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with Jump Conditions

Sertac Goktasa

aDepartment of Mathematics, Faculty of Science and Letters, Mersin University, 33343, Mersin, Turkey

Abstract. We consider a conformable fractional Sturm-Liouville problem with the discontinuous(or jump)
condition inside the interval. The asymptotic formulas for the eigenvalues, nodal parameters (nodal points
and nodal lengths) of this problem are calculated by the modified Prüfer substitutions. Also, using these
asymptotic formulas, an explicit formula for the potential functions is given. After all, we discuss Lipschitz
stability for the considered problem.

1. Introduction

1.1. Presentation of the Problem
Consider the following conformable fractional Sturm-Liouville problem

−Dαx Dαx y + q(x)y = λ2y, x ∈ [0,L], (1)

y(0) = y(L) = 0, (2)

with discontinuous conditions

y
(L

2
+ 0

)
= cy

(L
2
− 0

)
, Dαx y

(L
2
+ 0

)
= c−1Dαx y

(L
2
− 0

)
, (3)

where λ is a spectral parameter, q(x) ∈ L2
α(0,L), c > 0 is real, c , 1. Also, Dαx is the conformable derivative of

order α ∈ (0, 1]. The problem (1)-(2) is known as conformable fractional Sturm-Liouville problem(CFSLP).
We reconsider CFSLP when there is a point of discontinuity inside of the interval [0,L].

This paper is organized as follows: in the present section, we research some studies closely related to
the present problem and we will give some basic definitions and properties of the conformable fractional
calculus theory. In Section 2, we will redefine Prüfer substitutions on the discontinuous case and present
their properties. Moreover, we obtain the asymptotic formulas of the eigenvalues and nodal parameters
of the CFSLP with discontinuous conditions (1)-(3). Consequently, the limit form of the potential function
q will be given using eigenvalues and nodal length. In Section 3, we study the Lipschitz stability of the
CFSLP with discontinuous conditions (1)-(3).
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1.2. Researching of Studies on the Problem
In the mathematical model of physical phenomena, partial differential equations are generally encoun-

tered. Wherewithal, some conditions that uniquely determine this process are also needed in order to make
a mathematical description of a physical process. Such problems are transformed into ordinary differential
equations containing a parameter by some methods. One of these equations is the Sturm-Liouville equation.

In literature, we can encounter two types of inverse problems on Sturm-Liouville problems(SLP) as in-
verse eigenvalue problems and inverse nodal problems. Reconstructing coefficients of boundary conditions
and the operator is obtained from spectral characters such as norming constants, spectrum, eigenfunctions
in the first problem (see also[11, 12, 18, 20]), from the eigenvalues together with the roots of the eigenfunc-
tions (nodal points) in the second. While the most important contribution to the development of inverse
problems was made by Ambartsumyan [4], McLaughlin [33] has been made the first contribution to inverse
nodal problems. After McLaughlin, many researchers have been investigated the inverse nodal problem
under different conditions [12–14, 16, 19, 26, 29, 31, 40, 50].

In applied mathematics [15, 44], it can be also appeared discontinuous boundary value problems.
A considerable number of authors has been widely studied the inverse problem for the discontinuous
case [36, 39]. For example, it has been considered reconstructing two potentials functions on the whole
interval depending on the parameters in the boundary and jump conditions in [5]; determining uniquely the
potential over half the interval and the other boundary condition by the eigenvalues [21, 24, 37]; uniqueness
results for inverse problems on Sturm–Liouville operators with a finite number of discontinuities at interior
points of the interval [42, 45]. Moreover, many authors have been studied inverse nodal problems on a
finite interval with discontinuity conditions inside the interval (such as uniqueness theorems, a constructive
procedure for the solution) [28, 43, 46, 48, 49].

Fractional calculus encountered in different fields of engineering and science extensively with a variety
of applications [8, 25] defines a generalization of classical calculus. Almost all the fractional derivatives such
as Grünwald-Letnikov, Riemann- Liouville, Caputo and Jumarie, Marchaud and Riesz used in the literature
fail to satisfy some basic properties. Thus, we prefer the conformable fractional derivative in the present
study. it can be found basic properties and main results in [1, 23] and other results in [6, 9, 10, 32, 34, 38, 47]
on conformable fractional derivative. If we take into account the form of the problem (1)-(3), the fractional
SLP is obtained by replacing the fractional derivative with the ordinary derivative. In recent years, a
fractional generalization of the SLPs has been studied by many authors [3, 7, 27, 41], and a great variety of
works [2, 22] on inverse problems for this problem.

Since it is closely related to the present problem, we specifically focused on the studies [30, 35]. Koyun-
bakan and Mosazadeh [30] considered a discontinuous SLP. They defined new Prüfer substitutions and
obtained the asymptotic formulas of eigenvalues and nodal parameters and investigated the inverse nodal
problem. On the other hand, Mortazaasl and Akbarfam [35] proved the completeness theorem and an ex-
pansion theorem for a CFSLP and investigated the inverse nodal problem for this problem with real-valued
coefficients on a finite interval.

1.3. Preliminaries
In this part, we give some basic definitions and properties of the conformable fractional(CF) calculus

theory that we will use for the rest of the present study.

Definition 1.1. [1, 23] Consider the function f : [0,∞) → R. Then, CF derivative of f order α ∈ (0, 1] is defined
by:

Dαx f (x) := lim
h→0

f (x + hx1−α) − f (x)
h

.

Here, the symbol Dαx is CF derivative of order α with respect to x.

If f is α−differentiable in some (0, α), and lim
x→0+

Dαx f (x) exits, then define Dαx f (0) = lim
x→0+

Dαx f (x)

If f is usual differentiable, then Dαx f (x) = x1−α f ′(x).
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Definition 1.2. [1, 23] Consider the function f : [0,∞)→ R. Then, CF integral of f order α ∈ (0, 1] is defined by:

Iα f (x) :=

x∫
0

f (t)dαt =

x∫
0

tα−1 f (t)dt

for x > 0. Integral to the right of the last equality is the usual Riemann integral.

Theorem 1.3. [1, 23] Consider two differentiable functions f , 1 : [a, b]→ R. Then,

b∫
a

f (x)Dαx1(x)dαx = f1
∣∣∣b
a −

b∫
a

1(x)Dαx f (x)dαx.

This formula is called α−integration by parts.

Definition 1.4. [1, 23] Consider p ∈ [1,∞), α > 0. Denote the space Lp
α(0, α) which consist of all function

f : [0, α)→ R satisfying the condition

 a∫
0
| f (x)|pdαx


1
p

< ∞.

Theorem 1.5. [35] Consider the continuous function f : [x, y]→ R. Then, there exists ξ ∈ (x, y) such that

y∫
x

f (t)dαt = f (ξ)
(

yα − xα

α

)
. (4)

This formula is called the mean value theorem for the α−integrals.

2. Inverse nodal problem

Here, we present the asymptotic expansion of eigenvalues and nodal parameters for the CFSLP with
discontinuous conditions (1)-(3). Later, we reconstruct the potential function of this problem as a limit of
nodal parameters. To do so, we use the modified Prüfer substitution.

2.1. Modified Prüfer Substitutions and Eigenvalues

In this subsection, since the equation is fractional, we define the similar Prüfer substitution for the
discontinuous Sturm-Liouville operator like as [30]. Here, we note that Θ(x) is not continuous inside the
interval. To emphasize the aim of this paper, we took into account some inverse nodal problems [39, 43, 46]
for the discontinuous SLP without using this substitutions.

Let us consider the modified Prüfer substitutions for the CFSLP with discontinuous conditions (1)-(3):

y(x) =


ρ
(

xα
α

)
sin

(
λΘ( xα

α )
)
, if 0 < x < L

2 ,

ρ
(
L − xα

α

)
sin

(
λΘ(L − xα

α )
)

if L
2 < x < L,

(5)

and

Dαx y(x) =


λρ

(
xα
α

)
cos

(
λΘ( xα

α )
)
, if 0 < x < L

2 ,

λρ
(
L − xα

α

)
cos

(
λΘ(L − xα

α )
)
, if L

2 < x < L,
(6)
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where the functions ρ(x) := ρ(x, λ, α) and Θ(x) := Θ(x, λ, α) defined by a non-zero solution y(x) := y(x, λ, α)
of the equation (1) are the aptitude and the phase functions, respectively. By applying (5)-(6) to the equation
(1), we attain at

DαxΘ( xα
α ) = 1 − 1

λ2 q(x) sin2
(
λΘ( xα

α )
)
, for x < L

2 ,

DαxΘ(L − xα
α ) = 1 − 1

λ2 q(x) sin2
(
λΘ(L − xα

α )
)
, for x > L

2 .

(7)

The asymptotic expansion of eigenvalues for the CFSLP with discontinuous conditions (1)-(3) is con-
tained in the following theorem.

Theorem 2.1. Let {λn}n≥1 be eigenvalues of the CFSLP with discontinuous conditions (1)-(3). Then, the form

λn =
nπ + γn

βn
+
κn

2nπ
+O

( 1
n2

)
(8)

holds as n −→ ∞, where

βn =

 1
α

(
L
2

)α
, if n is even,

Lα
α −

1
α

(
L
2

)α
, if n is odd,

γn =

 arcsin( 1
√

1+c2
), if n is even,

−arcsin( |c|
√

1+c2
), if n is odd,

ξ =

L∫
0

q(x)dαx, µ =

L∫
0

q(x)dαx − 2

L
2∫

0

q(x)dαx, κn =
(ξ + (−1)n−1µ

2

)
.

Proof. Since (2), we have Θ(0) = 0. Now, lets assume that λ = λn. On the other hand, from (3), we arrive at
Θ

(
( L

2−0)α
α

)
= 1
λn

(
2nπ + Arcsin( 1

√

1+c2
)
)
, n = 0, 1, 2, 3, · · · ,

Θ
(

( L
2+0)α
α

)
= 1
λn

(
(2n − 1)π − Arcsin( |c|

√

1+c2
)
)
, n = 1, 2, 3, · · · .

Taking α-integral both sides of (7) with respect to x ∈
(
0, L

2

)
yields

Θ


(

L
2 − 0

)α
α

 =
L
2∫

0

(
1 −

q(x)
λ2

n
sin2

(
λΘ

(xα

α

)))
dαx

=
1
α

(L
2

)α
−

1
2λ2

n

L
2∫

0

q(x)dαx +
1

2λ2
n

L
2∫

0

q(x) cos
(
2λnΘ

(xα

α

))
dαx.

(9)

Using α− integration by parts into the last α− integral in the equality (9), we see that

L
2∫

0

q(x) cos
(
2λnΘ

(xα

α

))
dαx = O

( 1
λn

)
.

Substituting this result into the equality (9), we have

Θ


(

L
2 − 0

)α
α

 = 1
α

(L
2

)α
−

1
2λ2

n

L
2∫

0

q(x)dαx +O
(

1
λ3

n

)
. (10)
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Similarly, taking α-integral both sides of (7) with respect to x ∈
(

L
2 ,L

)
yields

Θ


(

L
2 + 0

)α
α

 = Lα

α
−

1
α

(L
2

)α
−

1
2λ2

n


L∫

0

−

L
2∫

0

 q(x)dαx +O
(

1
λ3

n

)
. (11)

If the equalities (10) and (11) are considered together for n ≥ 1, we arrive at

λn = nπ
{
βn −

γn

λn
−
κn

2λ2
n
+O

(
1
λ3

n

)}−1

and thus, since λn ≈
nπ
βn

as n→∞, we get to the asymptotic expansion (8).

2.2. Nodal Parameters
Here, we present the asymptotic expansion of nodal parameters. Before presenting these expansions,

let us talk about denotes.
Let λn be the eigenvalues of the CFSLP with discontinuous conditions (1)-(3) and yn(x) = y(x, λn) be

the eigenfunctions corresponding to these eigenvalues. By Sturm oscillation theorem, it is well known
that yn(x) has exactly n nodal points in (0,L). So, let us denote the set of these nodal points, yn(x j

n) = 0, of

the CFSLP with discontinuous conditions (1)-(3) with X =
{
x j

n

∣∣∣ n ∈N, j = 1,n
}

and define z j
n =

(x j
n)α

α . Also,
these nodal points can be read as the jth zero corresponding to the nth eigenfunction of yn(x). In addition,
l j
n = z j+1

n − z j
n be the nodal length of jth nodal domain I j

n =
[
z j

n, z
j+1
n

]
. Also, jn(z) is be denoted the largest

index j such that z j
n ∈ [0, z]. Then, j = jn(z) iff z ∈

[
z j

n , z
j+1
n

)
.

Theorem 2.2. Let us consider the CFSLP with discontinuous conditions (1)-(3). As n → ∞, the asymptotic
expansion of nodal points have the forms

z j
n =

2 jβn

n
+
β2

n

2n2π2

x j
n∫

0

q(t)dαt +O
( 1

n3

)
, x j

n ∈

(
0,

L
2

)
, (12)

z j
n =

2 jβn

n
−

2 jβnγn

n2π
+
β2

n

2n2π2


x j

n∫
0

q(t)dαt −

L
2∫

0

q(t)dαt

 +O
( 1

n3

)
, x j

n ∈

(L
2
,L

)
(13)

for j = 1,n.

Proof. Consider the nodal points x j
n ∈

(
0, L

2

)
. Then, α−integrating the first equality of (7) on

(
0, x j

n

)
, and

taking λ = λn yields that

2 jπ
λn
= z j

n −
1

2λ2
n

x j
n∫

0

q(t)dαt +
1

2λ2
n

x j
n∫

0

q(t) cos
(
2λnΘ

( tα

α

))
dαt. (14)

On the other hand, we arrive at
1
λn
=
βn

nπ −
βnγn

n2π2 −
β2

nκn

2n3π3 +O
(

1
n4

)
,

1
λ2

n
=

β2
n

n2π2 +O
(

1
n3

) (15)
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form Theorem 2.1. So, substituting the equalities (15) into the equality (14), we obtain

z j
n =

2 jβn

n
+
β2

n

2n2π2

x j
n∫

0

q(t)dαt −
β2

n

2n2π2

x j
n∫

0

q(t) cos
(
2λnΘ

( tα

α

))
dαt +O

( 1
n3

)
.

Since as n→∞

x j
n∫

0

q(t) cos
(
2λnΘ

( tα

α

))
dαt→ 0

from Riemann-Lebesgue lemma in last equality, (12) is obtained.
Similarly, for x j

n ∈
(

L
2 ,L

)
, α−integrating the second equality of (7) on

(
L
2 , x

j
n

)
, and taking λ = λn yields

that

z j
n =

2 jβn

n
−

2 jβnγn

n2π
+
β2

n

2n2π2


x j

n∫
0

q(t)dαt −

L
2∫

0

q(t)dαt


−
β2

n

2n2π2


x j

n∫
0

q(t) cos
(
2λnΘ

( tα

α

))
dαt −

L
2∫

0

q(t) cos
(
2λnΘ

( tα

α

))
dαt

 +O
( 1

n3

)
.

Since as n→∞

x j
n∫

0

q(t) cos
(
2λnΘ

( tα

α

))
dαt −

L
2∫

0

q(t) cos
(
2λnΘ

( tα

α

))
dαt→ 0

from Riemann-Lebesgue lemma in last equality, (13) is obtained and this completes the proof.

Lemma 2.3. Let us consider the CFSLP with discontinuous conditions (1)-(3). As n → ∞, the nodal lengths have
the forms

ℓ j
n =

2βn

n
+
β2

n

2n2π2

x j+1
n∫

x j
n

q(t)dαt + o
( 1

n2

)
, x j

n ∈

(
0,

L
2

)
, (16)

ℓ j
n =

2βn

n
−

2βnγn

n2π
+
β2

n

2n2π2

x j+1
n∫

x j
n

q(t)dαt + o
( 1

n2

)
, x j

n ∈

(L
2
,L

)
. (17)

Proof. By using the definition of nodal length ℓ j
n = z j+1

n − z j
n, it is not difficult to complete proof.

2.3. Potential Function
The aim of this subsection is to construct the solution of the inverse nodal problem of the CFSLP

with discontinuous conditions (1)-(3) from nodal lengths without the need for asymptotic knowledge of
eigenfunctions. That is, the limit form of the potential function q will be given.

Firstly, we will prove the uniqueness of the potential function by nodal points.
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Theorem 2.4. Consider the dense sub-nodal sets X and X̃ corresponding to q(x) and q̃(x), in problem (1)-(3),
respectively. If X = X̃ such that for all k, then there exist nk and ñk such that Xnk = X̃ñk

. That is, nk = ñk for all large
k. Furthermore, q(x) = q̃(x) on (0,L) almost everywhere.

Proof. Consider the sufficiently large nk and ñk such that nk ≥ ñk. Since Xnk = X̃ñk
, there exist m̃1 and m̃2

such that z jk
nk
= z̃m̃1

ñk
and z jk+1

nk
= z̃m̃2

ñk
. By using the (12) for sufficiently large k, we get

z jk+1
nk
− z jk

nk
=

2βnk

nk
+ o

 1
n2

k

 or z̃m̃2

ñk
− z̃m̃1

ñk
=

2
(
m̃2 − m̃1

)
βnk

ñk
+ o

 1
ñ2

k

 .
From these equalities, as nk, ñk →∞, we obtain ñk

nk(m̃2−m̃1) = 1+o (1). Namely, nk = ñk, m̃2 = m̃1+1. Therefore,

z jk
nk
= z̃m̃1

nk
and z jk+1

nk
= z̃m̃1+1

nk
.

If (12) is taken into account again, the equalities

z jk
nk
=

2 jkβnk

nk
+ o

 1
n2

k

 or z̃m̃1

ñk
=

2m̃1βnk

nk
+ o

 1
n2

k


hold. Namely, since z jk

nk
= z̃m̃1

ñk
, jk = m̃1. Hereby, z jk

nk
= z̃ jk

nk
.

On the other hand, using the asymptotic formula (8) and from [17, 35], as n→∞, the nth eigenfunction

yn(x) = cos
(

nπ
αβn

xα
)
+O

(1
n

)
, x ∈

(
0,

L
2

)
,

yn(x) = b1 cos
(

nπ
αβn

xα
)
+ b2 cos

(
nπ
αβn

(αL − xα)
)
+O

(1
n

)
, x ∈

(L
2
,L

)
hold, where b1 =

c+c−1

2 and b2 =
c−c−1

2 .
Let’s proof the uniqueness of the potential function for the case x ∈

(
0, L

2

)
, the other case can be proved

in a similar way.
Consider

{
x jk

nk

}
be a subsequence of X that convergences to x for ∀x ∈

(
0, L

2

)
. From the α−Green’s formula

[3], the Riemann-Lebesgue lemma and

yn(x)ỹn(x) =
1
2

(
1 + cos

(
2

nπ
αβn

xα
))
+O

(1
n

)
,

we obtain

0 =

x
jk
nk∫

0

({
Dαx Dαx ynk (x)

}
ỹnk (x) − ynk (x)Dαx Dαx ỹnk (x)

)
dαx =

x
jk
nk∫

0

(
q(x) − q̃(x) − λ2

nk
+ λ̃2

nk

)
ynk (x)ỹnk (x)dαx

=
1
2

x
jk
nk∫

0

q(x) − q̃(x) −
κ2

nk
− κ̃2

nk

2nkπ

 dαx + o(1).

That is, as nk →∞, we get

x∫
0

(
q(t) − q̃(t)

)
dαt = 0, ∀x ∈

(
0,

L
2

)
.

Consequently, q(x) = q̃(x) on
(
0, L

2

)
almost everywhere. So, the proof is completed.
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Theorem 2.5. Given the nodal set X, then the potential function q ∈ L1
α[0, π] for the CFSLP with discontinuous

conditions (1)-(3) can be reconstructed by the following formulas:

q(x) = lim
n→∞

2n2π2

β2
n

(
n

2βn
ℓ j

n − 1
)
, x ∈

(
0,

L
2

)

q(x) = lim
n→∞

2n2π2

β2
n

(
n

2βn
ℓ j

n − 1 +
γn

nπ

)
, x ∈

(L
2
,L

)
for j = jn(x) = max

{
j : z j

n < x
}
.

Proof. From (4), applying the mean value theorem for the α−integrals to (16), with fixed n, there exists

ξ ∈
(
x j

n, x
j+1
n

)
such that

x j+1
n∫

x j
n

q(t)dαt = q(ξ)ℓ j
n. Hereby, from (16) we arrive at

ℓ j
n =

2βn

n
+
β2

nq(ξ)ℓ j
n

2n2π2 or q(ξ) =
4nπ2

βnℓ
j
n

(
n

2βn
ℓ j

n − 1
)
+ o(1), x j

n ∈

(
0,

L
2

)
.

Using the same method used above, we get

ℓ j
n =

2βn

n
−

2βnγn

n2π
+
β2

nq(ξ)ℓ j
n

2n2π2 or q(ξ) =
4nπ2

βnℓ
j
n

(
n

2βn
ℓ j

n − 1 +
γn

nπ

)
, x j

n ∈

(L
2
,L

)
from (17). Finally, as n→∞, we arrive at end of the proof.

3. Stability of Inverse Nodal Problem

The aim of this section is to investigate the stability of the considered problem. What we mean by
stability is the Lipschitz stability [31, 49]. It is taken into account that we will give Lipschitz stability for
CFSLP with discontinuous conditions (1)-(3). Besides, for α = 1, the results convert to results of classical
case (i.e, SLP with discontinuous conditions) [30].

Definition 3.1. Let W1 = [0 , L
2

)
, W2 =

(
L
2 , L] and N1 = {2, 3, 4, · · · }.

(i) For k = 1, 2,Ωk is the set of all potentials q ∈ L1
α(Wk) such that the limits q

(
L
2 ± 0

)
= lim

x→ L
2±0

q(x) are finite, and

Ω := Ω1 ∪Ω2.
(ii) S1 is the set of all sequences X(1) =

{(
X(n,1)

j

)α}
, j = 1, 2, ...,n − 1, n ∈ N1, such that 0 <

(
X(n,1)

1

)α
< ... <(

X(n,1)
n−1

)α
< L

2 ,

and S2 is the set of all sequences X(2) =
{(

X(n,2)
j

)α}
, j = 1, 2, ...,n − 1, n ∈ N1, such that L

2 <
(
X(n,2)

1

)α
< ... <(

X(n,2)
n−1

)α
< L.

(iii) For X(k) =
{(

X(n,k)
j

)α}
∈ Sk, k = 1, 2, I(n,k)

j :=
((

X(n,k)
j

)α
,
(
X(n,k)

j+1

)α)
, L(n,k)

j :=
(
X(n,k)

j+1

)α
−

(
X(n,k)

j

)α
.

Definition 3.2. For k = 1, 2, suppose X(k),X
(k)
∈ Sk with L(n,k)

j and L
(n,k)
j as their respective grid lengths. Let

Sn,k

(
X(k),X

(k)
)
=

n2π2

2β3
n

n−1∑
j=0

∣∣∣∣L(n,k)
j − L

(n,k)
j

∣∣∣∣.
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Definition 3.3. Denote d and dS as two metrics on Sk the forms

d(X(k),X
(k)

) = lim
n→∞

Sn,k(X(k),X
(k)

),

dS(X(k),X
(k)

) = lim
n→∞

Sn,k(X(k),X
(k)

)

1 + Sn,k(X(k),X
(k)

)
=

d(X(k),X
(k)

)

1 + d(X(k),X
(k)

)
,

respectively.

For k = 1, 2, we can also obtain

d(X(k),X
(k)

) =
dS(X(k),X

(k)
)

1 − dS(X(k),X
(k)

)
, dS(X(k),X

(k)
) ≤ d(X(k),X

(k)
).

Definition 3.4. Denote ∼ as a relation on Sk the form

X(k)
∼ X

(k)
⇐⇒ dS(X(k),X

(k)
) = 0.

Hereby, ∼ is an equivalence relation on Sk. From here, dS would be a metric for the partition set S∗k := Sk/ ∼.

Now, let Sk,1 ⊂ Sk be the subspace of all asymptotically equivalent nodal sequences, and let S∗k,1 := Sk,1/
∼, S∗ = S∗1,1 ∪ S

∗

2,1.

Lemma 3.5. Let X(k),X
(k)
∈ Sk,1. Then,

(i) The interval I(n,k)
j between the points X(n,k)

j and X
(n,k)
j has the length O

(
1
n2

)
.

(ii) For all x ∈Wk, | jn,k(x) − jn,k(x)| ≤ 1 for sufficiently large n.

Proof. Since X(k),X
(k)
∈ Sk,1, we arrive at∣∣∣∣I(n,k)

j

∣∣∣∣ ≤ ∣∣∣∣ (X(n,k)
j

)α
−

2 jβn

n

∣∣∣∣ + ∣∣∣∣2 jβn

n
−

(
X

(n,k)
j

)α ∣∣∣∣ = O
( 1

n2

)
.

Hence, we obtain (i).
Now, fix x ∈Wk and suppose that jk = jn,k(x), jk = jn,k(x). Since

2 jkβn

n
+O

( 1
n2

)
=

(
X(n,k)

jk

)α
≤ x ≤

(
X(n,k)

jk+1

)α
=

2
(
jk + 1

)
βn

n
+O

( 1
n2

)
,

2 jkβn

n
+O

( 1
n2

)
=

(
X

(n,k)

jk

)α
≤ x ≤

(
X

(n,k)

jk+1

)α
=

2
(
jk + 1

)
βn

n
+O

( 1
n2

)
,

we get jk ≤ jk + 1 and jk ≤ jk + 1 for sufficiently large n. In other words, | jk − jk| ≤ 1. We arrive at (ii), and
this completes the proof.

Theorem 3.6. Let X(k),X
(k)
∈ Sk,1, be asymptotically nodal to q and q in Ωk, for k = 1, 2, respectively. Then,

∥q − q∥L1
α
≤ 2d(X(k),X

(k)
), where ∥.∥L1

α
=

b∫
a
|.|dαx < ∞.
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Proof. The proof is planned to be done only for k = 1. The proof for the other case is similar. In that case,
from (8) and Theorem 2.5, we arrive at

q(x) − q(x) = lim
n→∞

2n2π2

β2
n

(
n

2βn
L(n,1)

jn,1(x) − 1
)
− lim

n→∞

2n2π2

β2
n

(
n

2βn
L

(n,1)

jn,1(x) − 1
)

= lim
n→∞

n3π2

β3
n

(
L(n,1)

jn,1(x) − L
(n,1)

jn,1(x)

)
on W1. Hereby, by Fatou’s lemma we have

π
2∫

0

|q(x) − q(x)|dαx ≤ lim
x→∞

n3π2

β3
n

π
2∫

0

∣∣∣∣L(n,1)

jn,1(x) − L(n,1)
jn,1(x)

∣∣∣∣dαx (18)

≤
π2

β3
n

lim
n→∞

n3

π
2∫

0

∣∣∣∣L(n,1)

jn,1(x) − L
(n,1)
jn,1(x)

∣∣∣∣dαx + n3

π
2∫

0

∣∣∣∣L(n,1)
jn,1(x) − L(n,1)

jn,1(x)

∣∣∣∣dαx
 .

Since

n3

π
2∫

0

∣∣∣∣L(n,1)

jn,1(x) − L
(n,1)
jn,1(x)

∣∣∣∣dαx = o(1),

the first term in the right side of (18) will vanish after taking the limit supremum. Moreover, for 1 ≤ j ≤ n−2,

L(n,1)
j =

2βn

n
+
β2

n

2n2π2

X(n,1)
j+1∫

X(n,1)
j

q(τ)dατ + +o
( 1

n2

)
,

which implies that

∣∣∣∣L(n,1)
j − L

(n,1)
j

∣∣∣∣ = β2
n

2n2π2

∣∣∣∣∣∣∣∣∣∣∣
X(n,1)

j+1∫
X(n,1)

j

q(τ)dατ −

X
(n,1)
j+1∫

X
(n,1)
j

q(τ)dατ

∣∣∣∣∣∣∣∣∣∣∣ + o
( 1

n3

)
. (19)

Thus,
∣∣∣∣L(n,1)

j − L
(n,1)
j

∣∣∣∣ = o
(

1
n2

)
. Hereby, by virtue of (18) we obtain

π
2∫

0

|q(x) − q(x)|dαx ≤
π2

β3
n

lim
n→∞

n−1∑
j=0

n3L(n,1)
j

∣∣∣∣L(n,1)
j − L

(n,1)
j

∣∣∣∣
≤
π2

β3
n

lim
n→∞

n−1∑
j=0

n2
∣∣∣∣L(n,1)

j − L
(n,1)
j

∣∣∣∣ = 2d(X(1),X
(1)

).

This completes the proof.

Corollary 3.7. Let the asymptotically nodal points X and X to q and q inΩ respectively. Then, the following relation
holds:

∥q − q∥L1
α
≤ 2d(X,X)

from Theorems 3.6.
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Theorem 3.8. Let X(k) and X
(k)

be asymptotically nodal to q and q inΩk, for k = 1, 2, respectively. Then, the relation

d(X(k),X
(k)

) ≤ 1
4βn
∥q − q∥L1

α
holds.

Proof. We prove the case when k = 1. For k = 2, the proof is similar.
By virtue of (19) and Definition 3.2, we arrive at

Sn,1

(
X(1),X

(1)
)
=

1
4βn

n−1∑
j=0

∣∣∣∣∣∣∣∣∣∣∣
X(n,1)

j+1∫
X(n,1)

j

q(τ)dατ −

X
(n,1)
j+1∫

X
(n,1)
j

q(τ)dατ

∣∣∣∣∣∣∣∣∣∣∣ + o(1)

≤
1

4βn

n−1∑
j=0


∣∣∣∣∣∣∣∣∣∣∣

X(n,1)
j+1∫

X(n,1)
j

(q(τ) − q(τ))dατ

∣∣∣∣∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣∣∣∣∣


X(n,1)
j+1∫

X(n,1)
j

−

X
(n,1)
j+1∫

X
(n,1)
j

 q(τ)dατ

∣∣∣∣∣∣∣∣∣∣∣
 + o(1)

≤
1

4βn
∥q − q∥L1

α
+

n−1∑
j=0

∫
Ĩ(n,1)

j

|q(τ)|dατ + o(1),

where Ĩ(n,1)
j = I(n,1)

j ∪ I(n,1)
j+1 , and I(n,1)

j is the interval bounded by X(n,1)
j and X

(n,1)
j . Let I(n,1) = ∪n

j=0̃I(n,1)
j . By

Lemma 3.5, we get

|I(n,1)
| =

n∑
j=0

|̃I(n,1)
j | = O

(1
n

)
.

Consequently,

lim
x→∞

∫
I(n,1)

|q(τ)|dατ = 0,

and thus d(X(1),X
(1)

) ≤ 1
4βn
∥q − q∥L1

α
.

Theorem 3.9. The metric spaces (Ω, ∥.∥L1
α
) and (S∗, dS) are homeomorphic to each other.

Proof. Corollary 3.7 and Theorem 3.8 yield that dS(X,X) = 0 iff q = q. Hence, the partition S∗1 is in one-one
correspondence with Ω = Ω1 ∪Ω2. Let dS(X,X) < 1

2 . It follows from d = dS
1−dS

and Corollary 3.7 that

∥q − q∥L1
α
≤

1
2βn

dS(X,X). (20)

On the other hand, it follows from Theorem 3.8 that if ∥q − q∥L1
α

is small, then dS(X,X) is also small. This
and (20) complete the proof.
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