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Abstract. In this paper, we investigate a Banach algebra AT, where A is a Banach algebra and T is a left
(right) multiplier on A. We study some concepts on AT such as n-weak amenability, cyclic amenability,
biflatness, biprojectivity and Arens regularity. For the group algebra L1(G) of an infinite compact group G,
it is shown that there is a multiplier T such that L1(G)T has not a bounded approximate identity. For ℓ1(S),
where S is a regular semigroup with a finite number of idempotents, we show that there is a multiplier T
such that Arens regularity of ℓ1(S)T implies that S is compact.

1. Introduction

Let A be a Banach algebra and T ∈ B(A), where B(A) is the set of all bounded linear maps on A. Then T
is called a left (right) multiplier of A if,

T(ab) = T(a)b (T(ab) = aT(b)) (a, b ∈ A).

The set of all left (right) multipliers on a Banach algebra A is denoted byMl(A) (Mr(A)). An operator
T ∈ B(A) is called a multiplier if

T(ab) = T(a)b = aT(b) (a, b ∈ A).

The set of all multipliers on a Banach algebra A is denoted by M(A). Let A be a Banach algebra and
T ∈ M(A). A Banach algebra related to A and T is defined in [20, 21] and it is denoted by AT with the
following multiplication:

a ◦ b = aT(b),

for all a, b ∈ A, where T ∈ B(A). The norm on AT is a norm that is equivalent with the original norm on A
i.e., ∥ · ∥ which defined as follows:

∥a∥T = ∥a∥∥T∥ (a ∈ A).

Some basic results depending on algebraic and analytical properties have been studied in [19]. In this
paper, we replace “•” instead of “◦”, because we use this notation for a combination of maps. Some results
related to the first module cohomology, pseudo amenability, Johnson pseudo-contractibility and module
amenability of the above defined Banach algebra AT are studied in [24, 27].
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Email addresses: ebadian.ali@gmail.com (Ali Ebadian), jabbari al@yahoo.com (Ali Jabbari), s.shams@urmia.ac.ir (Saeid

Shams)



A. Ebadian et al. / Filomat 36:17 (2022), 5945–5956 5946

Let A be a Banach algebra, and let X be a Banach A-bimodule. A derivation from A into X is a linear
map D : A −→ X such that

D(ab) = a ·D(b) +D(a) · b,

for all a, b ∈ A. The set of derivations from A into X is denoted by Z1(A,X); which is a linear subspace of
B(A,X), the space of all bounded linear maps from A into X. If A = X, then we write B(A). For x ∈ X, set
Dx : A −→ X, a 7→ a · x − x · a. Derivations of this form are called inner derivations, and an inner derivation
Dx is implemented by x. The set of inner derivations from A into X is a linear subspaceN1(A,X) ofZ1(A,X).
The quotient space H1(A,X) = Z1(A,X)/N1(A,X) is called the first Hochschild cohomology group of A with
coefficients in X.

The concept of amenability for Banach algebras was introduced by Johnson in 1972 [17]. A Banach
algebra A is called amenable if H1(A,X∗) = {0} for any A-bimodule X. An interesting result that Johnson
proved stating that L1(G) is amenable if and only if G is amenable (G is a locally compact group).

Weak amenability of Banach algebras was introduced by Bade et al. in [4]. A Banach algebra A is
called weakly amenable if H1(A,A∗) = {0}. Let n ∈ N; a Banach algebra A is called n-weakly amenable if
H

1(A,A(n)) = {0}. Dales, Ghahramani and Grønbæk brought the concept of n-weak amenability of Banach
algebras in [8].

Let A be Banach algebra. Regarding A as a Banach A-bimodule, the operation π : A×A→ A extends to
π∗∗∗ and πt∗∗∗t defined on A∗∗×A∗∗. These extensions are known as the first (left) and the second (right) Arens
products, respectively, and with each of them, the second dual space A∗∗ becomes a Banach algebra. The
first (left) Arens product of a′′, b′′ ∈ A∗∗ shall be simply indicated by a′′□b′′ and defined by the following
three steps:

⟨a′a, b⟩ = ⟨a′, ab⟩, ⟨a′′a′, a⟩ = ⟨a′′, a′a⟩, ⟨a′′□b′′, a′⟩ = ⟨a′′, b′′a′⟩,

for all a, b ∈ A and a′ ∈ A∗. Similarly, the second (right) Arens product of a′′, b′′ ∈ A∗∗ shall be indicated by
a′′ ⋄ b′′ and defined as follows:

⟨aa′, b⟩ = ⟨a′, ba⟩, ⟨a′a′′, a⟩ = ⟨a′′, aa′⟩, ⟨a′′ ⋄ b′′, a′⟩ = ⟨b′′, a′b′′⟩,

for all a, b ∈ A and a′ ∈ A∗. If two multiplication coincide, then we say that A is Arens regular [7, 26].
Let A be a Banach algebra and T be an element ofM(A). In this paper, we investigate n-weak amenability,

cyclic amenability, biprojectivity and biflatness of AT. We give a proof for the converse case of [19, Theorem
3.5], where we suppose that T is surjective (it is not invertible). As an interesting result, under some
conditions on G and T, we show that L1(G)T has not a bounded approximate identity. Finally, we prove that
the main result of [19] for regular semigroups with finite idempotent elements. Moreover, we have asked
some questions maybe are interesting for readers and future works.

2. n-Weak Amenability and Cyclic Amenability

In this section, for a Banach algebra A and T ∈ M(A), we study n-weak amenability of AT. The dual of
AT carries a natural left and right AT-module structure defined by

⟨b, a∗ ⊙ a⟩ = ⟨a • b, a∗⟩, ⟨b, a ⊙ a∗⟩ = ⟨b • a, a∗⟩,

for all a, b ∈ AT and a∗ ∈ A∗T. We start with the following Lemmas:

Lemma 2.1. [19, Lemma 2.3] Let A be a Banach algebra and let T be invertible. Then T ∈ Ml(A) (T ∈ Mr(A)) if
and only if T−1

∈ Ml(A) (T−1
∈ Mr(A)).

Lemma 2.2. Let T ∈ M(A) and φ : AT −→ A by φ(a) = T(a) for all a ∈ AT.

(i) T(n) is an A-module morphism.

(ii) If T is invertible and α(a) : A −→ AT defined by α(a) = T−1(a) for all a ∈ A, then φ(2n)(α(a) ⊙ y(2n)) =
a · φ(2n)(y(2n)), and φ(2n)(y(2n)

⊙ α(a)) = φ(2n)(y(2n)) · a, for all a ∈ A, y(2n)
∈ (AT)(2n) and n ∈N.
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(iii) If T is invertible and α(a) : A −→ AT defined by α(a) = T−1(a) for all a ∈ A, then α(2n+1)(α(a) ⊙ y(2n+1)) =
a ·α(2n+1)(y(2n+1)), and α(2n+1)(y(2n+1)

⊙α(a)) = α(2n+1)(y(2n+1)) · a, for all a ∈ A, y(2n+1)
∈ (AT)(2n+1) and n ∈N.

Proof. We prove the results by induction on n.
(i) For every a, b ∈ A and x ∈ A∗, we have

⟨T∗(a · x), b⟩ = ⟨a · x,T(b)⟩ = ⟨x,T(b)a⟩ = ⟨x,T(ba)⟩
= ⟨T∗(x), ba⟩ = ⟨a · T∗(x), b⟩,

and

⟨T∗(x · a), b⟩ = ⟨x · a,T(b)⟩ = ⟨x, aT(b)⟩ = ⟨x,T(ab)⟩
= ⟨T∗(x), ab⟩ = ⟨T∗(x) · a, b⟩.

By the above argument, we have

⟨T∗∗(a · x(2)), b⟩ = ⟨a · x(2),T∗(b)⟩ = ⟨x(2),T∗(b) · a⟩ = ⟨x(2),T∗(b · a)⟩
= ⟨T∗∗(x(2)), b · a⟩ = ⟨a · T∗∗(x(2)), b⟩,

and

⟨T∗∗(x(2)
· a), b⟩ = ⟨x(2)

· a,T∗(b)⟩ = ⟨x(2), a · T∗(b)⟩ = ⟨x(2),T∗(a · b)⟩
= ⟨T∗∗(x(2)), a · b⟩ = ⟨T∗∗(x(2)) · a, b⟩,

for every a ∈ A, b ∈ A∗ and x(2)
∈ A∗∗. Then for all n ≥ 1, a ∈ A and x(n)

∈ A(n) we have

T(n)(a · x(n)) = a · T(n)(x(n)), and T(n)(x(n)
· a) = T(n)(x(n)) · a.

This shows that T(n) is an A-module morphism.
(ii) For all a ∈ A, b ∈ AT and x∗ ∈ A∗,

⟨b, φ∗(x∗) ⊙ α(a)⟩ = ⟨α(a) • b, φ∗(x∗)⟩ = ⟨α(a)T(b), φ∗(x∗)⟩
= ⟨φ(α(a)T(b)), x∗⟩ = ⟨T(α(a)T(b)), x∗⟩
= ⟨aT(b), x∗⟩ = ⟨T(b), x∗ · a⟩
= ⟨b, φ∗(x∗ · a)⟩ (1)

and

⟨b, α(a) ⊙ φ∗(x∗)⟩ = ⟨b • α(a), φ∗(x∗)⟩ = ⟨ba, φ∗(x∗)⟩
= ⟨φ(ba), x∗⟩ = ⟨T(b)a, x∗⟩ = ⟨T(b), a · x∗⟩
= ⟨b, φ∗(a · x∗)⟩. (2)

By (1) we have

⟨x∗, φ∗∗(α(a) ⊙ y∗∗)⟩ = ⟨φ∗(x∗), α(a) ⊙ y∗∗⟩ = ⟨φ∗(x∗) ⊙ α(a), y∗∗⟩
= ⟨φ∗(x∗ · a), y∗∗⟩ = ⟨x∗ · a, φ∗∗(y∗∗)⟩
= ⟨x∗, a · φ∗∗(y∗∗)⟩,

for all a ∈ A, y∗∗ ∈ (AT)∗∗ and x∗ ∈ A∗. This shows that φ∗∗(α(a)⊙ y∗∗) = a ·φ∗∗(y∗∗), for all a ∈ A and y∗∗ ∈ (AT)∗∗.
Similarly by (2), we have φ∗∗(y∗∗ ⊙α(a)) = φ∗∗(y∗∗) · a, for all a ∈ A and y∗∗ ∈ (AT)∗∗. Now, we extend the above
results for 2n, where n ≥ 1. Then

φ(2n)(α(a) ⊙ y(2n)) = a · φ(2n)(y(2n)),

and
φ(2n)(y(2n)

⊙ α(a)) = φ(2n)(y(2n)) · a,
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for all a ∈ A and y(2n)
∈ (AT)(2n).

(iii) For a, b ∈ A and x∗ ∈ A∗T,

⟨b, α∗(α(a) ⊙ x∗)⟩ = ⟨α(b), α(a) ⊙ x∗⟩ = ⟨α(b) • α(a), x∗⟩
= ⟨α(ba), x∗⟩ = ⟨b, a · α∗(x∗)⟩, (3)

and

⟨b, α∗(x∗ ⊙ α(a))⟩ = ⟨α(b), x∗ ⊙ α(a)⟩ = ⟨α(a) • α(b), x∗⟩
= ⟨α(ab), x∗⟩ = ⟨b, α∗(x∗) · a⟩. (4)

By (4)

⟨x∗, α(a) ⊙ α∗∗(y∗∗)⟩ = ⟨x∗ ⊙ α(a), α∗∗(y∗∗)⟩ = ⟨α∗(x∗ ⊙ α(a)), y∗∗⟩
= ⟨α∗(x∗) · a, y∗∗⟩ = ⟨α∗(x∗), a · y∗∗⟩
= ⟨x∗, α∗∗(a · y∗∗)⟩,

for all a ∈ A, x∗ ∈ A∗T and y∗∗ ∈ A∗∗. Similarly, by (3), α∗∗(y∗∗) ⊙ α(a) = α∗∗(y∗∗ · a), for all a ∈ A and y∗∗ ∈ A∗∗.
Then

⟨x∗∗, α∗∗∗(α(a) ⊙ y∗∗∗)⟩ = ⟨α∗∗(x∗∗), α(a) ⊙ y∗∗∗⟩ = ⟨α∗∗(x∗∗) ⊙ α(a), y∗∗∗⟩
= ⟨α∗∗(x∗∗ · a), y∗∗∗⟩ = ⟨x∗∗ · a, α∗∗∗(y∗∗∗)⟩
= ⟨x∗∗, a · α∗∗∗(y∗∗∗)⟩

and

⟨x∗∗, α∗∗∗(y∗∗∗ ⊙ α(a))⟩ = ⟨α∗∗(x∗∗), y∗∗∗ ⊙ α(a)⟩ = ⟨α(a) ⊙ α∗∗(x∗∗), y∗∗∗⟩
= ⟨α∗∗(a · x∗∗), y∗∗∗⟩ = ⟨a · x∗∗, α∗∗∗(y∗∗∗)⟩
= ⟨x∗∗, α∗∗∗(y∗∗∗) · a⟩,

for all a ∈ A, x∗∗ ∈ A∗∗ and y∗∗∗ ∈ (AT)∗∗∗. By extending n ≥ 1, we complete the proof.

Now, we are ready to investigate our main result in the current section.

Theorem 2.3. Let T ∈ M(A) and be invertible. Then A is n-weakly amenable if and only if AT is n-weakly amenable.

Proof. Let A be n-weakly amenable and define φ : AT −→ A by φ(a) = T(a) for all a ∈ AT. Consider the (2n)-
th transpose of φ, φ(2n) : A(2n)

T −→ A(2n) that is a bijective linear map. Let D : AT −→ A(2n)
T be a continuous

derivation. Define α : A −→ AT by α(a) = T−1(a) for all a ∈ A. Clearly, D := φ(2n)
◦ D ◦ α : A −→ A(2n) is a

continuous map and α is a continuous epimorphism. Then Lemma 2.2(ii) implies that

D(ab) = φ(2n)
◦D ◦ α(ab) = φ(2n)(D(α(ab)))

= φ(2n)(D(α(a) • α(b)))
= φ(2n)(α(a) ⊙D(α(b))) + φ(2n)(D(α(a)) ⊙ α(b))
= a · φ(2n)(D(α(b))) + φ(2n)(D(α(a))) · b
= a · D(b) +D(a) · b, (5)

for all a, b ∈ A. Thus, D is a continuous derivation. Therefore, there is an element x(2n)
∈ A(2n) such that

D(a) = a · x(2n)
− x(2n)

· a for all a ∈ A. Since φ(2n) is an epimorphism, there exists y(2n)
∈ (AT)(2n) such that

φ(2n)(y(2n)) = x(2n). Then by Lemma 2.2(ii) we have

φ(2n)
◦D(a) = φ(2n)

◦D ◦ α(φ(a)) = φ(2n)
◦D ◦ α(T(a))

= D(T(a)) = T(a) · φ(2n)(y(2n)) − φ(2n)(y(2n)) · T(a)
= φ(2n)(α(T(a)) ⊙ y(2n)) − φ(2n)(y(2n)

⊙ α(T(a)))
= φ(2n)(a ⊙ y(2n)

− y(2n)
⊙ a),
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for every a ∈ AT. This shows that D(a) = a ⊙ y(2n)
− y(2n)

⊙ a, for every a ∈ AT (note that φ(2n) is injective).
Thus, AT is (2n)-weakly amenable. Therefore, it suffices to show that AT is (2n + 1)-weakly amenable. Let
D : AT −→ A(2n+1)

T be a continuous derivation. Consider the mapping D := α(2n+1)
◦ D ◦ α : A −→ A(2n+1).

Clearly, it is linear and continuous. Then Lemma 2.2(iii) implies that

D(ab) = α(2n+1)
◦D ◦ α(ab) = α(2n+1)(D(α(ab)))

= α(2n+1)(D(α(a) • α(b)))
= α(2n+1)(α(a) ⊙D(α(b))) + α(2n+1)(D(α(a)) ⊙ α(b))
= a · α(2n+1)(D(α(b))) + α(2n+1)(D(α(a))) · b
= a · D(b) +D(a) · b, (6)

for all a, b ∈ A. Thus,D is a continuous derivation. Thus, there exists x(2n+1)
∈ A(2n+1) such thatD(a) = a·x(2n)

−

x(2n)
·a for all a ∈ A. Since α(2n+1) is surjective, there exists y(2n+1)

∈ (AT)(2n+1) such that α(2n+1)(y(2n+1)) = x(2n+1).
Again the item (iii) of Lemma 2.2 implies that

α(2n+1)
◦D(a) = α(2n+1)

◦D ◦ α(φ(a)) = α(2n+1)
◦D ◦ α(T(a))

= D(T(a)) = T(a) · α(2n+1)(y(2n+1)) − α(2n+1)(y(2n+1)) · T(a)
= α(2n+1)(α(T(a)) ⊙ y(2n+1)) − α(2n+1)(y(2n+1)

⊙ α(T(a)))
= α(2n+1)(a ⊙ y(2n+1)

− y(2n+1)
⊙ a),

for every a ∈ AT. Injectivity of α(2n+1) implies that D(a) = a⊙ y(2n+1)
− y(2n+1)

⊙ a, for all a ∈ AT and this means
that AT is (2n + 1)-weakly amenable.

For the converse, Lemma 2.1 implies that T−1
∈ M(A). Set B = AT and let BT−1 be a Banach algebra is

defined by T−1 on B. By the argumentation above we get BT−1 is n-weakly amenable. But BT−1 = A and this
means that A is n-weakly amenable.

Example 2.4. (i) Let G be a locally compact group and T ∈ M(L1(G)) be invertible. By [5], L1(G) is n-weakly
amenable, n ∈N, then by Theorem 2.3, L1(G)T is n-weakly amenable.

(ii) A Rees semigroup has the form S =M(G,P,m,n); here P = (ai j) ∈ Mn,m(G), the collection of n × m matrices
with components G, where G is a group and m,n ∈ N. We denote the zero adjoined to G by o and by
Go = G ∪ {o}. Let (x)i j be an element of Mm,n(Go) with x in the (i, j)-th place and o elsewhere, where x ∈ G,
1 ≤ i ≤ m and 1 ≤ j ≤ n. By the following formula S becomes a semigroup (x)i j(y)kl = (xa jky)il, for
x, y ∈ G, 1 ≤ i, k ≤ m, 1 ≤ j, l ≤ n. The semigroupMo(G,P,m,n), where the elements of this semigroup are
those ofM(G,P,m,n), together with the element o, identified with the matrix that has o in each place (so that
o is the zero ofMo(G,P,m,n)), and the components of P are belong to Go. The matrix P is called the sandwich
matrix in each case. The semigroupMo(G,P,m,n) is a Rees matrix semigroup with a zero over G. We write
M

o(G,P,n) forMo(G,P,n,n) in the case where m = n. As well as, P is called regular if every row and column
contains at least one entry in G. The semigroup Mo(G,P,m,n) is regular as a semigroup if and only if the
sandwich matrix P is regular. According to [9] we have

ℓ1(S) =Mo(ℓ1(G),P,m,n) =M(ℓ1(G),P,m,n) ⊕ Cδ0.

Mewomo in [23], proved that ℓ1(S) is (2k + 1)-weakly amenable where S =Mo(G,P,n), for k,n ∈ N and it is
proved that ℓ1(S) is k-weakly amenable, for all k ∈ N [16, Theorem 3.1]. Now, let T ∈ M(ℓ1(S)) be invertible.
Then by Theorem 2.3, ℓ1(S)T is k-weakly amenable, for all k ∈N.

(iii) Let S be a semigroup such that has a zero o. Then S is called a o-simple if S[2] , {o} and the only ideals in S are {o}
and S. The semigroup S is called completely o-simple if it is o-simple and contains a primitive idempotent. By
[16, Corollary 3.1], an infinite, completely o-simple semigroup S with finitely many idempotents, is n-weakly
amenable. Then by Theorem 2.3, ℓ1(S)T is n-weakly amenable, for all n ∈N and any invertible T ∈ M(ℓ1(S)).
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Let A be a Banach algebra and D : A −→ A∗ be a derivation. Then D is called cyclic, if,

⟨b,D(a)⟩ + ⟨a,D(b)⟩ = 0,

for all a, b ∈ A. The Banach algebra A is called cyclic amenable (resp. approximately cyclic amenable, see [28],
for more details) if every cyclic continuous derivation D : A −→ A∗ is inner (resp. approximately inner).

Theorem 2.5. Let T ∈ M(A) and be invertible. Then A is cyclic (resp. approximately cyclic) amenable if and only if
AT is cyclic (resp. approximately cyclic) amenable.

Proof. We prove the cyclic amenability and the case approximately cyclic amenability is similar. Assume
that A is cyclic amenable and define α : A −→ AT by α(a) = T−1(a) for all a ∈ A. Clearly, α is a continuous
epimorphism. From (3) and (4) we have

⟨b, α∗(α(a) ⊙ a∗)⟩ = ⟨b, a · α∗(a∗)⟩ and ⟨b, α∗(a∗ ⊙ α(a))⟩ = ⟨b, α∗(a∗) · a⟩, (7)

for all a, b ∈ A and a∗ ∈ A∗T. Thus (7) implies that

α∗(α(a) ⊙ a∗) = a · α∗(a∗) and α∗(a∗ ⊙ α(a)) = α∗(a∗) · a, (8)

for all a ∈ A and a∗ ∈ A∗T. Let D : AT −→ A∗T be a continuous cyclic derivation. Define D : A −→ A∗ by
D(a) = α∗ ◦D ◦ α(a) for all a ∈ A. Then (8) implies thatD is a continuous derivation. Also,

⟨b,D(a)⟩ + ⟨a,D(b)⟩ = ⟨b, α∗ ◦D ◦ α(a)⟩ + ⟨a, α∗ ◦D ◦ α(b)⟩
= ⟨α(b),D(α(a))⟩ + ⟨α(a),D(α(b))⟩
= 0,

for all a, b ∈ A, because D is a cyclic derivation. This shows thatD is cyclic. Hence, there exists x∗ ∈ A∗ such
thatD(a) = a · x∗ − x∗ · a for all a ∈ A. Since, α∗ is bijective, there exists y∗ ∈ A∗T such that α∗(y∗) = x∗. Then by
(8),

α∗ ◦D(a) = α∗ ◦D ◦ α(T(a)) = D(T(a))
= T(a) · x∗ − x∗ · T(a)
= T(a) · α∗(y∗) − α∗(y∗) · T(a)
= α∗(α(T(a)) ⊙ y∗) − α∗(y∗ ⊙ α(T(a)))
= α∗(a ⊙ y∗ − y∗ ⊙ a), (9)

for all a ∈ AT. Then (9) implies that D(a) = a ⊙ y∗ − y∗ ⊙ a for all a ∈ AT, because, α∗ is bijective.
Conversely, assume that AT is cyclic amenable. Lemma 2.1 implies that T−1

∈ M(A). Set B = AT and let
BT−1 be a Banach algebra is defined by T−1 on B. By the discussion above, we get BT−1 is cyclic amenable.
But BT−1 = A and this means that A is cyclic amenable.

Example 2.6. Let X be a nonempty set and FX be the free semigroup on X, then ℓ1(FX) is cyclicly amenable [15].
Then for any invertible T ∈ M(ℓ1(FX)), Theorem 2.5 implies that ℓ1(FX)T is cyclicly amenable.

3. Biflatness and Biprojectivity

Let A be a Banach algebra and ∆A : A⊗̂A −→ A be a multiplication map for the Banach algebra A. Then
A is called biprojective if ∆A has a bounded right inverse which is an A-bimodule map. The Banach algebra
A is biflat if the adjoint ∆∗A : A∗ −→ (A⊗̂A)∗ has a bounded left inverse which is an A-bimodule map.

Lemma 3.1. Let A be a Banach algebra and T ∈ Ml(A). We have the following assertions:

(i) If φ : AT −→ A is define by φ(a) = T(a) for all a ∈ AT. Then (φ ⊗ φ)∗ ◦ ∆∗A = ∆
∗

AT
◦ φ∗.
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(ii) If T is invertible and α : A −→ AT is defined by α(a) = T−1(a) for all a ∈ A. Then (α ⊗ α)∗ ◦ ∆∗AT
= ∆∗A ◦ α

∗.

Proof. (i) For all x, y ∈ AT and a∗ ∈ A∗,

⟨x ⊗ y, (φ ⊗ φ)∗ ◦ ∆∗A(a∗)⟩ = ⟨(φ ⊗ φ)(x ⊗ y),∆∗A(a∗)⟩
= ⟨∆A

(
T(x) ⊗ T(y)

)
, a∗⟩ = ⟨T(x)T(y), a∗⟩

= ⟨T
(
xT(y)

)
, a∗⟩.

On the other hand,

⟨x ⊗ y,∆∗AT
◦ φ∗(a∗)⟩ = ⟨∆AT (x ⊗ y), φ∗(a∗)⟩ = ⟨x • y, φ∗(a∗)⟩

= ⟨φ
(
xT(y)

)
, a∗⟩,

for all x, y ∈ AT and a∗ ∈ A∗. This shows that (i) holds.
(ii) From Section 2, we know that α is a continuous epimorphism. For all x, y ∈ A and a∗ ∈ A∗T,

⟨x ⊗ y, (α ⊗ α)∗ ◦ ∆∗AT
(a∗)⟩ = ⟨(α ⊗ α)(x ⊗ y),∆∗AT

(a∗)⟩

= ⟨∆AT

(
T−1(x) ⊗ T−1(y)

)
, a∗⟩ = ⟨T−1(x) • T−1(y), a∗⟩

= ⟨α(xy), a∗⟩.

Also,

⟨x ⊗ y,∆∗A ◦ α
∗(a∗)⟩ = ⟨∆A(x ⊗ y), α∗(a∗)⟩ = ⟨xy, α∗(a∗)⟩

= ⟨α(xy), a∗⟩,

for all x, y ∈ A and a∗ ∈ A∗T. Hence, (ii) holds.

Theorem 3.2. Let T ∈ M(A) and be invertible. Then A is biflat if and only if AT is biflat.

Proof. Define φ : AT −→ A by φ(a) = T(a) and α : A −→ AT by α(x) = T−1(x) for all a ∈ AT and x ∈ A. We
shall show that these maps are AT-bimodule mappings. Consider A as a Banach AT-bimodule with the
following module actions: a · x = a • x and x · a = x • a for all a ∈ AT and x ∈ A. For all a, b ∈ AT,

φ(a • b) = T(a • b) = T(aT(b)) = aT(T(b)) = aT(φ(b))
= a • φ(b), (10)

and

φ(a • b) = T(a • b) = T(aT(b)) = T(a)T(b) = φ(a)T(b)
= φ(a) • b. (11)

Hence, (10) and (11) imply that φ is an AT-bimodule. For all a ∈ AT and x ∈ A we have

α(a • x) = T−1(a • x) = T−1(aT(x)) = aT−1(T(x))
= ax. (12)

On the other hand,

a • α(x) = a • T−1(x) = aT
(
T−1(x)

)
= ax, (13)

for all a ∈ AT and x ∈ A. Thus, (12) and (13) show that α is a left AT-module map. Similarly, one can show
that α is a right AT-module map.
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Assume that A is biflat, thus there is an A-bimodule map λA :
(
A⊗̂A

)∗
−→ A∗ such that λA ◦ ∆

∗

A = iA∗ .

Define λAT :
(
AT⊗̂AT

)∗
−→ A∗T by λAT := φ∗ ◦ λA ◦ (α ⊗ α)∗ that is an AT-bimodule map. Then by Lemma

2.1(ii) we have

λAT ◦ ∆
∗

AT
= φ∗ ◦ λA ◦ (α ⊗ α)∗ ◦ ∆∗AT

= φ∗ ◦ λA ◦ ∆
∗

A ◦ α
∗ = φ∗ ◦ α∗

= iA∗T .

This shows that AT is biflat.
Conversely, suppose that AT is biflat, then there is an AT-bimodule map λAT :

(
AT⊗̂AT

)∗
−→ A∗T such

that λAT ◦ ∆
∗

AT
= iA∗T . For biflatness of A, there are two methods. The first case is similar to the proof of

Theorem 2.5 i.e., set B = AT, then BT−1 = A. This implies that A is biflat. The second case is direct method.
In this method we see AT as a Banach A-bimodule with the left and right actions a · x = a • x and x · a = x • a
for all x ∈ AT and a ∈ A. Then define an A-bimodule map λA :

(
A⊗̂A

)∗
−→ A∗ by λA := α∗ ◦ λAT ◦

(
φ ⊗ φ

)∗
and apply Lemma 2.1(i).

Theorem 3.3. Let T ∈ M(A) and be invertible. Then A is biprojective if and only if AT is biprojective.

Proof. Similar to the previous Theorem, it is suffices to show that if A is biprojective, then AT is biprojective.
Assume that A is biprojective, then there is an A-bimodule map ρA : A −→ A⊗̂A such that ∆A ◦ ρA = iA.
Define ρAT : AT −→ AT⊗̂AT by ρAT := (α ⊗ α) ◦ ρA ◦ φ. Then by similar discussions in the proof of Theorem
3.2, ρAT is an AT-bimodule map. Then it is easy to see that ∆AT ◦ (α ⊗ α) = α ◦ ∆A. This implies that
∆AT ◦ ρAT = iAT .

4. Arens Products and Bounded Approximate Identity

This section deals with the Arens products on the Banach algebras A and AT. One of the main results
in [19] is Theorem 3.5, author, in this result assumed that T is invertible. First, we show that the converse
of [19, Theorem 3.5] is true, when T is surjective. Second, we give an example of a Banach algebra such
as AT that is defined by a multiplier T that has not a bounded approximate identity but A has a bounded
approximate identity.

Let A be a Banach algebra, let □ and ♢ be the first and second Arens product on A∗∗, respectively. Let
T ∈ M(A), similar to A, let □ and ♢ be the first and second Arens product on A∗∗T , respectively.

Theorem 4.1. Let A be a Banach algebra and T ∈ Ml(A) is surjective. If AT is Arens regular, then A is Arens
regular.

Proof. We investigate the first Arens product and the second Arens product has a similar argument. Let

a∗∗, b∗∗ ∈ A∗∗. Then there are nets (aα), (bβ) ⊆ A such that aα
w∗
−→ a∗∗ and bβ

w∗
−→ b∗∗. Also, there is a net (cβ) ⊆ A

such that T(cβ) = bβ for all β, because T is surjective. Then

a∗∗□b∗∗ = w∗ − lim
α

w∗ − lim
β

aαbβ = w∗ − lim
α

w∗ − lim
β

aαT(cβ)

= w∗ − lim
α

w∗ − lim
β

aα • cβ = w∗ − lim
β

w∗ − lim
α

aα • cβ

= w∗ − lim
β

w∗ − lim
α

aαT(cβ) = w∗ − lim
β

w∗ − lim
α

aαbβ

= a∗∗♢b∗∗,

as required.
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Let A, AT and T ∈ Ml(A) be as the above. Let πl : A × AT −→ AT be the left module action such that
πl(a, b) = a • b for all a ∈ A and b ∈ AT. Similarly, for the right module action, we denote this action by
πr : AT×A −→ AT withπr(b, a) = b•a for all a ∈ A and b ∈ AT. It is easy to check thatπ∗∗∗l (a∗∗, b∗∗) = a∗∗□T∗∗(b∗∗)
and π∗∗∗r (b∗∗, a∗∗) = T∗∗(b∗∗)□a∗∗ for all a∗∗, b∗∗ ∈ A∗∗. The maps πl and πr are called Arens regular, if π∗∗∗l = π

t∗∗∗t
l

and π∗∗∗r = π
t∗∗∗t
r , respectively for more details see [2, 3, 10]. As a result of the above Theorem, we have the

following:

Corollary 4.2. Let A be a Banach algebra and T ∈ Ml(A).

(i) If A is Arens regular, then the left and right module actions πl and πr are Arens regular.

(ii) If AT is Arens regular and T is surjective, then the left and right module actions πl and πr are Arens regular.

Now, we investigate the second aim of the current section. We begin with the following result:

Lemma 4.3. Let A be a Banach algebra and T ∈ M(A). If (A∗∗T ,□) or (A∗∗T ,♢) has an identity, then (A∗∗,□) or (A∗∗,♢)
has an identity.

Proof. Let ET be an identity of (A∗∗T ,□). Then

a□T∗∗(ET) = a□ET = a, (14)

and

T∗∗(ET)□a = T∗∗(ET□a) = ET□T∗∗(a) = ET□a = a (15)

for all a ∈ A∗∗. Thus, T∗∗(ET) is an identity for (A∗∗,□). Similarly, one can show that (A∗∗,♢) has an identity,
when (A∗∗T ,♢) has an identity.

Let G be a locally compact group and M(G) be the space of bounded regular Borel measures with the
following norm:

∥µ∥ =

∫
G

d|µ| = |µ|(G) (µ ∈M(G)).

The Banach algebra L1(G) is a two-sided ideals of M(G), consisting of all absolutely continuous measures
with respect to a left Haar measure. We denote the space of all f ∈ L1(G) such that f ≥ 0 by L1(G)+. Let
T ∈ M(L1(G)), Wendel proved that there is a unique regular (real or complex) measure µ of bounded
variation such that T is given by T( f ) = µ ∗ f , for all f ∈ L1(G) and ∥T∥ = ∥µ∥ [31, Theorem 1]. It is
well-known that L1(G) has a bounded approximate identity. In [19] Laali studied the Arens regularity of
L1(G)T, where T : M(G) −→M(G) is a left multiplier.

Theorem 4.4. Let G be an infinite compact group and 0 , η ∈ L1(G)+ with compact support. If T : M(G) −→M(G)
is defined by T = Lη, then L1(G)T has not a bounded approximate identity.

Proof. Assume towards a contradiction that L1(G)T has a bounded approximate identity. Since G is compact,
L1(G)T is Arens regular [19, Theorem 4.4]. Thus L1(G)∗T factors (on the left and right) [30, Theorem 3.1] and
this implies that L1(G)∗∗T has an identity [22, Proposition 2.2]. By Lemma 4.3, L1(G)∗∗ has an identity. Again
by [22, Proposition 2.2], L1(G)∗ factors. This follows that L1(G) is unital and consequentially G is discrete.
This means that G is finite, a contradiction.

The above Theorem gives some cohomological results related to the existence of bounded approximate
identities as follows:

Corollary 4.5. Let G be an infinite compact group and 0 , η ∈ L1(G)+ with compact support. If T : M(G) −→M(G)
is defined by T = Lη, then L1(G)T

(i) is not amenable.
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(ii) is not contractible.

(iii) is not biflat.

Let A be Banach algebra, I and J be arbitrary nonempty index sets and P be a I × J matrix over A
such that ∥P∥∞ = sup{∥P ji∥ : j ∈ J, i ∈ I} ≤ 1. The set LM(A,P) of I × J matrices A over A such that
∥A∥1 =

∑
i∈I, j∈J ∥Ai j∥ < ∞with ℓ1-norm and product A ◦B = APB for all A,B ∈ LM(A,P) is a Banach algebra.

These Banach algebras are called ℓ1-Munn algebras that they are widely considered by Esslamzadeh in [11].
Let T ∈ M(LM(A,P)), then there exists B = [Ti j] ∈ ℓ∞(I × J,M(A)) such that

T(A) = [Ti j(Ai j)] = B ⊙ A = A ⊙ B,

for every A ∈ LM(A,P) [14, Theorem 3.4]. Now, let T ∈ M(A), then T = [Ti j = T ] is in M(LM(A,P)).
Thus, for such multipliers, we have

LM(A,P)T = LM(AT ,P). (16)

Let S be a semigroup and ES be the set of all idempotent elements of S. If T is an ideal of S, then the
Rees factor semigroup S/T is the result of collapsing T into a single element 0 and retaining the identity of
elements of S\T, also we suppose that S/∅ = S. If S has an identity, then S1 = S otherwise S1 = S∪ {1}where
1 is the identity joined to S. An ideal series S = S1 ⊃ S2 ⊃ · · · ⊃ Sm ⊃ Sm+1 = ∅ that has no proper refinement
is called a principal series. A semigroup S is called regular, if for every a ∈ S, there exists b ∈ S such that
a = aba and S is called an inverse semigroup if for every a ∈ S there is a unique a∗ ∈ S such that aa∗a = a and
a∗aa∗ = a∗.

Let G be a group, I and J be arbitrary nonempty sets, and Go = G ∪ {o} be the group with zero arising
from G by adjunction of a zero element. An I × J matrix A over Go that has at most one nonzero entry
a = A(i, j) is called a Rees I × J matrix over Go and is denoted by (a)i j. Let P be a J × I matrix over G. The
set S = G × I × J with the composition (a, i, j) ◦ (b, l, k) = (aP jlb, i, k), (a, i, j), (b, l, k) ∈ S is a semigroup that we
denote by M(G,P). Similarly, if P is a J × I matrix over Go, then S = G × I × J ∪ {0} is a semigroup under the
following composition operation which is denoted byMo(G,P):

(a, i, j) ◦ (b, l, k) =
{

(aP jlb, i, k) P jl , 0
0 P jl = 0,

(a, i, j) ◦ o = o ◦ (a, i, j) = o ◦ o = o.

An I × J matrix P over Go is called regular (invertible) if every row and every column of P contains at
least (exactly) one nonzero entry.

If S is a regular semigroup such that ES is finite, then S has a principal series S = S1 ⊃ S2 ⊃ · · · ⊃ Sm ⊃

Sm+1 = ∅. Moreover, for all k = 1, ...,m − 1, there are natural numbers nk, lk, a group Gk and a regular lk × nk
matrix Pk on Go

k such that Sk/Sk+1 =M
o(Gk,Pk). Also, Sm =M(Gm,Pm) for some lm × nm matrix Pm over a

group Gm [12, Lemma 5.2]. If S = Mo(G,P) and the zero of Go is identified with the zero of the ℓ1-Munn
algebra LM(ℓ1(G),P), where P is considered as a matrix over ℓ1(G), then ℓ1(S)/ℓ1(o) is isometrically algebra
isomorphic to LM(ℓ1(G),P) [12, Proposition 5.6].

Theorem 4.6. Let S be a regular semigroup with a finite number of idempotents, and T ∈ M(ℓ1(S)) (defined as
above) such that Ti, j = Lη where 0 , η ∈ ℓ1(G)+. If ℓ1(S)T is Arens regular, then S is compact.

Proof. Suppose that ℓ1(S)T is Arens regular, then by [25, Corollary 1.4.12], any quotient of ℓ1(S)T is Arens
regular. By the discussion above (i.e. [12, Proposition 5.6]) and (16), LM(ℓ1(Gk)T,Pk) is Arens regular. Then
[13, Theorem 4.2(ii)] implies that ℓ1(Gk)T is Arens regular for k = 1, 2, . . . ,m. By [19, Theorem 4.4] Gk is
compact for k = 1, 2, . . . ,m. Since S has a principal series, the factors of this series are isomorphic in some
order to the principal factors of S [6, Theorem 2.40], so, each principal factor of S is compact. This means
that S is compact.
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5. Problems

We close this paper with the following problems:

1. Let A be a commutative Banach algebra and Γ : A −→ C0(∆(A)) the Gelfand representation of A. A
subset R of ∆(A) (character space of A) is called a boundary for A if R is boundary for Γ(A), the range
of the Gelfand homomorphism. In particular ∂(Γ(A)) is called the Shilov boundary of A and denoted
by ∂(A) [18, Definition 3.3.6]. Now, let T ∈ M(A). From, [21, Theorem 1.3.1 and Corollary 1.3.1],
∆(A) = ∆(AT). Is there a relationship between Shilov boundary of A and AT?

2. A submultiplicative (not necessarily complete) norm | · | on a Banach algebra A is called uniform norm
if it satisfies the square property |a2

| = |a|2, for all a ∈ A. If A has the unique uniform norm property
and T ∈ M(A), has AT the unique uniform norm property and vice versa?

3. The BSE-property (Bochner-Schoeberg-Eberlein property) on commutative Banach algebras is a prop-
erty that is related to multiplier algebras and character space of Banach algebras. This notion was
introduced by Takahasi and Hatori in [29]. Let T ∈ M(A). Are there any relationships between being
BSE-algebra of A and AT?

4. A commutative Banach algebra A is called a Tauberian Banach algebra if the set of all a ∈ A such that
â has compact support is dense in A, see [18, Definition 5.1.7]. If A is a Tauberian Banach algebra and
T ∈ M(A), is AT Tauberian? What about the converse of this question?

5. Is there a relationship between projectivity (flatness, injectivity) of A and AT?
6. Let A be a Banach algebra and X be a Banach A-bimodule. Consider the module extensions Banach

algebra A⊕1 X. If T ∈ M(A⊕1 X), how we can characterize (A⊕1 X)T? The multiplies algebra of A⊕1 X
in commutative case is characterized in [1].
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