On Banach Algebras Defined by Multipliers

Ali Ebadian ${ }^{\text {a }}$, Ali Jabbari ${ }^{\text {a }}$, Saeid Shams ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran

Abstract

In this paper, we investigate a Banach algebra A_{T}, where A is a Banach algebra and T is a left (right) multiplier on A. We study some concepts on A_{T} such as n-weak amenability, cyclic amenability, biflatness, biprojectivity and Arens regularity. For the group algebra $L^{1}(G)$ of an infinite compact group G, it is shown that there is a multiplier T such that $L^{1}(G)_{T}$ has not a bounded approximate identity. For $\ell^{1}(S)$, where S is a regular semigroup with a finite number of idempotents, we show that there is a multiplier T such that Arens regularity of $\ell^{1}(S)_{T}$ implies that S is compact.

1. Introduction

Let A be a Banach algebra and $T \in \mathcal{B}(A)$, where $\mathcal{B}(A)$ is the set of all bounded linear maps on A. Then T is called a left (right) multiplier of A if,

$$
T(a b)=T(a) b \quad(T(a b)=a T(b)) \quad(a, b \in A)
$$

The set of all left (right) multipliers on a Banach algebra A is denoted by $\mathcal{M}_{l}(A)\left(\mathcal{M}_{r}(A)\right)$. An operator $T \in \mathcal{B}(A)$ is called a multiplier if

$$
T(a b)=T(a) b=a T(b) \quad(a, b \in A)
$$

The set of all multipliers on a Banach algebra A is denoted by $\mathcal{M}(A)$. Let A be a Banach algebra and $T \in \mathcal{M}(A)$. A Banach algebra related to A and T is defined in $[20,21]$ and it is denoted by A_{T} with the following multiplication:

$$
a \circ b=a T(b)
$$

for all $a, b \in A$, where $T \in \mathcal{B}(A)$. The norm on A_{T} is a norm that is equivalent with the original norm on A i.e., $\|\cdot\|$ which defined as follows:

$$
\|a\|_{T}=\|a\|\|T\| \quad(a \in A)
$$

Some basic results depending on algebraic and analytical properties have been studied in [19]. In this paper, we replace " \bullet " instead of " \circ ", because we use this notation for a combination of maps. Some results related to the first module cohomology, pseudo amenability, Johnson pseudo-contractibility and module amenability of the above defined Banach algebra A_{T} are studied in [24, 27].

[^0]Let A be a Banach algebra, and let X be a Banach A-bimodule. A derivation from A into X is a linear $\operatorname{map} D: A \longrightarrow X$ such that

$$
D(a b)=a \cdot D(b)+D(a) \cdot b
$$

for all $a, b \in A$. The set of derivations from A into X is denoted by $\mathcal{Z}^{1}(A, X)$; which is a linear subspace of $\mathcal{B}(A, X)$, the space of all bounded linear maps from A into X. If $A=X$, then we write $\mathcal{B}(A)$. For $x \in X$, set $D_{x}: A \longrightarrow X, a \mapsto a \cdot x-x \cdot a$. Derivations of this form are called inner derivations, and an inner derivation D_{x} is implemented by x. The set of inner derivations from A into X is a linear subspace $\mathcal{N}^{1}(A, X)$ of $\mathcal{Z}^{1}(A, X)$. The quotient space $\mathcal{H}^{1}(A, X)=\mathcal{Z}^{1}(A, X) / \mathcal{N}^{1}(A, X)$ is called the first Hochschild cohomology group of A with coefficients in X.

The concept of amenability for Banach algebras was introduced by Johnson in 1972 [17]. A Banach algebra A is called amenable if $\mathcal{H}^{1}\left(A, X^{*}\right)=\{0\}$ for any A-bimodule X. An interesting result that Johnson proved stating that $L^{1}(G)$ is amenable if and only if G is amenable (G is a locally compact group).

Weak amenability of Banach algebras was introduced by Bade et al. in [4]. A Banach algebra A is called weakly amenable if $\mathcal{H}^{1}\left(A, A^{*}\right)=\{0\}$. Let $n \in \mathbb{N}$; a Banach algebra A is called n-weakly amenable if $\mathcal{H}^{1}\left(A, A^{(n)}\right)=\{0\}$. Dales, Ghahramani and Grønbæk brought the concept of n-weak amenability of Banach algebras in [8].

Let A be Banach algebra. Regarding A as a Banach A-bimodule, the operation $\pi: A \times A \rightarrow A$ extends to $\pi^{* * *}$ and $\pi^{t * * t t}$ defined on $A^{* *} \times A^{* *}$. These extensions are known as the first (left) and the second (right) Arens products, respectively, and with each of them, the second dual space $A^{* *}$ becomes a Banach algebra. The first (left) Arens product of $a^{\prime \prime}, b^{\prime \prime} \in A^{* *}$ shall be simply indicated by $a^{\prime \prime} \square b^{\prime \prime}$ and defined by the following three steps:

$$
\left\langle a^{\prime} a, b\right\rangle=\left\langle a^{\prime}, a b\right\rangle,\left\langle a^{\prime \prime} a^{\prime}, a\right\rangle=\left\langle a^{\prime \prime}, a^{\prime} a\right\rangle,\left\langle a^{\prime \prime} \square b^{\prime \prime}, a^{\prime}\right\rangle=\left\langle a^{\prime \prime}, b^{\prime \prime} a^{\prime}\right\rangle
$$

for all $a, b \in A$ and $a^{\prime} \in A^{*}$. Similarly, the second (right) Arens product of $a^{\prime \prime}, b^{\prime \prime} \in A^{* *}$ shall be indicated by $a^{\prime \prime} \diamond b^{\prime \prime}$ and defined as follows:

$$
\left\langle a a^{\prime}, b\right\rangle=\left\langle a^{\prime}, b a\right\rangle,\left\langle a^{\prime} a^{\prime \prime}, a\right\rangle=\left\langle a^{\prime \prime}, a a^{\prime}\right\rangle,\left\langle a^{\prime \prime} \diamond b^{\prime \prime}, a^{\prime}\right\rangle=\left\langle b^{\prime \prime}, a^{\prime} b^{\prime \prime}\right\rangle
$$

for all $a, b \in A$ and $a^{\prime} \in A^{*}$. If two multiplication coincide, then we say that A is Arens regular [7, 26].
Let A be a Banach algebra and T be an element of $\mathcal{M}(A)$. In this paper, we investigate n-weak amenability, cyclic amenability, biprojectivity and biflatness of A_{T}. We give a proof for the converse case of [19, Theorem 3.5], where we suppose that T is surjective (it is not invertible). As an interesting result, under some conditions on G and T, we show that $L^{1}(G)_{T}$ has not a bounded approximate identity. Finally, we prove that the main result of [19] for regular semigroups with finite idempotent elements. Moreover, we have asked some questions maybe are interesting for readers and future works.

2. n-Weak Amenability and Cyclic Amenability

In this section, for a Banach algebra A and $T \in \mathcal{M}(A)$, we study n-weak amenability of A_{T}. The dual of A_{T} carries a natural left and right A_{T}-module structure defined by

$$
\left\langle b, a^{*} \odot a\right\rangle=\left\langle a \bullet b, a^{*}\right\rangle, \quad\left\langle b, a \odot a^{*}\right\rangle=\left\langle b \bullet a, a^{*}\right\rangle,
$$

for all $a, b \in A_{T}$ and $a^{*} \in A_{T}^{*}$. We start with the following Lemmas:
Lemma 2.1. [19, Lemma 2.3] Let A be a Banach algebra and let T be invertible. Then $T \in \mathcal{M}_{l}(A) \quad\left(T \in \mathcal{M}_{r}(A)\right)$ if and only if $T^{-1} \in \mathcal{M}_{l}(A) \quad\left(T^{-1} \in \mathcal{M}_{r}(A)\right)$.

Lemma 2.2. Let $T \in \mathcal{M}(A)$ and $\varphi: A_{T} \longrightarrow A$ by $\varphi(a)=T(a)$ for all $a \in A_{T}$.
(i) $T^{(n)}$ is an A-module morphism.
(ii) If T is invertible and $\alpha(a): A \longrightarrow A_{T}$ defined by $\alpha(a)=T^{-1}(a)$ for all $a \in A$, then $\varphi^{(2 n)}\left(\alpha(a) \odot y^{(2 n)}\right)=$ $a \cdot \varphi^{(2 n)}\left(y^{(2 n)}\right)$, and $\varphi^{(2 n)}\left(y^{(2 n)} \odot \alpha(a)\right)=\varphi^{(2 n)}\left(y^{(2 n)}\right) \cdot a$, for all $a \in A, y^{(2 n)} \in\left(A_{T}\right)^{(2 n)}$ and $n \in \mathbb{N}$.
(iii) If T is invertible and $\alpha(a): A \longrightarrow A_{T}$ defined by $\alpha(a)=T^{-1}(a)$ for all $a \in A$, then $\alpha^{(2 n+1)}\left(\alpha(a) \odot y^{(2 n+1)}\right)=$ $a \cdot \alpha^{(2 n+1)}\left(y^{(2 n+1)}\right)$, and $\alpha^{(2 n+1)}\left(y^{(2 n+1)} \odot \alpha(a)\right)=\alpha^{(2 n+1)}\left(y^{(2 n+1)}\right) \cdot a$, for all $a \in A, y^{(2 n+1)} \in\left(A_{T}\right)^{(2 n+1)}$ and $n \in \mathbb{N}$.

Proof. We prove the results by induction on n.
(i) For every $a, b \in A$ and $x \in A^{*}$, we have

$$
\begin{aligned}
\left\langle T^{*}(a \cdot x), b\right\rangle & =\langle a \cdot x, T(b)\rangle=\langle x, T(b) a\rangle=\langle x, T(b a)\rangle \\
& =\left\langle T^{*}(x), b a\right\rangle=\left\langle a \cdot T^{*}(x), b\right\rangle,
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle T^{*}(x \cdot a), b\right\rangle & =\langle x \cdot a, T(b)\rangle=\langle x, a T(b)\rangle=\langle x, T(a b)\rangle \\
& =\left\langle T^{*}(x), a b\right\rangle=\left\langle T^{*}(x) \cdot a, b\right\rangle .
\end{aligned}
$$

By the above argument, we have

$$
\begin{aligned}
\left\langle T^{* *}\left(a \cdot x^{(2)}\right), b\right\rangle & =\left\langle a \cdot x^{(2)}, T^{*}(b)\right\rangle=\left\langle x^{(2)}, T^{*}(b) \cdot a\right\rangle=\left\langle x^{(2)}, T^{*}(b \cdot a)\right\rangle \\
& =\left\langle T^{* *}\left(x^{(2)}\right), b \cdot a\right\rangle=\left\langle a \cdot T^{* *}\left(x^{(2)}\right), b\right\rangle,
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle T^{* *}\left(x^{(2)} \cdot a\right), b\right\rangle & =\left\langle x^{(2)} \cdot a, T^{*}(b)\right\rangle=\left\langle x^{(2)}, a \cdot T^{*}(b)\right\rangle=\left\langle x^{(2)}, T^{*}(a \cdot b)\right\rangle \\
& =\left\langle T^{* *}\left(x^{(2)}\right), a \cdot b\right\rangle=\left\langle T^{* *}\left(x^{(2)}\right) \cdot a, b\right\rangle,
\end{aligned}
$$

for every $a \in A, b \in A^{*}$ and $x^{(2)} \in A^{* *}$. Then for all $n \geq 1, a \in A$ and $x^{(n)} \in A^{(n)}$ we have

$$
T^{(n)}\left(a \cdot x^{(n)}\right)=a \cdot T^{(n)}\left(x^{(n)}\right), \quad \text { and } \quad T^{(n)}\left(x^{(n)} \cdot a\right)=T^{(n)}\left(x^{(n)}\right) \cdot a
$$

This shows that $T^{(n)}$ is an A-module morphism.
(ii) For all $a \in A, b \in A_{T}$ and $x^{*} \in A^{*}$,

$$
\begin{align*}
\left\langle b, \varphi^{*}\left(x^{*}\right) \odot \alpha(a)\right\rangle & =\left\langle\alpha(a) \bullet b, \varphi^{*}\left(x^{*}\right)\right\rangle=\left\langle\alpha(a) T(b), \varphi^{*}\left(x^{*}\right)\right\rangle \\
& =\left\langle\varphi(\alpha(a) T(b)), x^{*}\right\rangle=\left\langle T(\alpha(a) T(b)), x^{*}\right\rangle \\
& =\left\langle a T(b), x^{*}\right\rangle=\left\langle T(b), x^{*} \cdot a\right\rangle \\
& =\left\langle b, \varphi^{*}\left(x^{*} \cdot a\right)\right\rangle \tag{1}
\end{align*}
$$

and

$$
\begin{align*}
\left\langle b, \alpha(a) \odot \varphi^{*}\left(x^{*}\right)\right\rangle & =\left\langle b \bullet \alpha(a), \varphi^{*}\left(x^{*}\right)\right\rangle=\left\langle b a, \varphi^{*}\left(x^{*}\right)\right\rangle \\
& =\left\langle\varphi(b a), x^{*}\right\rangle=\left\langle T(b) a, x^{*}\right\rangle=\left\langle T(b), a \cdot x^{*}\right\rangle \\
& =\left\langle b, \varphi^{*}\left(a \cdot x^{*}\right)\right\rangle . \tag{2}
\end{align*}
$$

By (1) we have

$$
\begin{aligned}
\left\langle x^{*}, \varphi^{* *}\left(\alpha(a) \odot y^{* *}\right)\right\rangle & =\left\langle\varphi^{*}\left(x^{*}\right), \alpha(a) \odot y^{* *}\right\rangle=\left\langle\varphi^{*}\left(x^{*}\right) \odot \alpha(a), y^{* *}\right\rangle \\
& =\left\langle\varphi^{*}\left(x^{*} \cdot a\right), y^{* *}\right\rangle=\left\langle x^{*} \cdot a, \varphi^{* *}\left(y^{* *}\right)\right\rangle \\
& =\left\langle x^{*}, a \cdot \varphi^{* *}\left(y^{* *}\right)\right\rangle,
\end{aligned}
$$

for all $a \in A, y^{* *} \in\left(A_{T}\right)^{* *}$ and $x^{*} \in A^{*}$. This shows that $\varphi^{* *}\left(\alpha(a) \odot y^{* *}\right)=a \cdot \varphi^{* *}\left(y^{* *}\right)$, for all $a \in A$ and $y^{* *} \in\left(A_{T}\right)^{* *}$. Similarly by (2), we have $\varphi^{* *}\left(y^{* *} \odot \alpha(a)\right)=\varphi^{* *}\left(y^{* *}\right) \cdot a$, for all $a \in A$ and $y^{* *} \in\left(A_{T}\right)^{* *}$. Now, we extend the above results for $2 n$, where $n \geq 1$. Then

$$
\varphi^{(2 n)}\left(\alpha(a) \odot y^{(2 n)}\right)=a \cdot \varphi^{(2 n)}\left(y^{(2 n)}\right),
$$

and

$$
\varphi^{(2 n)}\left(y^{(2 n)} \odot \alpha(a)\right)=\varphi^{(2 n)}\left(y^{(2 n)}\right) \cdot a,
$$

for all $a \in A$ and $y^{(2 n)} \in\left(A_{T}\right)^{(2 n)}$.
(iii) For $a, b \in A$ and $x^{*} \in A_{T}^{*}$,

$$
\begin{align*}
\left\langle b, \alpha^{*}\left(\alpha(a) \odot x^{*}\right)\right\rangle & =\left\langle\alpha(b), \alpha(a) \odot x^{*}\right\rangle=\left\langle\alpha(b) \bullet \alpha(a), x^{*}\right\rangle \\
& =\left\langle\alpha(b a), x^{*}\right\rangle=\left\langle b, a \cdot \alpha^{*}\left(x^{*}\right)\right\rangle, \tag{3}
\end{align*}
$$

and

$$
\begin{align*}
\left\langle b, \alpha^{*}\left(x^{*} \odot \alpha(a)\right)\right\rangle & =\left\langle\alpha(b), x^{*} \odot \alpha(a)\right\rangle=\left\langle\alpha(a) \bullet \alpha(b), x^{*}\right\rangle \\
& =\left\langle\alpha(a b), x^{*}\right\rangle=\left\langle b, \alpha^{*}\left(x^{*}\right) \cdot a\right\rangle . \tag{4}
\end{align*}
$$

By (4)

$$
\begin{aligned}
\left\langle x^{*}, \alpha(a) \odot \alpha^{* *}\left(y^{* *}\right)\right\rangle & =\left\langle x^{*} \odot \alpha(a), \alpha^{* *}\left(y^{* *}\right)\right\rangle=\left\langle\alpha^{*}\left(x^{*} \odot \alpha(a)\right), y^{* *}\right\rangle \\
& =\left\langle\alpha^{*}\left(x^{*}\right) \cdot a, y^{* *}\right\rangle=\left\langle\alpha^{*}\left(x^{*}\right), a \cdot y^{* *}\right\rangle \\
& =\left\langle x^{*}, \alpha^{* *}\left(a \cdot y^{* *}\right)\right\rangle,
\end{aligned}
$$

for all $a \in A, x^{*} \in A_{T}^{*}$ and $y^{* *} \in A^{* *}$. Similarly, by (3), $\alpha^{* *}\left(y^{* *}\right) \odot \alpha(a)=\alpha^{* *}\left(y^{* *} \cdot a\right)$, for all $a \in A$ and $y^{* *} \in A^{* *}$. Then

$$
\begin{aligned}
\left\langle x^{* *}, \alpha^{* * *}\left(\alpha(a) \odot y^{* * *}\right)\right\rangle & =\left\langle\alpha^{* *}\left(x^{* *}\right), \alpha(a) \odot y^{* * *}\right\rangle=\left\langle\alpha^{* *}\left(x^{* *}\right) \odot \alpha(a), y^{* * *}\right\rangle \\
& =\left\langle\alpha^{* *}\left(x^{* *} \cdot a\right), y^{* * *}\right\rangle=\left\langle x^{* *} \cdot a, \alpha^{* * *}\left(y^{* * *}\right)\right\rangle \\
& =\left\langle x^{* *}, a \cdot \alpha^{* * *}\left(y^{* * *}\right)\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle x^{* *}, \alpha^{* * *}\left(y^{* * *} \odot \alpha(a)\right)\right\rangle & =\left\langle\alpha^{* *}\left(x^{* *}\right), y^{* * *} \odot \alpha(a)\right\rangle=\left\langle\alpha(a) \odot \alpha^{* *}\left(x^{* *}\right), y^{* * *}\right\rangle \\
& =\left\langle\alpha^{* *}\left(a \cdot x^{* *}\right), y^{* * *}\right\rangle=\left\langle a \cdot x^{* *}, \alpha^{* * *}\left(y^{* * *}\right)\right\rangle \\
& =\left\langle x^{* *}, \alpha^{* * *}\left(y^{* * *}\right) \cdot a\right\rangle,
\end{aligned}
$$

for all $a \in A, x^{* *} \in A^{* *}$ and $y^{* * *} \in\left(A_{T}\right)^{* * *}$. By extending $n \geq 1$, we complete the proof.
Now, we are ready to investigate our main result in the current section.
Theorem 2.3. Let $T \in \mathcal{M}(A)$ and be invertible. Then A is n-weakly amenable if and only if A_{T} is n-weakly amenable.
Proof. Let A be n-weakly amenable and define $\varphi: A_{T} \longrightarrow A$ by $\varphi(a)=T(a)$ for all $a \in A_{T}$. Consider the ($2 n$)th transpose of $\varphi, \varphi^{(2 n)}: A_{T}^{(2 n)} \longrightarrow A^{(2 n)}$ that is a bijective linear map. Let $D: A_{T} \longrightarrow A_{T}^{(2 n)}$ be a continuous derivation. Define $\alpha: A \longrightarrow A_{T}$ by $\alpha(a)=T^{-1}(a)$ for all $a \in A$. Clearly, $\mathcal{D}:=\varphi^{(2 n)} \circ D \circ \alpha: A \longrightarrow A^{(2 n)}$ is a continuous map and α is a continuous epimorphism. Then Lemma 2.2(ii) implies that

$$
\begin{align*}
\mathcal{D}(a b) & =\varphi^{(2 n)} \circ D \circ \alpha(a b)=\varphi^{(2 n)}(D(\alpha(a b))) \\
& =\varphi^{(2 n)}(D(\alpha(a) \bullet \alpha(b))) \\
& =\varphi^{(2 n)}(\alpha(a) \odot D(\alpha(b)))+\varphi^{(2 n)}(D(\alpha(a)) \odot \alpha(b)) \\
& =a \cdot \varphi^{(2 n)}(D(\alpha(b)))+\varphi^{(2 n)}(D(\alpha(a))) \cdot b \\
& =a \cdot \mathcal{D}(b)+\mathcal{D}(a) \cdot b \tag{5}
\end{align*}
$$

for all $a, b \in A$. Thus, \mathcal{D} is a continuous derivation. Therefore, there is an element $x^{(2 n)} \in A^{(2 n)}$ such that $\mathcal{D}(a)=a \cdot x^{(2 n)}-x^{(2 n)} \cdot a$ for all $a \in A$. Since $\varphi^{(2 n)}$ is an epimorphism, there exists $y^{(2 n)} \in\left(A_{T}\right)^{(2 n)}$ such that $\varphi^{(2 n)}\left(y^{(2 n)}\right)=x^{(2 n)}$. Then by Lemma 2.2(ii) we have

$$
\begin{aligned}
\varphi^{(2 n)} \circ D(a) & =\varphi^{(2 n)} \circ D \circ \alpha(\varphi(a))=\varphi^{(2 n)} \circ D \circ \alpha(T(a)) \\
& =\mathcal{D}(T(a))=T(a) \cdot \varphi^{(2 n)}\left(y^{(2 n)}\right)-\varphi^{(2 n)}\left(y^{(2 n)}\right) \cdot T(a) \\
& =\varphi^{(2 n)}\left(\alpha(T(a)) \odot y^{(2 n)}\right)-\varphi^{(2 n)}\left(y^{(2 n)} \odot \alpha(T(a))\right) \\
& =\varphi^{(2 n)}\left(a \odot y^{(2 n)}-y^{(2 n)} \odot a\right),
\end{aligned}
$$

for every $a \in A_{T}$. This shows that $D(a)=a \odot y^{(2 n)}-y^{(2 n)} \odot a$, for every $a \in A_{T}$ (note that $\varphi^{(2 n)}$ is injective). Thus, A_{T} is $(2 n)$-weakly amenable. Therefore, it suffices to show that A_{T} is $(2 n+1)$-weakly amenable. Let $D: A_{T} \longrightarrow A_{T}^{(2 n+1)}$ be a continuous derivation. Consider the mapping $\mathcal{D}:=\alpha^{(2 n+1)} \circ D \circ \alpha: A \longrightarrow A^{(2 n+1)}$. Clearly, it is linear and continuous. Then Lemma 2.2(iii) implies that

$$
\begin{align*}
\mathcal{D}(a b) & =\alpha^{(2 n+1)} \circ D \circ \alpha(a b)=\alpha^{(2 n+1)}(D(\alpha(a b))) \\
& =\alpha^{(2 n+1)}(D(\alpha(a) \bullet \alpha(b))) \\
& =\alpha^{(2 n+1)}(\alpha(a) \odot D(\alpha(b)))+\alpha^{(2 n+1)}(D(\alpha(a)) \odot \alpha(b)) \\
& =a \cdot \alpha^{(2 n+1)}(D(\alpha(b)))+\alpha^{(2 n+1)}(D(\alpha(a))) \cdot b \\
& =a \cdot \mathcal{D}(b)+\mathcal{D}(a) \cdot b, \tag{6}
\end{align*}
$$

for all $a, b \in A$. Thus, \mathcal{D} is a continuous derivation. Thus, there exists $x^{(2 n+1)} \in A^{(2 n+1)}$ such that $\mathcal{D}(a)=a \cdot x^{(2 n)}-$ $x^{(2 n)} \cdot a$ for all $a \in A$. Since $\alpha^{(2 n+1)}$ is surjective, there exists $y^{(2 n+1)} \in\left(A_{T}\right)^{(2 n+1)}$ such that $\alpha^{(2 n+1)}\left(y^{(2 n+1)}\right)=x^{(2 n+1)}$. Again the item (iii) of Lemma 2.2 implies that

$$
\begin{aligned}
\alpha^{(2 n+1)} \circ D(a) & =\alpha^{(2 n+1)} \circ D \circ \alpha(\varphi(a))=\alpha^{(2 n+1)} \circ D \circ \alpha(T(a)) \\
& =\mathcal{D}(T(a))=T(a) \cdot \alpha^{(2 n+1)}\left(y^{(2 n+1)}\right)-\alpha^{(2 n+1)}\left(y^{(2 n+1)}\right) \cdot T(a) \\
& =\alpha^{(2 n+1)}\left(\alpha(T(a)) \odot y^{(2 n+1)}\right)-\alpha^{(2 n+1)}\left(y^{(2 n+1)} \odot \alpha(T(a))\right) \\
& =\alpha^{(2 n+1)}\left(a \odot y^{(2 n+1)}-y^{(2 n+1)} \odot a\right),
\end{aligned}
$$

for every $a \in A_{T}$. Injectivity of $\alpha^{(2 n+1)}$ implies that $D(a)=a \odot y^{(2 n+1)}-y^{(2 n+1)} \odot a$, for all $a \in A_{T}$ and this means that A_{T} is $(2 n+1)$-weakly amenable.

For the converse, Lemma 2.1 implies that $T^{-1} \in \mathcal{M}(A)$. Set $B=A_{T}$ and let $B_{T^{-1}}$ be a Banach algebra is defined by T^{-1} on B. By the argumentation above we get $B_{T^{-1}}$ is n-weakly amenable. But $B_{T^{-1}}=A$ and this means that A is n-weakly amenable.

Example 2.4. (i) Let G be a locally compact group and $T \in \mathcal{M}\left(L^{1}(G)\right)$ be invertible. By [5], $L^{1}(G)$ is n-weakly amenable, $n \in \mathbb{N}$, then by Theorem 2.3, $L^{1}(G)_{T}$ is n-weakly amenable.
(ii) A Rees semigroup has the form $S=\mathcal{M}(G, P, m, n)$; here $P=\left(a_{i j}\right) \in M_{n, m}(G)$, the collection of $n \times m$ matrices with components G, where G is a group and $m, n \in \mathbb{N}$. We denote the zero adjoined to G by o and by $G^{o}=G \cup\{o\}$. Let $(x)_{i j}$ be an element of $M_{m, n}\left(G^{o}\right)$ with x in the (i, j)-th place and o elsewhere, where $x \in G$, $1 \leq i \leq m$ and $1 \leq j \leq n$. By the following formula S becomes a semigroup $(x)_{i j}(y)_{k l}=\left(x a_{j k} y\right)_{i l}$, for $x, y \in G, 1 \leq i, k \leq m, 1 \leq j, l \leq n$. The semigroup $\mathcal{M}^{0}(G, P, m, n)$, where the elements of this semigroup are those of $\mathcal{M}(G, P, m, n)$, together with the element o, identified with the matrix that has o in each place (so that o is the zero of $\left.\mathcal{M}^{0}(G, P, m, n)\right)$, and the components of P are belong to G^{o}. The matrix P is called the sandwich matrix in each case. The semigroup $\mathcal{M}^{0}(G, P, m, n)$ is a Rees matrix semigroup with a zero over G. We write $\mathcal{M}^{0}(G, P, n)$ for $\mathcal{M}^{0}(G, P, n, n)$ in the case where $m=n$. As well as, P is called regular if every row and column contains at least one entry in G. The semigroup $\mathcal{M}^{0}(G, P, m, n)$ is regular as a semigroup if and only if the sandwich matrix P is regular. According to [9] we have

$$
\ell^{1}(S)=\mathcal{M}^{0}\left(\ell^{1}(G), P, m, n\right)=\mathcal{M}\left(\ell^{1}(G), P, m, n\right) \oplus \mathbb{C} \delta_{0} .
$$

Mewomo in [23], proved that $\ell^{1}(S)$ is $(2 k+1)$-weakly amenable where $S=\mathcal{M}^{0}(G, P, n)$, for $k, n \in \mathbb{N}$ and it is proved that $\ell^{1}(S)$ is k-weakly amenable, for all $k \in \mathbb{N}\left[16\right.$, Theorem 3.1]. Now, let $T \in \mathcal{M}\left(\ell^{1}(S)\right)$ be invertible. Then by Theorem 2.3, $\ell^{1}(S)_{T}$ is k-weakly amenable, for all $k \in \mathbb{N}$.
(iii) Let S be a semigroup such that has a zero 0 . Then S is called a 0 -simple if $S_{[2]} \neq\{0\}$ and the only ideals in S are $\{0\}$ and S. The semigroup S is called completely o-simple if it is o-simple and contains a primitive idempotent. By [16, Corollary 3.1], an infinite, completely o-simple semigroup S with finitely many idempotents, is n-weakly amenable. Then by Theorem 2.3, $\ell^{1}(S)_{T}$ is n-weakly amenable, for all $n \in \mathbb{N}$ and any invertible $T \in \mathcal{M}\left(\ell^{1}(S)\right)$.

Let A be a Banach algebra and $D: A \longrightarrow A^{*}$ be a derivation. Then D is called cyclic, if,

$$
\langle b, D(a)\rangle+\langle a, D(b)\rangle=0
$$

for all $a, b \in A$. The Banach algebra A is called cyclic amenable (resp. approximately cyclic amenable, see [28], for more details) if every cyclic continuous derivation $D: A \longrightarrow A^{*}$ is inner (resp. approximately inner).
Theorem 2.5. Let $T \in \mathcal{M}(A)$ and be invertible. Then A is cyclic (resp. approximately cyclic) amenable if and only if A_{T} is cyclic (resp. approximately cyclic) amenable.
Proof. We prove the cyclic amenability and the case approximately cyclic amenability is similar. Assume that A is cyclic amenable and define $\alpha: A \longrightarrow A_{T}$ by $\alpha(a)=T^{-1}(a)$ for all $a \in A$. Clearly, α is a continuous epimorphism. From (3) and (4) we have

$$
\begin{equation*}
\left\langle b, \alpha^{*}\left(\alpha(a) \odot a^{*}\right)\right\rangle=\left\langle b, a \cdot \alpha^{*}\left(a^{*}\right)\right\rangle \quad \text { and } \quad\left\langle b, \alpha^{*}\left(a^{*} \odot \alpha(a)\right)\right\rangle=\left\langle b, \alpha^{*}\left(a^{*}\right) \cdot a\right\rangle \tag{7}
\end{equation*}
$$

for all $a, b \in A$ and $a^{*} \in A_{T}^{*}$. Thus (7) implies that

$$
\begin{equation*}
\alpha^{*}\left(\alpha(a) \odot a^{*}\right)=a \cdot \alpha^{*}\left(a^{*}\right) \quad \text { and } \quad \alpha^{*}\left(a^{*} \odot \alpha(a)\right)=\alpha^{*}\left(a^{*}\right) \cdot a \text {, } \tag{8}
\end{equation*}
$$

for all $a \in A$ and $a^{*} \in A_{T}^{*}$. Let $D: A_{T} \longrightarrow A_{T}^{*}$ be a continuous cyclic derivation. Define $\mathcal{D}: A \longrightarrow A^{*}$ by $\mathcal{D}(a)=\alpha^{*} \circ D \circ \alpha(a)$ for all $a \in A$. Then (8) implies that \mathcal{D} is a continuous derivation. Also,

$$
\begin{aligned}
\langle b, \mathcal{D}(a)\rangle+\langle a, \mathcal{D}(b)\rangle & =\left\langle b, \alpha^{*} \circ D \circ \alpha(a)\right\rangle+\left\langle a, \alpha^{*} \circ D \circ \alpha(b)\right\rangle \\
& =\langle\alpha(b), D(\alpha(a))\rangle+\langle\alpha(a), D(\alpha(b))\rangle \\
& =0
\end{aligned}
$$

for all $a, b \in A$, because D is a cyclic derivation. This shows that \mathcal{D} is cyclic. Hence, there exists $x^{*} \in A^{*}$ such that $\mathcal{D}(a)=a \cdot x^{*}-x^{*} \cdot a$ for all $a \in A$. Since, α^{*} is bijective, there exists $y^{*} \in A_{T}^{*}$ such that $\alpha^{*}\left(y^{*}\right)=x^{*}$. Then by (8),

$$
\begin{align*}
\alpha^{*} \circ D(a) & =\alpha^{*} \circ D \circ \alpha(T(a))=\mathcal{D}(T(a)) \\
& =T(a) \cdot x^{*}-x^{*} \cdot T(a) \\
& =T(a) \cdot \alpha^{*}\left(y^{*}\right)-\alpha^{*}\left(y^{*}\right) \cdot T(a) \\
& =\alpha^{*}\left(\alpha(T(a)) \odot y^{*}\right)-\alpha^{*}\left(y^{*} \odot \alpha(T(a))\right) \\
& =\alpha^{*}\left(a \odot y^{*}-y^{*} \odot a\right) \tag{9}
\end{align*}
$$

for all $a \in A_{T}$. Then (9) implies that $D(a)=a \odot y^{*}-y^{*} \odot a$ for all $a \in A_{T}$, because, α^{*} is bijective.
Conversely, assume that A_{T} is cyclic amenable. Lemma 2.1 implies that $T^{-1} \in \mathcal{M}(A)$. Set $B=A_{T}$ and let $B_{T^{-1}}$ be a Banach algebra is defined by T^{-1} on B. By the discussion above, we get $B_{T^{-1}}$ is cyclic amenable. But $B_{T^{-1}}=A$ and this means that A is cyclic amenable.

Example 2.6. Let X be a nonempty set and \mathbb{F}_{X} be the free semigroup on X, then $\ell^{1}\left(\mathbb{F}_{X}\right)$ is cyclicly amenable [15]. Then for any invertible $T \in \mathcal{M}\left(\ell^{1}\left(\mathbb{F}_{X}\right)\right)$, Theorem 2.5 implies that $\ell^{1}\left(\mathbb{F}_{X}\right)_{T}$ is cyclicly amenable.

3. Biflatness and Biprojectivity

Let A be a Banach algebra and $\Delta_{A}: A \widehat{\otimes} A \longrightarrow A$ be a multiplication map for the Banach algebra A. Then A is called biprojective if Δ_{A} has a bounded right inverse which is an A-bimodule map. The Banach algebra A is biflat if the adjoint $\Delta_{A}^{*}: A^{*} \longrightarrow(\widehat{\otimes} A)^{*}$ has a bounded left inverse which is an A-bimodule map.
Lemma 3.1. Let A be a Banach algebra and $T \in \mathcal{M}_{l}(A)$. We have the following assertions:
(i) If $\varphi: A_{T} \longrightarrow A$ is define by $\varphi(a)=T(a)$ for all $a \in A_{T}$. Then $(\varphi \otimes \varphi)^{*} \circ \Delta_{A}^{*}=\Delta_{A_{T}}^{*} \circ \varphi^{*}$.
(ii) If T is invertible and $\alpha: A \longrightarrow A_{T}$ is defined by $\alpha(a)=T^{-1}(a)$ for all $a \in A$. Then $(\alpha \otimes \alpha)^{*} \circ \Delta_{A_{T}}^{*}=\Delta_{A}^{*} \circ \alpha^{*}$.

Proof. (i) For all $x, y \in A_{T}$ and $a^{*} \in A^{*}$,

$$
\begin{aligned}
\left\langle x \otimes y,(\varphi \otimes \varphi)^{*} \circ \Delta_{A}^{*}\left(a^{*}\right)\right\rangle & =\left\langle(\varphi \otimes \varphi)(x \otimes y), \Delta_{A}^{*}\left(a^{*}\right)\right\rangle \\
& =\left\langle\Delta_{A}(T(x) \otimes T(y)), a^{*}\right\rangle=\left\langle T(x) T(y), a^{*}\right\rangle \\
& =\left\langle T(x T(y)), a^{*}\right\rangle .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\left\langle x \otimes y, \Delta_{A_{T}}^{*} \circ \varphi^{*}\left(a^{*}\right)\right\rangle & =\left\langle\Delta_{A_{T}}(x \otimes y), \varphi^{*}\left(a^{*}\right)\right\rangle=\left\langle x \bullet y, \varphi^{*}\left(a^{*}\right)\right\rangle \\
& =\left\langle\varphi(x T(y)), a^{*}\right\rangle,
\end{aligned}
$$

for all $x, y \in A_{T}$ and $a^{*} \in A^{*}$. This shows that (i) holds.
(ii) From Section 2, we know that α is a continuous epimorphism. For all $x, y \in A$ and $a^{*} \in A_{T^{\prime}}^{*}$,

$$
\begin{aligned}
\left\langle x \otimes y,(\alpha \otimes \alpha)^{*} \circ \Delta_{A_{T}}^{*}\left(a^{*}\right)\right\rangle & =\left\langle(\alpha \otimes \alpha)(x \otimes y), \Delta_{A_{T}}^{*}\left(a^{*}\right)\right\rangle \\
& =\left\langle\Delta_{A_{T}}\left(T^{-1}(x) \otimes T^{-1}(y)\right), a^{*}\right\rangle=\left\langle T^{-1}(x) \bullet T^{-1}(y), a^{*}\right\rangle \\
& =\left\langle\alpha(x y), a^{*}\right\rangle .
\end{aligned}
$$

Also,

$$
\begin{aligned}
\left\langle x \otimes y, \Delta_{A}^{*} \circ \alpha^{*}\left(a^{*}\right)\right\rangle & =\left\langle\Delta_{A}(x \otimes y), \alpha^{*}\left(a^{*}\right)\right\rangle=\left\langle x y, \alpha^{*}\left(a^{*}\right)\right\rangle \\
& =\left\langle\alpha(x y), a^{*}\right\rangle,
\end{aligned}
$$

for all $x, y \in A$ and $a^{*} \in A_{T}^{*}$. Hence, (ii) holds.
Theorem 3.2. Let $T \in \mathcal{M}(A)$ and be invertible. Then A is biflat if and only if A_{T} is biflat
Proof. Define $\varphi: A_{T} \longrightarrow A$ by $\varphi(a)=T(a)$ and $\alpha: A \longrightarrow A_{T}$ by $\alpha(x)=T^{-1}(x)$ for all $a \in A_{T}$ and $x \in A$. We shall show that these maps are A_{T}-bimodule mappings. Consider A as a Banach A_{T}-bimodule with the following module actions: $a \cdot x=a \bullet x$ and $x \cdot a=x \bullet a$ for all $a \in A_{T}$ and $x \in A$. For all $a, b \in A_{T}$,

$$
\begin{align*}
\varphi(a \bullet b) & =T(a \bullet b)=T(a T(b))=a T(T(b))=a T(\varphi(b)) \\
& =a \bullet \varphi(b) \tag{10}
\end{align*}
$$

and

$$
\begin{align*}
\varphi(a \bullet b) & =T(a \bullet b)=T(a T(b))=T(a) T(b)=\varphi(a) T(b) \\
& =\varphi(a) \bullet b \tag{11}
\end{align*}
$$

Hence, (10) and (11) imply that φ is an A_{T}-bimodule. For all $a \in A_{T}$ and $x \in A$ we have

$$
\begin{align*}
\alpha(a \bullet x) & =T^{-1}(a \bullet x)=T^{-1}(a T(x))=a T^{-1}(T(x)) \\
& =a x . \tag{12}
\end{align*}
$$

On the other hand,

$$
\begin{equation*}
a \bullet \alpha(x)=a \bullet T^{-1}(x)=a T\left(T^{-1}(x)\right)=a x \tag{13}
\end{equation*}
$$

for all $a \in A_{T}$ and $x \in A$. Thus, (12) and (13) show that α is a left A_{T}-module map. Similarly, one can show that α is a right A_{T}-module map.

Assume that A is biflat, thus there is an A-bimodule map $\lambda_{A}:(A \widehat{\otimes} A)^{*} \longrightarrow A^{*}$ such that $\lambda_{A} \circ \Delta_{A}^{*}=i_{A^{*}}$. Define $\lambda_{A_{T}}:\left(A_{T} \widehat{\otimes} A_{T}\right)^{*} \longrightarrow A_{T}^{*}$ by $\lambda_{A_{T}}:=\varphi^{*} \circ \lambda_{A} \circ(\alpha \otimes \alpha)^{*}$ that is an A_{T}-bimodule map. Then by Lemma 2.1(ii) we have

$$
\begin{aligned}
\lambda_{A_{T}} \circ \Delta_{A_{T}}^{*} & =\varphi^{*} \circ \lambda_{A} \circ(\alpha \otimes \alpha)^{*} \circ \Delta_{A_{T}}^{*} \\
& =\varphi^{*} \circ \lambda_{A} \circ \Delta_{A}^{*} \circ \alpha^{*}=\varphi^{*} \circ \alpha^{*} \\
& =i_{A_{T}^{*}} .
\end{aligned}
$$

This shows that A_{T} is biflat.
Conversely, suppose that A_{T} is biflat, then there is an A_{T}-bimodule map $\lambda_{A_{T}}:\left(A_{T} \widehat{\otimes} A_{T}\right)^{*} \longrightarrow A_{T}^{*}$ such that $\lambda_{A_{T}} \circ \Delta_{A_{T}}^{*}=i_{A_{T}^{*}}$. For biflatness of A, there are two methods. The first case is similar to the proof of Theorem 2.5 i.e., set $B=A_{T}$, then $B_{T^{-1}}=A$. This implies that A is biflat. The second case is direct method. In this method we see A_{T} as a Banach A-bimodule with the left and right actions $a \cdot x=a \bullet x$ and $x \cdot a=x \bullet a$ for all $x \in A_{T}$ and $a \in A$. Then define an A-bimodule map $\lambda_{A}:(\widehat{A} A)^{*} \longrightarrow A^{*}$ by $\lambda_{A}:=\alpha^{*} \circ \lambda_{A_{T}} \circ(\varphi \otimes \varphi)^{*}$ and apply Lemma 2.1(i).

Theorem 3.3. Let $T \in \mathcal{M}(A)$ and be invertible. Then A is biprojective if and only if A_{T} is biprojective.
Proof. Similar to the previous Theorem, it is suffices to show that if A is biprojective, then A_{T} is biprojective. Assume that A is biprojective, then there is an A-bimodule map $\rho_{A}: A \longrightarrow A \widehat{\otimes} A$ such that $\Delta_{A} \circ \rho_{A}=i_{A}$. Define $\rho_{A_{T}}: A_{T} \longrightarrow A_{T} \widehat{\otimes} A_{T}$ by $\rho_{A_{T}}:=(\alpha \otimes \alpha) \circ \rho_{A} \circ \varphi$. Then by similar discussions in the proof of Theorem 3.2, $\rho_{A_{T}}$ is an A_{T}-bimodule map. Then it is easy to see that $\Delta_{A_{T}} \circ(\alpha \otimes \alpha)=\alpha \circ \Delta_{A}$. This implies that $\Delta_{A_{T}} \circ \rho_{A_{T}}=i_{A_{T}}$.

4. Arens Products and Bounded Approximate Identity

This section deals with the Arens products on the Banach algebras A and A_{T}. One of the main results in [19] is Theorem 3.5, author, in this result assumed that T is invertible. First, we show that the converse of [19, Theorem 3.5] is true, when T is surjective. Second, we give an example of a Banach algebra such as A_{T} that is defined by a multiplier T that has not a bounded approximate identity but A has a bounded approximate identity.

Let A be a Banach algebra, let \square and \diamond be the first and second Arens product on $A^{* *}$, respectively. Let $T \in \mathcal{M}(A)$, similar to A, let $\underline{\underline{ }}$ and $\underline{\nabla}$ be the first and second Arens product on $A_{T}^{* *}$, respectively.

Theorem 4.1. Let A be a Banach algebra and $T \in \mathcal{M}_{l}(A)$ is surjective. If A_{T} is Arens regular, then A is Arens regular.

Proof. We investigate the first Arens product and the second Arens product has a similar argument. Let $a^{* *}, b^{* *} \in A^{* *}$. Then there are nets $\left(a_{\alpha}\right),\left(b_{\beta}\right) \subseteq A$ such that $a_{\alpha} \xrightarrow{w^{*}} a^{* *}$ and $b_{\beta} \xrightarrow{w^{*}} b^{* *}$. Also, there is a net $\left(c_{\beta}\right) \subseteq A$ such that $T\left(c_{\beta}\right)=b_{\beta}$ for all β, because T is surjective. Then

$$
\begin{aligned}
a^{* *} \square b^{* *} & =w^{*}-\lim _{\alpha} w^{*}-\lim _{\beta} a_{\alpha} b_{\beta}=w^{*}-\lim _{\alpha} w^{*}-\lim _{\beta} a_{\alpha} T\left(c_{\beta}\right) \\
& =w^{*}-\lim _{\alpha} w^{*}-\lim _{\beta} a_{\alpha} \bullet c_{\beta}=w^{*}-\lim _{\beta} w^{*}-\lim _{\alpha} a_{\alpha} \bullet c_{\beta} \\
& =w^{*}-\lim _{\beta} w^{*}-\lim _{\alpha} a_{\alpha} T\left(c_{\beta}\right)=w^{*}-\lim _{\beta} w^{*}-\lim _{\alpha} a_{\alpha} b_{\beta} \\
& =a^{* *} \Delta b^{* *},
\end{aligned}
$$

as required.

Let A, A_{T} and $T \in M_{l}(A)$ be as the above. Let $\pi_{l}: A \times A_{T} \longrightarrow A_{T}$ be the left module action such that $\pi_{l}(a, b)=a \bullet b$ for all $a \in A$ and $b \in A_{T}$. Similarly, for the right module action, we denote this action by $\pi_{r}: A_{T} \times A \longrightarrow A_{T}$ with $\pi_{r}(b, a)=b \bullet a$ for all $a \in A$ and $b \in A_{T}$. It is easy to check that $\pi_{l}^{* * *}\left(a^{* *}, b^{* *}\right)=a^{* *} \square T^{* *}\left(b^{* *}\right)$ and $\pi_{r}^{* * *}\left(b^{* *}, a^{* *}\right)=T^{* *}\left(b^{* *}\right) \square a^{* *}$ for all $a^{* *}, b^{* *} \in A^{* *}$. The maps π_{l} and π_{r} are called Arens regular, if $\pi_{l}^{* * *}=\pi_{l}^{t * * t}$ and $\pi_{r}^{* * *}=\pi_{r}^{t * * t}$, respectively for more details see $[2,3,10]$. As a result of the above Theorem, we have the following:

Corollary 4.2. Let A be a Banach algebra and $T \in \mathcal{M}_{l}(A)$.
(i) If A is Arens regular, then the left and right module actions π_{l} and π_{r} are Arens regular.
(ii) If A_{T} is Arens regular and T is surjective, then the left and right module actions π_{l} and π_{r} are Arens regular.

Now, we investigate the second aim of the current section. We begin with the following result:
Lemma 4.3. Let A be a Banach algebra and $T \in \mathcal{M}(A)$. If $\left(A_{T}^{* *}, \underline{\square}\right)$ or $\left(A_{T}^{* *}, \underline{\diamond}\right)$ has an identity, then $\left(A^{* *}, \square\right)$ or $\left(A^{* *}, \diamond\right)$ has an identity.

Proof. Let E_{T} be an identity of ($A_{T}^{* *}$, 므). Then

$$
\begin{equation*}
a \square T^{* *}\left(E_{T}\right)=a \square E_{T}=a, \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
T^{* *}\left(E_{T}\right) \square a=T^{* *}\left(E_{T} \square a\right)=E_{T} \square T^{* *}(a)=E_{T} \square a=a \tag{15}
\end{equation*}
$$

for all $a \in A^{* *}$. Thus, $T^{* *}\left(E_{T}\right)$ is an identity for $\left(A^{* *}, \square\right)$. Similarly, one can show that $\left(A^{* *}, \diamond\right)$ has an identity, when $\left(A_{T}^{* *}, \underline{\diamond}\right)$ has an identity.

Let G be a locally compact group and $M(G)$ be the space of bounded regular Borel measures with the following norm:

$$
\|\mu\|=\int_{G} d|\mu|=|\mu|(G) \quad(\mu \in M(G))
$$

The Banach algebra $L^{1}(G)$ is a two-sided ideals of $M(G)$, consisting of all absolutely continuous measures with respect to a left Haar measure. We denote the space of all $f \in L^{1}(G)$ such that $f \geq 0$ by $L^{1}(G)^{+}$. Let $T \in \mathcal{M}\left(L^{1}(G)\right)$, Wendel proved that there is a unique regular (real or complex) measure μ of bounded variation such that T is given by $T(f)=\mu * f$, for all $f \in L^{1}(G)$ and $\|T\|=\|\mu\|$ [31, Theorem 1]. It is well-known that $L^{1}(G)$ has a bounded approximate identity. In [19] Laali studied the Arens regularity of $L^{1}(G)_{T}$, where $T: M(G) \longrightarrow M(G)$ is a left multiplier.
Theorem 4.4. Let G be an infinite compact group and $0 \neq \eta \in L^{1}(G)^{+}$with compact support. If $T: M(G) \longrightarrow M(G)$ is defined by $T=L_{\eta}$, then $L^{1}(G)_{T}$ has not a bounded approximate identity.
Proof. Assume towards a contradiction that $L^{1}(G)_{T}$ has a bounded approximate identity. Since G is compact, $L^{1}(G)_{T}$ is Arens regular [19, Theorem 4.4]. Thus $L^{1}(G)_{T}^{*}$ factors (on the left and right) [30, Theorem 3.1] and this implies that $L^{1}(G)_{T}^{* *}$ has an identity [22, Proposition 2.2]. By Lemma 4.3, $L^{1}(G)^{* *}$ has an identity. Again by [22, Proposition 2.2], $L^{1}(G)^{*}$ factors. This follows that $L^{1}(G)$ is unital and consequentially G is discrete. This means that G is finite, a contradiction.

The above Theorem gives some cohomological results related to the existence of bounded approximate identities as follows:

Corollary 4.5. Let G be an infinite compact group and $0 \neq \eta \in L^{1}(G)^{+}$with compact support. If $T: M(G) \longrightarrow M(G)$ is defined by $T=L_{\eta}$, then $L^{1}(G)_{T}$
(i) is not amenable.
(ii) is not contractible.
(iii) is not biflat.

Let \mathcal{A} be Banach algebra, I and J be arbitrary nonempty index sets and P be a $I \times J$ matrix over \mathcal{A} such that $\|P\|_{\infty}=\sup \left\{\left\|P_{j i}\right\|: j \in J, i \in I\right\} \leq 1$. The set $\mathbb{Z} \mathcal{M}(\mathcal{A}, P)$ of $I \times J$ matrices A over \mathcal{A} such that $\|A\|_{1}=\sum_{i \in I, j \in J}\left\|A_{i j}\right\|<\infty$ with ℓ^{1}-norm and product $A \circ B=A P B$ for all $A, B \in \mathfrak{Z} \mathcal{M}(\mathcal{A}, P)$ is a Banach algebra. These Banach algebras are called ℓ^{1}-Munn algebras that they are widely considered by Esslamzadeh in [11]. Let $T \in \mathcal{M}(\mathfrak{Z} \mathcal{M}(\mathcal{A}, P))$, then there exists $B=\left[T_{i j}\right] \in \ell^{\infty}(I \times J, \mathcal{M}(\mathcal{A}))$ such that

$$
T(A)=\left[T_{i j}\left(A_{i j}\right)\right]=B \odot A=A \odot B
$$

for every $A \in \mathfrak{Z} \mathcal{M}(\mathcal{A}, P)\left[14\right.$, Theorem 3.4]. Now, let $\mathcal{T} \in \mathcal{M}(A)$, then $T=\left[T_{i j}=\mathcal{T}\right]$ is in $\mathcal{M}(\mathscr{L} \mathcal{M}(\mathcal{A}, P))$. Thus, for such multipliers, we have

$$
\begin{equation*}
\mathfrak{Z} \mathcal{M}(\mathcal{A}, P)_{T}=\mathfrak{Z} \mathcal{M}\left(\mathcal{A}_{\mathcal{T}}, P\right) . \tag{16}
\end{equation*}
$$

Let S be a semigroup and E_{S} be the set of all idempotent elements of S. If T is an ideal of S, then the Rees factor semigroup S / T is the result of collapsing T into a single element 0 and retaining the identity of elements of $S \backslash T$, also we suppose that $S / \emptyset=S$. If S has an identity, then $S^{1}=S$ otherwise $S^{1}=S \cup\{1\}$ where 1 is the identity joined to S. An ideal series $S=S_{1} \supset S_{2} \supset \cdots \supset S_{m} \supset S_{m+1}=\emptyset$ that has no proper refinement is called a principal series. A semigroup S is called regular, if for every $a \in S$, there exists $b \in S$ such that $a=a b a$ and S is called an inverse semigroup if for every $a \in S$ there is a unique $a^{*} \in S$ such that $a a^{*} a=a$ and $a^{*} a a^{*}=a^{*}$.

Let G be a group, I and J be arbitrary nonempty sets, and $G^{o}=G \cup\{o\}$ be the group with zero arising from G by adjunction of a zero element. An $I \times J$ matrix A over G^{o} that has at most one nonzero entry $a=A(i, j)$ is called a Rees $I \times J$ matrix over G^{o} and is denoted by $(a)_{i j}$. Let P be a $J \times I$ matrix over G. The set $S=G \times I \times J$ with the composition $(a, i, j) \circ(b, l, k)=\left(a P_{j l} b, i, k\right),(a, i, j),(b, l, k) \in S$ is a semigroup that we denote by $M(G, P)$. Similarly, if P is a $J \times I$ matrix over G^{0}, then $S=G \times I \times J \cup\{0\}$ is a semigroup under the following composition operation which is denoted by $\mathcal{M}^{0}(G, P)$:

$$
\begin{gathered}
(a, i, j) \circ(b, l, k)= \begin{cases}\left(a P_{j l} b, i, k\right) & P_{j l} \neq 0 \\
0 & P_{j l}=0,\end{cases} \\
(a, i, j) \circ o=o \circ(a, i, j)=o \circ o=o .
\end{gathered}
$$

An $I \times J$ matrix P over G^{o} is called regular (invertible) if every row and every column of P contains at least (exactly) one nonzero entry.

If S is a regular semigroup such that E_{S} is finite, then S has a principal series $S=S_{1} \supset S_{2} \supset \cdots \supset S_{m} \supset$ $S_{m+1}=\emptyset$. Moreover, for all $k=1, \ldots, m-1$, there are natural numbers n_{k}, l_{k}, a group G_{k} and a regular $l_{k} \times n_{k}$ matrix P_{k} on G_{k}^{o} such that $S_{k} / S_{k+1}=\mathcal{M}^{0}\left(G_{k}, P_{k}\right)$. Also, $S_{m}=\mathcal{M}\left(G_{m}, P_{m}\right)$ for some $l_{m} \times n_{m}$ matrix P_{m} over a group G_{m} [12, Lemma 5.2]. If $S=M^{o}(G, P)$ and the zero of G^{o} is identified with the zero of the ℓ^{1}-Munn algebra $\mathfrak{L} \mathcal{M}\left(\ell^{1}(G), P\right)$, where P is considered as a matrix over $\ell^{1}(G)$, then $\ell^{1}(S) / \ell^{1}(o)$ is isometrically algebra isomorphic to $\mathfrak{Z M}\left(\ell^{1}(G), P\right)$ [12, Proposition 5.6].

Theorem 4.6. Let S be a regular semigroup with a finite number of idempotents, and $T \in \mathcal{M}\left(\ell^{1}(S)\right.$) (defined as above) such that $T_{i, j}=L_{\eta}$ where $0 \neq \eta \in \ell^{1}(G)^{+}$. If $\ell^{1}(S)_{T}$ is Arens regular, then S is compact.
Proof. Suppose that $\ell^{1}(S)_{T}$ is Arens regular, then by [25, Corollary 1.4.12], any quotient of $\ell^{1}(S)_{T}$ is Arens regular. By the discussion above (i.e. [12, Proposition 5.6]) and (16), $\mathfrak{Q M}\left(\ell^{1}\left(G_{k}\right)_{T}, P_{k}\right)$ is Arens regular. Then [13, Theorem 4.2(ii)] implies that $\ell^{1}\left(G_{k}\right)_{T}$ is Arens regular for $k=1,2, \ldots, m$. By [19, Theorem 4.4] G_{k} is compact for $k=1,2, \ldots, m$. Since S has a principal series, the factors of this series are isomorphic in some order to the principal factors of S [6, Theorem 2.40], so, each principal factor of S is compact. This means that S is compact.

5. Problems

We close this paper with the following problems:

1. Let A be a commutative Banach algebra and $\Gamma: A \longrightarrow C_{0}(\Delta(A))$ the Gelfand representation of A. A subset R of $\Delta(A)$ (character space of A) is called a boundary for A if R is boundary for $\Gamma(A)$, the range of the Gelfand homomorphism. In particular $\partial(\Gamma(A))$ is called the Shilov boundary of A and denoted by $\partial(A)$ [18, Definition 3.3.6]. Now, let $T \in \mathcal{M}(A)$. From, [21, Theorem 1.3.1 and Corollary 1.3.1], $\Delta(A)=\Delta\left(A_{T}\right)$. Is there a relationship between Shilov boundary of A and A_{T} ?
2. A submultiplicative (not necessarily complete) norm $|\cdot|$ on a Banach algebra A is called uniform norm if it satisfies the square property $\left|a^{2}\right|=|a|^{2}$, for all $a \in A$. If A has the unique uniform norm property and $T \in \mathcal{M}(A)$, has A_{T} the unique uniform norm property and vice versa?
3. The BSE-property (Bochner-Schoeberg-Eberlein property) on commutative Banach algebras is a property that is related to multiplier algebras and character space of Banach algebras. This notion was introduced by Takahasi and Hatori in [29]. Let $T \in \mathcal{M}(A)$. Are there any relationships between being BSE-algebra of A and A_{T} ?
4. A commutative Banach algebra A is called a Tauberian Banach algebra if the set of all $a \in A$ such that \hat{a} has compact support is dense in A, see [18, Definition 5.1.7]. If A is a Tauberian Banach algebra and $T \in \mathcal{M}(A)$, is A_{T} Tauberian? What about the converse of this question?
5. Is there a relationship between projectivity (flatness, injectivity) of A and A_{T} ?
6. Let A be a Banach algebra and X be a Banach A-bimodule. Consider the module extensions Banach algebra $A \oplus_{1} X$. If $T \in \mathcal{M}\left(A \oplus_{1} X\right)$, how we can characterize $\left(A \oplus_{1} X\right)_{T}$? The multiplies algebra of $A \oplus_{1} X$ in commutative case is characterized in [1].

References

[1] N. Alizadeh, A. Ebadian, S. Ostadbashi, A. Jabbari, The Bochner-Schoenberg-Eberlain property of extensions of Banach algebras and Banach modules, Bulletin of the Australian Mathematical Society doi:10.1017/S0004972721000502.
[2] R. Arens, Operations induced in function classes, Monatshefte für Mathematik 55 (1951) 1-19.
[3] R. Arens, The adjoint of a bilinear operation, Proceedings of the American Mathematical Society 2 (1951) 839-848.
[4] W. G. Bade, P. C. Curtis, H. G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras, Proceedings of the London Mathematical Society 55(2) (1987) 359-377.
[5] Y. Choi, F. Ghahramani, Y. Zhang, Approximate and pseudo-amenability of various classes of Banach algebras, Journal of Functional Analysis 256 (2009) 3158-3191.
[6] A. H. Clifford, J. B. Preston, The Algebraic Theory of Semigroups I, American Mathematical Society Surveys, 1961.
[7] H. G. Dales, Banach Algebras and Automatic Continuity, Oxford University Press, Oxford, 2000.
[8] H. G. Dales, F. Ghahramani, N. Grønbæk, Derivations into iterated duals of Banach algebras, Studia Mathematica 128(1) (1998) 19-54.
[9] H. G. Dales, A. T-M. Lau, D. Strauss, Banach Algebras on Semigroups and Their Compactifications, Memoirs American Mathematical Society, (205) 2010.
[10] M. Eshaghi Gordji, M. Filali, Arens regularity of module actions, Studia Mathematica 181(3) (2007) 237-254.
[11] G. H. Esslamzadeh, Banach Algebra Structure and Amenability of a Class of Matrix Algebras with Applicartions, PhD Thesis, University of Alberta, 1998.
[12] G. H. Esslamzadeh, Banach algebra structure and amenability of a class of matrix algebras with applications, Journal of Functional Analysis 161 (1999) 364-383.
[13] G. H. Esslamzadeh, Duals and topological center of a class of matrix algebras with applications, Proceedings of the American Mathematical Society 128 (2000) 3493-3503.
[14] G. H. Esslamzadeh, Double centralizer algebras of certain Banach algebras, Monatshefte für Mathematik 142 (2004) 193-203.
[15] N. Grønbæk, Weak and cyclic amenability for noncommutative Banach algebras, Proceedings of the Edinburgh Mathematical Society 35 (1992) 315-328.
[16] H. Hosseinzadeh, A. Jabbari, Permanently weak amenability of Rees semigroup algebras, International Journal of Analysis and Applications 16(1) (2018) 117-124.
[17] B. E. Johnson, Cohomology in Banach Algebras, Memoirs American Mathematical Society (127) 1972.
[18] E. Kaniuth, A Course in Commutative Banach Algebras, Springer Verlag, Graduate Texts in Mathematics, 2009.
[19] J. Laali, The multipliers related products in Banach algebras, Quaestiones Mathematicae 37(4) (2014) 507-523.
[20] R. Larsen, The Multiplier Problem, Lecture Notes in Math. Vol. 105, Springer-Verlag, New York, 1969.
[21] R. Larsen, An Introduction to the Theory of Multipliers, Springer-Verlag, New York, 1971.
[22] A. T.-M. Lau, A. Ülger, Topological centers of certian dual algebras, Transactions of the American Mathematical Society 348(3) (1996) 1191-1212.
[23] O. T. Mewomo, On n-weak amenability of Rees semigroup algebras, Indian Academy of Sciences. Proceedings. Mathematical Sciences 118(4) (2008) 547-555.
[24] M. R. Miri, E. Nasrabadi, K. Kazemi, First module cohomology group of induced semigroup algebras, Boletim da Sociedade Paranaense de Matemática, In press, 10.5269/bspm. 51414
[25] T. Palmer, Banach Algebras and the General Theory of *-Algebras, Vol. I, Cambridge University Press, 1994.
[26] J. S. Pym, The convolution of functionals on spaces of bounded functions, Proceedings of the London Mathematical Society 15 (1965) 84-104.
[27] A. Sahami, S. F. Shariati, A. Pourabbas, Various notions of amenability for certain Banach algebras related to the multipliers, Politehnica" University of Bucharest. Scientific Bulletin. Series A 82(2) (2020) 107-118.
[28] B. Shojaee, A. Bodaghi, A generalization of cyclic amenability of Banach algebras, Mathematica Slovaca 65(3) (2015) 633-644.
[29] S.-E. Takahasi, O. Hatori, Commutative Banach algebras which satisfy a Bochner-Schoenberg-Eberlein-type theorem, Proceedings of the American Mathematical Society 110 (1990) 149—158.
[30] A. Ülger, Arens regularity sometimes implies the RNP, Pacific Journal of Mathematics 143 (1990) 377-399.
[31] J. G. Wendel, Left centralizers and isomorphisms of group algebras, Pacific Journal of Mathematics 2 (1952) 251-261.

[^0]: 2020 Mathematics Subject Classification. Primary 43A07, 43A22; Secondary 46H25
 Keywords. Arens regularity, multiplier, weak amenability
 Received: 14 November 2021; Accepted: 05 January 2022
 Communicated by Snežana Č. Živković-Zlatanović
 Email addresses: ebadian.ali@gmail.com (Ali Ebadian), jabbari_al@yahoo.com (Ali Jabbari), s.shams@urmia.ac.ir (Saeid Shams)

