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Abstract. Kurzweil and Henstock presented the notion of Gauge integral, independently. Using their
definition Savas and Patterson examined the relationship between Gauge integral and Summability theory.
Because of the esoteric of both Gauge and Summability theory, the body of literature is limited. As such
the only accessible notion to both theories is Pringsheim limits. The goal of this paper is to present a
natural multidimensional extension of Gauge theory via Summability methods. To accomplish this we
examine double measurable real-valued functions of the type of f (x, y) in the Gauge sense on (1,∞)× (1,∞).
Additionally, we introduce the definition of double γ2−strongly summable to L with respect to Gauge and
present inclusion theorems.

1. Introduction and Background

In the 1957 and 1961 both Kurzweil [4] and Henstock [3] independently presented the definition of
Gauge integral. This new integration technique allows one to integrate a larger class of functions than
Riemann and Lebesgue can for proper integrals. Before establishing the main result of this paper, let us
present a brief introduction to Gauge theory.

Definition 1.1. [11] A tagged partition of an interval I = [a, b] is a finite set or ordered pairs

D = {(ti, Ii) : 1 ≤ i ≤ m}

where {Ii : 1 ≤ i ≤ m} is a partition of I consisting of closed non overlapping subintervals and ti is a point belonging
to Ii; ti is called the tag associated with Ii. If f : I→ R, the Riemann sum of f with respect to D is defined to be

S( f ,D) =
m∑

i=1

f (ti)ℓ (Ii) ,

where ℓ(Ii) is the length of the subinterval Ii. If δ : I → (0,∞) is a positive function, we define an open interval
valued function on I by setting γ(t) = (t − δ(t), t + δ(t)). If Ii = [xi, xi+1], we can write ti ∈ Ii ⊂ γ(ti) instead of
ti − δ < xi ≤ ti ≤ xi+1 < ti + δ. Any interval γ defined on I such that γ(t) is an open interval containing t for each
t ∈ I is called a Gau1e on I. Let us denote the set of all such interval by ∆G. If D = {(ti, Ii) : 1 ≤ i ≤ m} is a tagged
partition of I and γ is a Gauge on I, we say that D is γ − f ine if ti ∈ Ii ⊂ γ(ti) is satisfied.
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Let us now consider the following definition of Gauge integral.

Definition 1.2. [11] Let f : [a, b] → R. If f : [a, b] → R. f is said to be Gauge integrable over [a, b] if there exists
A ∈ R such that for every ε > 0 there exists a Gauge γ on [a, b] such that

∣∣∣S( f ,D) − A
∣∣∣ < ε whenever D is a γ− f ine

tagged partition of [a, b]. The number A is called the Gauge integral of f over I = [a, b] and is denoted by
b∫
a

f or
∫

I f ;

when we encounter integrals depending upon parameters, it is also convenient to write
b∫
a

f (t) or
∫

I f (t).

To bridge the gap between Gauge and Summability theory the following notion of convergence for double
sequences is critical.

Definition 1.3. [8] A double sequence x =
(
xk,l

)
of real numbers is said to be convergent to L ∈ R in the Pringsheim

sense if for ε > 0, there exists Nε ∈ N such that
∣∣∣xk,l − L

∣∣∣ < ε, whenever k, l > Nε. In this case, we denote such limit
as follow:

P − lim
k,l→∞

xk,l = L.

We shall describe such an x more briefly as ”P − conver1ent”, and please note that in contrast to the case for single
sequences, a P−convergent double sequences needs to be bounded.

In 1967 the space of strongly Cesáro summable sequences i.e. |σ1| and other related spaces of strongly
summability sequences were presented by Maddox in [5]. Using Maddox’s and Pringsheim’s results
Moricz presented the following definition for double sequences in [6].

Definition 1.4. [6] A double sequence x = (xk,l) is said to be strongly double Cesáro summable to a number L if

P − lim
m,n→∞

1
mn

m,n∑
k,l=1,1

∣∣∣xk,l − L
∣∣∣ = 0.

The set of all strongly double Cesáro summable sequences shall be denoted by
[
σ1,1

]
.

While the work on sequences continued, strongly summable functions was introduced by Borwein [1].
In 2019, Borwein’s definition was extended by presenting the following definitions via multidimensional
measurable real valued functions on (1,∞) × (1,∞) by Savas in [9].

Definition 1.5. [9] A function f (x, y) is said to be strongly double Cesáro summable to L if

P − lim
m,n→∞

1
mn

m∫
1

n∫
1

∣∣∣ f (x, y) − L
∣∣∣ dxdy = 0.

The space of all strongly double Cesáro summable functions will be denoted by [W]2.

Definition 1.6. [9] Let λ = (λm) and µ =
(
µn

)
are two non-decreasing sequences of positive real numbers such that

each tending to∞. Also, let λm ≤ λm + 1, λ1 = 1 and µn+1 ≤ µn + 1, µ1 = 1. The collection of such sequences
(
λ, µ

)
will be denoted by ∆. A function f

(
x, y

)
is said to be double λ−strongly summability to L if

P − lim
m,n→∞

1
λm,n

m∫
m−λm+1

n∫
n−µn+1

∣∣∣ f (x, y) − L
∣∣∣ dxdy = 0,

where Im = [m − λm + 1,m] and Jn =
[
n − µn + 1,n

]
and λm,n = λmµn. Whenever this occurs, we write f

(
x, y

)
→

L
([

V, λ, µ
])

. The set of all double λ−strongly summable functions will be denoted by simply
[
V, λ, µ

]
. If we take

λm,n = mn, then
[
V, λ, µ

]
reduced [V]2 , the space of all strongly double summable functions.
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Also by using Gauge integral Savas and Patterson [10] introduced the new notion of strongly Cesáro
type summability method which is as follows.

Definition 1.7. [10] Let us consider δ : Ii = (ti − δ(ti), t + δ (ti)] → (0,∞) is a positive function, and [a, b] = ∪Ii
with −∞ < a < b < ∞. We define an open interval valued function on I by setting γ = γ(ti)= (ti − δ(ti), t + δ (ti)). If
Ji = [i − λi + 1, i] , we can write ti ∈ Ji ⊂ γ(ti) instad of ti − δ(ti) < i− λi + 1 ≤ ti ≤ i < t+ δ (ti). Let γ = γ(ti) ∈ ∆G,
and let f (x) be a real valued function which is measurable Gauge sense in the interval (1,∞). Provided that

∫
f (x)

and
∫ ∣∣∣ f (x)

∣∣∣ exist in the gauge sense and

lim
ti→∞

1
ξ (ti)

ti+δ(ti)∫
ti−δ(ti)

∣∣∣ f (x) − L
∣∣∣ dt = 0

where ξ (ti) = (ti + δ (ti))− (ti − δ (ti)) = 2δ (ti), then we say that the function f (x) is γ−strongly summable to L with
respect gauge. In this case, we write

[
G, γ

]
− lim f (x) = L.

2. Main Results

In this section we will extend Gauge theory to functions of two variables and introduce the concept of
double γ−strongly summable to L with respect to Gauge. Additionally, using this notion we shall present
inclusion theorems to contrast this notion with other integration techniques.

Definition 2.1. A tagged partition of an interval I2 = [a, b] × [c, d] is a finite set or ordered pairs

Dm,n =
{(

ti, j, Ii, j

)
: 1 ≤ i ≤ m and 1 ≤ j ≤ n

}
where

{
Ii, j : 1 ≤ i ≤ m and 1 ≤ j ≤ n

}
is a partition of I2 consisting of closed non overlapping subintervals and ti, j is

a point belonging to Ii, j; ti, j is called the tag associated with Ii, j. If f : [a, b] × [c, d]→ R, the Riemann sum of f with
respect to Dm,n is defined to be

S( f ,Dm,n) =
m∑

i=1

n∑
j=1

f (ti, j)ℓ
(
Ii, j

)
where f

(
ti, j

)
= f (ti) · f

(
z j

)
and ℓ(Ii, j) = ℓ

(
Ii · J j

)
= ℓ (Ii) · ℓ

(
J j

)
which is the length of the subinterval Ii, j. If

δ2 : [a, b] × [c, d]→ (0,∞) is a positive multidimensional function where we define an open interval valued function
on I2 by setting γ(t, z) = γ(t) · γ(z) = (t − δ2(t), t + δ2(t)) × (z − δ2(z), z + δ2(z)). If Ii, j = [xi, xi+1] ×

[
y j, y j+1

]
,

we can replace with ti ∈ Ii ⊂ γ(ti) instead of ti − δ2 < xi ≤ ti ≤ xi+1 < ti + δ2 and z j ∈ J j ⊂ γ(z j) instead of
z j − δ2 < yi ≤ z j ≤ z j+1 < z j + δ2. Any interval γ defined on I2 such that γ(t, z) is an open interval containing
t, z for each (t, z) ∈ [a, b] × [c, d] is called a Gau1e on I2. Let us denote the set of all such interval by ∆G2 . If
Dm,n =

{(
ti, j, Ii, j

)
: 1 ≤ i ≤ m and 1 ≤ j ≤ n

}
is a tagged partition of I2 and γ is a Gauge on I2, we say that Dm,n is

γ2 − f ine if ti ∈ Ii ⊂ γ(ti) and z j ∈ J j ⊂ γ(z j) are satisfied.

Example 2.2. Let us consider the interval [0, 1] × [0, 1] and let γ
(
x, y

)
= 1

36 . Find a γ2 − f ine tagged partition on
[0, 1] × [0, 1] .

Since the Gauge γ
(
x, y

)
= γ (x) ·γ

(
y
)
= 1

36 is a constant multidimensional function. Regardless of the choice
of tag, γ (ck, dl) = 1

36 . Thus, any tagged partition
(
ti, j, Ii, j

)
in which xi+1 − xi < 1

6 and y j+1 − y j < 1
6 is a γ2 − f ine

tagged partition. Let us consider the following partition by choosing each tag from every interval to be any
number in that interval.

m
([

0, 1
7

]
×

[
0, 1

7

])
< 1

36 , m
([

1
7 ,

2
7

]
×

[
1
7 ,

2
7

])
< 1

36 , m
([

2
7 ,

3
7

]
×

[
2
7 ,

3
7

])
< 1

36 , m
([

3
7 ,

4
7

]
×

[
3
7 ,

4
7

])
< 1

36 ,

m
([

4
7 ,

5
7

]
×

[
4
7 ,

5
7

])
< 1

36 , m
([

5
7 ,

6
7

]
×

[
5
7 ,

6
7

])
< 1

36 , m
([

6
7 , 1

]
×

[
6
7 , 1

])
< 1

36 . This is an example of a γ
(
x, y

)
−

f ine tagged partition.
Now let us present the definition of multidimensional Gauge integral which is the following:
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Definition 2.3. Let f : I2 = [a, b] × [c, d] → R. Provided that there exists A ∈ R such that for every ε > 0 there
exists a Gauge γ2 on I2 such that

∣∣∣S( f ,Dm,n) − A
∣∣∣ < ε whenever Dm,n is a γ2 − f ine tagged partition of I2, then f

is said to be multidimensional Gauge integrable over I2. The number A is called the Gauge integral of f over I2 and

is denoted by
b∫
a

d∫
c

f or
∫

[a,b]×[c,d] f ; when we encounter integrals depending upon parameters, it is also convenient to

write
b∫
a

d∫
c

f (x, y)dxdy or
∫

[a,b]×[c,d] f (x, y)dxdy.

Example 2.4. Let us consider f : [a, b] × [c, d]→ R defined by

f (x, y) =
{

1, if x and y are rational number
0, if x or y is an irrational number.

We shall refer to f as a multidimensional Dirichlet function. Let ε > 0 and let {rk} and {sl} are enumeration of the
rational numbers in [a, b] and [c, d], respectively. Let us define a Gauge γ2 on [a, b] × [c, d] by

γ (t, z) =
{

ε
3k+l+1 , t = rk, z = sl
1, (t, z) < Q.

If P is a γ2 − f ine tagged partition of [a, b] × [c, d], we can separate P into Pr,s, those tagged intervals will rational
tags, and Pi, j with irrational tags. Therefore,∣∣∣S (

f ,P
)∣∣∣ = ∑∑

P

f (tk, zl)∆xk∆yl

=
∑∑

P

f (tk) · f (zl)∆xk∆yl

=
∑

P

f (tk)∆xk ·
∑

P

f (zl)∆yl

=
∑∑

Pr,s

1∆xk · 1∆yl +
∑∑

Pi, j

0∆xk · 0∆yl

<
∑

k

∑
l

ε

3k+l+1
< ε.

Hence, the multidimensional Dirichlet function is Gauge integrable.

Example 2.5. Let us consider the following function:

f (x, y) =
{

(−1)k+l kl, x ∈
(

1
k+1 ,

1
k

]
and y ∈

(
1

l+1 ,
1
l

]
0, x = 0 and y = 0

is gauge integrable over [0, 1] × [0, 1] with

1∫
0

1∫
0

f
(
x, y

)
dxdy =

∞∑
k=1

∞∑
l=1

(−1)k+l

(k + 1) (l + 1)
= (ln 2 − 1)2 .

Let us begin by noting that f is constant on the interval
(

1
k+1 ,

1
k

]
×

(
1

l+1 ,
1
l

]
and

1
k∫
1

k+1

1
l∫
1

l+1

f
(
x, y

)
dxdy = (−1)k+l kl

(1
k
−

1
k + 1

) (1
l
−

1
l + 1

)

=
(−1)k+l

(k + 1) (l + 1)
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with this fact in mind, we need to find a gauge such that the union of the intervals with tags in
(

1
k+1 ,

1
k

]
×

(
1

l+1 ,
1
l

]
approximates

(
1

k+1 ,
1
k

]
×

(
1

l+1 ,
1
l

]
and also select appropriate numbers of the intervals

(
1

k+1 ,
1
k

]
×

(
1

l+1 ,
1
l

]
such that we

are granted an approximation to
∞∑

k=1

∞∑
l=1

(−1)k+1

(k+1)(l+1) . To this end, let ε > 0 and define our gauge by

γ (t, z) =


(

1
(k+1)(l+1) ,

(
1
kl +

ε
2kl·2l +

ε
2kl·2k +

ε2

4kl·2k+l

))
, t ∈

(
1

k+1 ,
1
k

]
and z ∈

(
1

l+1 ,
1
l

](
−
ε
4 ,
ε
4

)
, t = z = 0.

Now suppose that P =
{
(tk, [xk−1, xk]) and

(
zl,

[
yl−1, yl

])}m,n
k,l=1,1 is a γ2 − f ine partition of [0, 1] × [0, 1]. Let r and s

be the natural number satifying

1
r + 1

< x1 <
1
r

and
1

s + 1
< y1 <

1
s

.

Note that the tag for [0, x1] and
[
0, y1

]
must be t1 = 0 and z1 = 0 because no other value can tag an interval with a left

endpoint of 0. If we express the union of the intervals from P with tags in
(

1
k+1 ,

1
k

]
×

(
1

l+1 ,
1
l

]
as [ωk+1, ωk]× [ul+1,ul],

then

S
(

f ,P
)
=

r∑
k=1

s∑
l=1

(−1)k+l kl (ωk − ωk+1) (ul − ul+1) .

Since ω1 = 1, u1 = 1, 1
k+1 < ωk+1, and 1

l+1 < ul+1 for 1 ≤ k ≤ r and 1 ≤ l ≤ s,

1
k
≤ ωk <

1
k
+

ε

2k · 2k
and

1
l
≤ ul <

1
l
+
ε

2l · 2l

for 1 ≤ k ≤ r + 1 and 1 ≤ l ≤ s + 1. Therefore, for 1 ≤ k ≤ r and 1 ≤ l ≤ s we can use the fact that

kl
(

1
k
−

1
(k + 1)

) (1
l
−

1
l + 1

)
=

1
(k + 1) (l + 1)

to see that (
1

(k + 1)
−
ε
2

1
2k+l

) ( 1
l + 1

−
ε
2

1
2l+l

)
<

(
1

k + 1
−
ε
2

k
(k + 1) 2k+1

) (
1

l + 1
−
ε
2

k
(l + 1) 2l+1

)
=

(
k
(1

k
−

1
k + 1

)
− k

ε

2 (k + 1) 2k+1

) (
l
(1

l
−

1
l + 1

)
− l

ε

2 (l + 1) 2l+1

)
=

(
k
(

1
k
−

1
k + 1

−
ε

2 (k + 1) · 2k+1

)) (
l
(

1
l
−

1
l + 1

−
ε

2 (l + 1) 2l+1

))
= k

(
1
k
−

(
1

k + 1
+

ε

2 (k + 1) · 2k+1

))
l
(

1
l
−

(
1

l + 1
+

ε

2 (l + 1) · 2l+1

))
< k (ωk − ωk+1) l (ul − ul+1)

< k
(1

k
+

ε

2k · 2k
−

1
k + 1

)
l
(1

l
+
ε

2l · 2l
−

1
l + 1

)
=

( 1
k + 1

+
ε
2

1
2k

) ( 1
l + 1

+
ε
2

1
2l

)
.
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Hence,∣∣∣∣∣∣∣S (
f ,P

)
−

r,s∑
k,l=1,1

(−1)k+l

(k + 1) (l + 1)

∣∣∣∣∣∣∣ ≤
r,s∑

k,l=1,1

(
k (ωk − ωk+1) −

1
k + 1

) ((
l (ul − ul+1) −

1
l + 1

))
<

r∑
k=1

ε
2

1
2k

s∑
l=1

ε
2

1
2l
<

1
4
ε

As 1
r+1 < x1 < ε2 and 1

s+1 < y1 < ε2 ,∣∣∣∣∣∣∣
∞,∞∑

k,l=1,1

(−1)k+l

(k + 1) (l + 1)
−

r,s∑
k,l=1,1

(−1)k+l

(k + 1) (l + 1)

∣∣∣∣∣∣∣ < ε4 .
Hence,∣∣∣S (

f ,P
)
− (ln 2 − 1)2

∣∣∣ ≤ ∣∣∣∣∣∣∣S (
f ,P

)
−

r,s∑
k,l=1,1

(−1)k+l

(k + 1) (l + 1)

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣

r,s∑
k,l=1,1

(−1)k+l

(k + 1) (l + 1)
−

∞,∞∑
k,l=1,1

(−1)k+l

(k + 1) (l + 1)

∣∣∣∣∣∣∣
< ε

We conclude that f is gauge integrable over [0, 1] × [0, 1] with

1∫
0

1∫
0

f =
∞,∞∑

k,l=1,1

(−1)k+l

(k + 1) (l + 1)
= (ln 2 − 1)2 .

Now we shall consider the following generalization of bounded variation result in [2].

Definition 2.6. Let a, b, c, d ∈ R with a ≤ b and c ≤ d, and let f : [a, b] × [c, d]→ R be any function. Denote by R f
the subset of R consisting of finite sums of the form

m∑
i=1

∣∣∣ f (
xi, yi

)
− f

(
xi−1, yi−1

)∣∣∣ ,
where m ∈N and

(
x0, y0

)
, . . . ,

(
xm, ym

)
are any points in R2 satisfying

(a, c) =
(
x0, y0

)
≤

(
x1, y1

)
≤ · · · ≤

(
xn−1, yn−1

)
≤

(
xn, yn

)
= (b, d) .

If the set R f is bounded above, then f is said to be bounded variation. In this case, we denote the supremum of R f by
V

(
f
)
, and call it the total variation of f on [a, b] × [c, d].

The following new definition was presented by using Patterson’s result in [7].

Definition 2.7. A multidimensional function f
(
x, y

)
is of bounded variation provided that there exists a positive

integer B such that

∞,∞∫
x,y=1,1

∣∣∣ f (
x, y

)
− f

(
x − r, y − s

)∣∣∣ dxdy < B

where r and s = 0 and/or 1.

Let us now present the following notation.
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Definition 2.8. δ : I2 = [a, b] × [c, d]→ (0,∞) is a positive function we define an open interval valued function on
I2 by setting γ(t, z) = γ(t) · γ(z) = (t − δ(t), t + δ(t)) × (z − δ(z), z + δ(z)). If Ii, j = Ii · J j, where Ii = [i − λi + 1, i] and
J j =

[
j − µ j + 1, j

]
, then we can write ti ∈ Ii ⊂ γ(ti) instead of ti − δ < i − λi + 1 ≤ ti ≤ i < ti + δ and z j ∈ J j ⊂ γ(z j)

instead of z j − δ < j − µ j + 1 ≤ z j ≤ j < z j + δ. Let γ = γ(ti, j) = γ (ti) · γ
(
z j

)
∈ ∆G2 , and let f (x, y) be a real valued

multidimensional function which is measurable in the Gauge sense on (1,∞) × (1,∞) . Provided that
∫

f (x, y) and∫ ∣∣∣ f (
x, y

)∣∣∣ exist in the Gauge sense and

lim
ti,z j→∞

1

ξ
(
ti, j

) ti+δ(ti)∫
ti−δ(ti)

z j+δ(z j)∫
z j−δ(z j)

∣∣∣ f (x, y) − L
∣∣∣ dxdy = 0,

where ξ
(
ti, j

)
= ξ (ti) · ξ

(
z j

)
= [(ti + δ (ti)) − (ti − δ (ti))] ·

[(
z j + δ

(
z j

))
−

(
z j − δ

(
z j

))]
= 2ξ (ti) · 2δ

(
z j

)
= 4δ

(
ti, j

)
,

then we say that the function f (x, y) is double γ2−strongly summable to L with respect to Gauge. In this case, we
write

[
G, γ2

]
− lim f (x, y) = L.

This notion leads us to the following theorem.

Theorem 2.9. Let Ii, j = [ti − δ(ti), t + δ (ti)]×
[
z j − δ(z j), z j + δ

(
z j

)]
and [a, b]× [c, d] = ∪Ii, j with−∞ < a < b < ∞

and −∞ < c < d < ∞. If f
(
x, y

)
is γ2−strongly summable to L with respect to Gauge, then f

(
x, y

)
is γ2− summable

to L with respect to Gauge.

Proof. Let f
(
x, y

)
be a function on Ii, j = [ti − δ(ti), t + δ (ti)] ×

[
z j − δ(z j), z j + δ

(
z j

)]
. Given a partition

P =
{
[i − λi + 1, i] ×

[
j − µ j + 1, j

]}
of Ii, j, we are granted from the properties of Gauge integral that f is

absolutely integrable over Ii. Thus,
∣∣∣∫

I f1
∣∣∣ ≤ ∫

I

∣∣∣ f1∣∣∣. Since f
(
x, y

)
is double γ2−strongly summable to L with

respect to Gauge, we obtain the following:∣∣∣∣∣∣∣∣∣∣
t+δ(ti)∫
ti−δ(ti)

z j+δ(z j)∫
z j−δ(z j)

(
f
(
x, y

)
− L

)
dxdy

∣∣∣∣∣∣∣∣∣∣ ≤
t+δ(ti)∫
ti−δ(ti)

z j+δ(z j)∫
z j−δ(z j)

∣∣∣ f (
x, y

)
− L

∣∣∣ dxdy.

Moreover,

lim
ti→ξ(ti), z j→ξ(z j) and ||∆T1 ||→0, ||∆T2 ||→0

∑
i

∑
j

1

ξ
(
ti, j

) t+δ(ti)∫
ti−δ(ti)

z j+δ(z j)∫
z j−δ(z j)

∣∣∣ f (
x, y

)
− L

∣∣∣ dx = 0

where ||∆T1|| = ||ti − ξ (ti)|| and ||∆T2|| =
∣∣∣∣∣∣∣∣z j − ξ

(
z j

)∣∣∣∣∣∣∣∣. Hence f
(
x, y

)
is γ2−summable to L with respect to

Gauge.

We conclude this paper with the following connection between double strongly summability in the
Lebesgue and Gauge sense.

Theorem 2.10. Letλ = (λn) ∈ ∆,µ =
(
µm

)
∈ ∆,γ(ti) ∈ ∆G,γ(z j) ∈ ∆G, and Ii, j =

[
ti − δ(ti), ti + δ (ti) × z j − δ(z j), z j + δ

(
z j

)]
and [a, b] × [c, d] = ∪Ii, j with −∞ < a < b < ∞ and −∞ < c < d < ∞. Additionally, let f (x, y) be a real valued
function in the Gau1e sense in the interval (1,∞) × (1,∞), then

1.
[
V, λ, µ

]
⊂

[
G, γ2

]



R. Savaş, R. F. Patterson / Filomat 36:17 (2022), 5875–5883 5882

2. If f (x, y) is bounded variation and f is double γ2−strongly summable to L with respect to Gauge
sense over every measurable subset of[

ti − δ(ti), t + δ (ti) × z j − δ(z j), z j + δ
(
z j

)]
,

then f is [V]2 − lim f (x, y) = L.

Proof. 1. Since all multidimensional functions that are integrable in the Lebesgue sense are also integrable
in the Gauge sense, if

1
λm,n

∫
(x,y)∈Im,n

∣∣∣ f (x, y) − L
∣∣∣ dxdy

exists then

1

4δ
(
ti, j

) ∫
(x,y)∈γ(ti, j)

∣∣∣ f (x, y) − L
∣∣∣ dxdy

exists. Therefore
[
V, λ, µ

]
− lim f (x, y) = L implies

[
G, γ2

]
− lim f (x, y) = L.

In a manner similar to [11] we consider the following example,

f (x, y) =
{

2xy cos
(
π2

x2 y2

)
+

(
2π2

xy

)
sin

(
π2

x2 y2

)
, 0 < x ≤ 1 and 0 < y ≤ 1

0, x = 0 and y = 0.

f is neither Riemann integral nor Lebesgue integral. However, f is integrable in the Gauge sense. i.e
f (x, y) <

[
V, λ, µ

]
.

2. If f (x, y) be a bounded variation, since
8δ(ti, j)

mn ≤ 1 for all (m,n), we obtain the following

∣∣∣∣∣∣∣∣ 1
mn

m∫
1

n∫
1

(
f (x, y) − L

)
dxdy

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣

1
mn

m−λm∫
1

n−µn∫
1

(
f (x, y) − L

)
dxdy +

1
mn

∫
(x,y)∈Im,n

(
f (x, y) − L

)
dxdy

∣∣∣∣∣∣∣∣∣∣
≤

1
mn

n−λn∫
1

n−µn∫
1

∣∣∣ f (x, y) − L
∣∣∣ dxdy +

1
mn

∫
(x,y)∈Im,n

∣∣∣ f (x, y) − L
∣∣∣ dxdy

≤
2

mn

∫
(x,y)∈Im,n

∣∣∣ f (x, y) − L
∣∣∣ dxdy

≤
2

8δ (ti)

∫
(x,y)∈γ(ti, j)

∣∣∣ f (x, y) − L
∣∣∣ dxdy

=
1

4δ
(
ti, j

) ∫
(x,y)∈γ(ti, j)

∣∣∣ f (x, y) − L
∣∣∣ dxdy.

Since
[
G, γ2

]
− lim f (x, y) = L, we can say that [V]2 − lim f (x, y) = L.
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