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Abstract. In this paper, we investigate the existence of a ”weak solutions” for a Neumann problems of
p(x)-Laplacian-like operators, originated from a capillary phenomena, of the following form
−div

(
|∇u|p(x)−2

∇u +
|∇u|2p(x)−2

∇u√
1 + |∇u|2p(x)

)
= λ f (x,u,∇u) in Ω,

(
|∇u|p(x)−2

∇u + |∇u|2p(x)−2
∇u

√
1+|∇u|2p(x)

)
∂u
∂η = 0 on ∂Ω,

in the setting of the variable-exponent Sobolev spaces W1,p(x)(Ω), where Ω is a smooth bounded domain in
RN, p(x) ∈ C+(Ω) and λ is a real parameter. Based on the topological degree for a class of demicontinuous
operators of generalized (S+) type and the theory of variable-exponent Sobolev spaces, we obtain a result
on the existence of weak solutions to the considered problem.

1. Introduction

In recent years, partial differential equations with nonlinearities and nonconstant exponents have re-
ceived a lot of attention. Perhaps the impulse for this comes from the new search field that reflects a new
type of physical phenomenon is a class of nonlinear problems with variable exponents. Modeling with
classic Lebesgue and Sobolev spaces has been demonstrated to be limited for a number of materials with
inhomogeneities. In the subject of fluid mechanics, for example, great emphasis has been paid to the study
of electrorological fluids, which have the ability to modify their mechanical properties when exposed to
an electric field (see [5, 6, 31, 32]). Rajagopal and M. Ruzicka recently developed a very interesting model
for these fluids in [33] (see also [35]), taking into account the delicate interaction between the electric field

E(x) and the moving liquid. This type of problem’s energy is provided by
∫
Ω

|∇u|p(x)dx. This type of energy

can also be found in elasticity problems [41]. The natural energy space in which such problems can be
studied is the variable exponent Sobolev space W1,p(x)(Ω). Other applications relate to image processing
[3, 10], elasticity [42], the flow in porous media [7, 18], and problems in the calculus of variations involving
variational integrals with nonstandard growth [42, 23, 4].
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Let Ω be a smooth bounded domain in RN(N ≥ 2), with a Lipschitz boundary denoted by ∂Ω. In
this paper we deal with the question of the existence of a weak solutions for a class of p(x)-Laplacian-like
Neumann problems, arising from capillarity phenomena, of the following form:

−div
(
|∇u|p(x)−2

∇u +
|∇u|2p(x)−2

∇u√
1 + |∇u|2p(x)

)
= λ f (x,u,∇u) in Ω,

(
|∇u|p(x)−2

∇u + |∇u|2p(x)−2
∇u

√
1+|∇u|2p(x)

)
∂u
∂η = 0 on ∂Ω,

(1.1)

where ∂u
∂η is the exterior normal derivative, p(x) ∈ C+(Ω) with p− := min{h(x), x ∈ Ω} ≤ p(x) ≤ p+ :=

max{h(x), x ∈ Ω} < ∞, λ is a real parameter and f : Ω ×R ×RN
→ R is a Carathéodory function satisfying

some non-standard growth condition. The expression f (x,u,∇u) is often referred to as a convection term.
Note that, since the nonlinearity f depends on the gradient ∇u, then the problem (1.1) does not have a
variational structure, so the variational methods cannot be applied directly.

Capillarity can be briefly explained by considering the effects of two opposing forces: adhesion, i.e. the
attractive (or repulsive) force between the molecules of the liquid and those of the container; and cohesion,
i.e. the attractive force between the molecules of the liquid. The study of capillary phenomenon has gained
some attention recently. This increasing interest is motivated not only by fascination in naturally occurring
phenomena such as motion of drops, bubbles, and waves but also its importance in applied fields ranging
from industrial and biomedical and pharmaceutical to microfluidic systems. In the context of the study
of capillarity phenomena, recently, problem like (1.1) has begun to receive more and more attention, for
instance [8, 16, 20, 34, 37, 38, 43].

Let us recall some known results on problem (1.1). For example, W. Ni and J. Serrin [24, 25] initiated the
study of ground states for equations of the form

−div
( ∇u√

1 + |∇u|2

)
= f (u) in RN, (1.2)

with very general right hand side f . The operator −div
( ∇u√

1 + |∇u|2

)
is usually denoted as the prescribed

mean curvature operator.
Radial (singular) solutions of the problem (1.2) has been studied in the context of the analysis of capillary

surfaces for a function f of the form f (u) = ku, for k > 0 (for more details see [13, 15, 19]). In [12], the authors
studied the existence of positive radial solutions of problem (1.2) with f (u) = |u|q−1u, q > 1.

Obersnel and Omari in [26] based on variational and combines critical point theory, the lower and upper
solutions method and elliptic regularization, established the existence and multiplicity of positive solutions
of the prescribed mean curvature problem

−div
( ∇u√

1 + |∇u|2

)
= λ f (x,u) in Ω,

u = 0 on ∂Ω,

(1.3)

where λ > 0 is a parameter and f : Ω × R → R is a Carathéodory function whose potential satisfies a
suitable oscillating behavior at zero.

For λ > 0 and f independent of ∇u with Dirichlet boundary condition, M. Rodrigues [34], by using
Mountain Pass lemma and Fountain theorem, established the existence of non-trivial solutions for (1.1).

Problems like (1.1), (1.2) and (1.3) play, as is well known, a role in differential geometry and in the theory
of relativity.

In the present paper, we will generalize these works. Using a topological degree for a class of demicon-
tinuous operators of generalized (S+) type of [9] and the theory of the variable-exponent Sobolev spaces,
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we establish some new sufficient conditions under which the problem (1.1) possesses a weak solutions u
in W1,p(x)(Ω). To the best of our knowledge, this is the first paper that discusses the p(x)-Laplacian-like
type problems with convection term and Neumann boundary data via topological degree theory. For more
informations about the history of this theory, the reader can refer to [1, 2, 9, 11].

The remainder of the article is organized as follows. In section 2, we review some fundamental prelim-
inaries about the functional framework where we will treat our problem. In Section 3, we introduce some
classes of operators of generalized (S+) type, as well as the Berkovits topological degrees required for the
proof of our main result. Finaly, in the Section 4, we give our basic assumptions, some technical lemmas,
and we will state and prove the main result of the paper.

2. Preliminaries about the functional framework

In order to deal with the problem (1.1), we need some theory of the variable-exponent Lebesgue-Sobolev
spaces Lp(x)(Ω) and W1,p(x)(Ω). For convenience, we only recall some basic facts with will be used later, we
refer to [14, 22, 40] for more details.

Let Ω be a smooth bounded domain in RN(N ≥ 2), with a Lipschitz boundary denoted by ∂Ω. Denote

C+(Ω) =
{
h : h ∈ C(Ω) such that h(x) > 1 for any x ∈ Ω

}
.

For any h ∈ C+(Ω), we define

h+ := max
{
h(x), x ∈ Ω

}
and h− := min

{
h(x), x ∈ Ω

}
.

For any p ∈ C+(Ω) we define the variable exponent Lebesgue space

Lp(x)(Ω) =
{
u : Ω→ R is measurable such that

∫
Ω

|u(x)|p(x)dx < +∞
}
,

with the norm

|u|p(x) = inf{λ > 0/ρp(x)(
u
λ

) ≤ 1},

where

ρp(x)(u) =
∫
Ω

|u(x)|p(x)dx, ∀u ∈ Lp(x)(Ω).

Proposition 2.1. [14] Let (un) and u ∈ Lp(·)(Ω), then

|u|p(x) < 1(resp. = 1;> 1) ⇔ ρp(x)(u) < 1(resp. = 1;> 1) (2.1)

|u|p(x) > 1 ⇒ |u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x), (2.2)

|u|p(x) < 1 ⇒ |u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x), (2.3)

lim
n→∞
|un − u|p(x) = 0 ⇔ lim

n→∞
ρp(x)(un − u) = 0. (2.4)

Remark 2.2. Notice that, from (2.2) and (2.3), we can deduce the inequalities

|u|p(x) ≤ ρp(x)(u) + 1, (2.5)

ρp(x)(u) ≤ |u|p
−

p(x) + |u|
p+

p(x). (2.6)
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Proposition 2.3. [22, Theorem 2.5 and Corollary 2.7] The spaces Lp(x)(Ω) is a separable and reflexive Banach spaces.

Proposition 2.4. [22, Theorem 2.1] The conjugate space of Lp(x)(Ω) is Lp′(x)(Ω) where 1
p(x) +

1
p′(x) = 1 for all x ∈ Ω.

For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), we have the following Hölder-type inequality

|

∫
Ω

uv dx| ≤ (
1

p−
+

1
p′−

)|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x). (2.7)

Remark 2.5. If p1, p2 ∈ C+(Ω) with p1(x) ≤ p2(x) for any x ∈ Ω, then there exists the continuous embedding
Lp2(x)(Ω) ↪→ Lp1(x)(Ω).

Now, we define the variable exponent Sobolev space W1,p(x)(Ω) as

W1,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) such that |∇u| ∈ Lp(x)(Ω)

}
,

with the norm

||u|| = |u|p(x) + |∇u|p(x).

We denote by W1,p(·)
0 (Ω) the closure of C∞0 (Ω) in W1,p(·)(Ω).

Proposition 2.6. [17, 36] If the exponent p(·) satisfies the log-Hölder continuity condition, i.e. there is a constant

α > 0 such that for every x, y ∈ Ω, x , y with |x − y| ≤
1
2

one has

|p(x) − p(y)| ≤
α

− log |x − y|
, (2.8)

then we have the poincaré inequality, i.e. the exists a constant C > 0 depending only on Ω and the function p such
that

|u|p(x) ≤ C|∇u|p(x), ∀ u ∈W1,p(·)
0 (Ω). (2.9)

In this paper we will use the following equivalent norm on W1,p(·)(Ω)

|u|1,p(x) = |∇u|p(x),

which is equivalent to || · ||.
Furthermore, we have the compact embedding W1,p(·)(Ω) ↪→ Lp(·)(Ω)(see [22]).

Proposition 2.7. [14, 22] The spaces
(
W1,p(x)(Ω), | · |1,p(x)

)
and
(
W1,p(x)

0 (Ω), | · |1,p(x)

)
are separable and reflexive Banach

spaces.

Remark 2.8. The dual space of W1,p(x)(Ω) denoted W−1,p′(x)(Ω), is equipped with the norm

|u|−1,p′(x) = inf
{
|u0|p′(x) +

N∑
i=1

|ui|p′(x)

}
,

where the infinimum is taken on all possible decompositions u = u0 − divF with u0 ∈ Lp′(x)(Ω) and
F = (u1, . . . ,uN) ∈ (Lp′(x)(Ω))N.
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3. A review on some classes of mappings and topological degree theory

Now, we give some results and properties from the theory of topological degree. We start by defining
some classes of mappings.

In what follows, let X be a real separable reflexive Banach space and X∗ be its dual space with dual
pairing ⟨ · , · ⟩ and given a nonempty subsetΩ of X. Strong (weak) convergence is represented by the symbol
→ (⇀).

Definition 3.1. Let Y be another real Banach space. A operator F : Ω ⊂ X→ Y is said to be

1. bounded, if it takes any bounded set into a bounded set.
2. demicontinuous, if for any sequence (un) ⊂ Ω, un → u implies F(un) ⇀ F(u).
3. compact, if it is continuous and the image of any bounded set is relatively compact.

Definition 3.2. A mapping F : Ω ⊂ X→ X∗ is said to be

1. of class (S+), if for any sequence (un) ⊂ Ω with un ⇀ u and lim sup
n→∞

⟨Fun,un − u⟩ ≤ 0, we have un → u.

2. quasimonotone, if for any sequence (un) ⊂ Ω with un ⇀ u, we have lim sup
n→∞

⟨Fun, un − u⟩ ≥ 0.

Definition 3.3. Let T : Ω1 ⊂ X→ X∗ be a bounded operator such that Ω ⊂ Ω1. For any operator F : Ω ⊂ X→ X,
we say that

1. F of class (S+)T, if for any sequence (un) ⊂ Ω with un ⇀ u, yn := Tun ⇀ y and lim sup
n→∞

⟨Fun, yn − y⟩ ≤ 0,

we have un → u.
2. F has the property (QM)T, if for any sequence (un) ⊂ Ω with un ⇀ u, yn := Tun ⇀ y, we have

lim sup
n→∞

⟨Fun, y − yn⟩ ≥ 0.

In the sequel, we consider the following classes of operators:

F1(Ω) := {F : Ω→ X∗\F is bounded, demicontinuous and of class (S+)},

FB(X) := {F ∈ FT,B(E)\ E ∈ O, T ∈ F1(E)}.

FT,B(Ω) := {F : Ω→ X\F is bounded, demicontinuous and of class (S+)T},

FT(Ω) := {F : Ω→ X\ F is demicontinuous and of class (S+)T},

for any Ω ⊂ D(F), where D(F) denotes the domain of F, and any T ∈ F1(Ω).
Now, let O be the collection of all bounded open set in X and we define

F (X) := {F ∈ FT(E) | E ∈ O, T ∈ F1(E)},

where, T ∈ F1(E) is called an essential inner map to F.

Lemma 3.4. [21, Lemma 2.3] Let T ∈ F1(E) be continuous and S : D(S) ⊂ X∗ → X be demicontinuous such that
T(E) ⊂ D(S), where E is a bounded open set in a real reflexive Banach space X. Then the following statements are
true :

1. If S is quasimonotone, then I + SoT ∈ FT(E), where I denotes the identity operator.
2. If S is of class (S+), then SoT ∈ FT(E).
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Definition 3.5. Suppose that E is bounded open subset of a real reflexive Banach space X, T ∈ F1(E) be continuous
and let F,S ∈ FT(E). The affine homotopy Λ : [0, 1] × E→ X defined by

Λ(t,u) := (1 − t)Fu + tSu, for (t,u) ∈ [0, 1] × E

is called an admissible affine homotopy with the common continuous essential inner map T.

Remark 3.6. [21, Lemma 2.5] The above affine homotopy is of class (S+)T.

Next, as in [21] we give the topological degree for the class F (X).

Theorem 3.7. Let
M =

{
(F,E, h)\E ∈ O, T ∈ F1(E), F ∈ FT,B(E), h < F(∂E)

}
.

Then, there exists a unique degree function d : M −→ Z that satisfies the following properties:

1. (Normalization) For any h ∈ E, we have
d(I,E, h) = 1.

2. (Additivity) Let F ∈ FT,B(E). If E1 and E2 are two disjoint open subsets of E such that h < F(E\(E1 ∪ E2)),
then we have

d(F,E, h) = d(F,E1, h) + d(F,E2, h).

3. (Homotopy invariance) If Λ : [0, 1] × E → X is a bounded admissible affine homotopy with a common
continuous essential inner map and h: [0, 1] → X is a continuous path in X such that h(t) < Λ(t, ∂E) for all
t ∈ [0, 1], then

d(Λ(t, ·),E, h(t)) = const for all t ∈ [0, 1].

4. (Existence) If d(F,E, h) , 0, then the equation Fu = h has a solution in E.
5. ( Boundary dependence) If F, S ∈ FT(E) coincide on ∂E and h < F(∂E), then

d(F,E, h) = d(S, E, h)

Definition 3.8. [21, Definition 3.3] The above degree is defined as follows:

d(F,E, h) := dB(F|E0
,E0, h),

where dB is the Berkovits degree [9] and E0 is any open subset of E with F−1(h) ⊂ E0 and F is bounded on E0.

4. Main results

In this section we will discuss the existence of weak solutions of (1.1). For this, we list our assumptions
on f associated with our problem to show the existence result.

From new on, we always assume that Ω ⊂ RN(N ≥ 2) is a bounded domain with a Lipschitz boundary
∂Ω, p ∈ C+(Ω) satisfy the log-Hölder continuity condition (2.8) with 2 ≤ p− ≤ p(x) ≤ p+ < ∞ and
f : Ω ×R ×RN

→ R is a function such that:

(A1) f satisfies the Carathódory condition.
(A2) There exists β1 > 0 and γ ∈ Lp′(x)(Ω) such that

| f (x, ζ, ξ)| ≤ β1(γ(x) + |ζ|q(x)−1 + |ξ|q(x)−1)

for a.e. x ∈ Ω and all (ζ, ξ) ∈ R ×RN, where q ∈ C+(Ω) with
2 ≤ q− ≤ q(x) ≤ q+ < p−.
The definition of a weak solutions for problem (1.1) can be stated as follows.
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Definition 4.1. We call that u ∈W1,p(x)(Ω) is a weak solution of (1.1) if∫
Ω

(
|∇u|p(x)−2

∇u +
|∇u|2p(x)−2

∇u√
1 + |∇u|2p(x)

)
∇φdx =

∫
Ω

λ f (x,u,∇u)φdx,

for all φ ∈W1,p(x)(Ω).

Remark 4.2. • Note that
∫
Ω

(
|∇u|p(x)−2

∇u +
|∇u|2p(x)−2

∇u√
1 + |∇u|2p(x)

)
∇φdx is well defined (see [34]).

• λ f (x,u,∇u) ∈ Lp′(x)(Ω) under u ∈ W1,p(x)(Ω) and the given hypotheses about the exponents p and q and
assumption (A2) because: γ ∈ Lp′(x)(Ω), r(x) = (q(x)− 1)p′(x) ∈ C+(Ω) with r(x) < p(x). Then, by Remark 2.5
we can conclude that Lp(x) ↪→ Lr(x).

Hence, since φ ∈ Lp(x)(Ω), we have λ f (x,u,∇u)φ ∈ L1(Ω). This implies that, the integral
∫
Ω

λ f (x,u,∇u)φdx

exist.

We are now in the position to get the existence result of weak solution for (1.1).

Theorem 4.3. If the assumptions (A1) − (A2) hold, then the problem (1.1) possesses at least one weak solution u in
W1,p(x)(Ω).

Before giving the proof of the Theorem 4.3, we first give two lemmas that will be used later.
Let us consider the following functional:

J(u) :=
∫
Ω

1
p(x)

(
|∇u|p(x) +

√
1 + |∇u|2p(x)

)
dx.

It is obvious that the functional J is a continuously Gâteaux differentiable and its Gâteaux derivative at
the point u ∈W1,p(x)(Ω) is the functional T := J ′(u) ∈W−1,p′(x)(Ω), given by

⟨Tu, φ⟩ =
∫
Ω

(
|∇u|p(x)−2

∇u +
|∇u|2p(x)−2

∇u√
1 + |∇u|2p(x)

)
∇φdx,

for all u, φ ∈ W1,p(x)(Ω) where ⟨·, ·⟩ the duality pairing between W−1,p′(x)(Ω) and W1,p(x)(Ω). Furthermore,
the properties of the operator T are summarized in the following lemma (see [34, Proposition 3.1.]).

Lemma 4.4. The mapping

T : W1,p(x)(Ω) −→W−1,p′(x)(Ω)

⟨Tu, φ⟩ =
∫
Ω

(
|∇u|p(x)−2

∇u +
|∇u|2p(x)−2

∇u√
1 + |∇u|2p(x)

)
∇φdx,

is a continuous, bounded, strictly monotone operator, and is a mapping of class (S+).

Lemma 4.5. Assume that the assumptions (A1) − (A2) hold. Then the operator
S : W1,p(x)(Ω)→W−1,p′(x)(Ω) defined by

⟨Su, φ⟩ = −
∫
Ω

λ f (x,u,∇u)φdx, for all u, φ ∈W1,p(x)(Ω)

is compact.
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Proof. Let Φ : W1,p(x)(Ω)→ Lp′(x)(Ω) be an operator defined by

Φu(x) := −λ f (x, u, ∇u) for u ∈W1,p(x)(Ω) and x ∈ Ω.

Next, we split the proof in several steps.
We first show that Φ is bounded and continuous. By using (A2), the inequalities (2.5) and (2.6), we obtain

|Φu|p′(x) ≤ ρp′(x)(Φu) + 1

=

∫
Ω

|λ f (x,u(x),∇u(x))|p
′(x)dx + 1

=

∫
Ω

|λ|p
′(x)
| f (x,u(x),∇u(x))|p

′(x)dx + 1

≤

(
|λ|p

′−

+ |λ|p
′+
) ∫
Ω

|C1

(
γ(x) + |u|q(x)−1 + |∇u|q(x)−1

)
|
p′(x)dx + 1

≤ const
(
|λ|p

′−

+ |λ|p
′+
)(
ρp′(x)(γ) + ρr(x)(u) + ρr(x)(∇u)

)
+ 1

≤ const
(
|γ|p

′+

p(x) + |u|
r+
r(x) + |u|

r−
r(x) + |∇u|r

+

r(x) + |∇u|r
−

r(x)

)
+ 1,

for all u ∈W1,p(x)(Ω).
Then, by the continuous embedding Lp(x) ↪→ Lr(x) and (2.9), we have

|Φu|p′(x) ≤ const(|γ|p
′+

p(x) + |u|
r+
1,p(x) + |u|

r−
1,p(x)) + 1.

This implies that Φ is bounded on W1,p(x)(Ω).
To show that Φ is continuous, let un → u in W1,p(x)(Ω). Then un → u in Lp(x)(Ω) and ∇un → ∇u in (Lp(x)(Ω))N.
Hence there exist a subsequence (uk) of (un) and measurable functions ϕ in Lp(x)(Ω) and ψ in (Lp(x)(Ω))N such
that

uk(x)→ u(x) and ∇uk(x)→ ∇u(x),

|uk(x)| ≤ ϕ(x) and |∇uk(x)| ≤ |ψ(x)|, (4.1)

for a.e. x ∈ Ω and all k ∈N.
Hence, thanks to (A1), we get, as k −→ ∞

f (x,uk(x),∇uk(x))→ f (x,u(x),∇u(x)) a.e. x ∈ Ω.

On the other hand, it follows from (A2) and (4.1) that

| f (x,uk(x),∇uk(x))| ≤ β1(γ(x) + |ϕ(x)|q(x)−1 + |ψ(x)|q(x)−1),

for a.e. x ∈ Ω and for all k ∈N.
Since

γ + |ϕ|q(x)−1 + |ψ(x)|q(x)−1
∈ Lp′(x)(Ω),

and

ρp′(x)(Φuk −Φu) =
∫
Ω

| f (x,uk(x),∇uk(x)) − f (x,u(x),∇u(x))|p
′(x)dx,

therefore, the Lebesgue’s theorem and the equivalence (2.4) implies that

Φuk → Φu in Lp′(x)(Ω).
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Thus the entire sequence (Φun) converges to Φu in Lp′(x)(Ω).
Moreover, let I∗ : Lp′(x)(Ω)→W−1,p′(x)(Ω) be the adjoint operator for the embedding of
I : W1,p(x)(Ω)→ Lp(x)(Ω).
We then define

I∗oΦ : W1,p(x)(Ω)→W−1,p′(x)(Ω),

which is well-defined by assumption (A2).
Since the embedding I is compact, it is known that the adjoint operator I∗ is also compact. Therefore, I∗oΦ
is compact. This completes the proof of the Lemma 4.5.

Now we give the proof of the Theorem 4.3. For that, we transform this Neumann boundary value prob-
lem into a new one governed by a Hammerstein equation, so by using the theory of topological degree
introduced in section 3, we show the existence of a weak solutions to the state problem.

First, for all u, φ ∈ W1,p(x)(Ω), we define the operators T and S, as defined in Lemmas 4.4 and 4.5
respectively,

T : W1,p(x)(Ω) −→W−1,p′(x)(Ω)

⟨Tu, φ⟩ =
∫
Ω

(
|∇u|p(x)−2

∇u +
|∇u|2p(x)−2

∇u√
1 + |∇u|2p(x)

)
∇φdx,

S : W1,p(x)(Ω) −→W−1,p′(x)(Ω)

⟨Su, φ⟩ = −
∫
Ω

f (x,u,∇u)φdx.

Then u ∈W1,p(x)(Ω) is a weak solution of (1.1) if and only if

Tu = −Su. (4.2)

Thanks to the properties of the operator T seen in lemma 4.4 and in view of Minty-Browder Theorem (see
[39, Theorem 26 A], the inverse operator

L := T −1 : W−1,p′(x)(Ω)→W1,p(x)(Ω),

is bounded, continuous and of class (S+). Moreover, note by Lemma 4.5 that the operator S is bounded,
continuous and quasimonotone.
Consequently, the equation (4.2) is equivalent to the operator equation

u = Lφ and φ + SoLφ = 0. (4.3)

Following Zeidler’s terminology [39], the equation φ + SoLφ = 0 is an abstract Hammerstein equation in
the reflexive Banach space W−1,p′(x)(Ω).
To solve equation (4.3), we will apply the degree theory introducing in section 3. To do this, set

B :=
{
φ ∈W−1,p′(x)(Ω) : ∃ t ∈ [0, 1] such that φ + tSoLφ = 0

}
.

Next,we prove that B is bounded in ∈W−1,p′(x)(Ω).
Let φ ∈ B and set u := Lφ, then |Lφ|1,p(x) = |∇u|p(x).
If |∇u|p(x) ≤ 1, then |Lφ|1,p(x) is bounded.
If |∇u|p(x) > 1, then by the implication (2.2), the growth condition (A2), the Hölder inequality (2.1), the
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inequality (2.6) and the Young inequality, we get

|Lφ|p
−

1,p(x) = |∇u|p−p(x)

≤ ρp(x)(∇u)
= ⟨φ, Lφ⟩

= −t⟨SoLφ, Lφ⟩

= t
∫
Ω

λ f (x,u,∇u)udx

≤ const
( ∫
Ω

|γ(x)u(x)|dx + ρq(x)(u) +
∫
Ω

|∇u|q(x)−1
|u|dx
)

≤ const
(
2|γ|p′(x)|u|p(x) + |u|

q+

q(x) + |u|
q−

q(x) +
1

q′−
ρq(x)(∇u) +

1
q−
ρq(x)(u)

)
≤ const

(
|u|p(x) + |u|

q+

q(x) + |u|
q−

q(x) + |∇u|q
+

q(x)

)
.

From (2.9) and the continuous embedding Lp(x) ↪→ Lq(x), we conclude that

|Lφ|p
−

1,p(x) ≤ const
(
|Lφ|1,p(x) + |Lφ|

q+

1,p(x)

)
.

So, we infer that
{
Lφ|φ ∈ B

}
is bounded.

Since the operator S is bounded, it is obvious from (4.3) that B is bounded in W−1,p′(x)(Ω). Consequently,
there exists R > 0 such that

|φ|−1,p′(x) < R for all φ ∈ B.

Therefore

φ + tSoLφ , 0 for all φ ∈ ∂BR(0) and all t ∈ [0, 1],

where BR(0) is the ball of center 0 and radius R in W−1,p′(x)(Ω).
Moreover, from Lemma 3.4 we conclude that

I + SoL ∈ FL(BR(0)) and I = T oL ∈ FL(BR(0)).

Since the operators I, S and L are bounded, I + SoL is also bounded. So, we conclude that

I + SoL ∈ FL,B(BR(0)) and I = T oL ∈ FL,B(BR(0)).

Next, consider a homotopy Λ : [0, 1] × BR(0)→W−1,p′(x)(Ω) given by

Λ(t, φ) := φ + tSoLφ for (t, φ) ∈ [0, 1] × BR(0).

Hence, by using the normalization property and the homotopy invariance of degree d, we obtain

d(I + SoL,BR(0), 0) = d(I,BR(0), 0) = 1 , 0.

Then, there exists a point φ ∈ BR(0) such that

φ + SoLφ = 0.

Thus, we conclude that u = Lφ is a weak solution of (1.1). The proof is completed.
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