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Abstract. Using Petryshyn’s fixed point theorem, we show the existence of solution to fractional inte-
gral equations, including generalized proportional and Caputo–Fabrizio fractional integrals. We also use
appropriate examples to support our findings.

1. Introduction

Fractional calculus is a branch of mathematical analysis which really examines many possible interpre-
tations for representing the real number powers or complex number powers of the differentiation operator
U. Here, the term Uθ(z) is equal to d

dzθ(z), as well as the integration operator Oθ(z) should be
∫ z

0 θ(p)dp
and for operators such as this, and even the implementation of a calculus that extrapolates the conventional
calculus.

There are some types of fractional operators such as Grünwald–Letnikov, Osler, Liouville, Caputo,
Hadamard, Marchaud, Riesz, Cossar, Weyl, Coimbra, Jumarie, Hilfer, Davidson-Essex, Chen, Caputo–
Fabrizio and Atangana–Baleanu [8], [31] and [35], but, the most applicable fractional operators are the
Riemann-Liouville and Caputo integro-differential operators.

In applied sciences and applied analysis, a fractional derivative is a derivative of any real or complex
non-integer order. The initial breakthrough was made in a letter written by Leibniz, and it was completed
by Antoine de l’Hopital [23] in the 16th century. Fractional calculus was incorporated in one of Abel’s
earliest works [3], where these aspects can be perceived: the concept of fractional order integration and
differentiation, the strictly inverse relation between them, the fact that fractional order differentiation and
integration can be interpreted as the same unified operation, and thereby the coherent form for ambiguous
real order differentiation and integration. Over the nineteenth and early twentieth centuries, the methods
and interpretations of fractional calculus evolved dramatically, and numerous researchers contributed to
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the concepts of fractional derivatives and integrals. The functions θ(U), which are even more familiar than
powers, are described in the functional calculus in spectral theory in terms of functional analysis. The
pseudo-differential operators principle also allows for the consideration of the powers ofU.

The pseudo-differential operators principle also allows the powers ofU to be taken into account. The
operators that emerge are expressions of singular integral operators. As a result, there are a number of
well-known theories in which fractional calculus can be explored.

The functional integral equations (FIEs) are making notable results to many real-life issues. Through
using sorts of integral equations and fractional differentials, many problems can be represented in tech-
nology, engineering, astronomy, and other fields (we refer the reader to [1, 2, 14, 34] and many references
therein).

Kazemi and Ezzati [25] used Petryshyn’s fixed point theorem to investigate the existence of the solution
of nonlinear functional integral equations (see, also [19, 24] for some works related to this fixed point
theorem). Many researchers have solved many forms of integral equations to overcome various real-life
situations with the help of fixed point theorems and measure of noncompactness. (e.g, one can see [4]–[10],
[11–13, 17, 18, 27] and references among them).

The following list of abbreviations should be considered:

(a) generalized proportional fractional (GPF),
(b) Caputo-Fabrizio fractional integral (CFFI),
(c) fixed point theorems (FPTs),
(d) measure of noncompactness (MNC).

In this article, we have the following assumptions:

• E: A Banach space with the norm ∥ . ∥E;
• B[θ, κ]: A closed ball with center θ and radius κ in E;
• Bρ a closed ball around the origin in a general Banach space E.
• Ā: the closure of A;
• ConvA: the convex closure of A;
• NBE: the family of all nonempty and bounded subsets of E;
• RCE: the subfamily consisting of all relatively compact sets;
• R the set of real numbers;
• R+ = [0,∞) .

Now, we present the concept of measure of noncompactness. Foe more details, see the references [15],
[20], [28], [29] and [32].

Definition 1.1. [26] A mapping ξ : NBE → R+ is said to be an MNC in E if:
(i) Y ∈ NBE and ξ(Y) = 0 imply Y is precompact.

(ii) ker ξ = {Y ∈ NBE : ξ (Y) = 0} is nonempty and ker ξ ⊂ RCE.
(iii) Y ⊆ Y1 =⇒ ξ (Y) ≤ ξ (Y1) .
(iv) ξ

(
Ȳ
)
= ξ (Y) .

(v) ξ (ConvY) = ξ (Y) .
(vi) ξ (σY + (1 − σ) Y1) ≤ σξ (Y) + (1 − σ) ξ (Y1) for all σ ∈ [0, 1] .

(vii) if Yl ∈ NBE, Yl = Ȳl, Yl+1 ⊂ Yl for all l ∈N and lim
l→∞

ξ (Yl) = 0 then Y∞ =
∞⋂

l=1
Yl , ∅.

Definition 1.2. [30] Let F : E→ E be a continuous function so that F(B) is bounded for all bounded subsets B ⊂ E,
and ξ(FB) ≤ kξ(B) for some k ∈ (0, 1). Then F is called a k-set contraction. If ξ(FB) < ξ(B), where ξ(B) > 0, then F
is called a densifying (condensing) map. A k-set contraction is condensing, but the converse is not true.

Theorem 1.3. [33] Let F : Bρ → E be a condensing function so that if F(z) = kz for some z ∈ ∂Bρ, then k ∈ (0, 1).
Then f ix(F) in Bρ is nonempty, where f ix(F) is the set of fixed points of F.
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1.1. Measure of noncompactness on C([0, 1])
Consider the space E = C(I) which consists of the set of real continuous functions on I, where I = [0, 1].

Then E is a Banach space with the norm

∥ w ∥= sup {|w(s)| : s ∈ I} , w ∈ E.

Let A(, ∅) ⊆ E be fixed and bounded. For an arbitrary w ∈ A and arbitrary ϵ > 0, denote by Q(w, ϵ) the
modulus of the continuity of w, i.e.,

Q(w, ϵ) = sup {|w(s1) − w(s2)| : s1, s2 ∈ I, |s1 − s2| ≤ ϵ} .

Further, we define

Q(A, ϵ) = sup {Q(w, ϵ) : w ∈ A} and Q0(A) = lim
ϵ→0

Q(A, ϵ).

It is well-known that the function Q0 is a MNC in E such that the HausdorffMNCχ is given byχ(A) = 1
2 Q0(A)

(see[16]).

2. Main Result

For ρ ∈ (0, 1] and α ∈ Cwith Re(α) > 0, we define the left GPF integral of Θ by [22]

(aIα,ρΘ) (t) =
1

ραΓ(α)

∫ t

a
e

(ρ−1)(t−τ)
ρ (t − τ)α−1Θ(τ)dτ.

In [36], the Caputo-Fabrizio fractional integral of function Θ is defined by

CF
0 Iσs [Θ(s)] =

1 − σ
M(σ)

Θ(s) +
σ

M(σ)

∫ s

0
Θ(η)dη, s ≥ 0,

where 0 < σ < 1, Θ ∈ H1[0, τ], η > 0 and M be any smooth function with M(0) = M(1) = 1 and σ(0) > 0 for
all 0 < σ < 1.
In this part, we study the following fractional integral equation

Θ(s) = D
(
s, l(s,Θ(s)), (0Iα,ρΘ) (s), CF

0 Iσs [Θ(s)]
)
, (1)

where 0 ≤ σ ≤ 1, α > 1 and s ∈ I = [0, 1].
Let Br = {Θ ∈ E :∥ Θ ∥≤ r} .
We consider the following assumptions to solve the Eq. (1):

(A) D : I ×R3
→ R, l : I ×R→ R are continuous and there exist constants β1, β2, β3, β4 ≥ 0 satisfying∣∣∣D(s, l, I1, I2) −D(s, l̄, Ī1, Ī2)

∣∣∣ ≤ β1

∣∣∣l − l̄
∣∣∣ + β2

∣∣∣I1 − Ī1

∣∣∣ + β3

∣∣∣I2 − Ī2

∣∣∣ , s ∈ I, l, I1, I2, l̄, Ī1, Ī2 ∈ R

and

|l(s, J1) − l(s, J2)| ≤ β4 |J1 − J2| , J1, J2 ∈ R.

Also, |D(s, 0, 0, 0)| = 0 and l(s, 0) = 0 for all s ∈ I.
(B) There exists r > 0 such that

D̄ = sup {|D(s, l, I1, I2)| : s ∈ I, l ∈ [−L,L], I1 ∈ [−KGPF,KGPF], I2 ∈ [−KCF,KCF]} ≤ r,

where

L = sup {|l(s,Θ)| : s ∈ I, Θ ∈ [−r, r]} ,
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KGPF = sup {|(0Iα,ρΘ) (s)| : s ∈ I,Θ ∈ [−r, r]} ,

KCF = sup
{∣∣∣CF

0 Iσs [Θ(s)]
∣∣∣ : s ∈ I,Θ ∈ [−r, r]

}
and

M = sup
0<σ<1

1
|M(σ)|

.

(C) There exists a positive solution r of the inequality

β1β4r +
β2r

ραΓ(α + 1)
.e

(ρ−1)
ρ + 2Mβ3r ≤ r,

and β3M < 1.

Theorem 2.1. If conditions from (A)-(C) hold, then the Eq. (1) has a solution in E = C(I).

Proof. Let the operator A : E→ E be defined by

(AΘ)(s) = D
(
s, l(s,Θ(s)), (0Iα,ρΘ) (s), CF

0 Iσs [Θ(s)]
)
.

Step 1: We prove that the function A maps Br into Br. Let Θ ∈ Br. We have

|(AΘ)(s)|

≤

∣∣∣∣D (s, l(s,Θ(s)), (0Iα,ρΘ) (s), CF
0 Iσs [Θ(s)]

)
−D (s, 0, 0, 0)

∣∣∣∣ + |∆ (s, 0, 0, 0)|

≤ β1 |l (s,Θ(s)) − 0| + β2 |(0Iα,ρΘ) (s) − 0| + β3

∣∣∣CF
0 Iσs [Θ(s)] − 0

∣∣∣
≤ β1β4 |Θ(s)| + β2 |(0Iα,ρΘ) (s)| + β3

∣∣∣CF
0 Iσs [Θ(s)]

∣∣∣ .
Also,

|(0Iα,ρΘ) (s)|

=

∣∣∣∣∣ 1
ραΓ(α)

∫ s

0
e

(ρ−1)(s−τ)
ρ (s − τ)α−1Θ(τ)dτ

∣∣∣∣∣
≤

1
ραΓ(α)

∫ s

0
e

(ρ−1)(s−τ)
ρ (s − τ)α−1

|Θ(τ)| dτ

≤
re

(ρ−1)
ρ

ραΓ(α)

∫ s

0
(s − τ)α−1dτ

≤
re

(ρ−1)
ρ

ραΓ(α + 1)

and ∣∣∣CF
0 Iσs [Θ(s)]

∣∣∣
≤

∣∣∣∣∣1 − σM(σ)
Θ(s) +

σ
M(σ)

∫ s

0
Θ(η)dη

∣∣∣∣∣
≤
|1 − σ|
|M(σ)|

|Θ(s)| +
|σ|
|M(σ)|

∫ s

0

∣∣∣Θ(η)
∣∣∣ dη

≤ 2Mr.
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Hence, ∥ Θ ∥< r gives

∥ A ∥≤ β1β4r +
β2r

ραΓ(α + 1)
.e

(ρ−1)
ρ + 2β3Mr ≤ r.

Due to the assumption (C), A maps Br into Br.
Step 2: We prove that A is continuous on Br. Let ϵ > 0 and Θ, Θ̄ ∈ Br such that ∥ Θ − Θ̄ ∥< ϵ. We have

∣∣∣(AΘ) (s) −
(
AΘ̄
)

(s)
∣∣∣

≤

∣∣∣∣D (s, l(s,Θ(s)), (0Iα,ρΘ) (s), CF
0 Iσs [Θ(s)]

)
−D
(
s, l(s, Θ̄(s)),

(
0Iα,ρΘ̄

)
(s), CF

0 Iσs
[
Θ̄(s)
])∣∣∣∣

≤ β1

∣∣∣l(s,Θ(s)) − l(s, Θ̄(s))
∣∣∣ + β2

∣∣∣(0Iα,ρΘ) (s) −
(

0Iα,ρΘ̄
)

(s)
∣∣∣ + β3

∣∣∣CF
0 Iσs [Θ(s)] −CF

0 Iσs
[
Θ̄(s)
]∣∣∣ .

Also,

∣∣∣(0Iα,ρΘ) (s) −
(

0Iα,ρΘ̄
)

(s)
∣∣∣

=

∣∣∣∣∣ 1
ραΓ(α)

∫ s

0
e

(ρ−1)(s−τ)
ρ (s − τ)α−1 {Θ(τ) − Θ̄(τ)

}
dτ
∣∣∣∣∣

≤
1

ραΓ(α)

∫ s

0
e

(ρ−1)(s−τ)
ρ (s − τ)α−1

∣∣∣Θ(τ) − Θ̄(τ)
∣∣∣ dτ

<
ϵe

(ρ−1)
ρ

ραΓ(α + 1)
,

and

∣∣∣CF
0 Iσs [Θ(s)] −CF

0 Iσs
[
Θ̄(s)
]∣∣∣

=

∣∣∣∣∣1 − σM(σ)
(
Θ(s) − Θ̄(s)

)
+

σ
M(σ)

∫ s

0

(
Θ(η) − Θ̄(η)

)
dη
∣∣∣∣∣

≤
|1 − σ|
|M(σ)|

∣∣∣Θ(s) − Θ̄(s)
∣∣∣ + σ

|M(σ)|

∫ s

0

∣∣∣Θ(η) − Θ̄(η)
∣∣∣ dη

≤ 2Mϵ.

Hence, ∥ Θ − Θ̄ ∥< ϵ gives

∣∣∣(AΘ) (s) −
(
AΘ̄
)

(s)
∣∣∣ < β1β4ϵ +

β2ϵe
(ρ−1)
ρ

ραΓ(α + 1)
+ 2β3Mϵ.

As ϵ→ 0, we get
∣∣∣(AΘ) (s) −

(
AΘ̄
)

(s)
∣∣∣→ 0. This shows that A is continuous on Br.

Step 3: An estimate of χ with respect to Q0. Assume that ∅ , Ω ⊆ Br0 . Choose Θ ∈ Ω. Let ϵ > 0 be arbitrary
and let s1, s2 ∈ I such that |s2 − s1| ≤ ϵ and s2 ≥ s1.
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Now,

|(AΘ) (s2) − (AΘ) (s1)|

≤

∣∣∣∣D (s2, l(s2,Θ(s2)), (0Iα,ρΘ) (s2), CF
0 Iσs2

[Θ(s2)]
)
−D
(
s1, l(s1,Θ(s1)), (0Iα,ρΘ) (s1), CF

0 Iσs1
[Θ(s1)]

)∣∣∣∣
≤

∣∣∣∣D (s2, l(s2,Θ(s2)), (0Iα,ρΘ) (s2), CF
0 Iσs2

[Θ(s2)]
)
−D
(
s2, l(s2,Θ(s2)), (0Iα,ρΘ) (s2), CF

0 Iσs1
[Θ(s1)]

)∣∣∣∣
+
∣∣∣∣D (s2, l(s2,Θ(s2)), (0Iα,ρΘ) (s2), CF

0 Iσs1
[Θ(s1)]

)
−D
(
s2, l(s2,Θ(s2)), (0Iα,ρΘ) (s1), CF

0 Iσs1
[Θ(s1)]

)∣∣∣∣
+
∣∣∣∣D (s2, l(s2,Θ(s2)), (0Iα,ρΘ) (s1), CF

0 Iσs1
[Θ(s1)]

)
−D
(
s2, l(s1,Θ(s1)), (0Iα,ρΘ) (s1), CF

0 Iσs1
[Θ(s1)]

)∣∣∣∣
+
∣∣∣∣D (s2, l(s1,Θ(s1)), (0Iα,ρΘ) (s1), CF

0 Iσs1
[Θ(s1)]

)
−D
(
s1, l(s1,Θ(s1)), (0Iα,ρΘ) (s1), CF

0 Iσs1
[Θ(s1)]

)∣∣∣∣
≤ β3

∣∣∣CF
0 Iσs2

[Θ(s2)] −CF
0 Iσs1

[Θ(s1)]
∣∣∣ + β2 |(0Iα,ρΘ) (s2) − (0Iα,ρΘ) (s1)|

+ β1 |l(s2,Θ(s2)) − l(s1,Θ(s1))| +QD(I, ϵ),

where

QD(I, ϵ) = sup
{
|D(s2, l,H1,H2) −D(s1, l,H1,H2)| : |s2 − s1| ≤ ϵ; s1, s2 ∈ I;

l ∈ [−L,L]; H1 ∈ [−KGPF,KGPF]; H2 ∈ [−KCF,KCF]

}
.

Also,

Ql(I, ϵ) = sup {|l(s2,Θ(s2)) − l(s1,Θ(s1))| : s1, s2 ∈ I;Θ(s1),Θ(s2) ∈ [−r, r]}

and ∣∣∣CF
0 Iσs2

[Θ(s2)] −CF
0 Iσs1

[Θ(s1)]
∣∣∣ ≤ M|Θ(s2) −Θ(s1)| +M ∥ Θ ∥ (s2 − s1)

≤ MQ(Θ, ϵ) +Mrϵ,

and

|(0Iα,ρΘ) (s2) − (0Iα,ρΘ) (s1)|

=

∣∣∣∣∣ 1
ραΓ(α)

∫ s2

0
e

(ρ−1)(s2−τ)
ρ (s2 − τ)α−1Θ(τ)dτ −

1
ραΓ(α)

∫ s1

0
e

(ρ−1)(s1−τ)
ρ (s1 − τ)α−1Θ(τ)dτ

∣∣∣∣∣
≤

1
ραΓ(α)

∣∣∣∣∣∫ s2

0
e

(ρ−1)(s2−τ)
ρ (s2 − τ)α−1Θ(τ)dτ −

∫ s1

0
e

(ρ−1)(s1−τ)
ρ (s1 − τ)α−1Θ(τ)dτ

∣∣∣∣∣
≤

1
ραΓ(α)

∣∣∣∣∣∫ s2

0
e

(ρ−1)(s2−τ)
ρ (s2 − τ)α−1Θ(τ)dτ −

∫ s1

0
e

(ρ−1)(s2−τ)
ρ (s2 − τ)α−1Θ(τ)dτ

∣∣∣∣∣
+

1
ραΓ(α)

∣∣∣∣∣∫ s1

0
e

(ρ−1)(s2−τ)
ρ (s2 − τ)α−1Θ(τ)dτ −

∫ s1

0
e

(ρ−1)(s1−τ)
ρ (s1 − τ)α−1Θ(τ)dτ

∣∣∣∣∣
≤

1
ραΓ(α)

∫ s2

s1

e
(ρ−1)(s2−τ)

ρ (s2 − τ)α−1
|Θ(τ)| dτ

+
1

ραΓ(α)

∫ s1

0

∣∣∣∣∣(e (ρ−1)(s2−τ)
ρ (s2 − τ)α−1

− e
(ρ−1)(s1−τ)

ρ (s1 − τ)α−1
)
Θ(τ)
∣∣∣∣∣ dτ

≤
−e

(ρ−1)
ρ

ραΓ(α + 1)
∥ Θ ∥ (s2 − s1)α

+
∥ Θ ∥

ραΓ(α)

∫ s1

0

∣∣∣∣∣e (ρ−1)(s2−τ)
ρ (s2 − τ)α−1

− e
(ρ−1)(s1−τ)

ρ (s1 − τ)α−1
∣∣∣∣∣ dτ.
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As ϵ→ 0, then

s2 → s1,

|(0Iα,ρΘ) (s2) − (0Iα,ρΘ) (s1)| → 0

and ∣∣∣CF
0 Iσs2

[Θ(s2)] −CF
0 Iσs1

[Θ(s1)]
∣∣∣→MQ(Θ, ϵ).

Hence,

|(AΘ)(s2) − (AΘ)(s1)|

≤ β3

∣∣∣CF
0 Iσs2

[Θ(s2)] −CF
0 Iσs1

[Θ(s1)]
∣∣∣ + β2 |(0Iα,ρΘ) (s2) − (0Iα,ρΘ) (s1)| + β1Ql(I, ϵ) +QD(I, ϵ),

i.e.,

Q(AΘ, ϵ) ≤ β3

∣∣∣CF
0 Iσs2

[Θ(s2)] −CF
0 Iσs1

[Θ(s1)]
∣∣∣ + β2 |(0Iα,ρΘ) (s2) − (0Iα,ρΘ) (s1)| + β1Ql(I, ϵ) +QD(I, ϵ).

By the uniform continuity of l,D on I × [−r, r] and I × [−L,L] × [−KGPF,KGPF] × [−KCF,KCF], respectively, we
have Ql(I, ϵ)→ 0 and QD(I, ϵ)→ 0 as ϵ→ 0.
Taking sup

Θ∈Ω

as ϵ→ 0, we have

Q0(AΩ) ≤
[
β3M

]
Q0(Ω),

which shows that A is a condensing map by assumption (B).
Now, if Θ ∈ ∂Br and AΘ = kΘ then ∥ AΘ ∥= k ∥ Θ ∥= kr and by assumption (B),

|(AΘ)(s)| =
∣∣∣∣D (s, l(s,Θ(s)), (0Iα,ρΘ) (s), CF

0 Iσs [Θ(s)]
)∣∣∣∣ ≤ r, s ∈ I.

Hence, ∥ AΘ ∥≤ r which implies k ≤ 1.

Thus, by Petryshyn’s fixed point theorem, A has a fixed point inΩ ⊆ Br, i.e., equation (1) has a solution
in E.

Example 2.2. Consider the following equation:

Θ(s) =
Θ(s)

5 + s3 +

(
0I2, 2

3Θ
)

(s)

10
+

CF
0 I

1
3
s [Θ(s)]

10
, (2)

where s ∈ [0, 1] = I.

Here,(
0I2, 2

3Θ
)

(s) = −
9

4Γ(2)

∫ s

0
e

s−τ
2 (s − τ)Θ(τ)dτ,

and

CF
0 I

1
3
s [Θ(s)] =

2
3M( 1

3 )
Θ(s) +

1
3M( 1

3 )

∫ s

0
Θ(η)dη,

where M(σ) = 1 andM = 1.
Also, D(s, l,H1,H2) = l + H1

10 +
H2
10 and l(s,Θ) = Θ

5+s3 .
It is trivial that both D and l are continuous and

|l(s, J1) − l(s, J2)| ≤
|J1 − J2|

5
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and ∣∣∣D(s, l,H1,H2) −D(s, l̄, H̄1, H̄2)
∣∣∣ ≤ ∣∣∣l − l̄

∣∣∣ + 1
10

∣∣∣H1 − H̄1

∣∣∣ + 1
10

∣∣∣H2 − H̄2

∣∣∣ .
Therefore, β1 = 1, β2 =

1
10 , β3 =

1
10 and β4 =

1
5 .

It is obvious that

|D(s, 0, 0, 0)| = 0 and l(s, 0) = 0.

If ∥ Θ ∥≤ r, then

KGPF = r, KCF = 2r, and L =
r
5
.

Further,

|D(s, l,H1,H2)| ≤
r
5
+

1
10
{r} +

2r
10
= (0.5) r ≤ r.

If we choose r = 2, then

L =
2
5
, KCF = 4 and KGPF = 2

which gives

D̄ ≤ 2.

We observe that all the assumptions from (A)−(C) of Theorem 2.1 are satisfied. By Theorem 2.1 we conclude
that the equation (2) has a solution in E.
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