Filomat 36:17 (2022), 5835–5842 https://doi.org/10.2298/FIL2217835M

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Tensor Sum of Infinitesimal Generators

Hamed Minaee Azari^a, Asadollah Niknam^a, Ali Dadkhah^a

^a Department of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran

Abstract. Let \mathscr{A} and \mathscr{B} be C^* -algebras, and let δ be a derivation on the tensor product $\mathscr{A} \otimes \mathscr{B}$ endowed with a uniform cross norm. In this paper, we present a decomposition for δ as $\delta = \Delta \otimes id + id \otimes \nabla$, where *id* stands for the identity operator and Δ and ∇ are derivations on \mathscr{A} and \mathscr{B} , respectively. Moreover, the concept of flow on the tensor product of C^* -algebras and some properties of tensor sum are investigated.

1. Introduction and Preliminaries

Let \mathcal{H} and \mathcal{K} be two Hilbert spaces as state spaces, which are correspond to isolated physical systems $S_{\mathcal{H}}$ and $S_{\mathcal{K}}$, respectively. Then, if we consider the set of these two systems to form one physical system S, then the state space of the global system S is $\mathcal{H} \otimes \mathcal{K}$. Also there is a unique inner product $\langle \cdot, \cdot \rangle$ on algebraic tensor product $\mathcal{H} \otimes \mathcal{K}$ such that $\langle x \otimes y, x' \otimes y' \rangle = \langle x, x' \rangle \langle y, y' \rangle$ for all $x, x' \in \mathcal{H}$ and all $y, y' \in \mathcal{K}$. The norm in $\mathcal{H} \otimes \mathcal{K}$ defined by the inner product is certainly a cross norm, i.e. $||x \otimes y|| = ||x|| ||y||$. In this paper we use $\mathcal{H} \otimes \mathcal{K}$ for the *Hilbert space tensor product* of \mathcal{H} and \mathcal{K} . Moreover, if \mathscr{A} and \mathscr{B} are two C-algebra, then we denote the *spatial tensor product* of \mathscr{A} and \mathscr{B} by $\mathscr{A} \otimes \mathscr{B}$. It is known that if Δ and ∇ are some observables (self-adjoint operators) acting on \mathcal{H} and \mathcal{K} , respectively, then the tensor product $\Delta \otimes \nabla$ is an observable in $\mathcal{H} \otimes \mathcal{K}$, which is equal to $(\Delta \otimes id)(id \otimes \nabla)$, where id's stand for the identity operators in \mathcal{H} and \mathcal{K} , respectively; see [7, Section 6.3]. In particular, if Δ and ∇ are two angular momentum operators, generators of rotations in different spaces, then the total angular momentum δ , the infinitesimal generator of rotation, is now mad up two parts, namely, $\delta = \Delta \otimes id + id \otimes \nabla$; see [13]. In this paper, we establish such operators and investigate some of its significant properties, and usually called the *tensor sum*. For more information about the tensor sum, the interested reader is referred to [6, 12, 15].

The concept of the *infinitesimal generator* of two-parameter semigroups (flow) has been presented by Hille and Phillips [10], Trotter [14], Abdelaziz [1]. It turns out that the definition given by Trotter and Abdelaziz is the definition of an infinitesimal generator for a section of the semigroup. The definition of infinitesimal generator of two-parameter semigroups gave by Arora [2]. Moreover, a generalization of the above definitions was given by Sarif and Khalil [4].

Let \mathscr{A} be a C^* -algebra and G be a locally compact topological group, and let $\operatorname{Aut}(\mathscr{A})$ be the group of automorphisms on \mathscr{A} . A strongly continuous group homomorphism $\alpha : G \longrightarrow \operatorname{Aut}(\mathscr{A})$ is called a *G*-flow over \mathscr{A} . If α is a *G*-flow over the *C**-algebra \mathscr{A} , $t \in G$ and $x \in \mathscr{A}$, then we simply denote $\alpha(t)x$ and $\alpha(t)$ by

²⁰²⁰ Mathematics Subject Classification. Primary 46L06; 46M05.

Keywords. Derivation, Tensor Sum, Flow, Infinitesimal Generator, C*-algebra

Received: 03 November 2021; Revised: 15 June 2022; Accepted: 26 June 2022

Communicated by Dragan S. Djordjević

Corresponding author: Ali Dadkhah

Email addresses: minaeehamed@yahoo.com (Hamed Minaee Azari), dassamankin@yahoo.co.uk (Asadollah Niknam),

dadkhah61@yahoo.com (Ali Dadkhah)

 $\alpha_t(x)$ and α_t , respectively. To simplify an \mathbb{R} -flow is called a flow, whenever \mathbb{R} is the set of real numbers. Moreover, the *infinitesimal generator* of α , denoted by δ_{α} , is defined by $\delta_{\alpha} := \lim_{t \to 0} \frac{\alpha_t - id}{t}$. One can easily prove that δ_{α} is a derivation from $D(\delta_{\alpha})$ into \mathscr{A} , where $D(\delta_{\alpha}) = \{x \in \mathscr{A} : \lim_{t \to 0} \frac{\alpha_t(x) - x}{t} \text{ exist}\}$. A subspace E of $D(\delta_{\alpha})$ is called a care for δ_{α} if E is denote in $D(\delta_{\alpha})$ and denote the careful carefu

is called a *core* for δ_{α} if *E* is dense in $D(\delta_{\alpha})$ under the graph norm $|x|_{\delta} = ||x|| + ||\delta_{\alpha}(x)||$. Further information about the generator and properties involving the flow can be found in [5, 9, 11].

In this paper, we give a new finder method of the infinitesimal generator for two parameter semigroups as flow. Section 2 is devoted to establish the concept of flow on the tensor product of *C*^{*}-algebras. We show that if $\alpha = {\alpha_t}_{t\in G}$ and $\beta = {\beta_s}_{s\in H}$ are two families of operators on the *C*^{*}-algebras \mathscr{A} , \mathscr{B} , respectively, then $\alpha \otimes \beta$ is a flow on $\mathscr{A} \otimes \mathscr{B}$ if and only if α , β are two flows on \mathscr{A} , \mathscr{B} , respectively. The purpose of Section 3 is to study the concepts of tensor sum and the infinitesimal generator on the tensor product of *C*^{*}-algebras. We show that if \mathscr{A} , \mathscr{B} are *C*^{*}-algebras, { $\alpha_t \otimes \beta_s$ } is a flow over $\mathscr{A} \otimes \mathscr{B}$ and δ is the infinitesimal generator for $\alpha \otimes \beta$, then

$$\delta(z) = \operatorname{div}(\alpha_t \otimes id, id \otimes \beta_s)\Big|_{(t,s)=(0,0)}(z),$$

for all $z \in \mathscr{A} \otimes \mathscr{B}$. Moreover, if α , β are some flows for the *C**-algebras \mathscr{A} , \mathscr{B} res., then it is shown that $\delta_{\alpha \otimes \beta} = \delta_{\alpha} \otimes id + id \otimes \delta_{\beta}$. Among the other results of this section, we show that the infinitesimal generator of a flow $\alpha \otimes \beta$ is closed and the domain of a tensor sum is its core. Furthermore, some properties of the tensor sum in the finite-dimensional case are established.

2. Tensor Product of Flows

In this section, we investigate the concept of flow on the tensor product of *C*^{*}-algebras. According to the universal property of the tensor product, for every pair of operators α on a *C*^{*}-algebra \mathscr{A} and β on a *C*^{*}-algebras \mathscr{B} , there exists a unique operator $\alpha \otimes \beta$ on $\mathscr{A} \otimes \mathscr{B}$ such that $\alpha \otimes \beta(x \otimes y) = \alpha(x) \otimes \beta(y)$; see [8].

Let \mathscr{A} , \mathscr{B} be C^* -algebras, and let G, H be locally compact topological groups with identity elements e_1 , e_2 , respectively. If $\alpha = \{\alpha_t\}_{t \in G}$, $\beta = \{\beta_s\}_{s \in H}$ are families of operators on \mathscr{A} , \mathscr{B} , respectively, then the family $\{\alpha_t \otimes \beta_s\}$ is called tensor product (G, H)-flow on $\mathscr{A} \otimes \mathscr{B}$, when $\alpha_{e_1} \otimes \beta_{e_2} = id_{\mathscr{A} \otimes \mathscr{B}}$ and $\alpha \otimes \beta := \{\alpha_t \otimes \beta_s\}_{(t,s) \in G \times H}$ is a family of group homomorphisms from $G \times H$ into **Aut**($\mathscr{A} \otimes \mathscr{B}$) such that the map $(t, s) \mapsto (\alpha_t \otimes \beta_s)z$ is continuous for each $z \in \mathscr{A} \otimes \mathscr{B}$. By a *-flow we mean that every $\alpha_t \otimes \beta_s$ is a *-map for all $t \in G$ and all $s \in H$.

Lemma 2.1. Let \mathscr{A} , \mathscr{B} be C^* -algebras, and let G, H be two groups. If $\{\alpha_t\}_{t\in G}$, $\{\beta_s\}_{s\in H}$ are families of operators on \mathscr{A} , \mathscr{B} , then the following conditions are equivalent:

- (*i*) $\{\alpha_t\}_{t\in G}(\{\beta_s\}_{s\in H})$ is a *G*-flow (*H*-flow) on $\mathscr{A}(\mathscr{B})$.
- (ii) $\{\alpha_t \otimes id\}_{t \in G}$ ($\{id \otimes \beta_s\}_{S \in H}$) is a *G*-flow (*H*-flow) on $\mathscr{A} \otimes \mathscr{B}$.

Proof. ((i) \Longrightarrow (ii)) Let α be a *G*-flow on \mathscr{A} , and let $x \in \mathscr{A}$. Then we have $\alpha_{e_1} \otimes id = id \otimes id$ and $\alpha_{tu} \otimes id = \alpha_t \alpha_u \otimes id = (\alpha_t \otimes id)(\alpha_u \otimes id)$. Moreover, for any non-zero $x \otimes y \in \mathscr{A} \otimes \mathscr{B}$ we assert that

$$\|(\alpha_t \otimes id)(x \otimes y) - x \otimes y\| = \|\alpha_t(x) - x\|\|y\|.$$

Therefore, the strong continuity of $\alpha_t \otimes id$ follows from (1) and the strong continuity of α_t . ((ii) \implies (i)) Suppose that $\alpha_t \otimes id$ is a *G*-flow on $\mathscr{A} \otimes \mathscr{B}$, and $x \in \mathscr{A}$. Using (1), we conclude the strong continuity of α_t . Moreover, for any non-zero element $y \in \mathscr{B}$ it holds that

$$\|\alpha_{tu}(x) - \alpha_t(x)\alpha_u(x)\|\|y\| = \|(\alpha_{tu} \otimes id - \alpha_t\alpha_u \otimes id)(x \otimes y)\| = 0.$$

Since *y* is a non-zero element in \mathscr{B} , we get $\alpha_{tu} = \alpha_t \alpha_u$. Similarly, we see that β is a *H*-flow on \mathscr{B} if and only if $id \otimes \beta$, so is. \Box

Lemma 2.2. Let \mathscr{A} , \mathscr{B} be C^{*}-algebras and $\{\alpha_t\}_{t \in \mathbb{R}}$, $\{\beta_s\}_{s \in \mathbb{R}}$ be two families of operators on \mathscr{A} and \mathscr{B} , respectively. Then $\{\alpha_t \otimes \beta_s\}_{t,s \in \mathbb{R}}$ is strongly continuous if and only if $\{\alpha_t\}$ and $\{\beta_s\}$ are strongly continuous.

Proof. Suppose that $\{\alpha_t\}$ and $\{\beta_s\}$ are strongly continuous on \mathscr{A} , \mathscr{B} , respectively. We shall show that $(t,s) \mapsto (\alpha_t \otimes \beta_s) z$ is continuous for all z in $\mathscr{A} \otimes \mathscr{B}$. Since the algebraic product on $\mathscr{A} \otimes \mathscr{B}$ is continuous, we have

$$\lim_{(t,s)\to(0,0)} \alpha_t \otimes \beta_s(z) = \lim_{t\to 0} (\alpha_t \otimes id) z \lim_{s\to 0} (id \otimes \beta_s) z = (id \otimes id) z$$

It follows that $\lim_{(t,s)\to(0,0)} ||\alpha_t \otimes \beta_s(z) - z|| = 0$. The converse immediately follows from Lemma 2.1.

Let $\alpha = {\alpha_t}_{t \in G}$, $\beta = {\beta_s}_{s \in H}$ be families of operators on *C*^{*}-algebras \mathscr{A} , \mathscr{B} , respectively. Then it is easy to check that $\alpha \otimes \beta$ is a flow on $\mathscr{A} \otimes \mathscr{B}$ if and only if α and β are two flows on \mathscr{A} and \mathscr{B} , respectively. Indeed, If $x \otimes y, x' \otimes y'$ are in $\mathscr{A} \otimes \mathscr{B}$, then $\alpha \otimes \beta [(x \otimes y)(x' \otimes y')] = \alpha(xx') \otimes \beta(yy') = (\alpha(x) \otimes \beta(y))(\alpha(x') \otimes \beta(y'))$. Hence, $\alpha \otimes \beta$ is group homomorphism if and only if α , β are. The remainder of the proof is analogous to that of Lemmas 2.1 and 2.2.

Furthermore, if $\alpha \otimes \beta$ is a tensor product *-flow on $\mathscr{A} \otimes \mathscr{B}$, then $||\alpha \otimes \beta|| = 1$. Indeed, Let $z \in \mathscr{A} \otimes \mathscr{B}$. If z is a self-adjoint element, then $sp(\alpha \otimes \beta(z)) \subseteq sp(z)$ and $||(\alpha \otimes \beta)z|| \le ||z||$ so $||\alpha \otimes \beta|| \le 1$. If z is arbitrary, then

$$\begin{aligned} \|(\alpha \otimes \beta)z\|^2 &= \|(\alpha \otimes \beta)z((\alpha \otimes \beta)z)^*\| = \|(\alpha \otimes \beta)z(\alpha \otimes \beta)z^*\| \\ &= \|(\alpha \otimes \beta)zz^*\| \le \|zz^*\| = \|z\|^2. \end{aligned}$$

Hence, $||\alpha \otimes \beta|| \le 1$. Moreover,

 $1 = \|id\| = \|(\alpha \otimes \beta)(\alpha \otimes \beta)^{-1}\| \le \|\alpha \otimes \beta\|\|(\alpha \otimes \beta)^{-1}\| \le \|\alpha \otimes \beta\|.$

Consequently, $||\alpha \otimes \beta|| = 1$.

3. main result

In this section, we discuss about our main theorem and to this end we get the following theorem.

Theorem 3.1. Let \mathscr{A} , \mathscr{B} be C^* -algebras, and let $\alpha \otimes \beta = {\alpha_t \otimes \beta_s}$ be a flow on $\mathscr{A} \otimes \mathscr{B}$. If δ is the infinitesimal generator for $\alpha \otimes \beta$, then

$$\lim_{(t,s)\to(0,0)} \left\| \frac{\alpha_t \otimes \beta_s - id \otimes id}{\|(t,s)\|} - \operatorname{div}(\alpha_t \otimes id, id \otimes \beta_s) \right\| = 0.$$
(2)

Proof. We can write

$$\begin{split} \left\| \alpha_t \otimes \beta_s - id \otimes id - \|(t,s)\| \operatorname{div}(\alpha_t \otimes id, id \otimes \beta_s) \right\| \\ &= \left\| \alpha_t \otimes \beta_s - id \otimes id - \|(t,s)\| \frac{\partial}{\partial t}(\alpha_t \otimes id) - \|(t,s)\| \frac{\partial}{\partial s}(id \otimes \beta_s) \right\| \\ &= \left\| s(\alpha_t \otimes id) \left(\frac{id \otimes \beta_s - id \otimes id}{s} \right) - \|(t,s)\| \frac{\partial}{\partial s}(id \otimes \beta_s) \right\| \\ &+ t \left(\frac{\alpha_t \otimes id - id \otimes id}{t} \right) - \|(t,s)\| \frac{\partial}{\partial t}(\alpha_t \otimes id) \|. \end{split}$$

Now, divide both sides by ||(t, s)||, we get

$$\left\|\frac{\alpha_{t}\otimes\beta_{s}-id\otimes id}{\|(t,s)\|}-\operatorname{div}(\alpha_{t}\otimes id, id\otimes\beta_{s})\right\| \leq \left\|\frac{|s|}{\|(t,s)\|}(\alpha_{t}\otimes id)\frac{id\otimes\beta_{s}-id\otimes id}{s}-\frac{\partial}{\partial s}(id\otimes\beta_{s})\right\| + \left\|\frac{|t|}{\|(t,s)\|}\frac{\alpha_{t}\otimes id-id\otimes id}{t}-\frac{\partial}{\partial t}(\alpha_{t}\otimes id)\right\|.$$
(3.2)

If we take the limit on both sides (3.2) as $(t, s) \rightarrow (0, 0)$, we obtain (2). \Box

Corollary 3.2. Let \mathscr{A} , \mathscr{B} be C^* -algebras, and let $\{\alpha_t \otimes \beta_s\}$ be a flow on $\mathscr{A} \otimes \mathscr{B}$. If δ is the infinitesimal generator for $\alpha \otimes \beta$, then

$$\delta(z) = \operatorname{div}(\alpha_t \otimes id, id \otimes \beta_s)\Big|_{(t,s)=(0,0)}(z),$$

for all $z \in \mathscr{A} \otimes \mathscr{B}$.

Corollary 3.3. If δ is the infinitesimal generator of the flow $\alpha_t \otimes \beta_s$ over the C*-algebra $\mathscr{A} \otimes \mathscr{B}$, then δ is a derivation from subalgebra $D(\delta)$ into $\mathscr{A} \otimes \mathscr{B}$, where $D(\delta)$ is the set of all elements in $\mathscr{A} \otimes \mathscr{B}$ such that $\alpha_t \otimes \beta_s$ is differentiable at origin.

Proof. The linearly and Leibniz properties directly follows from Corollary 3.2.

Theorem 3.4. If α , β are some flows for the C^{*}-algebras \mathscr{A} , \mathscr{B} res., then $\delta_{\alpha\otimes\beta} = \delta_{\alpha}\otimes id + id\otimes\delta_{\beta}$.

Proof. Let $E = \{a \in \mathscr{A} : \lim_{t \to 0} \frac{\alpha_t(a) - a}{t} \text{ exists}\}$ and $F = \{b \in \mathscr{B} : \lim_{s \to 0} \frac{\beta_s(b) - b}{s} \text{ exists}\}$. Define $\delta_{\alpha} : E \longrightarrow \mathscr{A}$ by $\delta_{\alpha}(a) = \lim_{t \to 0} \frac{\alpha_t(a) - a}{t}$ and $\delta_{\beta} : F \longrightarrow \mathscr{B}$ by $\delta_{\beta}(b) = \lim_{s \to 0} \frac{\beta_s(b) - b}{s}$. Since $\delta_{\alpha \otimes \beta}$ is infinitesimal generator of the flow $\alpha \otimes \beta$, we get

$$\begin{split} \delta_{\alpha \otimes \beta}(a \otimes b) &= \operatorname{div}(\alpha_t \otimes id, id \otimes \beta) \Big|_{(t,s)=(0,0)}(a \otimes b) \\ &= \frac{\partial}{\partial t}(\alpha_t \otimes id \Big|_{t=0}(a \otimes b) + \frac{\partial}{\partial s}(id \otimes \beta_s \Big|_{s=0}(a \otimes b) \\ &= \lim_{t \to 0} \frac{\alpha_t \otimes id(a \otimes b) - \alpha_0 \otimes id(a \otimes b)}{t} + \lim_{s \to 0} \frac{id \otimes \beta_s(a \otimes b) - id \otimes \beta_0(a \otimes b)}{s} \\ &= \lim_{t \to 0} \frac{\alpha_t(a) - a}{t} \otimes b + a \otimes \lim_{s \to 0} \frac{\beta_s(b) - b}{s} = \delta_\alpha(a) \otimes b + a \otimes \delta_\beta(b). \end{split}$$

Example 3.5. Let $\mathscr{A} = \left\{ f : \mathbb{D} \longrightarrow \mathbb{C}, f(z) = \sum_{n=0}^{+\infty} p_n z^n, ||f||^2 = \sum_{n=0}^{+\infty} |p_n|^2 < +\infty \right\}$, where \mathbb{D} is an open disc in the complex plan. Define $\alpha_t : \mathscr{A} \longrightarrow \mathscr{A}$, given by

$$\alpha_t(f) = \sum_{n=0}^{+\infty} p_n (1+n)^{-t} \omega_n, \qquad (t > 0),$$

such that $\omega_n(z) = z^n$, for every $z \in \mathbb{C}$. One can show that α_t is a flow. Moreover, if δ_α is the infinitesimal generator of α , we can write

$$\delta_{\alpha}(f) = \lim_{t \to 0} \frac{\alpha_t(f) - f}{t} = \lim_{t \to 0} \frac{\sum_{n=0}^{+\infty} p_n (1+n)^{-t} \omega_n - \sum_{n=0}^{+\infty} p_n \omega_n}{t}$$
$$= \lim_{t \to 0} \sum_{n=0}^{+\infty} p_n (1+n)^{-t} \ln \frac{1}{1+n} \omega_n = \sum_{n=0}^{+\infty} p_n \ln \frac{1}{1+n} \omega_n.$$

Let $f = \sum_{n=0}^{+\infty} p_n w_n$ and $g = \sum_{n=0}^{+\infty} q_n w_n$. Then we have $f \otimes g = (\sum_{n=0}^{+\infty} p_n w_n)(\sum_{n=0}^{+\infty} q_n w_n) = \sum_{n=0}^{+\infty} r_n w_n$, where $r_n = \sum_{k=0}^{n} p_k q_{n-k}$. Consider another flow β_s on \mathscr{A} with associated infinitesimal generator δ_{β} . Then $(\delta_{\alpha} \otimes id + id \otimes \delta_{\beta})(f \otimes g) =$
$$\begin{split} \delta_{\alpha \otimes \beta}(f \otimes g) &= \operatorname{div}(\alpha_t \otimes id, id \otimes \beta) \Big|_{(t,s)=(0,0)} (f \otimes g) \\ &= \left(\frac{\partial}{\partial t} \sum_{n=0}^{+\infty} r_n (1+n)^{-t} \omega_n + \frac{\partial}{\partial s} \sum_{n=0}^{+\infty} r_n (1+n)^{-s} \omega_n \right) |_{(t,s)=(0,0)} \end{split}$$

$$=\sum_{n=0}^{+\infty} r_n \ln \frac{1}{1+n} \omega_n + \sum_{n=0}^{+\infty} r_n \ln \frac{1}{1+n} \omega_n = \sum_{n=0}^{+\infty} r_n \ln \frac{1}{(1+n)^2} \omega_n$$

This show that $\delta_{\alpha\otimes\beta} = \delta_{\alpha}\otimes id + id\otimes\delta_{\beta}$.

We use the symbol $\delta(\alpha_t \otimes \beta_s)$ to mean that $\delta(\alpha_t \otimes \beta_s) = \operatorname{div}(\alpha_t \otimes id, id \otimes \beta_s)$. Corollary 3.2 implies that $\delta(\alpha_t \otimes \beta_s)|_{(0,0)} = \delta_{\alpha \otimes \beta}$.

Proposition 3.6. Let $\alpha \otimes \beta$ be the infinitesimal generator of a derivation over the C^{*}-algebra $\mathscr{A} \otimes \mathscr{B}$. Then there exist derivations δ_{α} on \mathscr{A} and δ_{β} on \mathscr{B} such that

 $\delta(\alpha_t\otimes\beta_s)=\alpha_t\delta_\alpha\otimes id+id\otimes\delta_\beta\beta_s.$

Proof. Using Theorem 3.4 there exist derivations δ_{α} , δ_{β} given by $\delta_{\alpha} = \lim_{t \to 0} \frac{\alpha_t - id}{t}$ and $\delta_{\beta} = \lim_{s \to 0} \frac{\beta_s - id}{s}$. Now, we see that

$$\delta(\alpha_t \otimes \beta_s) = \operatorname{div}(\alpha_t \otimes id, id \otimes \beta_s) = \frac{\partial}{\partial t}(\alpha_t \otimes id) + \frac{\partial}{\partial s}(id \otimes \beta_s)$$
$$= \alpha_t \left(\lim_{p \to 0} \frac{\alpha_p - id}{p}\right) \otimes id + id \otimes \left(\lim_{q \to 0} \frac{\beta_q - id}{q}\right) \beta_s$$
$$= \alpha_t \delta_\alpha \otimes id + id \otimes \delta_\beta \beta_s.$$

Similarly, we can prove $\delta(\alpha \otimes \beta) = \delta_{\alpha} \alpha \otimes id + id \otimes \beta \delta_{\beta}$.

Corollary 3.7. Let δ be infinitesimal generator of the flow $\alpha \otimes \beta$ over the C^{*}-algebra $\mathscr{A} \otimes \mathscr{B}$. Then

$$\delta\left(\int_0^t \int_0^s \alpha_p \otimes \beta_q \, dq \, dp\right) = s(\alpha_t - id) \otimes id + id \otimes (\beta_s - id)t$$

Proof. It follows form The Fubini's theorem that

$$\delta\left(\int_0^t \int_0^s \alpha_p \otimes \beta_q \, dq \, dp\right) = \int_0^t \int_0^s (\delta_\alpha \alpha_p \otimes id + id \otimes \beta_q \delta_\beta) \, dq \, dp$$
$$= s \int_0^t \delta_\alpha \alpha_p \otimes id \, dp + t \int_0^s id \otimes \beta_q \delta_\beta \, dq$$
$$= s(\alpha_t \otimes id - id \otimes id) + t(id \otimes \beta_s - id \otimes id)$$
$$= s(\alpha_t - id) \otimes id + id \otimes (\beta_s - id)t.$$

Let $\delta : A \longrightarrow B$ be a linear operator between two Banach spaces A and B over the same field of scalars. If $G(\delta)$ is the graph of δ , the set of all pairs (a, b) such that $b = \delta(a)$, then δ is closed if and only if $G(\delta)$ is a closed subset of the Cartesian product space $A \times B$. Moreover, the term $\int_0^t \int_0^s \alpha_p \otimes \beta_q \, dq \, dp$ is usually denoted by $\Phi_{t,s}$ and the term $s(\alpha_t - id) \otimes id + id \otimes (\beta_s - id)t$ is denoted by $\Psi_{t,s}$. With these notations, we have $\delta \Phi_{t,s} = \Psi_{t,s}$.

Proposition 3.8. If δ is infinitesimal generator of flow $\alpha \otimes \beta$, then δ is closed.

Proof. We show that $G(\delta)$ is a closed set. Let $z \in \overline{D(\delta)}$. If $\{z_n\} \subseteq D(\delta)$, $z_n \longrightarrow z$ and $\delta(z_n) \longrightarrow w$ implies $z \in D(\delta)$ and $\delta(z) = w$. To this end,

$$\delta(z) = div((\alpha_t \otimes id)z, (id \otimes \beta)z)\Big|_{(t,s)=(0,0)}$$
$$= \lim_{n \to \infty} div(\alpha_t \otimes id, id \otimes \beta)\Big|_{(t,s)=(0,0)} z_n = \lim_{n \to \infty} \delta(z_n) = w$$

A subspace *S* of $\mathscr{A} \otimes \mathscr{B}$ is said to be $\alpha \otimes \beta$ -invariant if $(\alpha \otimes \beta)S \subseteq S$. It is easy to check that if $\delta_{\alpha \otimes \beta}$ is infinitesimal generator, then $D(\delta)$ is $\alpha \otimes \beta$ -invariant. Moreover, an elaboration of the above arguments shows that if $\Phi_{t,s}$ as in the above, then $\lim_{(t,s)\to(0,0)} \frac{1}{t_s} \Phi_{t,s} = id \otimes id$. Furthermore, if δ is a derivation on the *C**-algebra $\mathscr{A} \otimes \mathscr{B}$, then continuity of δ immediately implies that $\lim_{(t,s)\to(0,0)} \frac{1}{t_s} \Psi_{t,s} = \delta$.

Theorem 3.9. Let δ be the infinitesimal generator of $\alpha \otimes \beta$ over $\mathscr{A} \otimes \mathscr{B}$, and let E be an $\alpha \otimes \beta$ -invariant dense subspace of $\mathscr{A} \otimes \mathscr{B}$. Then E is a core for δ .

Proof. Let $z \in D(\delta)$ so that $z \in \overline{D}^{\|.\|}$. Hence, there is a sequence z_n in D such that

$$\Phi(z_n) - \Phi(z)|_{\delta} = ||\Phi(z_n) - \Phi(z)|| + ||\delta\Phi(z_n) - \delta\Phi(z)||$$

= ||\Phi(z_n - z)|| + ||\Psi(z_n) - \Psi(z)||.

Since $\{\Phi(z_n)\}$ is a sequence in *D*, the limit of $\{\Phi(z_n)\}$ is in \overline{D} . Moreover,

$$\left|\frac{1}{ts}\Phi(z) - z\right|_{\delta} = \left\|\frac{1}{ts}\Phi(z) - z\right\| + \left\|\frac{1}{ts}\delta\Phi(z) - \delta(z)\right\| \longrightarrow 0,$$

which implies that $z \in \overline{D}^{|.|_{\delta}}$. \Box

Corollary 3.10. *The domain of a tensor sum is its core.*

Proof. It immediately follows from the fact that the domain of a tensor sum is invariant under its flow and it is a dense subspace.

3.1. More on the properties of Tensor Sum

Definition 3.11. An operator δ on the tensor product of C^* -algebras $\mathscr{A} \otimes \mathscr{B}$ is called tensor summable if there exist two operators Δ , ∇ over \mathscr{A} and \mathscr{B} , respectively, such that $\delta = \Delta \otimes id + id \otimes \nabla$ and we write $\delta = \Delta \boxplus \nabla$. Moreover, the tensor difference of Δ and ∇ , denoted by $\Delta \boxminus \nabla$, is defined by $\Delta \boxminus \nabla := \Delta \otimes id - id \otimes \nabla$.

Basic operations with tensor sum of operators are summarized as follow. If the notation \mathbb{F} will mean that is the set of all scalars, and the set of all operators on \mathscr{A} is denoted by $Ope(\mathscr{A})$, then for every $\alpha, \beta \in \mathbb{F}$, $\Delta_1, \Delta_2 \in Ope(\mathscr{A})$ and $\nabla_1, \nabla_2 \in Ope(\mathscr{B})$,

(a) $\alpha\beta(\beta^{-1}\Delta_1 \boxplus \nabla_1 \alpha^{-1}) = \alpha\Delta_1 \boxplus \nabla_1\beta$ where α, β are non-zero,

(b)
$$\Delta_1 \boxplus \nabla_1 + \Delta_2 \boxplus \nabla_2 = \Delta_1 \boxplus \nabla_2 + \Delta_2 \boxplus \nabla_1$$
,

(c) $\alpha(\Delta_1 \boxplus \nabla_1)\beta = \alpha \Delta_1 \boxplus \nabla_1 \beta$,

(d) $\Delta_1 \boxplus \Delta_1 = \Delta_1 \boxplus id + id \boxplus \Delta_1 - id \boxplus id$,

(e) $\Delta_1 \boxplus \nabla_1 = \Delta_1 \otimes \nabla_1$ if and only if $\Delta_1 \otimes id$ is a quasi-inverse of $id \otimes \nabla_1$,

(f) $\|\Delta_1 \boxplus \nabla_1\| = \|\Delta_1\| \|\nabla_1\|$ if and only if $\Delta_1 \otimes id$ is a quasi-inverse of $id \otimes \Delta_1$,

(g) If $\Delta \neq \lambda id$ for every non zero scalar $\lambda \in \mathbb{F}$, then $\Delta \boxplus \nabla \neq 0$,

(h)
$$-(\Delta_1 \boxplus \nabla_1) = -\Delta_1 \boxplus -\nabla_1$$
,

(k) $(\Delta \equiv \nabla)(\Delta \equiv \nabla) = \Delta^2 \equiv \nabla^2$, (l) If Δ , ∇ are *-derivations, then $\Delta \equiv \nabla$ is a *-derivation on $\mathscr{A} \otimes \mathscr{B}$. A similar definition enjoying properties (a)-(l) as above can be stated for the Hilbert space tensor products in the setting of Hilber spaces.

Proposition 3.12. Let \mathscr{A} , \mathscr{B} be unital Banach algebras, and let Δ , ∇ be invertible elements of \mathscr{A} and \mathscr{B} , respectively. If $||\Delta \otimes \nabla || < 1$, then $\Delta \boxminus \nabla$ is invertible.

Proof. Invertibility of Δ implies that $\Delta \otimes id$ is invertible. Moreover, we can write

$$\left\| (\Delta \otimes id)^{-1} (id \otimes \nabla) \right\| = \left\| (\Delta^{-1} \otimes id) (id \otimes \nabla) \right\| = \left\| \Delta^{-1} \otimes \nabla \right\| = \left\| \Delta \otimes \nabla \right\| < 1.$$

It follows that $1 - (\Delta \otimes id)^{-1}(id \otimes \nabla)$ is invertible. An easy computation shows that

$$(\Delta \otimes id)^{-1}(1 - (\Delta \otimes id)^{-1}(id \otimes \nabla))^{-1}(\Delta \boxminus \nabla) = id \otimes id,$$

which follows that $\Delta \boxminus \nabla$ is left invertible. Similarly we see that $\Delta \boxminus \nabla$ is right invertible. \Box

So far we have discussed the tensor sum of the operators honest in Leibniz's property on C*-algebras. Finally, we discuss the properties of tensor sum of operators on Hilbert spaces. Recall that if Δ is an operator on a Hilbert space ($\mathcal{H}, \langle \cdot, \cdot \rangle$), and *E* is an orthonormal basis for \mathcal{H} , then the *trace class norm* is defined by $\|\Delta\|_1 = \sum_{x \in E} \||\Delta|^{1/2}(x)\|^2$. Also, Δ is a *trace-class* operator if $\|\Delta\|_1 < +\infty$. The trace of a trace-class operator Δ is defined by $tr(\Delta) = \sum_{x \in E} \langle \Delta(x), x \rangle$.

Theorem 3.13. Let Δ and ∇ be trace-class operators on Hilbert spaces \mathcal{H} and \mathcal{K} , respectively. Then $tr(\Delta \boxplus \nabla) = tr(\Delta) + tr(\nabla)$.

Proof. Let *E*, *F* be orthonormal basis for Hilbert spaces \mathcal{H} and \mathcal{K} , respectively. Then the set { $x \otimes y : x \in E, y \in F$ } is an orthonormal basis for $\mathcal{H} \otimes \mathcal{K}$,

$$\begin{split} tr(\Delta \boxplus \nabla) &= tr(\Delta \otimes id + id \otimes \nabla) = tr(\Delta \otimes id) + tr(id \otimes \nabla) \\ &= \sum_{\substack{x \in E \\ y \in F}} \langle \Delta \otimes id(x \otimes y), x \otimes y \rangle + \sum_{\substack{x' \in E \\ y' \in F}} \langle id \otimes \nabla(x' \otimes y'), x' \otimes y' \rangle \\ &= \sum_{\substack{x \in E \\ y \in F}} \langle \Delta x, x \rangle \langle y, y \rangle + \sum_{\substack{x' \in E \\ y' \in F}} \langle x', x' \rangle \langle \nabla y', y' \rangle \\ &= \sum_{x \in E} \langle \Delta x, x \rangle + \sum_{y' \in F} \langle \nabla y', y' \rangle = tr(\Delta) + tr(\nabla). \end{split}$$

3.2. Finite dimensional case

Let *A* and *B* be finite dimensional vector spaces over a field **F**, and let $\{a_i : 1 \le i \le n\}$ be a basis of *A* and $\{b_j : 1 \le i \le m\}$ be a basis of *B*. For i = 1, ..., n and j = 1, ..., m set $a_i \otimes b_j = a_i b_j^t$. Then $\{a_i \otimes b_j : 1 \le i \le n, 1 \le j \le m\}$ is a basis for the some vector space which is denoted by $A \otimes B$, the dimension of $A \otimes B$ is the product of the dimensions of its factors. Suppose that Δ and ∇ are operators on *A*, *B*, respectively. Since $\{a_i \otimes b_j : 1 \le i \le n, 1 \le j \le m\}$ form a basis for $A \otimes B$ so there exists a unique operator $\Delta \otimes \nabla$ on $A \otimes B$ with $\Delta \otimes \nabla(a_i \otimes b_j) = \Delta(a_i) \otimes \nabla(b_j)$. Secondly, $\Delta \otimes \nabla$ also satisfies $\Delta \otimes \nabla(a \otimes b) = \Delta(a) \otimes \nabla(b)$. Now consider two linear transformations $\Delta : A \longrightarrow A'$ and $\nabla : B \longrightarrow B'$ where *A*, *A'*, *B* and *B'* are finite dimensional vector spaces and let $[\Delta_{ij}]_{m \times n}$ and $[\nabla_{ij}]_{p \times q}$ be matrices of linear transformations Δ and ∇ , respectively. Then the Kronecker product of Δ and ∇ is defined as the block matrix $[\Delta_{ij}\nabla]_{mp \times nq}$ and it is denoted by $\Delta \otimes \nabla$ again. See also [3]. Let *m*, *n* be two natural numbers. Then the discrete interval of *m*, *n* is denoted by < m, n > and define as the set $\{m, m + 1, ..., n\}$. The set H_{mn} is defined to be the set

$$\{<1, n >, < n + 1, 2n >, ..., < rn - n + 1, rn >, ..., < sn - n + 1, sn >, ..., < mn - n + 1, mn > \}.$$

If $(\Delta \otimes I)_{ij}$ is the entry in row *i* and column *j* of the matrix $\Delta \otimes I$ of order *m*, then $(\Delta \otimes I)_{ij} = \Delta_{rs} \delta_{pq}$, where $i \in (rn - n + 1, rn), j \in (sn - n + 1, sn)$, and δ_{pq} denotes the so called Kronecker delta with $p, q \in \mathbb{Z}_n$. (Note that \mathbb{Z}_n is called the additive group of integers modulo *n*, the set of equivalence classes of \mathbb{Z} under congruence modulo *n*.) Since the class of zero is equals to the class of *n* so we may assume that $\{\overline{1}, \overline{2}, ..., \overline{n}\}$. Similarly, $(I_m \otimes \nabla)_{ij} = \delta_{rs} \nabla_{pq}$.

5841

Theorem 3.14. Let *D* be a matrix of order *k*. If there exist natural numbers $m, n \ge 2$ such that k = mn, and *D* is partitioned as m^2 blocks of blocks of order *n* with this property that each block-diagonal are diagonal adaptable and others blocks of *D* has the form cI_n for some entry *c* of *D*. Then there are matrices Δ , ∇ of order *m*, *n*, respectively, such that $D = \Delta \boxplus \nabla$.

Proof. The proof is somewhat numerically but straightforward. Consider two matrices Δ and ∇ of order m, n, respectively. The matrix $\Delta \otimes I_n + I_m \otimes \nabla$ contains $m^2 + n^2$ unknown entries, and each its entry has the form $\Delta_{rs}\delta_{pq} + \delta_{rs}\nabla_{pq}$, where r, s are in the members of H_{mn} and $p, q \in \mathbb{Z}_n$ see the previous argument. The equality $D = \Delta \otimes \nabla$ is obtained if we take $D_{ij} = \Delta_{rs}\delta_{pq} + \delta_{rs}\nabla_{pq}$, where $1 \le i, j \le mn$. If $i \ne j$ and D_{ij} lies entirely in one of the diagonal blocks of D then $i, j \in \langle rn - n + 1, rn \rangle$ for some r and $i \in \bar{p}, j \in \bar{q}$ so $p \ne q$. Hence, $D_{ij} = \nabla_{pq}$ for $n^2 - n$ unknown entries of ∇ . But if D_{ij} is outside of the diagonal blocks then D_{ij} lies in a block of the form cI_n for some entry c of D. Therefore $i \in \langle rn - n + 1, rn \rangle$, $j \in \langle sn - n + 1, sn \rangle$ and $r \ne s$ so that $D_{ij} = \Delta_{rs}\delta_{pq}$ in case $D_{ij} = c$ we have $\delta_{pq} = 1$, then $D_{ij} = \Delta_{rs}$ for $m^2 - m$ unknown entries of Δ , only then solve the linear system contains $m^2 + n^2 - (m^2 - m) - (n^2 - n)$ unknown and mn first order linear equation. Since $m + n \le mn$ for every natural number opposite of one then it has a solution. \Box

Example 3.15. Let

$$D = \begin{pmatrix} 0 & 3 & 2 & 0 \\ 1 & 0 & 0 & 2 \\ 1 & 0 & 0 & 3 \\ 0 & 1 & 1 & 0 \end{pmatrix}.$$

Then $H_{2,2} = \{< 1, 2 >, < 3, 4 >\}$ and $\mathbb{Z}_2 = \{\overline{1}, \overline{2}\}$. Consider $D_{21} = \Delta_{rs}\delta_{pq} + \delta_{rs}\nabla_{pq}$ so $r, s = 1, 2 \in \overline{2}$, and $1 \in \overline{1}$. Hence, $\Delta_{21} = 1$. Continuing this fashion we obtain $\Delta = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$ and $\nabla = \begin{pmatrix} 0 & 3 \\ 1 & 0 \end{pmatrix}$. Then $D = \Delta \otimes I_2 + I_2 \otimes \nabla$, where I_2 denotes the identity matrix of order two.

Data availability: All data generated or analyzed during this study are included in this published article.

Acknowledgement. The authors would like to thank the referees for their valuable suggestions and comments.

References

- N. H. Abdelaziz, Commutativity and generation of n-parameter semigroups of bounded linear operators, Houston J. Math. 9 (2) (1983) 151–156. operators, Houston J. Math. 9 (2) (1983) 151–156.
- [2] S. Arora, S. Sharda, On two parameter semigroup of operators, Lecture Notes in Mathematics, 1511, Proceedings of a Conference held in Memory of U.N. Singh, New Delhi, India, 2–6 August 1990.
- [3] B.N. Cooperstein, Advanced Linear Algebra, University of California Santa Cruz, Taylor and Francis, 2015.
- [4] R. Khalil and S. Alsharif, On the generator of two Parameter Semigroups, Journal of Applied Mathematics and Computation, 156 (2004) 403–414.
- [5] A. Kishimoto, Flow on C*-algebra. Department of Mathematics, Hokkaido University, Sapporo, (2003) 1–25.
- [6] C.S. Kubrisly and N. Levan, preservation of Tensor Sum and Tensor Product, Acta Math. Univ. Comenianae, 80 No. 1(2011) 133–142.
- [7] G. Murphy, C*-algebra and Operator Theory, Mathematics Department University College Cork, Academic Press Irland (1990).
- [8] S. Omran and A.E. Sayed, On Some Peroperties of Tensor Product of Operators, Global Journal of Pure and Applied Mathematics, 12 No. 6 (2016) 5139–5147.
- [9] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
- [10] E. Hille, R.S. Phillips, Functional Analysis and Semigroups, Am. Math. Soc. Colloq. Publi. 31, Providence, Rhode Island, 1957.
 [11] S. Sakai, Operator Algebras in Dynamical Systems, Encyclopedia of Mathematics and Its Application, Vol. 41, Cambridge University Press, 1991.
- [12] D. Senthilkumar and P. Chandra Kala, Tensor Sum and Dynamical System, Acta Mathematica Scientia, 6 (2014) 1935–1946.
- [13] J.J. Sakurai, Modern Quantum Mechanics, Addison-Wesley, Reading, 1985.
- [14] H.F. Trotter, On the product of semigroups of operators, Proc. Am. Math. Soc. 10 (1959) 545–551.
- [15] H. Zhang and F. Ding, On the Kronecker Products and Their Applications, Hindawi Publishing Corporation, Journal of Applied Math, Article ID 296185 (2013) 1–8.