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Abstract. The weighted Delannoy numbers are defined by the recurrence relation fm,n = α fm−1,n + β fm,n−1 +
γ fm−1,n−1 if mn > 0, with fm,n = αmβn if nm = 0. In this work, we study a generalization of these numbers
considering the same recurrence relation but with fm,n = AmBn if nm = 0. More particularly, we focus on
the diagonal sequence fn,n. With some ingenuity, we are able to make use of well-established methods by
Pemantle and Wilson, and by Melczer in order to determine its asymptotic behavior in the case A,B, α, β, γ ≥
0. In addition, we also study its P-recursivity with the help of symbolic computation tools.

1. Introduction

The Delannoy number Dm,n is usually defined as the number of paths on Z2 going from (0, 0) to (m,n)
using only steps (0, 1), (1, 0) and (1, 1). Delannoy numbers are named after the French army officer and
amateur mathematician Henri Delannoy, who first introduced them in the late 19th century [5].

It is rather straightforward to see that Delannoy numbers are given by the recursion

Dm,n =

1, if mn = 0,
Dm−1,n +Dm,n−1 +Dm−1,n−1, if mn > 0.

Moreover, the following closed-form formulas for them can also be easily obtained

Dm,n =

m∑
i=0

(
n
i

)(
n +m − i

n

)
=

m∑
i=0

2i
(
n
i

)(
m
i

)
.

The table below shows the first values for the Delannoy numbers [17, OEIS A008288]. The bold numbers
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Email addresses: grau@uniovi.es (José Marı́a Grau), oller@unizar.es (Antonio M. Oller-Marcén), jvarona@unirioja.es (Juan

Luis Varona)



J. M. Grau et al. / Filomat 36:17 (2022), 5985–6007 5986

in this table are the so-called central Delannoy numbers Dn := Dn,n [16, OEIS A001850].

m,n 0 1 2 3 4 5 6 7 8
0 1 1 1 1 1 1 1 1 1
1 1 3 5 7 9 11 13 15 17
2 1 5 13 25 41 61 85 113 145
3 1 7 25 63 129 231 377 575 833
4 1 9 41 129 321 681 1289 2241 3649
5 1 11 61 231 681 1683 3653 7183 13073
6 1 13 85 377 1289 3653 8989 19825 40081
7 1 15 113 575 2241 7183 19825 48639 108545
8 1 17 145 833 3649 13073 40081 108545 265729

Central Delannoy numbers have been extensively studied. They arise in several different situations:
properties of lattices and posets, domino tilings of the Aztec diamond of order n augmented by an additional
row of length 2n in the middle [28], alignments between DNA sequences [1, 32], etc. In [31] up to 29 different
interpretations of these numbers are discussed.

The generating function of the central Delannoy numbers, G(z) =
∑

n≥0Dnzn, is the algebraic function

G(z) =
1

√

1 − 6z + z2
.

This expression for G(z) is obtained using classical techniques for the diagonal of rational generating
functions by means of a resultant or a residue computation. This closed-form then leads, via singularity
analysis, to the following asymptotic value [10]:

Dn =
(3 + 2

√
2)n

√
π

√
3
√

2 − 4

(
1

2
√

n
+ O(n−3/2)

)
.

Comtet [2] showed that the coefficients of any algebraic generating function satisfy a linear recurrence.
In the case of central Delannoy numbers we have the following:

(n + 2)Dn+2 − (6n + 9)Dn+1 + (n + 1)Dn = 0.

On the other hand, closed-form expressions such as1)

Dn =
(−1)n

6n

n∑
i=0

(−1)i62i (2i − 1)!!
(2i)!!

(
i

n − i

)
,

and integral representations like

Dn =
1
π

∫ 3+2
√

2

3−2
√

2

t−n−1 dt√
(t − 3 + 2

√
2)(3 + 2

√
2 − t)

,

are also known for central Delannoy numbers [25].
Several generalizations of Delannoy numbers considering restrictions for the paths between (0, 0) and

(m,n) have already been studied. Among them, we can mention Schröder numbers [29], Motzkin numbers

1)Here
(p
q
)
= 0 for q > p ≥ 0 and the double factorial of negative odd integers −(2k + 1) is defined by (−2k − 1)!! = (−1)k/(2k − 1)!! =

(−2)kk!/(2k)!, k = 0, 1, . . .
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[7], Narayana numbers [14], etc. Other possible generalizations are related to the so-called Delannoy
polynomials [3, 33].

In another, and also natural direction, we can mention the so-called weighted Delannoy numbers, that
are defined as follows. Given α, β, γ ∈ C, we consider paths starting at the origin that remain in the first
quadrant and use only the steps (1, 0), (0, 1) and (1, 1) with respective weights α, β and γ. Then, we define
the weight of a path as the product of the weights of the individual steps that comprise it and, for m,n ≥ 0,
we denote by Wm,n the sum of all the weights of paths connecting the origin to the point (m,n). The numbers
Wm,n are precisely the weighted Delannoy numbers and they satisfy the recurrence relation2)

Wm,n =

αmβn, if mn = 0,
αWm−1,n + βWm,n−1 + γWm−1,n−1, if mn > 0.

(1)

This generalization was considered for the first time in 1971 [11, 12] and it admits multifarious interpre-
tations according to the nature of α, β and γ. For instance:

• If α, β and γ are non-negative integers, Wm,n can be interpreted as the number of different paths
between (0, 0) and (m,n) using α kinds of steps (1, 0), β kinds of steps (0, 1) and γ kinds of steps (1, 1).
In Figure 1 we provide an example where, in order to distinguish the different kinds of steps in the
same direction, we have used continued, dashed and dotted lines.

Figure 1: For α = 2, β = 1 and γ = 3 in (1), there are W2,2 = 69 Delannoy paths from (0, 0) to (2, 2)

• With the same restriction of α, β, γ being non-negative integer numbers, the following interpretation
is also possible. Let us consider that we have letters D of γ different colors, letters R of α different
colors and letters T of β different colors. Then, Wm,n represents the number of different words that can
be formed in such a way that the number of R’s plus that of D’s is m and the number of T’s plus that
of D’s is n. In Figure 2 we provide an example where, besides the color, we have also used different
font shapes.

2)With the convention 00 = 1, if required, when defining the initial conditions for mn = 0.
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Figure 2: For α = 2, β = 1 and γ = 3 in (1), we have W1,2 = 12

• If α, β, γ ∈ [0, 1] and α + β + γ = 1 then Wm,n represents the probability that a random path starting
from (0, 0) passes through (m,n) assuming that, at a given point (i, j), there are probabilities α, β, γ of
moving to the points (i + 1, j), (i, j + 1) and (i + 1, j + 1), respectively.

• If α, β and γ are non-negative real numbers, Wm,n represents the expected number of paths (under
the performance of a certain random variable) between (0, 0) and (m,n) provided that α, β, γ are the
expected number of paths joining (i, j) with (i + 1, j), (i, j + 1) and (i + 1, j + 1), respectively.

• If α, β and γ are any real numbers, Wm,n can be interpreted as the amount of matter (if positive) or
antimatter (if negative) that will be in the point (m,n) after the process described as follows:

(i) We start with one unit of matter in position (0, 0).
(ii) The amount of matter or antimatter at position (i, j) is multiplied by α and carried to (i + 1, j).

(iii) The amount of matter or antimatter at position (i, j) is multiplied by β and carried to (i, j + 1).
(iv) The amount of matter or antimatter at position (i, j) is multiplied by γ and carried to (i+ 1, j+ 1).

where, of course, any amount of matter is annihilated by any identical amount of antimatter.

Several properties of the weighted Delannoy numbers defined in (1) have been established in the
literature [4]. As an example, let us mention the following combinatorial expression [11]:

Wm,n =

m∑
k=0

αm−kβn−k
(
n
k

)(
m
k

)
(αβ + γ)k.

The diagonal sequenceWn :=Wn,n is of special interest. In [12] it is proved that it satisfies the recurrence
relation

Wn+1 =
(2n + 1)(γ + 2αβ)

n + 1
Wn −

γ2n
n + 1

Wn−1, W0 = 1, W1 = γ + 2αβ. (2)

Moreover, in [15] the asymptotic behavior ofWn is investigated, showing that, for 0 < 1 + γ
αβ ∈ R, one has

that3)

Wn ∼ α
nβn

(
1 +

√
1 + γ

αβ

)2n+1

2 4

√
1 + γ

αβ

√
πn
.

In this work, we introduce a very natural extension of (1) considering the same recurrence relation, but
allowing more general initial conditions. Namely, we are interested in the sequence defined by

fm,n =

AmBn, if mn = 0,
α fm−1,n + β fm,n−1 + γ fm−1,n−1, if mn > 0.

3)Here and in what follows, we use the notation an ∼ bn with the usual meaning of an/bn → 1 when n→∞.
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Note that (1) is just the particular case A = α and B = β.
Using this generalization, all the interpretations above still hold, the only difference being that the

models have different behavior when restricted to the coordinate axes. The weight of the steps (1, 0) on the
horizontal axis is A and the weight of the steps (0, 1) on the vertical axis is B; the weighting of the diagonal
steps is maintained. To illustrate his, let us compare the example in Figure 1 (A = α = 2, B = β = 1 and
γ = 3) with the one in Figure 3, that has A = B = 1, α = 2, β = 1 and γ = 3.

Figure 3: For A = B = 1, α = 2, β = 1 and γ = 3 in (3), f2,2 = 56

The paper is organized as follows. In Sections 2 and 3, we deduce the generating functions of fm,n and
of the diagonal sequence fn,n. In Section 4, we study the asymptotic behavior of fn,n and fn+1,n+1/ fn,n. In
Section 5, we show the P-recursive nature of fn,n. It is worth mentioning that, in our case, the recurrence
relation for the diagonal fn = fn,n can be explicitly stated, but it is much more complicated than in the
traditional case (2). Finally, in Section 6, we suggest some ideas for further research.

Some of our results are valid for every A,B, α, β, γ ∈ C (the expression for the generating functions,
for instance). However, most of the combinatorial interpretations and the results regarding asymptotic
behavior require these constants to be, at least, non negative real numbers. In fact, some results are clearly
false for negative constants, and a possible generalization for negative values would require a substantial
work that does not seem interesting enough. For instance, while Theorem 6 shows that the limit of
fn+1,n+1/ fn,n always exists for A,B, α, β, γ ≥ 0, in Section 6 we provide several examples in which this limit
does not exist for negative values of the parameters.

One final remark. Throughout the paper, we often claim that some computations have been done
with the aid of a computer algebra system. We have indistinctly used Maple, Mathematica, Maxima, and
SageMath. However, in order to avoid the possible fails of any computer algebra system [6, 8], we have
checked all the relevant computations with at least two of them.

2. Generating function of fm,n

For A,B, α, β, γ ∈ C, let us consider the bivariate sequence { fm,n}m,n≥0 recursively defined by

fm,n =

AmBn, if mn = 0,
α fm−1,n + β fm,n−1 + γ fm−1,n−1, if mn > 0.

(3)
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Recall that, by definition, the generating function of this sequence is just

f (x, y) =
∞∑

m=0

∞∑
n=0

fm,nxmyn. (4)

Then, we have the following.

Theorem 1. For every |x| < 1/|A| and |y| < 1/|B|, it holds that

f (x, y) =
1 − αx − βy + αBxy + βAxy − ABxy
(1 − Ax)(1 − By)(1 − αx − βy − γxy)

. (5)

Proof. Let us identify the function (4), showing the domain of convergence.
We have

f (x, y) = 1 +
∞∑

m=1

Amxm +

∞∑
n=1

Bnyn +

∞∑
m=1

∞∑
n=1

fm,nxmyn

= 1 +
Ax

1 − Ax
+

By
1 − By

+ α
∞∑

m=1

∞∑
n=1

fm−1,nxmyn + β
∞∑

m=1

∞∑
n=1

fm,n−1xmyn + γ
∞∑

m=1

∞∑
n=1

fm−1,n−1xmyn,

where, to sum the geometric progressions, we have used |Ax| < 1 and |By| < 1.
Changing m − 1 7→ m in the first series, n − 1 7→ n in the second one, and both in the third one,

f (x, y) = 1 +
Ax

1 − Ax
+

By
1 − By

+ αx
∞∑

m=0

∞∑
n=1

fm,nxmyn + βy
∞∑

m=1

∞∑
n=0

fm,nxmyn + γxy
∞∑

m=0

∞∑
n=0

fm,nxmyn

= 1 +
Ax

1 − Ax
+

By
1 − By

+ αx
( ∞∑

m=0

∞∑
n=0

fm,nxmyn
−

∞∑
m=0

fm,0xm
)

+ βy
( ∞∑

m=0

∞∑
n=0

fm,nxmyn
−

∞∑
n=0

f0,nyn
)
+ γxy

∞∑
m=0

∞∑
n=0

fm,nxmyn

= 1 +
Ax

1 − Ax
+

By
1 − By

+ αx
(

f (x, y) −
1

1 − Ax

)
+ βy

(
f (x, y) −

1
1 − By

)
+ γxy f (x, y)

= 1 +
(A − α)x
1 − Ax

+
(B − β)y
1 − By

+ (αx + βy + γxy) f (x, y).

Then,

(1 − αx − βy − γxy) f (x, y) = 1 +
(A − α)x
1 − Ax

+
(B − β)y
1 − By

=
(1 − Ax)(1 − By) + (A − α)(1 − By)x + (B − β)(1 − Ax)y

(1 − Ax)(1 − By)
=

1 − αx − βy + αBxy + βAxy − ABxy
(1 − Ax)(1 − By)

and (5) is proved.

3. Generating function of the diagonal sequence fn,n

Now we consider the sequence { fn,n}. By definition, its generating function is just G(z) =
∑

n≥0 fn,nzn. In
order to get an explicit expression for G(z), we will use the method described in [12, 26]. It leads to the
following.
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Theorem 2. Let S := S(z) =
√

1 + γ2z2 − 2(2αβ + γ)z. Then,

G(z) =
−B + β

β − B + αB2z + γBz
+

2αz
(
αB + βA − AB + γ

)(
−1 + γz + S

)
S
(
−1 + 2αBz + γz + S

)(
2α + A(−1 + γz + S)

) . (6)

Proof. Let us start with f (x, y) defined as in (5), which is is rational and holomorphic in a neighborhood
of the origin. Then, for a fixed small enough z, the function f (s, z/s) will be rational and holomorphic as a
function of s in some annulus around s = 0. Thus, in that annulus, f (s, z/s) can be represented by a Laurent
series whose constant term (coefficient of s0) is

∑
m≥0 fm,mzm, the series we want to compute.

By Cauchy’s integral and residue theorems, we have that, for some circle Γz about s = 0,

∑
m≥0

fm,mzm = f (s, z/s)
∣∣∣
s=0
=

1
2πi

∫
Γz

f (s, z/s)
s

ds =
∑

k

Res
( f (s, z/s)

s
; s = sk

)
, (7)

where the sk are the “small” singularities of f (s, z/s)/s, i.e., the ones satisfying limz→0 sk(z) = 0. Since f is
rational, these singularities are poles and algebraic functions of z, so that the residue sum, the diagonal
generating function, is also an algebraic function of z.

In our case, let us take

f (s, z/s)/s =
1

αs2 − s + γsz + βz
+

s(A − α)
(As − 1)(αs2 − s + γsz + βz)

−
z(B − β)

(s − Bz)(αs2 − s + γsz + βz)

=
−αs2 + s − ABsz + βAsz + αBsz − βz
(As − 1)(s − Bz)(αs2 − s + γsz + βz)

as a function of the complex variable s. This function has four poles:

sA = 1/A, sB = Bz, s± =
1 − γz ±

√
(γz − 1)2 − 4αβz

2α
,

whose corresponding residues are

Res
( f (s, z/s)

s
; s = sA

)
=

A − α
α − A + βA2z + γAz

,

Res
( f (s, z/s)

s
; s = sB

)
=

−B + β
β − B + αB2z + γBz

,

Res
( f (s, z/s)

s
; s = s+

)
=

2αz
(
αB + βA − AB + γ

)(
1 − γz + S

)
S
(
1 − 2αBz − γz + S

)(
−2α + A(1 − γz + S)

) ,

Res
( f (s, z/s)

s
; s = s−

)
=

2αz
(
αB + βA − AB + γ

)(
−1 + γz + S

)
S
(
−1 + 2αBz + γz + S

)(
2α + A(−1 + γz + S)

) ,
with S =

√
1 + γ2z2 − 2(2αβ + γ)z.

Finally, let us recall that, with the notation of (7), we must use only the poles that satisfy limz→0 sk(z) = 0.
In our case (see above), only sB and s− satisfy such condition, and we get (6) as claimed.
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4. Asymptotic behavior

Let A,B, α, β, γ ≥ 0 and let us consider the recurrence relation (3):

fm,n =

AmBn, if mn = 0,
α fm−1,n + β fm,n−1 + γ fm−1,n−1, if mn > 0.

First of all, observe that the case α = β = 0 is trivial because, by a simple induction argument, the
following holds for every m,n ≥ 0:

fm,n = γmin{m,n}Am−min{m,n}Bn−min{m,n}.

On the other hand, if we assume that αβ , 0 and we define f̂m,n = α−mβ−n fm,n, Â = A
α , B̂ = B

β , and γ̂ = γ
αβ , it

is easy to check that

f̂m,n =

ÂmB̂n, if mn = 0,
f̂m−1,n + f̂m,n−1 + γ̂ f̂m−1,n−1, if mn > 0.

If only α = 0, it is enough to define f̂m,n := β−n fm,n, Â = A, B̂ = B
β and γ̂ = γβ to reach a similar situation.

f̂m,n =

ÂmB̂n, if mn = 0,
f̂m,n−1 + γ̂ f̂m−1,n−1, if mn > 0.

Finally, if only β = 0, the same idea applies.
All the previous discussion shows that, without loss of generality, we can assume that α, β ∈ {0, 1}. In

this section we will focus on the “complete” case α = β = 1. All the ideas and techniques can be easily
applied if αβ = 0. Thus, in what follows, we will just assume that γ ≥ 0 and consider the sequence { fm,n}m,n≥0
defined by

fm,n =

AmBn, if mn = 0,
fm−1,n + fm,n−1 + γ fm−1,n−1, if mn > 0.

(8)

We begin with an easy result whose proof by induction is straightforward. This proposition character-
izes, in particular, the cases for which the diagonal sequence fm,m is a geometric sequence, and it will play
an important role later on.

Proposition 1. Let { fm,n} be the sequence defined in (8). Then, fm,n = AmBn for every m,n ≥ 0 if and only if
AB = A + B + γ.

Before we proceed, as an example, let us illustrate the discussion above by stating Proposition 1 in full
generality.

Corollary 1. Let A,B, α, β, γ ≥ 0 and { fm,n} be the sequence defined in (3). The following hold:

(i) If αβ , 0, then fm,n = AmBn for every m,n ≥ 0 if and only if AB = βA + αB + γ.

(ii) If α = 0 , β, then fm,n = AmBn for every m,n ≥ 0 if and only if AB = αB + γ.

(iii) If α , 0 = β, then fm,n = AmBn for every m,n ≥ 0 if and only if AB = βA + γ.

(iv) If α = β = 0, then fm,n = AmBn for every m,n ≥ 0 if and only if AB = γ.



J. M. Grau et al. / Filomat 36:17 (2022), 5985–6007 5993

This section is devoted to analyze the asymptotic behavior of the diagonal sequence { fm,m}. To do so, we
will need to consider several different cases separatedly. Throughout the section we will make extensive
use of a well-established method due to Pemantle and Wilson that we will refer to as the PW method. The
details can be found in [13, 22–24, 27], for example.

Lemma 1. Let f (x, y) =
∑

m,n≥0 fm,nxmyn be the generating function of the sequence { fm,n} defined in (8). Then, if
|x| < 1/|A| and |y| < 1/|B|, it holds that

f (x, y) =
1 − x − y + (A + B − AB)xy

(1 − Ax)(1 − By)(1 − x − y − γxy)
.

Proof. Just apply Theorem 1 with α = β = 1.

Proposition 2. If A,B < 1 +
√

1 + γ then there is a constant K such that

fm,m ∼
K
√

m

(
1 +

√
1 + γ

)2m
=

K
√

m

(
2 + γ + 2

√
1 + γ

)m
.

Proof. According to Lemma 1, the generating function of { fm,n} can be written as

f (x, y) =
I(x, y)

1 − x − y − γxy
,

where I(x, y) is analytic in a neighborhood of the origin.
It is easy to see that the system of algebraic equations

I(x, y) = 0, xIx(x, y) − yIy(x, y) = 0

has the unique solution

(x, y) =

 1

1 +
√

1 + γ
,

1

1 +
√

1 + γ

 .
This point is a smooth, nondegenerate, isolated, strictly minimal critical point which, furthermore, lies inside
the domain of f (x, y) by hypothesis. Under these conditions, the PW method guarantees the existence of a
constant K such that

fm,m ∼
K
√

m
(x · y)−m,

and the result follows.

We will consider from now on the following sequences:

pm,n =


0, if m = 0,
Am, if m ≥ 1,n = 0,
pm−1,n + pm,n−1 + γpm−1,n−1, if mn > 0,

qm,n =


0, if n = 0,
Bm, if n ≥ 1,m = 0,
qm−1,n + qm,n−1 + γqm−1,n−1, if mn > 0,
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and

rm,n =


1, if n = m = 0,
0, if n = 0,m ≥ 1,
0, if n ≥ 1,m = 0,
rm−1,n + rm,n−1 + γrm−1,n−1, if mn > 0.

Observe that, if A or B are null, then pm,n or qm,n are, respectively, null sequences. The following lemma
shows by we are interested in these new sequences.

Lemma 2. With all the previous notation, we have that

fm,n = pm,n + qm,n + rm,n, m,n ≥ 0.

Proof. It follows inductively.

Lemma 3. Let fp(x, y), fq(x, y), and fr(x, y) be the generating functions of the sequences {pm,n}, {qm,n}, and {rm,n},
respectively. Then,

• If |x| < 1/|A|, it holds that fp(x, y) = Ax−Ax2

(1−Ax)(1−x−y−γxy) .

• If |y| < 1/|B|, it holds that fq(x, y) = Bx−Bx2

(1−Ax)(1−x−y−γxy) .

• For every x, y, it holds that fr(x, y) = 1−x−y
1−x−y−γxy .

Proof. See Lemma 1.

Proposition 3. With all the previous notation, we have:

• If A < 1 +
√

1 + γ, then there exists a constant P such that

pm,m ∼
P
√

m

(
1 +

√
1 + γ

)2m
.

• If B < 1 +
√

1 + γ, then there exists a constant Q such that

qm,m ∼
Q
√

m

(
1 +

√
1 + γ

)2m
.

• There exists a constant R such that

rm,m ∼
R
√

m

(
1 +

√
1 + γ

)2m
.

Proof. It is enough to proceed exactly as in Proposition 2, taking into account the generating functions ob-
tained in Lemma 3 and observing that, in each case the critical points lie in the domain of the corresponding
generating function so that the PW method can be used.

For A , 1, we define the following sequences:

Sm,n =


0, if m = 0,
1, if m ≥ 1,n = 0,
Sm−1,n + Sm,n−1 + γSm−1,n−1, if mn > 0,
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tm,n =


(A+γ

A−1

)n
, if mn = 0,

tm−1,n + tm,n−1 + γtm−1,n−1, if mn > 0,

and

Gm,n = Am
(

A + γ
A − 1

)n

, m,n ≥ 0.

Since A · A+γ
A−1 = A + A+γ

A−1 + γ, Proposition 1 implies that Gm,n = Gm−1,n +Gm,n−1 + γGm−1,n−1. Furthermore, we
have the following decomposition.

Lemma 4. If A , 1, then

pm,n = Sm,n + Gm,n − tm,n, m,n ≥ 0.

Proof. Since the four sequences involved satisfy the same recurrence, it is enough to observe that the equality
holds for mn = 0, which is trivially verified.

Proposition 4. There exists a constant S such that

Sm,m ∼
S
√

m

(
1 +

√
1 + γ

)2m
.

Proof. It is easily seen that, if |x| < 1, the generating function of Sm,n satisfies that

fS(x, y) =
∑

m,n≥0

Sm,nxmyn =
x

1 − x − y − γxy
.

Then, it is enough to argue as in Proposition 2 noting that 1
1+
√

1+γ
< 1, so that the critical point is in the

domain of the generating function and the PW method can be applied.

Proposition 5. If A > 1 +
√

1 + γ, then there exists a constant T such that

tm,m ∼
T
√

m

(
1 +

√
1 + γ

)2m
.

Proof. The generating function of tm,n is

ft(x, y) =
∑

m,n≥0

tm,nxmyn =
1 − y

(1 − x − y − γxy)
(
1 − y A+γ

A−1

) ,
provided |y| < A−1

A+γ .
We will proceed as in previous propositions. In this case, in order to be able to apply the PW method,

we have to check that 1
1+
√

1+γ
< A−1

A−γ :

A > 1 +
√

1 + γ ⇒
A + γ
A − 1

< 1 +
√

1 + γ ⇒
1

1 +
√

1 + γ
<

A − 1
A − γ

.

Thus, we apply the usual reasoning and the result follows.

Proposition 6. If A > 1 +
√

1 + γ, then

pm,m ∼ Am
(

A + γ
A − 1

)m

= Gm,m.



J. M. Grau et al. / Filomat 36:17 (2022), 5985–6007 5996

Proof. In the first place, let us observe that, if A , 1 +
√

1 + γ, then A
(A+γ

A−1

)
> (1 +

√
1 + γ)2. Then, it is

enough to apply Lemma 4, Propositions 4 and 5, and divide by Gm,m.

Proposition 7. If B > 1 +
√

1 + γ, then

qm,m ∼ Bm
(

B + γ
B − 1

)m

.

Proof. Procceed as in the previous proposition, changing the roles of A and B.

Corollary 2. If A,B > 1 +
√

1 + γ, then the fm,n defined as in (8) satisfy

fm,m ∼

Am
(A+γ

A−1

)m
, if A > B,

Bm
(B+γ

B−1

)m
, if B > A.

Proof. By Lemma 2 we have fm,n = pm,n + qm,n + rm,n. Moreover, pm,m ∼ Am
(A+γ

A−1

)m
, qm,m ∼ Bm

(B+γ
B−1

)m
and

rm,m ∼
R
√

m

(
1 +

√
1 + γ

)2m
.

Now, let us suppose A > B. Because A,B >
(
1 +

√
1 + γ

)
, we also have AB > A+B+γ and then it follows

that A
(A+γ

A−1

)
> B

(B+γ
B−1

)
. We also know that

A
(

A + γ
A − 1

)
>

(
1 +

√
1 + γ

)2
.

Then,

fm,m

Am
(A+γ

A−1

)m =
pm,m

Am
(A+γ

A−1

)m +
rm,m

Am
(A+γ

A−1

)m

and it is enough to take limits to obtain the desired result.
If B > A, the reasoning is analogous.

Corollary 3. If A = B > 1 +
√

1 + γ, then fm,m ∼ 2Am
(A+γ

A−1

)m
.

Proof. Reason as in Corollary 2.

Proposition 8. If B < 1 +
√

1 + γ < A, then fm,m ∼ Am
(A+γ

A−1

)m
.

If A < 1 +
√

1 + γ < B, then fm,m ∼ Bm
(B+γ

B−1

)m
.

Proof. Let us analyze only the first case, the second is identical. Lemma 2 implies that fm,m = pm,m+qm,m+rm,m;
moreover, using Proposition 3 we have

pm,m ∼ Am
(

A + γ
A − 1

)m

, qm,m ∼
Q
√

m

(
1 +

√
1 + γ

)2m
, rm,m ∼

R
√

m

(
1 +

√
1 + γ

)2m
.

Thus, it is enough to divide fm,m = pm,m + qm,m + rm,m by Am
(A+γ

A−1

)m
and take limits when m→∞, taking into

account that A
(A+γ

A−1

)
>

(
1 +

√
1 + γ

)2
.

We can summarize the previous propositions in the following result, where, without loss of generality,
we are assuming A ≤ B:
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Theorem 3. Let 0 ≤ A ≤ B, γ > 0 and fm,n defined as in (8). Then,

fm,m ∼


K
√

m

(
1 +

√
1 + γ

)2m
, if A ≤ B < 1 +

√
1 + γ,

Bm
(B+γ

B−1

)m
, if 1 +

√
1 + γ ≤ B,

2Bm
(B+γ

B−1

)m
, if 1 +

√
1 + γ < A = B.

Now, let us analyze the cases A = 1 +
√

1 + γ or B = 1 +
√

1 + γ. Notice that he case A = B = 1 +
√

1 + γ
is already included in Proposition 1.

Corollary 4. If A = B = 1 +
√

1 + γ then fm,n = (1 +
√

1 + γ)m+n and, in particular, fm,m =
(
1 +

√
1 + γ

)2m
.

Proof. Use
(
1 +

√
1 + γ

)2
= 2(1 +

√
1 + γ) + γ and apply Proposition 1.

Remark 1. If A = 1 +
√

1 + γ then A+γ
A−1 = A so A A+γ

A−1 = A2 = 2 + γ + 2(1 +
√

1 + γ). Of course, the same can be
said for B.

Proposition 9. If A = 1 +
√

1 + γ and B > 1 +
√

1 + γ, then fm,m ∼ Bm
(B+γ

B−1

)m
.

Proof. Becase B > 1 +
√

1 + γ, we can choose ε > 0 such that B > 1 +
√

1 + γ + ε and
√

1 + γ − ε ≥ 0. Now,
let us denote Aε = 1+

√
1 + γ+ ε and A−ε = 1+

√
1 + γ− ε, and take f εm,n, f−εm,n the corresponding sequences

defined using Aε and A−ε.
Because B > Aε > 1 +

√
1 + γ, Theorem 3 show that f εm,n ∼ Bm( B+γ

B−1 )m, that does not depend on ε. On the
other hand, using B > 1 +

√
1 + γ > A−ε, Theorem 3 again gives f−εm,n ∼ Bm( B+γ

B−1 )m, also independent on ε.
New, let us take ε→ 0.

Proposition 10. If B = 1 +
√

1 + γ and A > 1 +
√

1 + γ, then fm,m ∼ Am
(A+γ

A−1

)m
.

Proof. Proceed as in the previous proposition, changing the roles of A and B.

Proposition 11. If A = 1 +
√

1 + γ and B < 1 +
√

1 + γ or vice versa, then

fm,m ∼ (1 +
√

1 + γ)2m.

Proof. By Lemma 2, fm,m = pm,m + qm,m + rm,m, and, by Proposition 3, qm,m ∼
Q
√

m
(1 +

√
1 + γ)2m and rm,m ∼

R
√

m
(1 +

√
1 + γ)2m. Now

pm,n =


0, if m = 0,
(1 +

√
1 + γ)m, if m ≥ 1,n = 0,

pm−1,n + pm,n−1 + γpm−1,n−1, if mn > 0,

and we want to study its asymptotic behavior. We will see that pm,n ∼ (1 +
√

1 + γ)m+n and, from this, the
result follows easily.

If n = 0, it is evident from the definition of pm,n. If n = 1, it is easy to see inductively that

pm,1 = pm,0 + (1 + γ)
m−1∑
i=2

pi,0 + p1,0

= (1 +
√

1 + γ)
m
+ (1 + γ)(1 +

√
1 + γ)

2 (1 +
√

1 + γ)m−2
− 1√

1 + γ
+ (1 +

√
1 + γ)

= (1 +
√

1 + γ)
m+1
+ (1 +

√
1 + γ) −

√
1 + γ(1 +

√
1 + γ)

2
.

To conclude, it is enough to reason by induction on n.
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To finish we have to calculate the value of the constant K in Theorem 3. For this we use the Meltzer
methodology, see [13, Th. 54]; although there it is a rational function, the truth is that it is still valid for
quotients of holomorphic functions in an environment of the origin (see [21, Th. 3.5]).

To compute K, let’s remember that we are in the case A,B < 1 +
√

1 + γ and that, in this case, the
generating function is given by

f (x, y) =

1−x−y+(A+B−AB)xy
(1−Ax)(1−By)

1 − x − y + γxy
=:

I(x, y)
J(x, y)

,

where both I and J are holomorphic functions in an environment of the origin. Furthermore, the only
strictly minimal point, that is also isolated, smooth and non-degenerate, is

(ω1, ω2) =

 1

1 +
√

1 + γ
,

1

1 +
√

1 + γ

 .
In this context, we have (see [13, Th. 54], that gives precise values for the constants)

K =
1
√

2π

1
√

H

C0,

where

C0 =
−I(ω1, ω2)
ω2 Jy(ω1, ω2)

and H = 2 + λ−1(U1,1 − 2U1,2 +U2,2),

with λ = ω2 Jy(ω1, ω2) = ω1Ix(ω1, ω2) and

U1,1 = ω
2
1 Jxx(ω1, ω2), U1,2 = ω1ω2 Jxy(ω1, ω2), U2,2 = ω

2
2 Jyy(ω1, ω2).

With these ingredients, we are able to calculate the constant K in Theorem 3.

Proposition 12. The constant K in Theorem 3 is

K =
1

2
√
π

γ(A + B − AB + γ)
4
√
γ + 1

(
AB

√
γ + 1 − AB + γ

(
−A − B +

√
γ + 1 + 1

)) .
Proof. First, let us observe that Jx = −1 − γy, Jy = −1 − γx, Jxy = −γ, Jxx = Jyy = 0. Consequently,
U1,1 = U2,2 = 0 andH = 2 − 2

λU1,2. Moreover,

λ = ω2 Jy(ω1, ω2) =
1

1 +
√

1 + γ

−1 −
γ

1 +
√

1 + γ

 ,
U1,2 = ω1ω2 Jxy(ω1, ω2) =

 1

1 +
√

1 + γ

2

· (−γ),

and thereforeH = 2/
√

1 + γ.
On the other hand, C0 = −I(ω1, ω2)λ−1. Since

I(ω1, ω2) =
γ + A + B − AB

(
√

1 + γ − A + 1)(
√

1 + γ − B + 1)
,

it follows that

C0 =
γ(A + B − AB + γ)

(
√

1 + γ − 1) · (
√

1 + γ − A + 1) · (
√

1 + γ − B + 1)
,

and we are done.
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Now, let us forget the condition α = 1 = βwhat we assumed, without loss of generality, at the beginning
of Section 4. To do so, it is enough to replace A by A/α, B by B/β, γ by γ

αβ and fm,n by α−mβ−n fm,n in the
previous results. If, in addition, we rewrite K in a more symmetric fashion, we get the following.

Theorem 4. Let A,B ≥ 0 and α, β, γ ≥ 0 with αβ , 0. If { fm,n} is defined as in (3), then

fm,m ∼



Kαmβm
√

m

(
1 +

√
1 + γ

αβ

)2m
, if A

α ,
B
β < 1 +

√
1 + γ

αβ ,

Bm
(
αB+γ
B−β

)m
, if A

α ≤ 1 +
√

1 + γ
αβ ≤

B
β ,

Bm
(
αB+γ
B−β

)m
, if 1 +

√
1 + γ

αβ ≤
A
α <

B
β ,

Am
(Aβ+γ

A−α

)m
, if B

β ≤ 1 +
√

1 + γ
αβ ≤

A
α ,

Am
(Aβ+γ

A−α

)m
, if 1 +

√
1 + γ

αβ ≤
B
β <

A
α ,

2Bm
(
αB+γ
B−β

)m
, if 1 +

√
1 + γ

αβ <
A
α =

B
β ,

with

K =
γ(Aβ + Bα − AB + γ)

2
√
π 4

√
γ
αβ + 1

(
ABαβ

(√
γ
αβ + 1 − 1

)
+ αβγ

(√
γ
αβ + 1 + 1

)
− (Aβ + Bα)γ

) .
As we discussed at the beginning of this section, we have only been considering the case αβ , 0.

However, the remaining cases may be approached in a similar fashion, and we obtain the following general
result.

Theorem 5. Let A,B, α, β, γ ≥ 0, and fm,n the sequence defined in (3). Then,

fm,m ∼



K
√

m

(√
αβ +

√
αβ + γ)

)2m
, if Aβ,Bα < αβ +

√
αβ(αβ + γ),

Bm
(
αB+γ
B−β

)m
, if Aβ ≤ αβ +

√
αβ(αβ + γ) ≤ Bα,

Bm
(
αB+γ
B−β

)m
, if αβ +

√
αβ(αβ + γ) ≤ Aβ < Bα,

Am
(Aβ+γ

A−α

)m
, if Bα ≤ αβ +

√
αβ(αβ + γ) ≤ Aβ,

Am
(Aβ+γ

A−α

)m
, if αβ +

√
αβ(αβ + γ) ≤ Bα < Aβ,

2Bm
(
αB+γ
B−β

)m
, if αβ +

√
αβ(αβ + γ) < Aβ = Bα,

with K as in Theorem 4.

Finally, as a direct consequence of Theorem 5, we have the following result regarding the behavior of
fm+1,m+1/ fm,m.

Theorem 6. Let A,B, α, β, γ ≥ 0. If { fm,n} is defined as in (3), then the limit

L := lim
m→∞

fm+1,m+1

fm,m

always exists, and its value is

L =



(√
αβ +

√
αβ + γ

)2
, if Aβ,Bα < αβ +

√
αβ(αβ + γ),

B
(
αB+γ
B−β

)
, if Aβ ≤ αβ +

√
αβ(αβ + γ) ≤ Bα,

B
(
αB+γ
B−β

)
, if αβ +

√
αβ(αβ + γ) ≤ Aβ < Bα,

A
(Aβ+γ

A−α

)
, if Bα ≤ αβ +

√
αβ(αβ + γ) ≤ Aβ,

A
(Aβ+γ

A−α

)
, if αβ +

√
αβ(αβ + γ) ≤ Bα < Aβ,

B
(
αB+γ
B−β

)
, if αβ +

√
αβ(αβ + γ) < Aβ = Bα.
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5. P-recursivity of central weighted Delannoy numbers

In this section we will still assume that α = β = 1, i.e., we consider the sequence { fm,n} defined as in (8).
Recall that this is not a restriction as long as αβ , 0. The remaining cases either are trivial (if α = β = 0), or
admit a similar treatment.

First, we will see that the generating function of the sequence {fn} = { fn,n} is holonomic (D-finite). We will
do so constructively, i.e., explicitly exhibiting a differential equation satisfied by the generating function.

Proposition 13. The generating function G(z) =
∑

n≥0 fnzn satisfies a differential equation

q0(z)G(z) + zq1(z)G′(z) + z2q2(z)G′′(z) = c(z), (9)

where q0(z), q1(z) and q2(z) are polynomials of degree at most 4, c(z) is a polynomial of degree at most 2, and all their
coefficients depend on A, B and γ.

Proof. Let us consider the polynomials

qi(z) = qi,0 + qi,1z + qi,2z2 + qi,3z3 + qi,4z4, i = 0, 1, 2, and c(z) = c0 + c1z + c2z2

with

q0,0 = −(−1 + A)(−1 + B)(20AB − 10A2B − 10AB2 + 4A2B2 + 10Aγ − 5A2γ + 10Bγ

− A2Bγ − 5B2γ − AB2γ + 6γ2
− Aγ2

− Bγ2),

q0,1 = −2(−1 + A)(−1 + B)(−2 + A + B)(6AB + 3Aγ + 3Bγ + 6ABγ + 2γ2 + 2Aγ2

+ 2Bγ2 + ABγ2 + γ3),

q0,2 = −8A3B + 4A4B + 12A3B2
− 8A4B2

− 8AB3 + 12A2B3
− 4A3B3 + 2A4B3 + 4AB4

− 8A2B4

+ 2A3B4
− 4A3γ + 2A4γ − 12A2Bγ + 4A3Bγ − 2A4Bγ − 12AB2γ + 36A2B2γ − 4A3B2γ

− 5A4B2γ − 4B3γ + 4AB3γ − 4A2B3γ + 4A3B3γ + A4B3γ + 2B4γ − 2AB4γ − 5A2B4γ

+ A3B4γ − 8A2γ2 + 2A3γ2
− 4ABγ2 + 4A2Bγ2

− 4A3Bγ2
− A4Bγ2

− 8B2γ2 + 4AB2γ2

+ 28A2B2γ2
− 6A3B2γ2

− A4B2γ2 + 2B3γ2
− 4AB3γ2

− 6A2B3γ2 + 4A3B3γ2
− AB4γ2

− A2B4γ2
− 2Aγ3

− 5A2γ3 + A3γ3
− 2Bγ3 + 4ABγ3 + 6A2Bγ3

− 4A3Bγ3
− 5B2γ3

+ 6AB2γ3 + 4A2B2γ3 + B3γ3
− 4AB3γ3

− Aγ4
− A2γ4

− Bγ4 + 4ABγ4
− B2γ4,

q0,3 = 2AB(A + γ)(B + γ)(2AB + Aγ + Bγ)(6 − 3A − 3B + 2AB + 6γ − 2Aγ − 2Bγ + ABγ + γ2),

q0,4 = −ABγ2(A + γ)(B + γ)(20AB − 10A2B − 10AB2 + 6A2B2 + 10Aγ − 5A2γ + 10Bγ

+ A2Bγ − 5B2γ + AB2γ + 4γ2 + Aγ2 + Bγ2),

q1,0 = (−1 + A)(−1 + B)(20AB − 10A2B − 10AB2 + 4A2B2 + 10Aγ − 5A2γ + 10Bγ − A2Bγ

− 5B2γ − AB2γ + 6γ2
− Aγ2

− Bγ2),

q1,1 = −32AB + 48A2B − 12A3B − 2A4B + 48AB2
− 68A2B2 + +14A3B2 + 2A4B2

− 12AB3

+ 14A2B3
− 2AB4 + 2A2B4

− 16Aγ + 24A2γ − 6A3γ − A4γ − 16Bγ + 16ABγ + 10A2Bγ

− 8A3Bγ + 24B2γ + 10AB2γ − 60A2B2γ + 18A3B2γ + A4B2γ − 6B3γ − 8AB3γ + 18A2B3γ

− B4γ + A2B4γ − 12γ2 + 8Aγ2 + 12A2γ2
− 6A3γ2 + 8Bγ2

− 14A2Bγ2 + 4A3Bγ2 + 12B2γ2

− 14AB2γ2
− 4A2B2γ2 + 4A3B2γ2

− 6B3γ2 + 4AB3γ2 + 4A2B3γ2
− 6γ3 + 10Aγ3

− 3A2γ3

+ 10Bγ3
− 16ABγ3 + 4A2Bγ3

− 3B2γ3 + 4AB2γ3,

q1,2 = 32A3B − 16A4B − 48A3B2 + 28A4B2 + 32AB3
− 48A2B3 + 20A3B3

− 6A4B3
− 16AB4

+ 28A2B4
− 6A3B4

− 4A4B4 + 16A3γ − 8A4γ + 48A2Bγ − 16A3Bγ + 4A4Bγ + 48AB2γ
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− 144A2B2γ + 14A3B2γ + 19A4B2γ + 16B3γ − 16AB3γ + 14A2B3γ − 4A3B3γ − 11A4B3γ

− 8B4γ + 4AB4γ + 19A2B4γ − 11A3B4γ + 20A2γ2 + 4A3γ2
− 4A4γ2 + 28ABγ2

− 10A2Bγ2

− 8A3Bγ2 + 9A4Bγ2 + 20B2γ2
− 10AB2γ2

− 108A2B2γ2 + 32A3B2γ2
− 3A4B2γ2 + 4B3γ2

− 8AB3γ2 + 32A2B3γ2
− 24A3B3γ2

− 4B4γ2 + 9AB4γ2
− 3A2B4γ2 + 2Aγ3 + 17A2γ3

− 3A3γ3 + 2Bγ3 + 20ABγ3
− 40A2Bγ3 + 12A3Bγ3 + 17B2γ3

− 40AB2γ3
− 6A3B2γ3

− 3B3γ3 + 12AB3γ3
− 6A2B3γ3 + Aγ4 + 3A2γ4 + Bγ4

− 6A2Bγ4 + 3B2γ4
− 6AB2γ4,

q1,3 = 96A3B3
− 48A4B3

− 48A3B4 + 28A4B4 + 144A3B2γ − 72A4B2γ + 144A2B3γ − 48A3B3γ

+ 8A4B3γ − 72A2B4γ + 8A3B4γ + 14A4B4γ + 28A3Bγ2
− 14A4Bγ2 + 212A2B2γ2

+ 34A3B2γ2
− 48A4B2γ2 + 28AB3γ2 + 34A2B3γ2

− 32A3B3γ2 + 22A4B3γ2
− 14AB4γ2

− 48A2B4γ2 + 22A3B4γ2
− 10A3γ3 + 5A4γ3 + 38A2Bγ3 + 24A3Bγ3

− 18A4Bγ3 + 38AB2γ3

+ 204A2B2γ3
− 62A3B2γ3 + 3A4B2γ3

− 10B3γ3 + 24AB3γ3
− 62A2B3γ3 + 32A3B3γ3

+ 5B4γ3
− 18AB4γ3 + 3A2B4γ3

− 14A2γ4 + 4A3γ4 + 66A2Bγ4
− 20A3Bγ4

− 14B2γ4

+ 66AB2γ4 + 4A2B2γ4 + 4A3B2γ4 + 4B3γ4
− 20AB3γ4 + 4A2B3γ4

− 4Aγ5
− A2γ5

− 4Bγ5

+ 16ABγ5 + 4A2Bγ5
− B2γ5 + 4AB2γ5,

q1,4 = −ABγ2(A + γ)(B + γ)(36AB − 18A2B − 18AB2 + 10A2B2 + 18Aγ − 9A2γ + 18Bγ + A2Bγ

− 9B2γ + AB2γ + 8γ2 + Aγ2 + Bγ2),

q2,0 = −2(−1 + A)(−1 + B)(−2A + A2
− γ)(−2B + B2

− γ),

q2,1 = 2(−2A + A2
− γ)(−2B + B2

− γ)(4 − 4A − A2
− 4B + 4AB + A2B − B2 + AB2 + 2γ

− 3Aγ − 3Bγ + 4ABγ),

q2,2 = −2(−2A + A2
− γ)(−2B + B2

− γ)(−4A2 + 4A2B − 4B2 + 4AB2 + A2B2
− 4Aγ − 2A2γ

− 4Bγ + 8ABγ + 3A2Bγ − 2B2γ + 3AB2γ + γ2
− 3Aγ2

− 3Bγ2 + 6ABγ2),

q2,3 = 2(−2A + A2
− γ)(−2B + B2

− γ)(4A2B2 + 4A2Bγ + 4AB2γ + 2A2B2γ − A2γ2 + 4ABγ2

+ 3A2Bγ2
− B2γ2 + 3AB2γ2

− Aγ3
− Bγ3 + 4ABγ3),

q2,4 = −2AB(−2A + A2
− γ)(−2B + B2

− γ)γ2(A + γ)(B + γ),

c0 = −((−1 + A)(−1 + B)(20AB − 10A2B − 10AB2 + 4A2B2 + 10Aγ − 5A2γ + 10Bγ − A2Bγ

− 5B2γ − AB2γ + 6γ2
− Aγ2

− Bγ2)),

c1 = −2(−1 + A)(−1 + B)(−2 + A + B)(6AB + 3Aγ + 3Bγ + 6ABγ + 2γ2 + 2Aγ2 + 2Bγ2 + ABγ2 + γ3),

c2 = (2 − A − B + AB + γ)(−2A3B + 2A3B2
− 2AB3 + 2A2B3

− A3γ − 3A2Bγ − 3AB2γ + 6A2B2γ

+ A3B2γ − B3γ + A2B3γ − 2A2γ2
− 2B2γ2 + 4A2B2γ2

− A2γ3 + A2Bγ3
− B2γ3 + AB2γ3).

Using symbolic computation it can be verified that G(z) satisfies the differential equation of the state-
ment.

Remark 2. Observe that, if γ = (B−2)B or γ = (A−2)A, then q2,i = 0 for i = 0, . . . , 4 in the proof of Proposition 13.
Thus, q2(z) = 0 and the generating function G(z) =

∑
n≥0 fnzn satisfies a differential equation of order 1

q0(z)G(z) + zq1(z)G′(z) = c(z),

with q0(z), q1(z), and c(z) as in Proposition 13.

The previous proposition implies that {fn} is a P-recursive sequence [30, Th. 6.4.6]. Next, we specify the
form of the recurrence satisfied by {fn}.
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Proposition 14. The diagonal sequence {fm} is P-recursive. Namely, it satisfies a recurrence relation of the form

p0(m)fm + p1(m)fm−1 + p2(m)fm−2 + p3(m)fm−3 + p4(m)fm−4 = 0, (10)

where the pi(x) are polynomials of degree at most 2.

Proof. If we differentiate the series G(z) =
∑

m≥0 fmzm term by term and we substitute in (9), it can be directly
verified that the coefficients {fm}∞m=0 satisfy the claimed recurrence.

Remark 3. If we recall Remark 2, when (B− 2)B = γ or (A− 2)A = γ the differential equation satisfied by G(z) was
of order 1. This implies that we have a slightly simpler version of Proposition 14. In fact, in such case it can be seen
that the sequence {fm} satisfies a 4-term recurrence relation

p0(m)fm + p1(m)fm−1 + p2(m)fm−2 + p3(m)fm−3 + p4(m)fm−4 = 0,

where the pi(x) are polynomials of degree at most 1.

Using the polynomials q0(z), q1(z), q2(z), and c(z) whose coefficients were given in the proof of Propo-
sition 13, it is very easy, with the help of any computer algebra system, to find the precise polynomials
p0(x), . . . , p4(x) that appear in Proposition 14. However, as suggested by the proof of Proposition 13, their
expressions are rather cumbersome, so we opt not to include them in the paper.

In addition, it is important to note that, although the results of this sections are stated for the case
α = β = 1, undoing the change explained at the beginning of Section 4 we would get, as a direct consequence
of Propositions 13 and 14, the corresponding results for the more general situation αβ , 0. Anyhow, the
degrees of the involved polynomials do not vary and we do not reproduce their precise expressions for the
same reason.

In fact, all the remaining cases (αβ = 0) can be approached using the same general strategy. Once the
existence of a recurrence relation like (10) is guaranteed, for fixed values of A, B, α, β and γ, this recurrence
relation (10) can be obtained by solving a linear system with 15 equations built using the values f0, f1, . . . , f18.

Remark 4. Although, from a formal point of view, Proposition 14 is deduced from Proposition 13, they were in fact
conceived following the inverse path. The recurrence coefficients for a finite number of terms of the sequence {fm} were
first obtained by symbolic computation, and from them, we built the differential equation of Proposition 13 (that is,
this allowed to guess the coefficients qi, j and c j that appear in the proof). Once that the differential equation has been
“discovered”, to check that G(z) satisfies the equation is just a simple computational task.

It is easy to check that p0(1) = 0, but this is not a problem to apply the recurrence (10), becase this formula
is defined for m ≥ 4. However, the polynomial p0(x) can have other positive integer roots. If p0(m) , 0 for
all m ≥ 4, (10) allows us to express fm as a 4-term recurrence relation for m ≥ 4. Unfortunately, if p0(m0) = 0
for some integer m0 ≥ 4, we can not isolate fm0 in (10) and it cannot be computed using the recurrence.
In any case, it is still possible to recursively compute fm for every m ≥ max{n : p0(n) = 0}. The following
examples illustrate these two possible situations.

Example 1. If A = 5,B = 4, α = 3, β = 2, γ = 1, then

0 = p0(m)fm + p1(m)fm−1 + p2(m)fm−2 + p3(m)fm−3 + p4(m)fm−4

with

p0(m) = 52m2 + 2674m − 2726,

p1(m) = −4134m2
− 211907m + 326301,

p2(m) = 109564m2 + 5597900m − 11612034,

p3(m) = −969462m2
− 49366597m + 129474769,

p4(m) = 37180m2 + 1874730m − 5958810.

Moreover, since p0(m) , 0 for all m > 1, the sequence {fm} can be defined using a 4-term recurrence relation.
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Example 2. If A = 2,B = 4, α = 1, β = 1, γ = 8/5, then

0 = p0(m)fm + p1(m)fm−1 + p2(m)fm−2 + p3(m)fm−3 + p4(m)fm−4

with

p0(m) = 1875m2
− 20625m + 18750,

p1(m) = −41000m2 + 457750m − 573500,

p2(m) = 303600m2
− 3443400m + 5515600,

p3(m) = −796160m2 + 9191040m − 17948160,

p4(m) = 258048m2
− 3096576m + 6967296.

In this case, p0(10) = 0 but p0(m) , 0 for all m > 10. Thus, the sequence {fm} can be expressed in a recursive way
only for m > 10.

For some values of A and B, the recurrence equation (10) given in Proposition 14 is of order less than 4,
as seen in the following results.

Proposition 15. If A ∈ {0, 1} or B ∈ {0, 1}, then the recurrence relation defining {fm} is of the form

p0(m)fm + p1(m)fm−1 + p2(m)fm−2 + p3(m)fm−3 = 0,

where the pi(x) are polynomials of degree at most 2.

Proof. In (10), if A = 0 or B = 0, then p4(m) = 0. In the same way, if A = 1 or B = 1, then p0(m) = 0.

Proposition 16. If A = B − 1 = 0, A − 1 = B = 0, A = B = 0, or A = B = 1 then the recurrence relation defining
{fm} is of the form

p̂0(m)fm + p̂1(m)fm−1 + p̂2(m)fm−2 = 0,

where the p̂i(x) are polynomials of degree at most 2.

Proof. In (10), if A = B − 1 = 0 or A − 1 = B = 0, then p4(m) = p0(m) = 0. In the same way, if A = B = 0, then
p4(m) = p3(m) = 0. Finally, if A = B = 1, then p0(m) = p1(m) = 0.

Remark 5. Even though the polynomials pi and p̂i from the two preceding propositions are not the same polynomials
from (10), they just result from a shift in the indexes.

We finish this section by analyzing the case A = B. At first sight, formula (10) does not seem to be
particularly simple if A = B. However, an independent proof can be used of find a 3-term recurrence
relation in this case. The ultimate reason for this fact is that, if A = B, the second term in the generating
function G(z) in (6) (see Theorem 2) becomes simpler, so a much more direct method can be used. The
details are given in the proof of the next proposition. Actually, we will assume that A = B , 1 because the
case A = B = 1 is already included in the previous proposition and it is well known [12] (recall that we are
also assuming that α = β = 1).

Proposition 17. If A = B , 1, the sequence {fn} is given, for every m ≥ 3, by

(A − 1)(m − 1)fm =
(
m(−4 + 4A + A2

− 2γ + 3Aγ) + 6 − 6A − A2 + 3γ − 4Aγ
)
fm−1

+
(
m(−4A2

− 4Aγ − 2A2γ + γ2
− 3Aγ2) + 6A2 + 6Aγ + 3A2γ − 2γ2 + 5Aγ2

)
fm−2

+
(
m(A2γ2 + Aγ3) − 2A2γ2

− 2Aγ3
)
fm−3,

and the first three terms are

f0 = 1, f1 = 2A + γ, f2 = 2A2 + 4A(1 + γ) + γ(2 + γ).
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Proof. Let us write the generating function (6) with α = β = 1 as∑
m≥0

fmzm = P(z) +Q(z)

with

P(z) =
−B + 1

1 − B + B2z + γBz
=

∑
m≥0

pmzm,

Q(z) =
2z

(
B + A − AB + γ

)(
−1 + γz + S

)
S
(
−1 + 2Bz + γz + S

)(
2 + A(−1 + γz + S)

) =∑
m≥0

qmzm,

and S =
√

1 + γ2z2 − 2(2 + γ)z.
With the previous notation we have fm = pm + qm, so it is enough to find a way to evaluate pm and qm.

For pm, let us note that

B − 1
B − 1 − (B2 + γB)z

=
1

1 − B2+γB
B−1 z

=
∑
m≥0

(B2 + γB
B − 1

)m

zm,

so

pm =
(B(B + γ)

B − 1

)m

. (11)

Let us see how to compute qm. The aim is to find a recurrence formula for qm using something similar to
the method in [12], but now the corresponding expressions are much more complicated.

We must manipulate Q(z). With the help of a computer algebra system, it is not difficult to check that
the two factors of the denominator can be written as(

−1 + 2Bz + γz + S
)(

2 + A(−1 + γz + S)
)
= 2(1 − A + ABz + Aγz)

(
−1 + γz +

2(B − A)z
1 − A + ABz + Aγz

+ S
)
.

In this way, we have for A = B that

Q(z) =
(2A − A2 + γ)z

(1 − A + A2z + Aγz)S
.

Differentiating, with the help of a computer algebra system again, we get

Q′(z) =
(2A − A2 + γ)(2 + γ − γ2z)z

(1 − A + A2z + Aγz)S3 +
−(A − 1)(2A − A2 + γ)
(1 − A + A2z + Aγz)2S

= Q1(z) +Q2(z).

and it is easy to notice that

(1 + γ2z2
− 2z(2 + γ))Q1(z) = (2 + γ − γ2z)Q(z),

(1 − A + A2z + Aγz)zQ2(z) = −(A − 1)Q(z).

Using these formulas, and taking into account that Q′(z) = Q1(z) + Q2(z), we obtain that Q(z) satisfies the
differential equation(

(2 + γ − γ2z)(1 − A + A2z + Aγz)z − (A − 1)(1 + γ2z2
− 2z(2 + γ))

)
Q(z)

= (1 + γ2z2
− 2z(2 + γ))(1 − A + A2z + Aγz)zQ′(z).
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If we substitute Q(z) =
∑

m≥0 qmzm and zQ′(z) =
∑

m≥0 mqmzm in the previous expression, and identify
coefficients we obtain that

q0 = 0, q1 =
−2A + A2

− γ

A − 1
, q2 =

(−2A + A2
− γ)(−2 + 2A + A2 + 2Aγ − γ)

(A − 1)2 .

and that, for every m ≥ 3,

qm =
1

1 − A + (A − 1)m

((
(m − 1)A2 + A((4 + 3γ)m − 6 − 4γ) − (2m − 3)(2 + γ)

)
qm−1

+
(
(m − 2)γ2

− Aγ((4 + 3γ)m − 6 − 5γ) − (2m − 3)A2(2 + γ)
)
qm−2 + (m − 2)Aγ2(A + γ)qm−3

)
,

(12)

Finally, using (11) and (12), it is not difficult to find the recursion for fm = pm + qm, and the result
follows.

To close this section, let us finally note that, if we would be considering the general recurrence (3)
(arbitrary α and β with αβ , 0) instead of the recurrence (8) (in which α = β = 1), the hypothesis A = B , 1
of the previous proposition should be replaced by A/α = B/β , 1 and the corresponding statement would
be obtained just replacing A 7→ A/α, B 7→ B/β, γ 7→ γ

αβ and fm 7→
fm
αmβm .

6. Further work

In this work, given A,B, α, β, γ ≥ 0, we have analyzed the sequence defined by fm,n = α fm−1,n + β fm,n−1 +
γ fm−1,n−1 with initial conditions f (m,n) = AmBn for mn = 0. We have paid special attention to the case αβ , 0
but our approach is equally valid otherwise. In this final section we expose some ideas to extend our work.

First of all, in might be interesting to allow for negative values of the parameters A,B, α, β and γ. In
this work, the sequence Fn =

fn+1,n+1

fn,n
was always convergent. However, if no restrictions are considered,

many different situations are possible. It can be convergent, it can be unbounded, it can be bounded having
several limit points, etc. Figures 4, 5, 6 and 7 illustrate different possibilities.

It also seems interesting, and promising, to address the same sequence with more general initial condi-
tions fm,0 and f0,n that also admit reasonable interpretations in terms of paths, random walks, etc. [9]. Thus,
it might be worth trying to establish a connection between the sequences that we have addressed in this
work and those appearing if we consider initial conditions fm,0 = O(Am) and f0,n = O(Bm). In fact, they seem
to be totally related if the initial conditions are such that

lim sup
m

m
√

fm,0 = A and lim sup
n

n
√

f0,n = B, (13)

because the corresponding generating functions have the same radius of convergence. For example, if the
initial conditions are given by the Fibonacci sequence, i.e., fn,0 = f0,n = Fib(n) the limit fn+1,n+1

fn,n
exists and

it has the same value as if the initial conditions were given by fn,0 = f0,n = φn with φ = 1
2

(
1 +
√

5
)

(i.e.,
A = B = φ). Furthermore, the sequence is also P-recursive [18, OEIS A344576].

Finally, we believe that it is worth considering the situation in which some of the above limits (13)
do not exist, so that the radius of convergence of the generating function is zero. In these situations, the
asymptotic behavior of fn,n is different, with the limit fn+1,n+1

fn,n
not existing in general. This happens, for

instance, if α = β = γ = 1 and fn,0 = f0,n = n!. In this example [19, OEIS A346374] we conjecture that
fn+1,n+1

fn,n
≈ n + 1 (where an ≈ bn means, as usual, that an − bn → 0 when n → ∞). The same phenomenon

happens if fn,0 = f0,n = nn, with our conjecture now being fn+1,n+1

fn,n
≈ e · (n+1/2) [20, OEIS A346385]. However,

in both cases the sequence fn,n is P-recursive.
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Figure 4: Fn → 21.14 . . . for {A,B, α, β, γ} = {2,−4,−4, 3, 21}
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Figure 5: Fn is unbounded for {A,B, α, β, γ} = {2,−4,−4, 3, 431/20}
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Figure 6: Fn tends to the 2-cycle {1.81 . . . ,−2.20 . . . } for {A,B, α, β, γ} = {27/20,−27/20, 1, 1,−2}
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Figure 7: Fn tends to the 3-cycle {2.83 . . . , 0.59 . . . ,−4.76 . . . } for {A,B, α, β, γ} = {8/5,−8/5, 1, 3/2,−2}
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[3] M. C. Dağlı, A new generalization of Delannoy numbers, Indian J. Pure Appl. Math. 51 (2020) 1729–1735.
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[8] A. J. Durán, M. Pérez, J. L. Varona, The misfortunes of a trio of mathematicians using computer algebra systems. Can we trust in

them?, Notices Amer. Math. Soc. 61 (2014) 1249–1252.
[9] S. Edwards, W. Griffiths, On generalized Delannoy numbers, J. Integer Seq. 23 (2020), article 20.3.6.

[10] P. Flajolet, R. Sedgewick, Analytic combinatorics, Cambridge University Press, Cambridge, 2009.
[11] R. D. Fray, D. P. Roselle, Weighted lattice paths, Pacific J. Math. 37 (1971) 85–96.
[12] M. L. J. Hautus, D. A. Klarner, The diagonal of a double power series, Duke Math. J. 38 (1971) 229–235.
[13] S. Melczer, Analytic Combinatorics in Several Variables: Effective Asymptotics and Lattice Path Enumeration, University of

Waterloo, 2017.
[14] T. V. Narayana, Sur les treillis formés par les partitions d’un entier et leurs applications à la théorie des probabilités, C. R. Acad.
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