
Filomat 36:17 (2022), 5725–5735
https://doi.org/10.2298/FIL2217725F

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. Let {X,Xn; n ≥ 0} be a sequence of independent and identically distributed random variables in
a sub-linear expectation space (Ω,H , Ê). We establish a complete convergence theorem of the maximum
of partial sums max1≤ j≤n

∣∣∣∑ j
i=1 Xi

∣∣∣ under optimal moment condition in a sub-linear expectation space. Our
result generalizes and improves the corresponding results.

1. Introduction

In the probability space, let 1 < α ≤ 2, γ > 0 and let {X,Xn; n ≥ 1} be a sequence of negatively associated
and identically distributed random variables with E(X) = 0. Sung [1] proved that if

E|X|γ < ∞ for γ > α,
E|X|α log(|X| + 2) < ∞ for γ = α,
E|X|α < ∞ for γ < α,

(1.1)

then for any ε > 0,
∞∑

n=1

n−1P

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣∣∣ > εn1/α log1/γ n

 < ∞, (1.2)

where {ani; 1 ≤ i ≤ n,n ≥ 1} is an array of real numbers satisfying

sup
n≥1

∑n
i=1 |ani|

α

n
< ∞. (1.3)

Here and thereafter, log denotes the logarithm to the base 2. Chen and Sung [2] proved that E|X|γ < ∞ is
optimal moment condition for (1.2) whenγ > α and obtained an almost optimal condition E|X|α log1−α/γ(|X|+
2) < ∞ for (1.2) when γ < α. They put forward an open question of finding optimal moment condition for
(1.2) when γ ≤ α.
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In this paper, we provide the necessary and sufficient conditions in a sub-linear expectation space for

∞∑
n=1

n−1V

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣∣∣ > εn1/αL̃(n1/α)

 < ∞, (1.4)

where L̃(.) is the de Bruijn conjugate of a slowly varying function L(.) defined on [A,∞) for some A > 0. By
letting L(x) = log−1/γ(x), x ≥ 2, we can obtain optimal moment condition for (1.2) in a sub-linear expectation
space. Our result generalizes and improves the corresponding results of Sung [1], Chen and Sung [2].

In the classical probability space, the additivity of the probability and the expectation is assumed. But
in practice, such additivity assumption is not feasible in many areas of applications because the uncertain
phenomena can not be modeled by using additive probability or additive expectation. To model uncertain
phenomena in many areas, such as economics, finance and insurance, Peng [3-4] introduced the general
framework of the sub-linear expectation in a general function space. Kuczmaszewska [5], Xi et al. [6]
and Feng et al. [7] all studied the complete convergence theorems under the sub-linear expectations. But
there are few results about complete convergence theorems of the maximum of partial sums in sub-linear
expectation space. We will investigate this aspect.

The sub-linear expectation is a nonlinear expectation. We can not use the additivity of the probability
and the linear property of expectation in a sub-linear expectation space. Many powerful methods in the
probability space are no longer valid in sub-linear expectation space. For example, ”the divergent part” of
Borel-Cantelli lemma is no longer valid. When proving the necessary moment condition of the complete
convergence, we can not use ”the divergent part” of Borel-Cantelli lemma, but need to use a more skilled
method to prove it in sub-linear expectation space. There is no perfect Rosenthal inequality in the sub-linear
expectation space as that in the probability space. The Rosenthal inequality in the sublinear expectation
space contains the upper and lower expectation parts, which need to be handled skillfully when used, and
so on. The study of complete convergence theorems of the maximum of partial sums under sub-linear
expectations becomes much more complex and challenging.

Throughout this paper, C stands for positive constant which may differ from one place to another and
I(.) denotes an indicator function. Let L(.) be a slowly varying function. Then by Theorem 1.5.13 of Bingham
et al. [8], there exists a slowly varying function L̃(.), unique up to asymptotic equivalence, satisfying

lim
x→∞

L(x)L̃(xL(x)) = 1 and lim
x→∞

L̃(x)L(xL̃(x)) = 1. (1.5)

The function L̃ is called the de Bruijn conjugate of L, and (L, L̃) is called a (slowly varying) conjugate pair
(see, e.g., Bingham et al. [8] p. 29). We can chose L̃(x) = 1/L(x).

2. Preliminaries

We use the framework and notations of Peng [3]. Let (Ω,F ) be a given measurable space and letH be a
linear space of real functions defined on (Ω,F ) such that if X1, · · ·,Xn ∈ H then φ(X1, · · ·,Xn) ∈ H for each
φ ∈ Cl.Lip(Rn), where Cl.Lip(Rn) denotes the linear space of (local Lipschitz) functions φ satisfying

|φ(x) − φ(y)| ≤ C(1 + |x|m + |y|m)|x − y|, ∀x, y ∈ Rn,

for some C > 0,m ∈ N depending on φ. H is considered as a space of ”random variables”. If X is an
element of setH , then we denote X ∈ H .

Definition 2.1. (Peng [3]) A sub-linear expectation Ê on H is a function Ê : H → R̄ satisfying the following
properties: for all X,Y ∈ H , we have
(a) Monotonicity: If X ≥ Y then Ê[X] ≥ Ê[Y];
(b) Constant preserving: Ê[c] = c;
(c) Sub-additivity: Ê[X + Y] ≤ Ê[X] + Ê[Y] whenever Ê[X] + Ê[Y] is not of the form +∞−∞ or −∞ +∞;
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(d) Positive homogeneity: Ê[λX] = λÊ[X], λ > 0.
Here R̄ = [−∞,+∞]. The triple (Ω,H , Ê) is called a sub-linear expectation space. Given a sub-linear expectation Ê,
let us denote the conjugate expectation Ê of Ê by

Ê[X] := −Ê[−X], ∀X ∈ H .

From the definition, we can easily get that Ê[X] ≤ Ê[X], Ê[X + c] = Ê[X] + c, Ê[X − Y] ≥ Ê[X] − Ê[Y] and
|Ê[X] − Ê[Y]| ≤ Ê[|X − Y|]. Further, if Ê[|X|] is finite, then Ê[X] and Ê[X] are both finite.

Definition 2.2. (Peng [3])
(i) (Identical distribution) Let X1 and X2 be two n-dimensional random vectors defined respectively in sub-linear

expectation spaces (Ω1,H1, Ê1) and (Ω2,H2, Ê2). They are called identically distributed, denoted by X1
d
=X2, if

Ê1[φ(X1)] = Ê2[φ(X2)], ∀φ ∈ Cl.Lip(Rn), whenever the sub-expectations are finite.
(ii) (Independence) In a sub-linear expectation space (Ω,H , Ê), a random vector Y = (Y1,Y2, · · ·,Yn), Yi ∈ H

is said to be independent to another random vector X = (X1,X2, · · ·,Xm), Xi ∈ H under Ê if for each test function
φ ∈ Cl.Lip(Rm

× Rn) we have Ê[φ(X,Y)] = Ê[Ê[φ(x,Y)]|x=X ], whenever φ̄(x) := Ê[|φ(x,Y)|] < ∞ for all x and
Ê[|φ̄(X)|] < ∞.

(iii) (IID random variables) A sequence of random variables {Xn; n ≥ 1} is said to be independent if Xi+1 is

independent to (X1,X2, · · ·,Xi) for each i ≥ 1, and it is said to be identically distributed if Xi
d
= X1, for each i ≥ 1.

Next, we introduce the capacities corresponding to the sub-linear expectations. Let G ⊂ F . A function
V : G → [0, 1] is called a capacity if

V(ϕ) = 0, V(Ω) = 1, and V(A) ≤ V(B) ∀A ⊆ B,A,B ∈ G.

It is called to be sub-additive if V(A ∪ B) ≤ V(A) + V(B) for all A,B ∈ Gwith A ∪ B ∈ G.
Let (Ω,H , Ê) be a sub-linear expectation space, and Ê be the conjugate expectation of Ê. We denote a

pair (V,V) of capacities by

V(A) := inf{Ê[ξ] : I(A) ≤ ξ, ξ ∈ H}, V(A) := 1 −V(Ac), ∀A ∈ F ,

where Ac is the complement set of A. It is obvious thatV is sub-additive and

V(A) := Ê[I(A)], V(A) := Ê[I(A)], if I(A) ∈ H ,

Ê[ f ] ≤ V(A) ≤ Ê[1], Ê[ f ] ≤ V(A) ≤ Ê[1], if f ≤ I(A) ≤ 1, f , 1 ∈ H . (2.1)

This implies Markov inequality: ∀X ∈ H ,

V(|X| ≥ x) ≤ Ê[|X|p]/xp, ∀x > 0, p > 0

from I(|X| ≥ x) ≤ |X|p/xp
∈ H . By Lemma 4.1 in Zhang [9], we have Hölder inequality: ∀X,Y ∈ H , p, q > 1,

satisfying p−1 + q−1 = 1,
Ê[|XY|] ≤ (Ê[|X|p])

1
p (Ê[|Y|q])

1
q ,

particularly, Jensen inequality:
(Ê[|X|r])

1
r ≤ (Ê[|X|s])

1
s , for 0 < r ≤ s.

Definition 2.3. (Zhang [9]) (I) A function V : F → [0, 1] is called a continuous capacity if it satisfies
(I1) Continuity from below: V(An) ↑ V(A) if An ↑ A, where An,A ∈ F ;
(I2) Continuity from above: V(An) ↓ V(A) if An ↓ A, where An,A ∈ F .
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We define the Choquet integrals/expecations (CV,CV) by

CV(X) :=
∫
∞

0
V(X ≥ x)dx +

∫ 0

−∞

(V(X ≥ x) − 1)dx

with V being replaced by V and V, respectively. If limc→+∞ Ê[(|X| − c)+] = 0, then Ê[|X|] ≤ CV(|X|) ( see
Lemma 4.5(iii) of Zhang [9]).

3. Main Results

Theorem 3.1. Let 1 ≤ α < 2, {X,Xn; n ≥ 1} be a sequence of independent and identically distributed random
variables in a sub-linear expectation space (Ω,H , Ê). V is continuous and L(.) is a slowly varying function defined
on [A,∞) for some A > 0. When α = 1, we assume further that L(x) ≥ 1 and is increasing on [A,∞). Let
bn = n1/αL̃(n1/α),n ≥ Aα. If

Ê[X] = Ê[X] = 0, Ê[|X|αLα(|X| + A)] ≤ CV[|X|αLα(|X| + A)] < ∞ (3.1)

and for every array of constants {ani,n ≥ 1, 1 ≤ i ≤ n} satisfying

n∑
i=1

a2
ni ≤ Cn, n ≥ 1, (3.2)

then for any ε > 0 ∑
n≥Aα

n−1V

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniXi

∣∣∣∣∣∣∣ > εbn

 < ∞, (3.3)

∑
n≥Aα

n−1V

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣∣∣ > εbn

 < ∞ (3.4)

and

lim
n→∞

max1≤ j≤n

∣∣∣∣∑ j
i=1 Xi

∣∣∣∣
bn

= 0 a.s. V. (3.5)

Conversely, if (3.5) holds, then CV[|X|αLα(|X| + A)] < ∞.

Remark 3.2 Our Theorem 3.1 is a very general and good result. If we take L(x) = log−1/γ(x), x ≥ 2 in
Theorem 3.1, we can obtain optimal moment condition for (1.2) under the sub-linear expectations. Hence
our result generalizes and improves the corresponding results of Sung [1] and Chen and Sung[2].

4. Proof of main result

In order to prove our results, we need the following lemmas. Lemma 4.1 is obvious.

Lemma 4.1. Let α, β > 0 and and L(.) be a slowly varying function. Let f (x) = xαβLα(xβ) and h(x) = x
1
αβ L̃

1
β (x

1
α ).

Then

lim
x→∞

f (h(x))
x

= lim
x→∞

h( f (x))
x

= 1. (4.1)
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Lemma 4.2. Under the conditions of Theorem 3.1, suppose X ∈ H and bn = n1/αL̃(n1/α). Then for any c > 0,

CV[|X|αLα(|X| + A)] < ∞⇔
∑
n≥Aα
V(|X| > cbn) < ∞ (4.2)

and
CV[|X|αLα(|X| + A)] < ∞ =⇒

∑
k≥k0

2kV(|X| > b2k ) < ∞, (4.3)

where k0 is some positive integer.

Proof Let f (x) = xαLα(x) and h(x) = x
1
α L̃(x

1
α ). Since L(.) is positive and bounded on finite closed intervals,

CV[|X|αLα(|X| + A)] < ∞⇔ CV[ f (|X| + A)] < ∞.

By the defination of the Choquet expecations, we have CV[|X|] =
∫
∞

0 V(|X| > x)dx. Then CV[|X|] < ∞ ⇔∑
∞

n=1V(|X| > cn) < ∞. Then CV[ f (|X| + A)] < ∞ is equivalent to

∞∑
n=1

V( f (|X| + A) > cn) < ∞. (4.4)

By using Lemma 4.1 with β = 1, we have f (h(x)) ∼ h( f (x)) ∼ x as x→∞. Then by the fact that f (x) and h(x)
are increasing on [A,∞), we get (4.4) is equivalent to∑

n≥Aα
V(|X| > cbn) < ∞. (4.5)

When CV[|X|αLα(|X| + A)] < ∞, there is some positive integer k0 such that

∞ >
∑
n≥Aα
V(|X| > cbn)

≥

∞∑
k=k0

∑
2k−1≤n≤2k

V(|X| > b2k )

= C
∞∑

k=k0

2kV(|X| > b2k ).

The proof of Lemma 4.2 is completed.

Lemma 4.3. Zhang [9] Let {Xn; n ≥ 1} be a sequence of independent random variables in (Ω,H , Ê) and Sn =
∑n

i=1 Xi.
Suppose p ≥ 2. Then

Ê
[
max
1≤k≤n

|Sk|
p
]
≤ Cp


n∑

k=1

Ê[|Xk|
p] +

 n∑
k=1

Ê[X2
k ]


p/2


+ Cp

 n∑
k=1

[(Ê[Xk])− + (Ê[Xk])+]


p

.

Proof of Theorem 3.1 For simplicity, we assume that Aα is an integer number. For 0 < µ < 1, let
1(x) ∈ Cl.Lip(R), 0 ≤ 1(x) ≤ 1 for all x, 1(x) = 1 if x ≤ µ, 1(x) = 0 if x > 1 and 1(x) ↓ if x > 0. Then

I(|x| ≤ µ) ≤ 1(|x|) ≤ I(|x| ≤ 1), I(|x| > 1) ≤ 1 − 1(|x|) ≤ I(|x| > µ). (4.6)



F.X. Feng, X. Zeng / Filomat 36:17 (2022), 5725–5735 5730

For 1 ≤ i ≤ n,n ≥ Aα, let Yi = Xi1
(
|Xi |

bn

)
. We can easily get

V

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniXi

∣∣∣∣∣∣∣ > εbn


≤ V

(
max
1≤i≤n

|Xi| > bn

)
+V

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniYi

∣∣∣∣∣∣∣ > εbn


≤

n∑
i=1

V (|Xi| > bn) +V

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

ani(Yi − Ê[Yi])

∣∣∣∣∣∣∣ > εbn −max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniÊ[Yi]

∣∣∣∣∣∣∣


≤

n∑
i=1

V (|Xi| > bn) +V

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

ani(Yi − Ê[Yi])

∣∣∣∣∣∣∣ > εbn −

n∑
i=1

∣∣∣∣aniÊ[Yi]
∣∣∣∣ .

(4.7)

We first prove

b−1
n

n∑
i=1

∣∣∣∣aniÊ[Yi]
∣∣∣∣→ 0 as n→∞. (4.8)

∀1 ≤ γ ≤ 2, by (3.2) and Hölder inequality, we have

n∑
i=1

|ani|
γ
≤ (

n∑
i=1

|ani|
2)
γ
2 (

n∑
i=1

1)1− γ2 ≤ Cn. (4.9)

For n ≥ Aα, by(3.1), (4.6) and (4.9), we have

b−1
n

n∑
i=1

∣∣∣∣aniÊ[Yi]
∣∣∣∣

= b−1
n

n∑
i=1

|ani||Ê[Xi] − Ê[Yi]|

≤ b−1
n

n∑
i=1

|ani|Ê
[
|X|

(
1 − 1

(
|X|
bn

))]
≤ Cnb−1

n Ê
[
|X|

(
1 − 1

(
|X|
bn

))]
.

(4.10)

For n large enough and for ω ∈ (|X| > µbn), by (1.5) and the monotonicity of xα−1Lα(x), we have

n
bn
=

n(α−1)/αL̃α−1(n1/α)
L̃α(n1/α)

=
(n1/αL̃(n1/α))α−1Lα(n1/αL̃(n1/α))

L̃α(n1/α)Lα(n1/αL̃(n1/α))
≤ Cbα−1

n Lα(bn) ≤ C|X(ω)|α−1Lα(X(ω)).

(4.11)

Combining (4.10), (4.11) and (3.1), we have

b−1
n

n∑
i=1

∣∣∣∣aniÊ[Yi]
∣∣∣∣ ≤ CÊ

[
|X|αLα(|X|)

(
1 − 1

(
|X|
bn

))]
≤ CÊ

[
|X|αLα((|X| + A))

(
1 − 1

(
|X|
bn

))]
→ 0 as n→∞.

(4.12)
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Hence

∑
n≥Aα

n−1V

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniXi

∣∣∣∣∣∣∣ > εbn


≤

∑
n≥Aα

n−1
n∑

i=1

V (|Xi| > bn) +
∑
n≥Aα

n−1V

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

ani(Yi − Ê[Yi])

∣∣∣∣∣∣∣ > 1
2
εbn


:= I + II.

(4.13)

By (4.2) and (4.6), we have

I =
∑
n≥Aα

n−1
n∑

i=1

V(|Xi| > bn)

≤

∑
n≥Aα

n−1
n∑

i=1

Ê[1 − 1(
|Xi|

bn
)]

=
∑
n≥Aα

n−1
n∑

i=1

Ê[1 − 1(
|X|
bn

)]

≤

∑
n≥Aα

n−1nV(|X| > µbn) =
∑
n≥Aα
V(|X| > µbn) < ∞.

(4.14)

In order to prove (3.3), it remains to show that II < ∞. By Lemma 4.3, we have

II ≤ C
∑
n≥Aα

n−1b−2
n Ê


max

1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

ani(Yi − Ê[Yi])

∣∣∣∣∣∣∣


2
≤ C

∑
n≥Aα

n−1b−2
n

n∑
i=1

|ani|
2Ê[|Yi|

2

+ C
∑
n≥Aα

n−1b−2
n

 n∑
i=1

[
(Ê[aniYi − Ê[aniYi]])+ + (Ê[aniYi − Ê[aniYi]])−

]
2

=: II1 + II2.

(4.15)

For 0 < µ < 1, let 1 j(x) ∈ Cl.Lip(R), j ≥ 1 such that 0 ≤ 1 j(x) ≤ 1 for all x and 1 j

(
|x|
b2 j

)
= 1 if b2 j−1 < |x| ≤ b2 j ,

1 j

(
|x|
b2 j

)
= 0 if |x| ≤ µb2 j−1 or |x| > (1 + µ)b2 j . Then for any m > 0

1 j

(
|X|
b2 j

)
≤ I(µb2 j−1 < |X| ≤ (1 + µ)b2 j ), |X|m1

(
|X|
b2k

)
≤ 1 +

k∑
j=1

|X|m1 j

(
|X|
b2 j

)
. (4.16)
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By (3.2)and (4.16), there exists some positive integer j0 such that

II1 ≤ C
∑
n≥Aα

n−1b−2
n

n∑
i=1

|ani|
2Ê

[
X21

(
|X|
bn

)]
≤ C

∑
n≥Aα

b−2
n Ê

[
X21

(
|X|
bn

)]
≤ C

∑
k≥k0

∑
2k−1≤n<2k

b−2
2k Ê

[
X21

(
|X|
b2k

)]

= C
∑
k≥k0

2kb−2
2k

k∑
j= j0

Ê

[
X21 j

(
|X|
b2 j

)]

= C
∞∑

j= j0

Ê

[
X21 j

(
|X|
b2 j

)] ∞∑
k= j

2kb−2
2k

≤ C
∞∑

j= j0

2 jb−2
2 j Ê

[
X21 j

(
|X|
b2 j

)]

≤ C
∞∑

j= j0

2 jb−2
2 j b2

2 jV(|X| > µb2 j )

= C
∞∑

j= j0

2 jV(|X| > µb2 j ) < ∞.

(4.17)

Before considering II2, we estimate 1− 1
(
|X|
b2k

)
. By the definitions of 1(x) and 1 j(x), there exists some positive

integer k′0 such that

1 − 1
(
|X|
b2k

)
≤ I

(
|X|
b2k
> µ

)
≤ I(|X| > b

2k
′

0−1 )

≤

∞∑
j=k′0

I(b2 j−1 < |X| ≤ b2 j ) ≤
∞∑

j=k′0

1 j

(
|X|
b2 j

)
.

Now we consider II2. By the fact Ê[X+C] = Ê[X]+C, then we have Ê[aniYi − Ê[aniYi]] = 0. By (4.10), (4.11),
(4.12), we have nb−1

n Ê
[
|X|

(
1 − 1

(
|X|
bn

))]
→ 0,n→∞. Hence, we have

II2 = C
∑
n≥Aα

n−1b−2
n

 n∑
i=1

[
(Ê[aniYi − Ê[aniYi]])−

]
2

≤ C
∑
n≥Aα

n−1b−2
n

 n∑
i=1

∣∣∣∣−Ê[−aniYi + Ê[aniYi]]
∣∣∣∣

2

= C
∑
n≥Aα

n−1b−2
n

 n∑
i=1

∣∣∣∣Ê[−aniYi] + Ê[aniYi]
∣∣∣∣

2

≤ C
∑
n≥Aα

n−1b−2
n

 n∑
i=1

(
|Ê[−aniYi]| + |Ê[aniYi]|

)
2

≤ C
∑
n≥Aα

n−1b−2
n

 n∑
i=1

|ani||Ê[−Yi]|


2

+ C
∑
n≥Aα

n−1b−2
n

 n∑
i=1

|ani||Ê[Yi]|


2
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= C
∑
n≥Aα

n−1b−2
n

 n∑
i=1

|ani||Ê[−Xi] − Ê[−Yi]|


2

+ C
∑
n≥Aα

n−1b−2
n

 n∑
i=1

|ani||Ê[Xi] − Ê[Yi]|


2

≤ C
∑
n≥Aα

n−1b−2
n

 n∑
i=1

|ani|Ê[| − Xi − (−Yi)|]


2

+ C
∑
n≥Aα

n−1b−2
n

 n∑
i=1

|ani|Ê[|Xi − Yi|]


2

≤ C
∑
n≥Aα

n−1b−2
n

 n∑
i=1

|ani|Ê
[
|X|

(
1 − 1

(
|X|
bn

))]
2

≤ C
∑
n≥Aα

n−1
(
nb−1

n Ê
[
|X|

(
1 − 1

(
|X|
bn

))])2

≤ C
∑
n≥Aα

n−1nb−1
n Ê

[
|X|

(
1 − 1

(
|X|
bn

))]
= C

∞∑
k=k0

∑
2k−1≤n<2k

b−1
2k−1Ê

[
|X|

(
1 − 1

(
|X|
b2k

))]

≤ C
∞∑

k=k0

2kb−1
2k

∞∑
j=k

Ê

[
|X|1 j

(
|X|
b2 j

)]

= C
∞∑

j= j0

Ê

[
|X|1 j

(
|X|
b2 j

)] j∑
k=k0

2kb−1
2k

≤ C
∞∑

j= j0

2 jb−1
2 j Ê

[
|X|1 j

(
|X|
b2 j

)]

≤ C
∞∑

j= j0

2 jb−1
2 j b2 jV(|X| > µb2 j−1 )

= C
∞∑

j= j0

2 jV(|X| > cb2 j ) < ∞.

(4.18)

We complete the proof of (3.3). The implication [(3.3)=⇒ (3.4)] is immediate by letting ani = 1. Now, we
assume that (3.4) holds. Since

∞ >
∑
n≥Aα

n−1V

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣∣∣ > εbn


= C

∞∑
k=k0

∑
2k≤n<2k+1

n−1V

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣∣∣ > εbn


≥ C

∞∑
k=k0

∑
2k≤n<2k+1

1
2k+1
V

max
1≤ j≤2k

∣∣∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣∣∣ > εb2k+1


= C

∞∑
k=k0

V

max
1≤ j≤2k

∣∣∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣∣∣ > εb2k+1

 .

(4.19)

By Borel-Cantelli Lemma, we have

V

max
1≤ j≤2k

∣∣∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣∣∣ > εb2k+1 , i.o.

 = 0,
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which implies

lim
k→∞

max1≤ j≤2k+1

∣∣∣∣∑ j
i=1 Xi

∣∣∣∣
b2k+1

= 0 a.s. V. (4.20)

For any n ≥ Aα, there is k such that 2k < n ≤ 2k+1 ,then

max1≤ j≤n

∣∣∣∣∑ j
i=1 Xi

∣∣∣∣
bn

≤

max1≤ j≤2k+1

∣∣∣∣∑ j
i=1 Xi

∣∣∣∣
b2k

→ 0 a.s. V, k→∞. (4.21)

We complete the proof of (3.5).
For the ’converse’ part, we assume CV[|X|αLα(|X| + A)] = ∞. Let 1ε(x) ∈ Cl.Lip(R), 0 ≤ 1ε(x) ≤ 1 for all x,

1ε(x) = 1 if x > 1, 1ε(x) = 0 if x ≤ 1 − ε, where 0 < ε < 1. Then I(x ≥ 1) ≤ 1ε(x) ≤ I(x > 1 − ε). So for any
M > 0, by (4.2) we have

∞∑
j=Aα
Ê

[
1 1

2

(
|X j|

Mb j

)]
=

∞∑
j=Aα
Ê

[
1 1

2

(
|X|

Mb j

)]

≥

∞∑
j=Aα
V(|X| >Mb j) = ∞.

(4.22)

For any l ≥ 1, we have

V

 n∑
j=Aα
1 1

2

(
|X|

Mb j

)
< l


=V

exp

−1
2

n∑
j=Aα
1 1

2

(
|X|

Mb j

) > exp(−
l
2

)


≤ exp(

l
2

)Ê

exp

−1
2

n∑
j=Aα
1 1

2

(
|X|

Mb j

)


≤ exp(
l
2

)
n∏

j=Aα
Ê

[
exp

{
−

1
2
1 1

2

(
|X|

Mb j

)}]
.

By the elementary inequality e−x
≤ 1 − 1

2 x ≤ e−
1
2 x, ∀0 ≤ x ≤ 1

2 , we have

Ê

[
exp

{
−

1
2
1 1

2

(
|X|

Mb j

)}]
≤ Ê

[
1 −

1
4
1 1

2

(
|X|

Mb j

)]
= 1 −

1
4
Ê

[
1 1

2

(
|X|

Mb j

)]
≤ exp

{
−

1
4
Ê

[
1 1

2

(
|X|

Mb j

)]}
.

It follows that

V

 n∑
j=Aα
1 1

2

(
|X|

Mb j

)
< l


≤ exp(

l
2

) exp

−1
4

n∑
j=Aα
Ê

[
1 1

2

(
|X|

Mb j

)]→ 0 as n→∞

by (4.22). That is

V

 n∑
j=Aα
1 1

2

(
|X|

Mb j

)
≥ l

→ 1 as n→∞.
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By continuity ofV, for any M > 0, we have

V

(
lim sup

n→∞

|Xn|

bn
>

M
2

)
= V

(
|X j|

Mb j
>

1
2
, i.o.

)
≥ V

 ∞∑
j=Aα
1 1

2

(
|X j|

Mb j

)
= ∞


= lim

l→∞
V

 ∞∑
j=Aα
1 1

2

(
|X j|

Mb j

)
> l


= lim

l→∞
lim sup

n→∞
V

 n∑
j=Aα
1 1

2

(
|X j|

Mb j

)
> l

 = 1.

On the other hand, we have

lim sup
n→∞

|Xn|

bn
≤ lim sup

n→∞

(
|Sn|

bn
+
|Sn−1|

bn

)
≤ 2 lim sup

n→∞

|Sn|

bn
.

It follows that

V

(
lim sup

n→∞

|Sn|

bn
> m

)
= 1,∀m > 0,

that is

V

(
lim sup

n→∞

|Sn|

bn
< m

)
= 0,∀m > 0,

which contradictsV
(
limn→∞

|Sn |

bn
= 0

)
= 1. Therefore, the assumption CV[|X|αLα(|X| + A)] = ∞ is incorrect,

and so CV[|X|αLα(|X| + A)] < ∞. We complete the proof of the theorem.

Acknowledgements

We thank the editors and anonymous reviewers for their careful reading our paper and helpful com-
ments, which will led to significant improvements of our paper.

References

[1] S. H. Sung, On the strong convergence for weighted sums of random variables, Statistical Papers 52(2011) 447–454.
[2] P. Chen, S. H. Sung, On the strong convergence for weighted sums of negatively associated random variables, Statistics Probability

Letters 92(2014) 45–52.
[3] S.Peng, A new central limit theorem under sublinear expectations, arXiv:0803.2656v1 [math.PR], 2008.
[4] S. Peng, Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under

sublinear expectations, Science China Mathematics 52(2009) 1391–1411.
[5] A. Kuczmaszewska, Complete convergence for widely acceptable random variables under the sublinear expectations, Journal of

Mathematical Analysis and Applications 484(2020) 123662
[6] M. M. Xi, Y. Wu, X. J. Wang, Complete convergence for arrays of rowwise END random variables and its statistical applications

under sub-linear expectations, Journal of the Korean Statistical Society 48 (2019) 412–425.
[7] F. X. Feng, D. C. Wang, Q. Y. Wu, Complete convergence for weighted sums of negatively dependent random variables under

the sub-linear expectations, Communications Statistics Theory and Methods 48(2019) 1351–1366.
[8] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular Variation (Encyclopedia of Mathematics and its Applications), Cambridge

University Press, Cambridge, 1989.
[9] L. X. Zhang, Exponential inequalities under sub-linear expectations with applications to laws of the iterated logarithm, Science

China Mathematics 59 (2016) 2503–2526.


