2scal(kerφ∗)⊥ =
α
4
{2n(2n + 2) + 6n + 3tr(ωB)} − 6

2r∑
α=1

2n∑
j=2

(X1)2

−2
∑

2≤i< j≤2n

RHM (cscθωei, cscθωe j, cscθωe j, cscθωei)

+2
∑

2≤i< j≤2n

R(kerφ∗)⊥ (cscθωei, cscθωe j, cscθωe j, cscθωei)

Since HM is a complex space form, curvature tensor RHM of HM satisfies (3), hence we have

2Ric(kerφ∗)⊥ (cscθωe1) =
α
4
{(10(n + 1) + 6tr(ωB))} − 6

2r∑
α=1

2n∑
j=2

(Aα
1 j)

2.

Then, we can write

Ric(kerφ∗)⊥ (cscθωe1) ≤
α
4
{(5(n + 1) + 3tr(ωB))} .

Thus, we can give the following result:

Theorem 4.2. Letφ : HM(α)→ HN be a slant submersion from a complex space form (HM(α), 1M) onto a Riemannian
manifold (HN, 1N). Then we have

Ric(kerφ∗)⊥ (cscθωe1) ≤
α
4
{(5(n + 1) + 3tr(ωB))}

the equality status of the inequality satisfies if and only if

A1 j = 0, j = 2, ..., 2n.

Next, we can calculate the inequality of Chen-Ricci among the kerφ∗ and (kerφ∗)⊥.The scal scalar curvature
of HM(α) is defined as

2scal =
2n∑
t=1

Ric(cscθωet, cscθωet) +
2r∑

k=1

Ric(Ek, cscθωek),

2scal =
2r∑

j,k=1

RHM (E j,Ek,Ek,E j) +
2n∑
i=1

2r∑
k=1

RHM (cscθωei,Ek,Ek, cscθωei) (40)

+

2n∑
i,t=1

RHM (cscθωei, cscθωet, cscθωet, cscθωei)

+

2n∑
t=1

2r∑
j=1

RHM (E j, cscθωet, cscθωet,E j).
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Since HM(α) is a complex space form, using (35) and (3), we have

2scal =
α
4
{2r(2r + 2 + 3 cos2 θ) + 2n(2n + 5) + 8nr + 9tr(ωB)}. (41)

On the other hand, using the equations (10),(11) and (12), we obtain also the scal scalar curvature of
HM(α) as

2scal = 2scalkerφ∗ + 2scal(kerφ∗)⊥ + 4r2
∥H∥

2 +

2r∑
j,k=1

1M(TEk E j,TEk E j)

+3
2n∑

i,t=1

1M(Acscθωei cscθωet,Acscθωei cscθωet) −
2n∑
i=1

2r∑
k=1

1M((∇LC
T )Ek

Ek, cscθωei)

+

m∑
i=1

s∑
k=1

{
1M(TEk cscθωei,TEk cscθωei)
−1M(Acscθωei Ek,Acscθωei Ek)

}
−

2n∑
t=1

2r∑
j=1

1M((∇LC
T )E j

E j, cscθωet)

+

m∑
t=1

s∑
j=1

{
1M(TE j cscθωet,TE j cscθωet)
−1M(Acscθωet E j,Acscθωet E j)

}
.

Using (27) and (29), we obtain

2scal = 2scalkerφ∗ + 2scal(kerφ∗)⊥ (42)

+2r2
∥H∥

2
−

1
2

2n∑
t=1

[
T

t
11 − T

t
22 − ... − T

t
rr

]2
−2

2n∑
t=1

2r∑
j=2

(
T

t
1 j

)2
+ 2

2n∑
t=1

2r∑
2≤ j<k≤2r

[
T

t
j jT

t
kk −
(
T

t
jk

)2]

+6
2r∑
α=1

2n∑
t=2

(Aα
1t)

2 + 6
2r∑
α=1

2n∑
2≤i<t≤2n

(Aα
it)

2
− 2δ(N)

+

2n∑
i=1

2r∑
k=1

{
1M(TEk cscθωei,TEk cscθωei)
−1M(Acscθωei Ek,Acscθωei Ek)

}

+

2n∑
t=1

2r∑
j=1

{
1M(TE j cscθωet,TE j cscθωet)
−1M(Acscθωet E j,Acscθωet E j)

}
.

Using (31), (39) and (41) in the (42) then we have

α
2
{3r + 3n + 4nr + 3tr(ωB)} = Rickerφ∗ (E1) + Ric(kerφ∗)⊥ (cscθωe1) + 2r2

∥H∥
2

−
1
4

2n∑
t=1

[
T

t
11 − T

t
22 − ... − T

t
rr

]2
−

2n∑
t=1

2r∑
j=2

(
T

t
1 j

)2
+3

2r∑
α=1

2n∑
t=2

(Aα
1t)

2
− 2δ(N) + ∥T kerφ∗∥2 − ∥A(kerφ∗)⊥∥2

where ∥T kerφ∗∥2 =
∑2n

i=1
∑2r

k=1 1M(TEk cscθωei,TEk cscθωei) and ∥A(kerφ∗)⊥∥2 =
∑2n

i=1
∑2r

k=1 1M(Acscθωei Ek,Acscθωei Ek).
Since HM(α) is a complex space form, from (3), we have following result readily:
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Theorem 4.3. Letφ : HM(α)→ HN be a slant submersion from a complex space form (HM(α), 1M) onto a Riemannian
manifold (HN, 1N). Then we have

α
2
{3r + 3n + 4nr + 3tr(ωB)} ≤ Rickerφ∗ (E1) + Ric(kerφ∗)⊥ (cscθωe1) +

1
4

s2
∥H∥

2 + 3
s∑
α=1

m∑
t=2

(Aα
1t)

2

−δ(N) + ∥T kerφ∗∥2 − ∥A(kerφ∗)⊥∥2

the equality status of the inequality satisfies if and only if

T
t
11 = T

t
22 + ... + T

t
rr

T
t
1 j = 0, j = 2, ..., 2r.

Now, we give some examples which satisfy inequalities.

Example 4.4. Let (R6, 1R6 , JR6 ) be an almost Hermitian manifold and (R3, 1R3 ) a Riemannian manifold. Define a map
φ : R6

→ R3 by φ(u1,u2,u3,u4,u5,u6) = (u1 sin u3 + u2 sin u3,u4,u5) where u3 ∈
(
0, π2
)
,u1,u2 , 0, u1

u2
= tan u3.

Then, the map φ is a Riemannian submersion such that

kerφ∗ = ⟨V1 = − cos u3
∂
∂u1
+ sin u3

∂
∂u2

,V2 =
∂
∂u3

,V3 =
∂
∂u6
⟩

and

(kerφ∗)⊥ = ⟨Y1 = sin u3
∂
∂u1
+ cos u3

∂
∂u2

,Y2 =
∂
∂u4

,Y3 =
∂
∂u5
⟩.

Moreover,, φ is a slant Riemannian submersion with slant angle θ = π
2 . Where JR6 (u1,u2,u3,u4,u5,u6) =

(u2,−u1,u4,−u3,u6,−u5). By straightforward computations, we obtain T kerφ∗
V2

Y1 = −V1 and T (kerφ∗)⊥

V1
V2 = Y1.

Other components of operators T kerφ∗ , T (kerφ∗)⊥ ,Akerφ∗ andA(kerφ∗)⊥ vanish identically. Moreover, scal(kerφ∗)⊥ = 0,
Ric(kerφ∗)⊥ (Y1) = 0 and Rickerφ∗ (V1) = 1. Also, since J(kerφ∗) = (kerφ∗)⊥, we have:

Remark 4.5. It is clear that the Lagrangian submersion φ, in Example 4.4, satisfies the inequalities in Theorem 4.2
and Theorem 4.3.

In order to have a Lagrangian submersion φ :
(
M, J, 1

)
→ N dimension must be related in the following

way: dim(M) = 2 dim(N), the most natural examples of manifolds having this relation are given by
the tangent bundle of M = TN → N. In the seminal paper ([31]), Dombrowski introduces the almost
complex structure J on the tangent bundle TN of a manifold N having a linear connection which is give
by the conditions J(X(kerφ∗)⊥ ) = Xkerφ∗ ; J(Xkerφ∗ ) = −X(kerφ∗)⊥ , kerφ∗ and (kerφ∗)⊥ being the vertical and
horizontal lifts. On the other hand, Sasaki ([32]) introduced the diagonal lift 1D, or Sasaki metric, over
the tangent bundle of a Riemannian manifold (N, 1), given by 1(X(kerφ∗)⊥ ,Y(kerφ∗)⊥ ) = 1(Xkerφ∗ ,Ykerφ∗ ) =
1(X,Y); 1(X(kerφ∗)⊥ ,Ykerφ∗ ) = 0. Thus, the tangent (TN, J, 1D) of a Riemannian manifold (N, 1) is an almost
Hermitian manifold. Then, one can easily gets:

Example 4.6. With the above notation, φ : (TN, J, 1D)→ (N, 1) is a Lagrangian submersion ([33]).

Remark 4.7. Example 4.6 satisfies the inequality in Theorem 3.13.

Let φ : (HM, JM, 1M) → (HN, 1N) be a Lagrangian Riemannian submersion with totally geodesic from a
Hermitian manifold to Riemannian manifold. Then, the total space (HM, JM, 1M) is Einstain if and only if
the Riemannian manifold B and fibers of such a submersion are Einstain ([34]).

Example 4.8. A Lagrangian Riemannian submersion φ : (HM, JM, 1M) → (HN, 1N) with totally geodesic from a
Hermitian manifold to Riemannian manifold, such that the total space HM is an Einstain.
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Remark 4.9. From the above notation, one can see that such a submersion φ : HM → HN satisfies the inequality in
Corollary 3.3.

Denote the equivalence class of a point (z0, ...., zn) ∈ Kn+1
\ {0} by [z0, ...., zn] or [z0, ...., zn]K ; then we have

a canonical projection

Kn+1
\ {0} → KPn, (z0, ...., zn)→ [z0, ...., zn]K . (43)

For K = C, we obtain the complex n−space CPn.

Example 4.10. ([36])(Maps to CPn ) Let n ∈ {1, 2, ....} . For K = C, the canonical projection (43) restricts to a map

S2n+1
→ CPn, (z0, ...., zn)→ [z0, ...., zn]C , (zi ∈ C,

n∑
i=0

|zi|
2 = 1)

called a Hop f fibration. We give CPn the unique metric for which is a Riemannian submersion.

Remark 4.11. Since the Hop f map in Example 4.10 has minimal (in fact totally geodesic) fibres, then Example 4.10
satisfies the inequality in Theorem 4.1.
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