Tensor Sum of Infinitesimal Generators

Hamed Minaee Azari ${ }^{\text {a }}$, Asadollah Niknam ${ }^{\text {a }}$, Ali Dadkhah ${ }^{\text {a }}$
${ }^{a}$ Department of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran

Abstract

Let \mathscr{A} and \mathscr{B} be C^{*}-algebras, and let δ be a derivation on the tensor product $\mathscr{A} \otimes \mathscr{B}$ endowed with a uniform cross norm. In this paper, we present a decomposition for δ as $\delta=\Delta \otimes i d+i d \otimes \nabla$, where id stands for the identity operator and Δ and ∇ are derivations on \mathscr{A} and \mathscr{B}, respectively. Moreover, the concept of flow on the tensor product of C^{*}-algebras and some properties of tensor sum are investigated.

1. Introduction and Preliminaries

Let \mathcal{H} and \mathcal{K} be two Hilbert spaces as state spaces, which are correspond to isolated physical systems $S_{\mathcal{H}}$ and $S_{\mathcal{K}}$, respectively. Then, if we consider the set of these two systems to form one physical system S, then the state space of the global system S is $\mathcal{H} \otimes \mathcal{K}$. Also there is a unique inner product $\langle\cdot, \cdot\rangle$ on algebraic tensor product $\mathcal{H} \otimes \mathcal{K}$ such that $\left\langle x \otimes y, x^{\prime} \otimes y^{\prime}\right\rangle=\left\langle x, x^{\prime}\right\rangle\left\langle y, y^{\prime}\right\rangle$ for all $x, x^{\prime} \in \mathcal{H}$ and all $y, y^{\prime} \in \mathcal{K}$. The norm in $\mathcal{H} \otimes \mathcal{K}$ defined by the inner product is certainly a cross norm, i.e. $\|x \otimes y\|=\|x\|\|y\|$. In this paper we use $\mathcal{H} \otimes \mathcal{K}$ for the Hilbert space tensor product of \mathcal{H} and \mathcal{K}. Moreover, if \mathscr{A} and \mathscr{B} are two C^{*}-algebra, then we denote the spatial tensor product of \mathscr{A} and \mathscr{B} by $\mathscr{A} \otimes \mathscr{B}$. It is known that if Δ and ∇ are some observables (self-adjoint operators) acting on \mathcal{H} and \mathcal{K}, respectively, then the tensor product $\Delta \otimes \nabla$ is an observable in $\mathcal{H} \otimes \mathcal{K}$, which is equal to $(\Delta \otimes i d)(i d \otimes \nabla)$, where $i d$'s stand for the identity operators in \mathcal{H} and \mathcal{K}, respectively; see [7, Section 6.3]. In particular, if Δ and ∇ are two angular momentum operators, generators of rotations in different spaces, then the total angular momentum δ, the infinitesimal generator of rotation, is now mad up two parts, namely, $\delta=\Delta \otimes i d+i d \otimes \nabla$; see [13]. In this paper, we establish such operators and investigate some of its significant properties, and usually called the tensor sum. For more information about the tensor sum, the interested reader is referred to $[6,12,15]$.

The concept of the infinitesimal generator of two-parameter semigroups (flow) has been presented by Hille and Phillips [10], Trotter [14], Abdelaziz [1]. It turns out that the definition given by Trotter and Abdelaziz is the definition of an infinitesimal generator for a section of the semigroup. The definition of infinitesimal generator of two-parameter semigroups gave by Arora [2]. Moreover, a generalization of the above definitions was given by Sarif and Khalil [4].

Let \mathscr{A} be a C^{*}-algebra and G be a locally compact topological group, and let $\operatorname{Aut}(\mathscr{A})$ be the group of automorphisms on \mathscr{A}. A strongly continuous group homomorphism $\alpha: G \longrightarrow \operatorname{Aut}(\mathscr{A})$ is called a G-flow over \mathscr{A}. If α is a G-flow over the C^{*}-algebra $\mathscr{A}, t \in G$ and $x \in \mathscr{A}$, then we simply denote $\alpha(t) x$ and $\alpha(t)$ by

[^0]$\alpha_{t}(x)$ and α_{t}, respectively. To simplify an \mathbb{R}-flow is called a flow, whenever \mathbb{R} is the set of real numbers. Moreover, the infinitesimal generator of α, denoted by δ_{α}, is defined by $\delta_{\alpha}:=\lim _{t \rightarrow 0} \frac{\alpha_{t}-i d}{t}$. One can easily prove that δ_{α} is a derivation from $D\left(\delta_{\alpha}\right)$ into \mathscr{A}, where $D\left(\delta_{\alpha}\right)=\left\{x \in \mathscr{A}: \lim _{t \rightarrow 0} \frac{\alpha_{t}(x)-x}{t}\right.$ exist $\}$. A subspace E of $D\left(\delta_{\alpha}\right)$ is called a core for δ_{α} if E is dense in $D\left(\delta_{\alpha}\right)$ under the graph norm $|x|_{\delta}=\|x\|+\left\|\delta_{\alpha}(x)\right\|$. Further information about the generator and properties involving the flow can be found in [5, 9, 11].
In this paper, we give a new finder method of the infinitesimal generator for two parameter semigroups as flow. Section 2 is devoted to establish the concept of flow on the tensor product of C^{*}-algebras. We show that if $\alpha=\left\{\alpha_{t}\right\}_{t \in G}$ and $\beta=\left\{\beta_{s}\right\}_{s \in H}$ are two families of operators on the C^{*}-algebras \mathscr{A}, \mathscr{B}, respectively, then $\alpha \otimes \beta$ is a flow on $\mathscr{A} \otimes \mathscr{B}$ if and only if α, β are two flows on \mathscr{A}, \mathscr{B}, respectively. The purpose of Section 3 is to study the concepts of tensor sum and the infinitesimal generator on the tensor product of C^{*}-algebras. We show that if \mathscr{A}, \mathscr{B} are C^{*}-algebras, $\left\{\alpha_{t} \otimes \beta_{s}\right\}$ is a flow over $\mathscr{A} \otimes \mathscr{B}$ and δ is the infinitesimal generator for $\alpha \otimes \beta$, then
$$
\delta(z)=\left.\operatorname{div}\left(\alpha_{t} \otimes i d, i d \otimes \beta_{s}\right)\right|_{(t, s)=(0,0)}(z),
$$
for all $z \in \mathscr{A} \otimes \mathscr{B}$. Moreover, if α, β are some flows for the C^{*}-algebras \mathscr{A}, \mathscr{B} res., then it is shown that $\delta_{\alpha \otimes \beta}=\delta_{\alpha} \otimes i d+i d \otimes \delta_{\beta}$. Among the other results of this section, we show that the infinitesimal generator of a flow $\alpha \otimes \beta$ is closed and the domain of a tensor sum is its core. Furthermore, some properties of the tensor sum in the finite-dimensional case are established.

2. Tensor Product of Flows

In this section, we investigate the concept of flow on the tensor product of C^{*}-algebras. According to the universal property of the tensor product, for every pair of operators α on a C^{*}-algebra \mathscr{A} and β on a C^{*}-algebras \mathscr{B}, there exists a unique operator $\alpha \otimes \beta$ on $\mathscr{A} \otimes \mathscr{B}$ such that $\alpha \otimes \beta(x \otimes y)=\alpha(x) \otimes \beta(y)$; see [8].

Let \mathscr{A}, \mathscr{B} be C^{*}-algebras, and let G, H be locally compact topological groups with identity elements e_{1}, e_{2}, respectively. If $\alpha=\left\{\alpha_{t}\right\}_{t \in G}, \beta=\left\{\beta_{s}\right\}_{s \in H}$ are families of operators on \mathscr{A}, \mathscr{B}, respectively, then the family $\left\{\alpha_{t} \otimes \beta_{s}\right\}$ is called tensor product (G, H)-flow on $\mathscr{A} \otimes \mathscr{B}$, when $\alpha_{e_{1}} \otimes \beta_{e_{2}}=i d_{\mathscr{A} \otimes \mathscr{B}}$ and $\alpha \otimes \beta:=\left\{\alpha_{t} \otimes \beta_{s}\right\}_{(t, s) \in G \times H}$ is a family of group homomorphisms from $G \times H$ into $\operatorname{Aut}(\mathscr{A} \otimes \mathscr{B})$ such that the map $(t, s) \longmapsto\left(\alpha_{t} \otimes \beta_{s}\right) z$ is continuous for each $z \in \mathscr{A} \otimes \mathscr{B}$. By a $*$-flow we mean that every $\alpha_{t} \otimes \beta_{s}$ is a $*$-map for all $t \in G$ and all $s \in H$.

Lemma 2.1. Let \mathscr{A}, \mathscr{B} be C^{*}-algebras, and let G, H be two groups. If $\left\{\alpha_{t}\right\}_{t \in G},\left\{\beta_{s}\right\}_{s \in H}$ are families of operators on \mathscr{A}, \mathscr{B}, then the following conditions are equivalent:
(i) $\left\{\alpha_{t}\right\}_{t \in G}\left(\left\{\beta_{s}\right\}_{s \in H}\right)$ is a G-flow (H-flow) on $\mathscr{A}(\mathscr{B})$.
(ii) $\left\{\alpha_{t} \otimes i d\right\}_{t \in G}\left(\left\{i d \otimes \beta_{s}\right\}_{S \in H}\right)$ is a G-flow (H-flow) on $\mathscr{A} \otimes \mathscr{B}$.

Proof. ((i) \Longrightarrow (ii)) Let α be a G-flow on \mathscr{A}, and let $x \in \mathscr{A}$. Then we have $\alpha_{e_{1}} \otimes i d=i d \otimes i d$ and $\alpha_{t u} \otimes i d=$ $\alpha_{t} \alpha_{u} \otimes i d=\left(\alpha_{t} \otimes i d\right)\left(\alpha_{u} \otimes i d\right)$. Moreover, for any non-zero $x \otimes y \in \mathscr{A} \otimes \mathscr{B}$ we assert that

$$
\begin{equation*}
\left\|\left(\alpha_{t} \otimes i d\right)(x \otimes y)-x \otimes y\right\|=\left\|\alpha_{t}(x)-x\right\|\|y\| \tag{1}
\end{equation*}
$$

Therefore, the strong continuity of $\alpha_{t} \otimes i d$ follows from (1) and the strong continuity of α_{t}.
((ii) \Longrightarrow (i)) Suppose that $\alpha_{t} \otimes i d$ is a G-flow on $\mathscr{A} \otimes \mathscr{B}$, and $x \in \mathscr{A}$. Using (1), we conclude the strong continuity of α_{t}. Moreover, for any non-zero element $y \in \mathscr{B}$ it holds that

$$
\left\|\alpha_{t u}(x)-\alpha_{t}(x) \alpha_{u}(x)\right\|\|y\|=\left\|\left(\alpha_{t u} \otimes i d-\alpha_{t} \alpha_{u} \otimes i d\right)(x \otimes y)\right\|=0
$$

Since y is a non-zero element in \mathscr{B}, we get $\alpha_{t u}=\alpha_{t} \alpha_{u}$. Similarly, we see that β is a H-flow on \mathscr{B} if and only if $i d \otimes \beta$, so is.

Lemma 2.2. Let \mathscr{A}, \mathscr{B} be C^{*}-algebras and $\left\{\alpha_{t}\right\}_{t \in \mathbb{R}},\left\{\beta_{s}\right\}_{s \in \mathbb{R}}$ be two families of operators on \mathscr{A} and \mathscr{B}, respectively. Then $\left\{\alpha_{t} \otimes \beta_{s}\right\}_{t, s \in \mathbb{R}}$ is strongly continuous if and only if $\left\{\alpha_{t}\right\}$ and $\left\{\beta_{s}\right\}$ are strongly continuous.

Proof. Suppose that $\left\{\alpha_{t}\right\}$ and $\left\{\beta_{s}\right\}$ are strongly continuous on \mathscr{A}, \mathscr{B}, respectively. We shall show that $(t, s) \longmapsto\left(\alpha_{t} \otimes \beta_{s}\right) z$ is continuous for all z in $\mathscr{A} \otimes \mathscr{B}$. Since the algebraic product on $\mathscr{A} \otimes \mathscr{B}$ is continuous, we have

$$
\lim _{(t, s) \rightarrow(0,0)} \alpha_{t} \otimes \beta_{s}(z)=\lim _{t \rightarrow 0}\left(\alpha_{t} \otimes i d\right) z \lim _{s \rightarrow 0}\left(i d \otimes \beta_{s}\right) z=(i d \otimes i d) z
$$

It follows that $\lim _{(t, s) \rightarrow(0,0)}\left\|\alpha_{t} \otimes \beta_{s}(z)-z\right\|=0$. The converse immediately follows from Lemma 2.1.
Let $\alpha=\left\{\alpha_{t}\right\}_{t \in G}, \beta=\left\{\beta_{s}\right\}_{s \in H}$ be families of operators on C^{*}-algebras \mathscr{A}, \mathscr{B}, respectively. Then it is easy to check that $\alpha \otimes \beta$ is a flow on $\mathscr{A} \otimes \mathscr{B}$ if and only if α and β are two flows on \mathscr{A} and \mathscr{B}, respectively. Indeed, If $x \otimes y, x^{\prime} \otimes y^{\prime}$ are in $\mathscr{A} \otimes \mathscr{B}$, then $\alpha \otimes \beta\left[(x \otimes y)\left(x^{\prime} \otimes y^{\prime}\right)\right]=\alpha\left(x x^{\prime}\right) \otimes \beta\left(y y^{\prime}\right)=(\alpha(x) \otimes \beta(y))\left(\alpha\left(x^{\prime}\right) \otimes \beta\left(y^{\prime}\right)\right)$. Hence, $\alpha \otimes \beta$ is group homomorphism if and only if α, β are. The remainder of the proof is analogous to that of Lemmas 2.1 and 2.2.

Furthermore, if $\alpha \otimes \beta$ is a tensor product $*$-flow on $\mathscr{A} \otimes \mathscr{B}$, then $\|\alpha \otimes \beta\|=1$. Indeed, Let $z \in \mathscr{A} \otimes \mathscr{B}$. If z is a self-adjoint element, then $s p(\alpha \otimes \beta(z)) \subseteq s p(z)$ and $\|(\alpha \otimes \beta) z\| \leq\|z\|$ so $\|\alpha \otimes \beta\| \leq 1$. If z is arbitrary, then

$$
\begin{aligned}
\|(\alpha \otimes \beta) z\|^{2} & =\left\|(\alpha \otimes \beta) z((\alpha \otimes \beta) z)^{*}\right\|=\left\|(\alpha \otimes \beta) z(\alpha \otimes \beta) z^{*}\right\| \\
& =\left\|(\alpha \otimes \beta) z z^{*}\right\| \leq\left\|z z^{*}\right\|=\|z\|^{2} .
\end{aligned}
$$

Hence, $\|\alpha \otimes \beta\| \leq 1$. Moreover,

$$
1=\|i d\|=\left\|(\alpha \otimes \beta)(\alpha \otimes \beta)^{-1}\right\| \leq\|\alpha \otimes \beta\|\left\|(\alpha \otimes \beta)^{-1}\right\| \leq\|\alpha \otimes \beta\| .
$$

Consequently, $\|\alpha \otimes \beta\|=1$.

3. main result

In this section, we discuss about our main theorem and to this end we get the following theorem.
Theorem 3.1. Let \mathscr{A}, \mathscr{B} be C^{*}-algebras, and let $\alpha \otimes \beta=\left\{\alpha_{t} \otimes \beta_{s}\right\}$ be a flow on $\mathscr{A} \otimes \mathscr{B}$. If δ is the infinitesimal generator for $\alpha \otimes \beta$, then

$$
\begin{equation*}
\lim _{(t, s) \rightarrow(0,0)}\left\|\frac{\alpha_{t} \otimes \beta_{s}-i d \otimes i d}{\|(t, s)\|}-\operatorname{div}\left(\alpha_{t} \otimes i d, i d \otimes \beta_{s}\right)\right\|=0 \tag{2}
\end{equation*}
$$

Proof. We can write

$$
\begin{aligned}
\| \alpha_{t} \otimes \beta_{s}- & i d \otimes i d-\|(t, s)\| \operatorname{div}\left(\alpha_{t} \otimes i d, i d \otimes \beta_{s}\right) \| \\
= & \left\|\alpha_{t} \otimes \beta_{s}-i d \otimes i d-\right\|(t, s)\left\|\frac{\partial}{\partial t}\left(\alpha_{t} \otimes i d\right)-\right\|(t, s)\left\|\frac{\partial}{\partial s}\left(i d \otimes \beta_{s}\right)\right\| \\
= & \left\|s\left(\alpha_{t} \otimes i d\right)\left(\frac{i d \otimes \beta_{s}-i d \otimes i d}{s}\right)-\right\|(t, s) \| \frac{\partial}{\partial s}\left(i d \otimes \beta_{s}\right) \\
& +t\left(\frac{\alpha_{t} \otimes i d-i d \otimes i d}{t}\right)-\|(t, s)\| \frac{\partial}{\partial t}\left(\alpha_{t} \otimes i d\right) \| .
\end{aligned}
$$

Now, divide both sides by $\|(t, s)\|$, we get

$$
\begin{align*}
\left\|\frac{\alpha_{t} \otimes \beta_{s}-i d \otimes i d}{\|(t, s)\|}-\operatorname{div}\left(\alpha_{\mathrm{t}} \otimes \mathrm{id}, \mathrm{id} \otimes \beta_{\mathrm{s}}\right)\right\| \leq & \left\|\frac{|s|}{\|(t, s)\|}\left(\alpha_{t} \otimes i d\right) \frac{i d \otimes \beta_{s}-i d \otimes i d}{s}-\frac{\partial}{\partial s}\left(i d \otimes \beta_{s}\right)\right\| \\
& +\left\|\frac{|t|}{\|(t, s)\|} \frac{\alpha_{t} \otimes i d-i d \otimes i d}{t}-\frac{\partial}{\partial t}\left(\alpha_{t} \otimes i d\right)\right\| . \tag{3.2}
\end{align*}
$$

If we take the limit on both sides (3.2) as $(t, s) \longrightarrow(0,0)$, we obtain (2).

Corollary 3.2. Let \mathscr{A}, \mathscr{B} be C^{*}-algebras, and let $\left\{\alpha_{t} \otimes \beta_{s}\right\}$ be a flow on $\mathscr{A} \otimes \mathscr{B}$. If δ is the infinitesimal generator for $\alpha \otimes \beta$, then

$$
\delta(z)=\left.\operatorname{div}\left(\alpha_{t} \otimes i d, i d \otimes \beta_{s}\right)\right|_{(t, s)=(0,0)}(z),
$$

for all $z \in \mathscr{A} \otimes \mathscr{B}$.
Corollary 3.3. If δ is the infinitesimal generator of the flow $\alpha_{t} \otimes \beta_{s}$ over the C^{*}-algebra $\mathscr{A} \otimes \mathscr{B}$, then δ is a derivation from subalgebra $D(\delta)$ into $\mathscr{A} \otimes \mathscr{B}$, where $D(\delta)$ is the set of all elements in $\mathscr{A} \otimes \mathscr{B}$ such that $\alpha_{t} \otimes \beta_{\text {s }}$ is differentiable at origin.

Proof. The linearly and Leibniz properties directly follows from Corollary 3.2.

Theorem 3.4. If α, β are some flows for the C^{*}-algebras \mathscr{A}, \mathscr{B} res., then $\delta_{\alpha \otimes \beta}=\delta_{\alpha} \otimes i d+i d \otimes \delta_{\beta}$.
Proof. Let $E=\left\{a \in \mathscr{A}: \quad \lim _{t \rightarrow 0} \frac{\alpha_{t}(a)-a}{t}\right.$ exists $\}$ and $F=\left\{b \in \mathscr{B}: \quad \lim _{s \rightarrow 0} \frac{\beta_{s}(b)-b}{s}\right.$ exists $\}$. Define $\delta_{\alpha}: E \longrightarrow \mathscr{A}$ by $\delta_{\alpha}(a)=\lim _{t \rightarrow 0} \frac{\alpha_{t}(a)-a}{t}$ and $\delta_{\beta}: F \longrightarrow \mathscr{B}$ by $\delta_{\beta}(b)=\lim _{s \rightarrow 0} \frac{\beta_{s}(b)-b}{s}$. Since $\delta_{\alpha \otimes \beta}$ is infinitesimal generator of the flow $\alpha \otimes \beta$, we get

$$
\begin{aligned}
\delta_{\alpha \otimes \beta}(a \otimes b) & =\left.\operatorname{div}\left(\alpha_{t} \otimes i d, i d \otimes \beta\right)\right|_{(t, s)=(0,0)}(a \otimes b) \\
& =\frac{\partial}{\partial t}\left(\left.\alpha_{t} \otimes i d\right|_{t=0}(a \otimes b)+\frac{\partial}{\partial s}\left(\left.i d \otimes \beta_{s}\right|_{s=0}(a \otimes b)\right.\right. \\
& =\lim _{t \rightarrow 0} \frac{\alpha_{t} \otimes i d(a \otimes b)-\alpha_{0} \otimes i d(a \otimes b)}{t}+\lim _{s \rightarrow 0} \frac{i d \otimes \beta_{s}(a \otimes b)-i d \otimes \beta_{0}(a \otimes b)}{s} \\
& =\lim _{t \rightarrow 0} \frac{\alpha_{t}(a)-a}{t} \otimes b+a \otimes \lim _{s \rightarrow 0} \frac{\beta_{s}(b)-b}{s}=\delta_{\alpha}(a) \otimes b+a \otimes \delta_{\beta}(b) .
\end{aligned}
$$

Example 3.5. Let $\mathscr{A}=\left\{f: \mathbb{D} \longrightarrow \mathbb{C}, f(z)=\sum_{n=0}^{+\infty} p_{n} z^{n},\|f\|^{2}=\sum_{n=0}^{+\infty}\left|p_{n}\right|^{2}<+\infty\right\}$, where \mathbb{D} is an open disc in the complex plan. Define $\alpha_{t}: \mathscr{A} \longrightarrow \mathscr{A}$, given by

$$
\alpha_{t}(f)=\sum_{n=0}^{+\infty} p_{n}(1+n)^{-t} \omega_{n}, \quad(t>0)
$$

such that $\omega_{n}(z)=z^{n}$, for every $z \in \mathbb{C}$. One can show that α_{t} is a flow. Moreover, if δ_{α} is the infinitesimal generator of α, we can write

$$
\begin{aligned}
& \begin{aligned}
\delta_{\alpha}(f) & =\lim _{t \rightarrow 0} \frac{\alpha_{t}(f)-f}{t}=\lim _{t \rightarrow 0} \frac{\sum_{n=0}^{+\infty} p_{n}(1+n)^{-t} \omega_{n}-\sum_{n=0}^{+\infty} p_{n} \omega_{n}}{t} \\
= & \lim _{t \rightarrow 0} \sum_{n=0}^{+\infty} p_{n}(1+n)^{-t} \ln \frac{1}{1+n} \omega_{n}=\sum_{n=0}^{+\infty} p_{n} \ln \frac{1}{1+n} \omega_{n} .
\end{aligned} \\
& \text { Let } f=\sum_{n=0}^{+\infty} p_{n} w_{n} \text { and } g=\sum_{n=0}^{+\infty} q_{n} w_{n} . \text { Then we have } f \otimes g=\left(\sum_{n=0}^{+\infty} p_{n} w_{n}\right)\left(\sum_{n=0}^{+\infty} q_{n} w_{n}\right)=\sum_{n=0}^{+\infty} r_{n} w_{n}, \text { where } r_{n}=\sum_{k=0}^{n} p_{k} q_{n-k} .
\end{aligned}
$$

Consider another flow β_{s} on \mathscr{A} with associated infinitesimal generator δ_{β}. Then $\left(\delta_{\alpha} \otimes i d+i d \otimes \delta_{\beta}\right)(f \otimes g)=$
$\sum_{n=0}^{+\infty} r_{n} \ln \frac{1}{(1+n)^{2}} \omega_{n}$. On the other hand, if δ is the infinitesimal generator of $\alpha_{t} \otimes \beta_{s}$, then

$$
\begin{aligned}
\delta_{a \otimes \beta}(f \otimes g) & =\left.\operatorname{div}\left(\alpha_{t} \otimes i d, i d \otimes \beta\right)\right|_{(t, s)=(0,0)}(f \otimes g) \\
& =\left.\left(\frac{\partial}{\partial t} \sum_{n=0}^{+\infty} r_{n}(1+n)^{-t} \omega_{n}+\frac{\partial}{\partial s} \sum_{n=0}^{+\infty} r_{n}(1+n)^{-s} \omega_{n}\right)\right|_{(t, s)=(0,0)} \\
& =\sum_{n=0}^{+\infty} r_{n} \ln \frac{1}{1+n} \omega_{n}+\sum_{n=0}^{+\infty} r_{n} \ln \frac{1}{1+n} \omega_{n}=\sum_{n=0}^{+\infty} r_{n} \ln \frac{1}{(1+n)^{2}} \omega_{n} .
\end{aligned}
$$

This show that $\delta_{\alpha \otimes \beta}=\delta_{\alpha} \otimes i d+i d \otimes \delta_{\beta}$.
We use the symbol $\delta\left(\alpha_{t} \otimes \beta_{s}\right)$ to mean that $\delta\left(\alpha_{t} \otimes \beta_{s}\right)=\operatorname{div}\left(\alpha_{t} \otimes i d, i d \otimes \beta_{s}\right)$. Corollary 3.2 implies that $\left.\delta\left(\alpha_{t} \otimes \beta_{s}\right)\right|_{(0,0)}=\delta_{\alpha \otimes \beta}$.

Proposition 3.6. Let $\alpha \otimes \beta$ be the infinitesimal generator of a derivation over the C^{*}-algebra $\mathscr{A} \otimes \mathscr{B}$. Then there exist derivations δ_{α} on \mathscr{A} and δ_{β} on \mathscr{B} such that

$$
\delta\left(\alpha_{t} \otimes \beta_{s}\right)=\alpha_{t} \delta_{\alpha} \otimes i d+i d \otimes \delta_{\beta} \beta_{s}
$$

Proof. Using Theorem 3.4 there exist derivations $\delta_{\alpha}, \delta_{\beta}$ given by $\delta_{\alpha}=\lim _{t \rightarrow 0} \frac{\alpha_{t}-i d}{t}$ and $\delta_{\beta}=\lim _{s \rightarrow 0} \frac{\beta_{s}-i d}{s}$. Now, we see that

$$
\begin{aligned}
\delta\left(\alpha_{t} \otimes \beta_{s}\right) & =\operatorname{div}\left(\alpha_{t} \otimes i d, i d \otimes \beta_{s}\right)=\frac{\partial}{\partial t}\left(\alpha_{t} \otimes i d\right)+\frac{\partial}{\partial s}\left(i d \otimes \beta_{s}\right) \\
& =\alpha_{t}\left(\lim _{p \rightarrow 0} \frac{\alpha_{p}-i d}{p}\right) \otimes i d+i d \otimes\left(\lim _{q \rightarrow 0} \frac{\beta_{q}-i d}{q}\right) \beta_{s} \\
& =\alpha_{t} \delta_{\alpha} \otimes i d+i d \otimes \delta_{\beta} \beta_{s} .
\end{aligned}
$$

Similarly, we can prove $\delta(\alpha \otimes \beta)=\delta_{\alpha} \alpha \otimes i d+i d \otimes \beta \delta_{\beta}$.
Corollary 3.7. Let δ be infinitesimal generator of the flow $\alpha \otimes \beta$ over the C^{*}-algebra $\mathscr{A} \otimes \mathscr{B}$. Then

$$
\delta\left(\int_{0}^{t} \int_{0}^{s} \alpha_{p} \otimes \beta_{q} d q d p\right)=s\left(\alpha_{t}-i d\right) \otimes i d+i d \otimes\left(\beta_{s}-i d\right) t
$$

Proof. It follows form The Fubini's theorem that

$$
\begin{aligned}
\delta\left(\int_{0}^{t} \int_{0}^{s} \alpha_{p} \otimes \beta_{q} d q d p\right) & =\int_{0}^{t} \int_{0}^{s}\left(\delta_{\alpha} \alpha_{p} \otimes i d+i d \otimes \beta_{q} \delta_{\beta}\right) d q d p \\
& =s \int_{0}^{t} \delta_{\alpha} \alpha_{p} \otimes i d d p+t \int_{0}^{s} i d \otimes \beta_{q} \delta_{\beta} d q \\
& =s\left(\alpha_{t} \otimes i d-i d \otimes i d\right)+t\left(i d \otimes \beta_{s}-i d \otimes i d\right) \\
& =s\left(\alpha_{t}-i d\right) \otimes i d+i d \otimes\left(\beta_{s}-i d\right) t
\end{aligned}
$$

Let $\delta: A \longrightarrow B$ be a linear operator between two Banach spaces A and B over the same field of scalars. If $G(\delta)$ is the graph of δ, the set of all pairs (a, b) such that $b=\delta(a)$, then δ is closed if and only if $G(\delta)$ is a closed subset of the Cartesian product space $A \times B$. Moreover, the term $\int_{0}^{t} \int_{0}^{s} \alpha_{p} \otimes \beta_{q} d q d p$ is usually denoted by $\Phi_{t, s}$ and the term $s\left(\alpha_{t}-i d\right) \otimes i d+i d \otimes\left(\beta_{s}-i d\right) t$ is denoted by $\Psi_{t, s}$. With these notations, we have $\delta \Phi_{t, s}=\Psi_{t, s}$.

Proposition 3．8．If δ is infinitesimal generator of flow $\alpha \otimes \beta$ ，then δ is closed．
Proof．We show that $G(\delta)$ is a closed set．Let $z \in \overline{D(\delta)}$ ．If $\left\{z_{n}\right\} \subseteq D(\delta), z_{n} \longrightarrow z$ and $\delta\left(z_{n}\right) \longrightarrow w$ implies $z \in D(\delta)$ and $\delta(z)=w$ ．To this end，

$$
\begin{aligned}
\delta(z) & =\left.\operatorname{div}\left(\left(\alpha_{t} \otimes i d\right) z,(i d \otimes \beta) z\right)\right|_{(t, s)=(0,0)} \\
& =\left.\lim _{n \rightarrow \infty} \operatorname{div}\left(\alpha_{t} \otimes i d, i d \otimes \beta\right)\right|_{(t, s)=(0,0)} z_{n}=\lim _{n \rightarrow \infty} \delta\left(z_{n}\right)=w .
\end{aligned}
$$

A subspace S of $\mathscr{A} \otimes \mathscr{B}$ is said to be $\alpha \otimes \beta$－invariant if $(\alpha \otimes \beta) S \subseteq S$ ．It is easy to check that if $\delta_{\alpha \otimes \beta}$ is infinitesimal generator，then $D(\delta)$ is $\alpha \otimes \beta$－invariant．Moreover，an elaboration of the above arguments shows that if $\Phi_{t, s}$ as in the above，then $\lim _{(t, s) \rightarrow(0,0)} \frac{1}{t_{s}} \Phi_{t, s}=i d \otimes i d$ ．Furthermore，if δ is a derivation on the C^{*}－algebra $\mathscr{A} \otimes \mathscr{B}$ ，then continuity of δ immediately implies that $\lim _{(t, s) \rightarrow(0,0)} \frac{1}{t s} \Psi_{t, s}=\delta$ ．
Theorem 3．9．Let δ be the infinitesimal generator of $\alpha \otimes \beta$ over $\mathscr{A} \otimes \mathscr{B}$ ，and let E be an $\alpha \otimes \beta$－invariant dense subspace of $\mathscr{A} \otimes \mathscr{B}$ ．Then E is a core for δ ．

Proof．Let $z \in D(\delta)$ so that $z \in \bar{D}^{\| \| \|}$．Hence，there is a sequence z_{n} in D such that

$$
\begin{aligned}
\left|\Phi\left(z_{n}\right)-\Phi(z)\right|_{\delta} & =\left\|\Phi\left(z_{n}\right)-\Phi(z)\right\|+\left\|\delta \Phi\left(z_{n}\right)-\delta \Phi(z)\right\| \\
& =\left\|\Phi\left(z_{n}-z\right)\right\|+\left\|\Psi\left(z_{n}\right)-\Psi(z)\right\| .
\end{aligned}
$$

Since $\left\{\Phi\left(z_{n}\right)\right\}$ is a sequence in D ，the limit of $\left\{\Phi\left(z_{n}\right)\right\}$ is in \bar{D} ．Moreover，

$$
\left|\frac{1}{t s} \Phi(z)-z\right|_{\delta}=\left\|\frac{1}{t s} \Phi(z)-z\right\|+\left\|\frac{1}{t s} \delta \Phi(z)-\delta(z)\right\| \rightarrow 0
$$

which implies that $z \in \bar{D}^{\cdot / \cdot / \delta}$ ．
Corollary 3．10．The domain of a tensor sum is its core．
Proof．It immediately follows from the fact that the domain of a tensor sum is invariant under its flow and it is a dense subspace．

3．1．More on the properties of Tensor Sum

Definition 3．11．An operator δ on the tensor product of C^{*}－algebras $\mathscr{A} \otimes \mathscr{B}$ is called tensor summable if there exist two operators Δ, ∇ over \mathscr{A} and \mathscr{B} ，respectively，such that $\delta=\Delta \otimes i d+i d \otimes \nabla$ and we write $\delta=\Delta \boxplus \nabla$ ．Moreover， the tensor difference of Δ and ∇ ，denoted by $\Delta \boxminus \nabla$ ，is defined by $\Delta \boxminus \nabla:=\Delta \otimes i d-i d \otimes \nabla$ ．

Basic operations with tensor sum of operators are summarized as follow．If the notation \mathbb{F} will mean that is the set of all scalars，and the set of all operators on \mathscr{A} is denoted by $\operatorname{Ope}(\mathscr{A})$ ，then for every $\alpha, \beta \in \mathbb{F}$ ， $\Delta_{1}, \Delta_{2} \in \operatorname{Ope}(\mathscr{A})$ and $\nabla_{1}, \nabla_{2} \in \operatorname{Ope}(\mathscr{B})$ ，
（a）$\alpha \beta\left(\beta^{-1} \Delta_{1} \boxplus \nabla_{1} \alpha^{-1}\right)=\alpha \Delta_{1} \boxplus \nabla_{1} \beta$ where α, β are non－zero，
（b）$\Delta_{1} \boxplus \nabla_{1}+\Delta_{2} \boxplus \nabla_{2}=\Delta_{1} \boxplus \nabla_{2}+\Delta_{2} \boxplus \nabla_{1}$ ，
（c）$\alpha\left(\Delta_{1} \boxplus \nabla_{1}\right) \beta=\alpha \Delta_{1} \boxplus \nabla_{1} \beta$ ，
（d）$\Delta_{1} \boxplus \Delta_{1}=\Delta_{1} \boxplus i d+i d \boxplus \Delta_{1}$－id $\boxplus i d$ ，
（e）$\Delta_{1} \boxplus \nabla_{1}=\Delta_{1} \otimes \nabla_{1}$ if and only if $\Delta_{1} \otimes i d$ is a quasi－inverse of $i d \otimes \nabla_{1}$ ，
（f）$\left\|\Delta_{1} \boxplus \nabla_{1}\right\|=\left\|\Delta_{1}\right\|\left\|\nabla_{1}\right\|$ if and only if $\Delta_{1} \otimes i d$ is a quasi－inverse of $i d \otimes \Delta_{1}$ ，
（g）If $\Delta \neq \lambda$ id for every non zero scalar $\lambda \in \mathbb{F}$ ，then $\Delta \boxplus \nabla \neq 0$ ，
（h）$-\left(\Delta_{1} \boxplus \nabla_{1}\right)=-\Delta_{1} \boxplus-\nabla_{1}$ ，
（k）$\left(\Delta\right.$ ⿴囗十 ）$(\Delta \boxminus \nabla)=\Delta^{2} \boxminus \nabla^{2}$ ，（l）If Δ, ∇ are $*$－derivations，then $\Delta \boxminus \nabla$ is a $*$－derivation on $\mathscr{A} \otimes \mathscr{B}$ ．A similar definition enjoying properties（a）－（l）as above can be stated for the Hilbert space tensor products in the setting of Hilber spaces．

Proposition 3.12. Let \mathscr{A}, \mathscr{B} be unital Banach algebras, and let Δ, ∇ be invertible elements of \mathscr{A} and \mathscr{B}, respectively. If $\|\Delta \otimes \nabla\|<1$, then $\Delta \boxminus \nabla$ is invertible.
Proof. Invertibility of Δ implies that $\Delta \otimes i d$ is invertible. Moreover, we can write

$$
\left\|(\Delta \otimes i d)^{-1}(i d \otimes \nabla)\right\|=\left\|\left(\Delta^{-1} \otimes i d\right)(i d \otimes \nabla)\right\|=\left\|\Delta^{-1} \otimes \nabla\right\|=\|\Delta \otimes \nabla\|<1
$$

It follows that $1-(\Delta \otimes i d)^{-1}(i d \otimes \nabla)$ is invertible. An easy computation shows that

$$
(\Delta \otimes i d)^{-1}\left(1-(\Delta \otimes i d)^{-1}(i d \otimes \nabla)\right)^{-1}(\Delta \boxminus \nabla)=i d \otimes i d
$$

which follows that $\Delta \boxminus \nabla$ is left invertible. Similarly we see that $\Delta \boxminus \nabla$ is right invertible.
So far we have discussed the tensor sum of the operators honest in Leibniz's property on C^{*}-algebras. Finally, we discuss the properties of tensor sum of operators on Hilbert spaces. Recall that if Δ is an operator on a Hilbert space $(\mathcal{H},\langle\cdot, \cdot\rangle)$, and E is an orthonormal basis for \mathcal{H}, then the trace class norm is defined by $\|\Delta\|_{1}=\left.\sum_{x \in E}\| \| \Delta\right|^{1 / 2}(x) \|^{2}$. Also, Δ is a trace-class operator if $\|\Delta\|_{1}<+\infty$. The trace of a trace-class operator Δ is defined by $\operatorname{tr}(\Delta)=\sum_{x \in E}\langle\Delta(x), x\rangle$.

Theorem 3.13. Let Δ and ∇ be trace-class operators on Hilbert spaces \mathcal{H} and \mathcal{K}, respectively. Then $\operatorname{tr}(\Delta \boxplus \nabla)=$ $\operatorname{tr}(\Delta)+\operatorname{tr}(\nabla)$.
Proof. Let E, F be orthonormal basis for Hilbert spaces \mathcal{H} and \mathcal{K}, respectively. Then the set $\{x \otimes y: x \in E, y \in F\}$ is an orthonormal basis for $\mathcal{H} \otimes \mathcal{K}$,

$$
\begin{aligned}
\operatorname{tr}(\Delta ⿴ 囗) & =\operatorname{tr}(\Delta \otimes i d+i d \otimes \nabla)=\operatorname{tr}(\Delta \otimes i d)+\operatorname{tr}(i d \otimes \nabla) \\
& =\sum_{\substack{x \in E \\
y \in F}}\langle\Delta \otimes i d(x \otimes y), x \otimes y\rangle+\sum_{\substack{x^{\prime}, \theta^{\prime} \in F \\
y^{\prime} \in F}}\left\langle i d \otimes \nabla\left(x^{\prime} \otimes y^{\prime}\right), x^{\prime} \otimes y^{\prime}\right\rangle \\
& =\sum_{\substack{x \in E \\
y \in F}}\langle\Delta x, x\rangle\langle y, y\rangle+\sum_{\substack{x^{\prime} \in E \\
y^{\prime} \in F}}\left\langle x^{\prime}, x^{\prime}\right\rangle\left\langle\nabla y^{\prime}, y^{\prime}\right\rangle \\
& =\sum_{x \in E}\langle\Delta x, x\rangle+\sum_{y^{\prime} \in F}\left\langle\nabla y^{\prime}, y^{\prime}\right\rangle=\operatorname{tr}(\Delta)+\operatorname{tr}(\nabla) .
\end{aligned}
$$

3.2. Finite dimensional case

Let A and B be finite dimensional vector spaces over a field \mathbb{F}, and let $\left\{a_{i}: 1 \leq i \leq n\right\}$ be a basis of A and $\left\{b_{j} \quad: 1 \leq i \leq m\right\}$ be a basis of B. For $i=1, \ldots, n$ and $j=1, \ldots, m$ set $a_{i} \otimes b_{j}=a_{i} b_{j}^{t}$. Then $\left\{a_{i} \otimes b_{j} \quad: 1 \leq i \leq n, \quad 1 \leq j \leq m\right\}$ is a basis for the some vector space which is denoted by $A \otimes B$, the dimension of $A \otimes B$ is the product of the dimensions of its factors. Suppose that Δ and ∇ are operators on A, B, respectively. Since $\left\{a_{i} \otimes b_{j}: 1 \leq i \leq n, 1 \leq j \leq m\right\}$ form a basis for $A \otimes B$ so there exists a unique operator $\Delta \otimes \nabla$ on $A \otimes B$ with $\Delta \otimes \nabla\left(a_{i} \otimes b_{j}\right)=\Delta\left(a_{i}\right) \otimes \nabla\left(b_{j}\right)$. Secondly, $\Delta \otimes \nabla$ also satisfies $\Delta \otimes \nabla(a \otimes b)=\Delta(a) \otimes \nabla(b)$. Now consider two linear transformations $\Delta: A \longrightarrow A^{\prime}$ and $\nabla: B \longrightarrow B^{\prime}$ where A, A^{\prime}, B and B^{\prime} are finite dimensional vector spaces and let $\left[\Delta_{i j}\right]_{m \times n}$ and $\left[\nabla_{i j}\right]_{p \times q}$ be matrices of linear transformations Δ and ∇, respectively. Then the Kronecker product of Δ and ∇ is defined as the block matrix $\left[\Delta_{i j} \nabla\right]_{m p \times n q}$ and it is denoted by $\Delta \otimes \nabla$ again. See also [3]. Let m, n be two natural numbers. Then the discrete interval of m, n is denoted by $\left\langle m, n>\right.$ and define as the set $\{m, m+1, \ldots, n\}$. The set $H_{m n}$ is defined to be the set

$$
\begin{aligned}
\{<1, n>,<n+1,2 n>, \ldots, & <m n-n+1, r n>, \ldots, \\
& <s n-n+1, s n>, \ldots,<m n-n+1, m n>\} .
\end{aligned}
$$

If $(\Delta \otimes I)_{i j}$ is the entry in row i and column j of the matrix $\Delta \otimes I$ of order m, then $(\Delta \otimes I)_{i j}=\Delta_{r s} \delta_{p q}$, where $i \in<r n-n+1, r n>, j \in<s n-n+1, s n>$, and $\delta_{p q}$ denotes the so called Kronecker delta with $p, q \in \mathbb{Z}_{n}$. (Note that \mathbb{Z}_{n} is called the additive group of integers modulo n, the set of equivalence classes of \mathbb{Z} under congruence modulo n.) Since the class of zero is equals to the class of n so we may assume that $\{\overline{1}, \overline{2}, \ldots, \bar{n}\}$. Similarly, $\left(I_{m} \otimes \nabla\right)_{i j}=\delta_{r s} \nabla_{p q}$.

Theorem 3.14. Let D be a matrix of order k. If there exist natural numbers $m, n \geq 2$ such that $k=m n$, and D is partitioned as m^{2} blocks of blocks of order n with this property that each block-diagonal are diagonal adaptable and others blocks of D has the form cI_{n} for some entry c of D. Then there are matrices Δ, ∇ of order m, n, respectively, such that $D=\Delta \boxplus \nabla$.

Proof. The proof is somewhat numerically but straightforward. Consider two matrices Δ and ∇ of order m, n, respectively. The matrix $\Delta \otimes I_{n}+I_{m} \otimes \nabla$ contains $m^{2}+n^{2}$ unknown entries, and each its entry has the form $\Delta_{r s} \delta_{p q}+\delta_{r s} \nabla_{p q}$, where r, s are in the members of $H_{m n}$ and $p, q \in \mathbb{Z}_{n}$ see the previous argument. The equality $D=\Delta \otimes \nabla$ is obtained if we take $D_{i j}=\Delta_{r s} \delta_{p q}+\delta_{r s} \nabla_{p q}$, where $1 \leq i, j \leq m n$. If $i \neq j$ and $D_{i j}$ lies entirely in one of the diagonal blocks of D then $i, j \in<r n-n+1, r n>$ for some r and $i \in \bar{p}, j \in \bar{q}$ so $p \neq q$. Hence, $D_{i j}=\nabla_{p q}$ for $n^{2}-n$ unknown entries of ∇. But if $D_{i j}$ is outside of the diagonal blocks then $D_{i j}$ lies in a block of the form $c I_{n}$ for some entry c of D. Therefore $i \in<r n-n+1, r n>, j \in<s n-n+1, s n>$ and $r \neq s$ so that $D_{i j}=\Delta_{r s} \delta_{p q}$ in case $D_{i j}=c$ we have $\delta_{p q}=1$, then $D_{i j}=\Delta_{r s}$ for $m^{2}-m$ unknown entries of Δ, only then solve the linear system contains $m^{2}+n^{2}-\left(m^{2}-m\right)-\left(n^{2}-n\right)$ unknown and $m n$ first order linear equation. Since $m+n \leq m n$ for every natural number opposite of one then it has a solution.

Example 3.15. Let

$$
D=\left(\begin{array}{llll}
0 & 3 & 2 & 0 \\
1 & 0 & 0 & 2 \\
1 & 0 & 0 & 3 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

Then $H_{2,2}=\{<1,2>,<3,4>\}$ and $\mathbb{Z}_{2}=\{\overline{1}, \overline{2}\}$. Consider $D_{21}=\Delta_{r s} \delta_{p q}+\delta_{r s} \nabla_{p q}$ so $r, s=1,2 \in \overline{2}$, and $1 \in \overline{1}$. Hence, $\Delta_{21}=1$. Continuing this fashion we obtain $\Delta=\left(\begin{array}{ll}0 & 2 \\ 1 & 0\end{array}\right)$ and $\nabla=\left(\begin{array}{ll}0 & 3 \\ 1 & 0\end{array}\right)$. Then $D=\Delta \otimes I_{2}+I_{2} \otimes \nabla$, where I_{2} denotes the identity matrix of order two.

Data availability: All data generated or analyzed during this study are included in this published article.
Acknowledgement. The authors would like to thank the referees for their valuable suggestions and comments.

References

[1] N. H. Abdelaziz, Commutativity and generation of n-parameter semigroups of bounded linear operators, Houston J. Math. 9 (2) (1983) 151-156. operators, Houston J. Math. 9 (2) (1983) 151-156.
[2] S. Arora, S. Sharda, On two parameter semigroup of operators, Lecture Notes in Mathematics, 1511, Proceedings of a Conference held in Memory of U.N. Singh, New Delhi, India, 2-6 August 1990.
[3] B.N. Cooperstein, Advanced Linear Algebra, University of California Santa Cruz, Taylor and Francis, 2015.
[4] R. Khalil and S. Alsharif, On the generator of two Parameter Semigroups, Journal of Applied Mathematics and Computation, 156 (2004) 403-414.
[5] A. Kishimoto,Flow on C*-algebra. Department of Mathematics, Hokkaido University, Sapporo, (2003) 1-25.
[6] C.S. Kubrisly and N. Levan, preservation of Tensor Sum and Tensor Product, Acta Math. Univ. Comenianae, 80 No. 1(2011) 133-142.
[7] G. Murphy, C*-algebra and Operator Theory, Mathematics Department University College Cork, Academic Press Irland (1990).
[8] S. Omran and A.E. Sayed, On Some Peroperties of Tensor Product of Operators, Global Journal of Pure and Applied Mathematics, 12 No. 6 (2016) 5139-5147.
[9] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
[10] E. Hille, R.S. Phillips, Functional Analysis and Semigroups, Am. Math. Soc. Colloq. Publi. 31, Providence, Rhode Island, 1957.
[11] S. Sakai, Operator Algebras in Dynamical Systems, Encyclopedia of Mathematics and Its Application, Vol. 41, Cambridge University Press, 1991.
[12] D. Senthilkumar and P. Chandra Kala, Tensor Sum and Dynamical System, Acta Mathematica Scientia, 6 (2014) 1935-1946.
[13] J.J. Sakurai, Modern Quantum Mechanics, Addison-Wesley, Reading, 1985.
[14] H.F. Trotter, On the product of semigroups of operators, Proc. Am. Math. Soc. 10 (1959) 545-551.
[15] H. Zhang and F. Ding, On the Kronecker Products and Their Applications, Hindawi Publishing Corporation, Journal of Applied Math, Article ID 296185 (2013) 1-8.

[^0]: 2020 Mathematics Subject Classification. Primary 46L06; 46M05.
 Keywords. Derivation, Tensor Sum, Flow, Infinitesimal Generator, C*-algebra
 Received: 03 November 2021; Revised: 15 June 2022; Accepted: 26 June 2022
 Communicated by Dragan S. Djordjević
 Corresponding author: Ali Dadkhah
 Email addresses: minaeehamed@yahoo. com (Hamed Minaee Azari), dassamankin@yahoo.co.uk (Asadollah Niknam), dadkhah61@yahoo.com (Ali Dadkhah)

