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Abstract. In this paper, a high-order iterative technique for solving a wave equation with strong damping
and nonlinear viscoelastic term is constructed. For this purpose, we adapt the high-order iterative method
used in the earlier works and establish the existence theorem of a recurrent sequence associated with the
proposed problem. Thereafter, we prove a N-order convergence of the obtained sequence to a unique

solution of the problem.

1. Introduction

In this paper, we are interested in studying the following viscoelastic problem for a wave equation

2 2
i Mt 2 (o e, )+ [ 90t =5) 2 (A, s, 5) s
=f(x,tu),0<x<1,0<t<T, (1.1)
u(0,t) =u(1,t) =0,
u(x, O) = ﬁO(x)/ ut(x/ 0) = 17[1(3(),

where f, g, 4, i, iy, iy are given functions and A > 0, is given constant.

This type of equations usually arises in the theory of viscoelasticity. It is well known that viscoelastic
materials are responsible for natural damping, which is due to the special property of these materials to
keep memory of their past history and possess a capacity of storage and dissipation of mechanical energy.
The dynamic properties of viscoelastic materials are great importance and interest as these materials have
a wide application in the natural sciences, we refer to [4]-[6], [12] and the references therein for the physical

motivation.

2020 Mathematics Subject Classification. 35L20; 35L70; 35L72.

Keywords. Wave equation; Strong damping; Nonlinear viscoelastic term, High-order iterative scheme.

Received: 23 October 2021; Revised: 30 April 2022; Accepted: 20 July 2022

Communicated by Marko Nedeljkov

Email addresses: doanthinhuquynh®2@gmail.com (Doan Thi Nhu Quynh), nhanh1@huflit.edu.vn (Nguyen Huu Nhan),

ngoc1966@gmail.com (Le Thi Phuong Ngoc), longnt2@gmail.com (Nguyen Thanh Long)



D.T.N. Quynh et al. / Filomat 36:17 (2022), 5765-5794 5766

In the problem (1.1), as u = @i = u, the nonlinear quantities are Laplace operators and then the corre-
sponding problem becomes a type of viscoelastic problem with strong damping. In this case, many related
mathematical models have been studied for past years. Indeed, there have been a lot of investigations
devoted to the following viscoelastic wave equation

£
Uy — Au + f g(t —s)Au(x, s)ds — AAuy + yh (ur) = F(x, t, u). (1.2)
0

As mentioned above, many results of the equation (1.2) have been discussed, however, to our best
knowledge, there seems to have been few works devoted to studying of (1.1) and partial differential
equations with nonlinear viscoelastic term. At first, we introduce the paper published in 1985 by Hrusa [7],
in which the author considered the following one-dimensional nonlinear viscoelastic equation

t
mﬂﬂ—WM%wiﬂmhﬁﬂwwmﬂm%=ﬂ%&

established the global existence results for large data and, the exponential decay results for strong solutions
when g(s) = e and W satisfies some conditions.

In the above papers, the authors used the different methods such as fixed point, linear approximation,
monotony, upper and lower solution for studying the solvability of the corresponding problems. During last
decades, many iterative methods have been constructed for finding the solution x* € D C IR” of nonlinear
equation F(x) = 0. One of the well-known iteration methods mentioned in literature for finding the solution
x* is Newton'’s classical scheme

L) 0 _ [p(xac))]*l Fa®), k=0,1,2,---,

where F’'(x®) is the Jacobian matrix of function F evaluated in the k th iteration. However, it is a fact that
the classical Newton iteration method cannot be applied to all cases. Therefore, its abundant variants has
been developed in the literature, for example, see [1], [3], [13], [14], [19] and the references therein. In [3],
by adding a new step to Newton’s method, Cordero et al. constructed the following two-step scheme with
fifth-order of convergence:

y® = x® — [p(x<k>)]‘1 Fx®),
-1 -1 2 -1
ﬂ“”=¢”—%ﬂ+aﬂpw®ﬂ FG) + as ([P ()] F@%)MF@“H Fy®),
where a4, ap and a3 are arbitrary parameters and I is the identity matrix of size n X n. Also, in the paper,

they used the p-order convergence of the sequence {x} by the fact that there exists M > 0 (0 < M < 1 if
p = 1) and ko such that

(1) Y k2 k. (13)

<M ”x(k) -x"

&

For other results of high-order scheme, we refer to [1], [2], [14] and [19] for the schemes respect with
convergence of fourth-order, sixth-order and p-order. In the case that models in hand are linear integro-
differential equations, Turkyilmazoglu [17] constructed an effective and accurate algorithm based on the
power series representation via ordinary polynomials to find numerical solutions of high-order linear
Fredholm integro-differential equations having a weak or strong kernel. However, in case of nonlinear
integro-differential equations or nonlinear viscoelastic ones, the method given in [17] and some of afore-
mentioned methods are hardly applicable. Therefore, in [18], the author proposed a modified method to
obtain exact and analytic approximate solutions of high-order nonlinear Volterra-Fredholm-Hammerstein
integro-differential equations.
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Based on the ideas about recurrent relations of the above methods, a high-order iterative method in
sense of (1.3) is developed for solving some nonlinear wave equations, for example, see [9], [11] and [15].
In [15], Truong et al. studied the solvability of a wave equation of Kirchhoff-Carrier type

it O MOy = f (6, tu),0<x<1,0<t<T,
ux(O £) — hou(0,t) = uy(1,¢) + hu(l,£) =0, (1.4)
u(x, 0) = fig(x), us(x,0) = i1 (x),

where p, f, i, fi; are given functions and kg > 0, h; > 0 is given constant and u(t, ||u(t)||2 , ||ux(t)||2) depends

1 1
on the integrals lu@®I? = fo u? (x, 1) dx, ||lux(t)I? = fo u2 (x,t)dx. In this paper, the authors constructed a
high-order iterative scheme by proving the existence and convergence at N-order rate of the recurrent
sequence {u,,} obtained by

N-1 i
2 2 _\ 19f
— it M (OIP Mt B Yt = Z rEw

(0, b 1) (U — Uy 1) ’

0 <x<1,0<t<T, where u, satisfying (1.4),3. By using the same high-order iterative method given in
[15], Nhan et al. [11] considered the following problem for a wave equation with a nonlinear integral term

Uy — % (B, Buy) + Auy = f(x, t,u) + fot g(x,t,s,u(x,s))ds
u(0,t) =u(1,t) =0, (1.5)
M(.X, 0) = ﬂO(x)/ ut(x/ O) = ﬂl(x)r

and constructed a recurrent sequence {u,,} defined by

14 a ’
U = 3% (p(x, ) + Ay,

_ 1 ak N-1 1 t akg
kz_:: 11 9 O b ) (1 = 1)+ kZ; k! fo [W@ £, n-1(%,9)) | (4 (X, ) = -1 (%, 9))" ds,

where u,, satisfying (1.5),3. Moreover, the convergence at N-order rate of this sequence to a weak unique

solution of the problem (1.5) was also proved. In the present paper, we adapt the high-order iterative

method used in [9], [11], [13] and [15], in order to prove the existence and convergence at N-order rate

of a recurrent sequence associated with the problem (1.1). However, the first obstacle in this paper is the
2

presence of the nonlinear term in the form ;7 (p(x, t,u(x,t))) which makes some technical difficulties to

obtain the results of existence and uniqueness of solutions for the problem (1.1). Then, to overcome the
2 2

obstacles, we decomposed the term % (p(x, t,u(x, ) in a(t; u(t), v) and [(x, t, u(x, t)) in a(t; u(t), v) by

Frely

a(t; u(t), v)

<% (u(t, u(1)), Ux> = (D1u(t, u(t)) + Dap(t, u())ux(t), vx) ,

a(t; u(t), v)

<% (At u()) /Ux> = (D1 (t, u(t)) + Dap(t, u(t))ux(t), vx),

and used the high-order iterative scheme given as in (3.3)-(3.4). Furthermore, it note more that the as-
sumption (A;) for the Kirchhoff-Carrier term u (t I, ()] ) in the paper [15] can not be used for

the nonlinear term (y(x t,u(x,t))) and ;xz fi(x, t,u(x, t)) in the problem (1.1), then a modified version

of Lemma 2.6 in [10] that if O is closed set of RN and f € C%O, R), there is a continuous nondecreasing
function @ : Ry — R, such that
2

[f@)] < @f (ldl), Va= (e, xn) €0, llxll = 2+ + 22,
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is used. The second obstacle in this paper is to prove boundness of the Galerkin approximation solution,
we here encounter with evaluating Volterra nonlinear integral inequalities, then Lemma 3.5 is used. It can

be said with much confidence that these techniques haven’t been applied before. In addition, the prob-
2

0
lem under consideration contains the second-order differential operator — Fek , which affects the nonlinear
quantities u(x, t, u(x, t)) and fi(x,s, u(x,t)). So, it can be considered that the terms ﬁ (u(x, t,u(x, 1)) and
2
fot g(t — s)% (a(x, s, u(x,s)))ds are the extended models of the Laplacian and the viscoelastic convolution

2
as 4 = §i = u, respectively. Usually, the presence of the nonlinear term in the form 8—2 (p(x, t,u(x, 1))

makes certain difficulties for proving the existence of the problem under consideration. To our knowledge,
there are no publications about investigating high-order iterative schemes for the problems having such
nonlinear terms.

The remaining parts of this paper are arranged as follows. In Section 2, we introduce some notations.
The existence of a recurrent sequence associated with the problem (1.1) is presented in Section 3. Finally, in
Section 4, a high-order convergence of the recurrent sequence obtained in Section 3 is considered.

2. Preliminaries

In this section, we present some notations and materials in order to present main results.
Let Q = (0,1), Qr = (0,1) x (0, T) and we define the scalar product in L? by

1
(u,v)zf u(x)o(x)dx
0

and the corresponding norm |||, i.e., |lull = V(u,u). Let us denote the standard function spaces by C’”(Q)
LY = [P(Q) and H" = H"(Q) for 1 < p < o and m € IN. Also, we denote that |||y is a norm in a certain
Banach space X, and L*(0, T; X), 1 < p < oo, is the Banach space of real functions u : (0, T) — X measurable
with the corresponding norm ||, r,x) defined by

T 1/p
ety o,,%) = ( ; (1G] df) <ooforl<p<oo,

and

lellroo,7:x) = esssup [|u(t)llx for p = oco.
0<t<T

On H!, we use the following norm

1/2
2 2
ol = (el + llo?)

Let u(t), u’(t) = w(t) = u(t), ') = uy(t) = ii(t), ux(t) = vu(t), uw(t) = Au(t), denote u(x,t), 2 S 1),
%(x, f), ‘;Z (x,1), 2 axz 5 (x, 1), respectively.

With f € Ck([0,1] x [0, T*] x R), f = f(x, t,y), we define D; f = ax/ D,f = at, Dsf = 5., and D*f =
DY'---Df,a= (1, - ,a3) € Z3, ol =a1+ - +a3 <k DOOf=DOFf=f

Similarly, with u € C*([0,1] x [0, T*] X R), u = u(x,t,y), we define Dy = (h,Dz‘u = at/ Dsu = and
DPu =D D, B=(Br, -, Bs) € ZL, |B| = pr+ -+ 5 <k; DO O = .
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3. Existence of a N-order iterative scheme

In this section, we investigate a N-order iterative scheme for the problem (1.1). For this purpose,
we make the following assumptions:
(H1) o, iy € Hy N H?;
(Hy) geH(O,T);
(H3) u, i eCN*1([0,1] x [0, T*] X R) and
Dap(x,t,y) > . > 0,¥(x,t,y) € [0,11 X [0, T X R;
(Hs) f€CN([0,1] X [0, T*] X R), such that £(0,t,0) = f(1,t,0) = 0, ¥t € [0, T"].
We state a weak solution of (1.1) by the fact that
u € Wr={uel®0,T;H*NH):u € L0, T;H* N H}),
u” € L*(0, T; Hy) N L=(0, T; L?)},

and satisfies the following variational equation

t
W (1), v) + Aul(t), ve) +a(t; u(t),v) = f g(t = s)a(s; u(s), v)ds + ( flul(t), v), (3.1)
0
forallv e H(l), a.e., t € (0, T), together with the initial conditions
u(0) = io, u’(0) = iy, (3.2)
where
flullx, t) = f(x,t,ulx,t),

a(t;u(t), ) <§x (u(bu(t»),vx} = (D1p(t, u(t) + DapuCt, u(®)us(t) 0:),

d
alt;u(t),v) = <a (ﬁ(t,u(t))),vx> = (D1f(t, u(t)) + D3t u(t)ux(t), vy .
For a fixed constant T* > 0 and an arbitrary constant M > 0, we put

(N = L [IDskllco, - Kinle) =
K@= T [D5alc,

|aI<ZI:\T+1 “Dg[JHCO(QM) ’

f HCU(QM)_z (X,SSEQM )f (x,t,u)

where Q= [0,1] X [0, T*] X [-M, M].
For every T € (0, T*], we consider
Vr={vel™0,T;H*NH): v € L0, T;H* N Hy), v € L*(0, T; Hy)},
then V1 is a Banach space with respect to the norm (see Lions [8])
lIollv, = max{|[oll.=rmam1) , ”U/“LW(O,T;HZOH[l)) ' ||U”||L2(0,T,-H(1))}-
We also put

WM, T)={ve Vr:|olly, <M},
Wi(M,T) = {o € WM, T) : " € L*(0, T; L?)}.

At the moment, we construct the high-order recurrent sequence {u,,} by choosing 1y = 0, and suppose
that

Up-1 € Wl(M, T) (33)
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Then, we find u,, € W1(M, T) (m > 1) satisfying the following nonlinear variational problem

W), 0) + A1t (), 0e) + (Dapi(t, thn(£)) it (1), D)
= [ g(t — SKD3 (s, tn())itnx(s), v3)ds
+ [ gt = XPulD1, o, 1 )(5), 02 (3.4)
~(PulD1p, -1, m](t), 0x) + (Pl f, -1, uml(t), ), Yo € Hé/
u(0) = 1o, uy,(0) = 1y,

where

Pl e, o) = Y DA b a6 ) (3,6 = 2 (5, )

i=0

N-11 i i
PulDip, thu1, u](x, 1) = Zizo l.—,Dg,Dw(x, t, um-1(x, 1) (Ui (x, t) = um-1(x, 1)),

N-11 . ;
Yo 7DADUAGE b b1 (6 8) (1) = a5, 1))

Pm[Dl,a/ Um-1, um](x, t) i=0

Using the Faedo-Galerkin approximation method, the arguments of compactness and the lemma of
estimating nonlinear integral inequalities, we confirm the existence of the sequence {u,,} as in the following
theorem.

Theorem 3.1. Let (Hy) — (Hy) hold. Then there are positive constants M, T chosen appropriately such that there
exists a recurrent sequence {u,,} C W1(M, T) defined by (3.3)-(3.4).

Proof. First, we find the Faedo-Galerkin approximation solution in form of

k ko«
W =) e,

1 m

where w; = V2sin(jrx), j = 1,---,k are the eigenfunctions, respect with the eigenvalues Aj=(jn)?, j =
&2 azw.
-, k, of the operator 53 satisfying —ﬁ = Ajw;j, wi(0) = w;j(1) = 0, and c%, j=1,--,k satisfy the

following system of nonlinear integrodifferential equations
G (), ) + Mt (8), i) + (AL Ot (8, j2)

=) gt = 5B (SN (5), ) + Jy 9t =)@ (s),wje)ds (35)
_<Pm (t)/ ’x> + <Fm (t)/ ’)/ 1 < j < k/
ul(0) = g, u£€>(g;]= o e

where

(3.6)

=

lior = 21;21 a;k)wj — ilp strongly in H> N H},
1k = Z}];l ﬁ;k)w]’ — iy strongly in H2 N H(l),
and

A, t) = Dau(x, £, u®(x, 1),
BY(x, ) = Dafix, t, ulf (x, 1)),
F(,t) = Pl f -1, u(x, 1)

= T DGttt 3, ) (1) = s 1,0
Py (e 8) = PulDaty s, 1y ), )
= Z 1D’ SD1(x, t, t-1(x, 1)) (ug?(x, ) — upm-1(x, t))l,
Q') = P (D1t tr-1, 1313, )
= ‘Zb FDED1 (X, b 11 (X, 1) (ufﬁ)(x, £) = th1(x, t))i.
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Clearly, if u,,-1 satisfies (3.3), then, for some 0 < T( ) < T, the system (3.5) admits a solution u( ) on an

interval [0, T®]. Additionally, if the following estimations hold, then one can take T% = T for all m and k.
Setting

2
(k)(t M(k) ) ()

W@ = [[i| + x| + “”(t)Au“(t)

(3.7)
+A||Au;’;>(t)|)2+2Af(||u )| +||Au<k>(s)|| ds+2f||u(k)(s)”2ds.

By (3.5) and some computations, it implies that
S(k) S(k)(0)+fdsf Af,’?(xs |u(k)(x s)|2+|Auf,]§)(x,s)|2]dx
t
_ (k) (5] %) 5 )
2 fo (Ao, i) ds -2 [ < AP U6, Al (s)>ds
-29(0) f [ B (s)uln(s), uik(s)) + < (BYY (5)upn(s)), Au“(s)wu(k’(s)ﬂds
+2 f gt~ s)[ (BIY ()upia(s), ufia()) + < (B“(s)u‘”(s»,AuiS)(t)+Auf,?(t)>]ds
-2 f dt f g’@—s)[ (B ©)uik(s), w2 (0) + < x(Bff?(S)uifil(S)),Aui'n‘)(T)+Auff§’(f)>]ds
0 0
t
2 f g(t = 9)[(Q0(5), uSt)) + (Q(s), Au(®) + Ay 1)) ds (35)
0
t T
-2 fo dt fo 7' (t =) [(Q(s), uhx()) + ( Q). Aufy(7) + Au) (1)) ds
t
~290) [ ({000 u20) + (o) 0 + A )] as
+2 f [(F(6), 15()) + (Fopx(s), i52(s) + i(s)) ]| ds
=2 | [(PR©), () + (Pis), Aitf)s) + A, (s)) |
fo[( ), 156 + (P, 86 + 8] ds

11
= 5%9(0) + ijl Ij

Next, we shall sequentially estimate the terms on the right-hand side of (3.8) as follows.
Note that, by (3.7), we have

SO > @30 (t),
in which fi, = min{1, ., 2A} and
590 = [P0 +[[kO0] + [E0] + Ao + |aaP o]

(3.9)
+ f (10 + i@l + it s

Then, we have the following lemmas.
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Lemma 3.2 Let T* > 0 and h € C°([0,1] X [0, T*] X R;R). Then there is a continuous nondecreasing function
DOy, : Ry — R, such that

), ¥(x,t,y) € [0,11 X [0, T'] X R.

|go (x, ¢, y)( <@y (

Futhermore, if h € C3([0,1] X [0, T*] X IR; R), then there is a continuous nondecreasing function @f] Ry > Ry
such that

max|D“h(x t y)‘ < ¢>[3 (

la|<3

), Y(x,t,y) € [0,1] X [0, T'] X R.

The proofs of Lemma 3.2 can be deduced from Lemma 2.6 in [10] by choosing N = 3,0 = [0, 1]x[0, T*] xR,
el = bxal + [xal + xal, @3 ([y]) = @n (1 + T + [y]) and @P(2) =max®pu (2), respectively.

Lemma 3.3. There is a continuous nondecreasing function 1, 1 : Ry — Ry such that

0 JaPol v (JsPo), @ sl < (o),

i) [JAR o . swl(\/%), wi)  [BR . <¢1(\/%),

(iif) [ . <¢1(\/S‘T ) (vii)  [BI® . < ( S (6)

@) [JAR®],. < ( St )), (viii) B . S%(x/%)-
Proof. We prove (i)-(iv), and, similarly, then the estimations (v)-(viii) are proved by replacing i by i and

taking 1 (2) = (1+ (1 +2V2)z + V222 ) ol (2).
Setting 1 (2) = (1 +(1+2V2)z + V222 )(DL?’] (z), and using Lemma 3.2 with i = D3, we get

AV, ] = |Dapux tuld (x, )]
@[3] ()u(k)(x t)|) < (13[3 (”M(k) (t)H)

ol (\/Sff?(t)) <y (\/Sfj?(t)), for all (x,t) € [0,1] x [0, T"].

By taking the derivative AL )(x t) = DoD3u(x, t, um (x t)) + D2 S, u(k>(x t))u(k)(x t), and using Lemma
3.2 with replacing & by D,Dsu and D3y, we have

IA

IN

IA

|A'g§)(x, t)| |D2D3y(x, t,u®(x, 1) | |D3y(x t,u®(x, t))| ||u(k) (t)”

o (\/Siﬁ)a)) (1 + \/55’,?<t>) < ( \/E;E)(t)) :

By taking the derivative A(k) (1) = DiDsp(x, t, ugj)(x, ) + Dzy(x t, u(k)(x t))u(k) (x, t), note that
V2 2 )],

VIR0l + a0l < V23,

and using Lemma 3.2 with replacing /s by D1D3u va D3 U, we obtain

IA

IA

|, )|

IA

|A%.(x, 1) ID1Dsp(x, £, ull) (x, )| + |D3petx, £, uly) (x, )] |in x, 1)

@51(,/52’?@))(“@ sff?(t))sw( 555)(1*))-

IN
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Similarly
A9 (x, 1) D1D,Dsp(x, t, ul (x, ) + DiD2u(x, £, ul (x, )il (x, )
+D2u(x, t, ul) (x, )alh(x, 1)
+ [ D23, £, ulf (x, 1)) + D3, £, uly) (v, )iy (x, )] uiprx, ),

then we have

|A%x, 1) < @El(\/%) (1 + \/%) + @p (\/SL’?(t)) V2 \/Sff?(t)
+ (\/S(T)(l+ \/s (t)\/_\/s"‘

[1 +(1+2V2) \/% - \/55;5’(9] cpE]( Sf,?(t))
901(\/%)'

Lemma 3.3 is proved completely. O

A

For estimating I; — 111 of (3.8) below, we always choose = Ep*.

By 5Y(1) > ||u t)” + ”Au(k)(t)” and Lemma 3.3-(ii), we get

f ds f A0, [l 9 + (29

< fo P ( V596) )(“u(k) | + 1|Au§j?(s)(|2)ds (3.10)
<

| 0 ( \/Si’n‘)@) s = [ 0 (899)) ds
0 0

where x1 (z) =z ( \/E) .
By Sgﬁ)(t) > ||u5’,§;(t)||2 + ||Au$)(t)”2 and Lemma 3.3-(iii), we have

L=- f AY 53 (s), Au® (s))ds
t
_2j;¢1(\/s<k (s)”u L6 [|anld )| ds (3.11)
t t
<2 fo 1#1(\/5%()(5))555)(5)(155 fo x2(55(s)) ds

where x; (z) = 2z¢1 (\/Z)
Using the integral by part formula, we obtain

I -2 f (— (AN )u® (s)), Ai® (s))ds

22 (Dsp(0, o)), M) — 245 (AD O 0), A0 + 2 f (5gs A ) (5)), Aty (5))ds

2<£ [D3u(0, fig) ok ] , Afi1i) + Igl) + Iéz).
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D

We shall estimate 3 I @

and as follows.

Put H(x, 1) = j—x(AE,’?(t) ® 1)) and H® (x, 1) = Af,’?(x Hu® (x, 1)), we have

oxot

HY(x,t) = <A<")<t>u<")<t» ARl () + AR B AUL(t),

HY(x,t) = Afﬁi(t) © )+ AD. Ol + AD AUl (1) + AR OAL (1),

"
el < u (V50 o] o (Jso)ldol
(V50w + (Vo) Jait]
= n(NSE) (b0 + o+ Jautl o]« st
< 291(V500) (a0l + ol + ool + o)
< oo ) 0
and then

Ha%m&’;)(t) “ <t>>|' | o]

t
< [|ER©)| + fo |[EL%) (s)]| ds (3.12)

v2 [ o (V500

d o
< |5 D300, mo 0]
Therefore, Iél) and I§2) are estimated by

0 = 22 A 0ulle), aile)

IA

gl ol + 5 | entio]

IA

2
+AT f s‘“(s)wl(\/s(")(s) ]

BSW(H) + = [Ha (D30, ok ) ok )

2 = f (2 (AU, A s
. f (HO ), 5l s
0
<

t t
2 f [FL9 )| | Aily (s)]| ds < 4 f ybl(\/gfﬁ)(s))gic)(s)ds.
0 0
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Then

=2 f S (AD G ), i) 5)ds

< 2(& [D3[~1(O, flok)iloky | , Afiag) + ‘Bg(k)(t)

2 ¢
+ 4T f s (6)y? (\/ 5B (s) )ds] + 4f Uy ( \lgffi)(s)) 50 (s)ds

2

+ % [”% (D3u(0, fior)fiokx)

0
= 2(@ (D3 (0, fiok) ok ) , Aftqx) + 5 Ha (D3 (0, o) fokx)

t
+BS(t) +4 f [1+§T*¢1(\/5$’<s>)] wl(\/éiiks)) 5% (s)ds

sﬁs<"><t>+2< (D30, B00)oe), AT + H (D30, o0)iow)

2 t
« [ (se)as

where x3 (z) = 4 (1 + %T*g{)l ( \/Z)) zin (\/Z)
Similarly to (3.12), after replacing u by i, we get that

v2 [ e (Voo

Ha% (Bg?(t) (k) (t)) &X[D3ﬂ(0, Tk ) ok ]

Therefore
I, = -29(0) f (BY (s)ulsn(s), ulin(s)) ds — 29(0) f < (BY (s)ulx(s)), Au(k)(s)+Au(k)(s)>

2|g(0)|f z,bl(\/S(k)(s))S(k)(s ds+2ﬂg(0)|f

IA

5= B ©)|| V5 ()ds,

hence
I <2]g0) f %( (s)S"‘ (5)ds +2]g(0) f ©s)ds +|g(0) f |5 2o as
< 2[9(0)| f @(x/%)sy; (s)ds +2|g(0)| f S5 (s)ds
+2|g(0'f[ 2+4Tfs<k>(s)¢1(\/%)ds]d1
<2|g(0)| fo tﬁl(\/%)%?(s)ds+ztg<0>| f S (s)ds
8P ]g00) A st (Jsio) o
+2|9(0)| fo
-
« [ alse)as

where x4 (z) =2 |g(0)| (1 + U (\/E) +4(T)? P2 ( \/E)) z.

[D3(0, fio)ioky]

NI T
+27 o) |5~ (D370, 7]

Jd
=2T" |g(0)| ”& (D3 (0, ok ) floky)

0
=2T" |g(0)| Ha (D3 (0, figr) fiokx)

1+ ( S;’?(s)) +4(T 2 ( \/5;’?(5))} 5®(s)ds

5775

(3.13)

(3.14)
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The terms I5, I are estimated by

Is

SO

I5

ol [
B 12(0,T%)

8 12 Ml 2 o
+ 8 ”g”LZ(O/T*)j(; H'a [D3f1(0, ok ) ok ]

= g(t ) [( BY(s)uln(s), uln(t)) + <‘9<B (s)u“‘)(s)),Auf,’?(t)+Au£,’?(t>>]ds
< ijts[MW@HIMWﬁMu<% 0 RGO
< Ig<t 51[¢1(\/s D) V56 Y0 + V2|5 E e

IA

ﬁéiﬁ?(tHE( fo Ig<t—s>l[zﬁ1(\/s<k’(s)) V596 + V2 H‘9<B<"’<s>u )6)

< B30+ 2o, [ [ (VERO880 2| Zaniico
=ﬁ5£’,§><t>+—llgtlm(m f @%(\/%)Sﬁiks)ds

ax[ (k) (k)( )]
Sﬁéi’;)(t)wllg(lm(oj*) fo zﬁl(\/%)éi’?(s)ds

ST fo rs‘ff?(s)ﬁ(\/%)ds]dr

2

5

o

J
o [D3a(0, diok) ok

_ 8
< ﬁsﬁf)(t) + ET* ||9”i2(0,T*)

+%||g||i2(0p (1+16(T*)2)f ¢1(1/ k>(s))5<k (5)ds

2

d
= [D3 (0, fiox) ok ]

t
RGOS

—ﬁs(k)(t)Jr ril ”g”LZ(OT)

where x5 (z) = £ “g||L2 - (l +16 (T")z) 2] ( \/Z),

Ig

(Il + i oo
V&0
I+

t T
= -2 f dt f g’(f—s)[<B§,’?(s>u5,’§L<s> u<"’<f>>+< — (B (9)tx(5)), Au<"><f)+Au">(f)>]
<2 faf mmw> - Wl o)
2 6 s o] (o + ||Au<k><f>1|)] ds
t
< 2 an g'@—s)l[sﬁl(\/Sﬁ?(s)) VSPE 50 + V2| S @ ouo) \/gff?(f)]ds
0 0
t 1/2 ¢ 1/2
< [ f S‘f,’?de] [ f [@%( 5“‘())8(" s>+2\ = (B (5)12(5)) ] ]
0 0

5776

(3.15)
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thus

Is <

- f 80

+ f t[aﬁl(\/éiﬁ)<s>)éfﬁ><s>+2H B () ]

f 59 (s)ds + f ﬁ(\/ggy(s))ggy(s)ds
0

+4f [ %[Dsﬁ(O,ﬁok)ﬁka]
t
o f s+ [ &%(\/525’<s>)5;’?<s>ds

+ 4T ‘a [D3[._l(0, ﬁOk)aOkX]

2

d
=4T" H&— Dsﬁ(or aok)ﬂokx]

t I
+ f e + (1 +6(T) )wl(\/éﬁl?(s))] S (s)ds
0

2 t
E4T*H$[D3p<o,a0k>a0kx] + fo X6 (S5 (5)) ds,

+ (14 6T \/z)] z

where x (z) = [

2
+AT f S(k)(s)gbl(\/s(k) )ds}d

2
+16(T")? f 5% (s)y? (\/55,'?(5)) ds

5777

(3.16)

For I; — I1, first, we have to estimate Ff,}?(x, t), FE,E;(x, t), P(k)(x t), P%(x t), P%(x f), Q(k)(x, f), El,jl(x, f).

Then, we need the following lemma.

Lemma 3.4. There is a positive constant C.(M) that

M [FER Ol < CODRu() [1 * (\/s(Ta))N]
@) [FR Ol < CODRu() [n( Si,?(t))N_l],
(i) [[F®)] < C.ODRu(f) I (\/%)Nl]
(iv) ||p(k)(t)H M)KM([u)[1+(\/%)N_1],
W [PLo] < ConKuw |1+ (\/%)Nl}

N-1
(vi) |)P£’;i<t>||sa<M>1<M<y>[1+( S?ﬁ?(t)) J
-1

wii)  [|Q¥ @), < C.MKu(a) [1+( Sf,’?(t))

N-1
(vii) |)Q;’§L<t>|)sa(M)KM(m[l+(\/5§£’(t)) ]

—_—
~
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Moreover, C.(M) is presented by

C.(M)

ax

(zLM2 +0.M + E*) (2 + MN‘l),

N-1 1 1
T
=0
N2 o
3a. + 2 -,
—
N- 22, N=3 i
a.+3 —|+2 -.
1:
i=0 i=0

Proof. (i) Evaluating HF;,)(t)H .

C.(M)

\%

then we have

[P (x, 1)

(zLM2 +b.M + E*) (2 + MN‘l)

Nl gim1
a(2+mMV )2y = (2+M¥),
i=0

—_

Nl1

i!

IA

|4 £, 1t e, )] ([ e, D) + it (x, t)|)

A
L[]
~_|'\J

K )(|uf,’?(x, t)|i + - (X, f)|i)

- 2 Ru(h) [( Vet +M’}

IA
Z~M

i-1 N-1
< L 21, (2+ M 1)KM(f)[1+(\/5ff?(t)) ]
<

N-1
C.(M)Ru(f) |1 + (\/Eff?(t)) } .

5778

(ii) Evaluating HPS,{)(t)H Lo Taking the derivative of Fg? (x, t) with respect to time variable, we get that

F5(x, 1)
= sz(x t, - (x, 1)) + D3 f(x, t, ttr (x, D)1l (x, £)

+ 2 DD} £ (3, et (3, 1)) + D £ sty (e, D1y 05,0 (405, 1) = ha (o, 1))

+Z l"!D £t tta (6 ) (100, = s (1) (100, 8) = 1) (x,9).



D.T.N. Quynh et al. / Filomat 36:17 (2022), 5765-5794 5779
Then, by the fact that
CM) = (aM*+bM+c)(2+MN)

> (bM+c)(2+MY)
N-1 i1 N=2 N-1 iy N=2.; N=3,;
~ 2 2 2 N-1
i=0 i=0 i=0 i=0 i=0
N-1 N-2
21—1 2t N-1
> [Z—|(1+M)+ E}(ZJFM )
i=0 i=0
we have
N1y N-1 i '
EDGn] < Ru(H) (1 +M) + 2 SKu(f) (1 + M)( St + M) + ) 7R (f)( S (6 + M)
i=1

i N-1 .
= le—' (f)(1+M)(\/S(k)()+M)+ =R( ( 39 + M )
=0 i=

1

N-1 .
2f—1IZM(f)(1+M) [(\/5”‘ )+Ml]+ %21 g (f)[(\/s(k)( )+M’]

i=1

(=

-~

IA IA
M. [ i
~ | o=

1+M) 2+MN ! KM(f)

N—=1 i N-2 N-1
l' (1+M)+ Z l 2+MNl KM(f)[1+( Sff?(t)) ]

i=0 i=0
N-1
< C.(MRu(f) |1 + (\/sg?u)) } .

(iii) Evaluating HP%(t)“ . Taking the derivative of Ff,l? (x, t) with respect to spatial variable, we get that

FOxt) = Difet, o (x,0) + Daf(x, b, oy (X, £)Vidy1 (%, 1)

N-1 .
+Y 11—| [DyDL £, 1 ttcr (2, 6) + DELFQ, b, s (6, D) Vit (3, B)] (15, 6) = i (3, 1))
i=1

N-1 .
+ li'D3f(x b (3, 1) () (6, D) = una t)) ( ©, 1) = Vi (x, ),
i=1
then
i N-1 . i
90| < RupHa +M)+Z “Ku(H (1 +M)(\/S(k (t)+M) + 5 u(f (\/s“ )+M)
i=1
N-1 N-1
_ O% w(F) 1+M)(\/Sff?(t)+M) X;%K (\/Sff?(t)+M)
N-1 ,; i N-1 . i
< 21,1 Ku(f) (1 + M) [(\/S(k)( ) +M’] Zilzi-lkM(f) [(\/55?(1&)) +Ml]
i=0 i=1
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N-1 5, N1
< Z 2 (1+M) (2 + M) Ru(f) [1 +(\/§§,’§>(t)) ]
i=0
= N-1
#3727 2+ MY Rl [1 + (\/55,’?@)) ]
i=1
N-1 5 N-1 . N-1
= ; 21—,1 (1+M)+ ; %2"‘1} (2+ M) Rau(f) [1 + (\/s“’( )) ]
<

N-1
C.(M)Rp(f) [1 + (Jéf,?(t)) ] .

(iv), (v) Evaluating ||, (1) . and [|PfA(1)]-
Replacing Ku(f) by Ku(p) in the estimations of”Fﬁﬁ)(t)”Lm and ”Fg;)c(t)

N-1
PRl < C<M>1<M<u>[1+ \/s“‘()) ]
N-1
[P < C*<M>1<M<u>[1+(\/5£’,?(t>) ]

(vi) Evaluating ”Pf,’il(t)” . Setting h = D11, we have

N-1
1 . i
sz)(x, t) = Pulh, um_l,uf,’?](x, t) = ED’Sh(x, 1) (ug? - um_l)l ,
i=0
W0, t) = Dah(x,t, 1) + Dah(x, , thyy1) Vi1

N1 .
+Z DlDl h(x, t, 1) +D’+1h(x t, Uy—1) Vil 1]( ) —um_1)z

N-1 ,
+ %D’ h(x, t, up— 1)( - um_l)l_l (ufﬁl - Vum_l).
i=1

Taking the derivative of me(x t) with respect to time variable, we get that

PO, t) = DaDih(x,t, ty1) + D3Drh(x, t, 1ty )it

m—1

+ [DzDgh(x, t ) + Dgh(x, t, um_l)u;n_l] Vi1 + Dsh(x, t, uy-1)Vu,,

-1 .
+Z%[D1Dgh(x,t,um_1)+ D?lh(x,t,um_l)Vum_l](ug;) —u, 1) ( (k) —u 1)

1=

Z

Al

=i
+ (DzDé”h(x, tUm1) + D?Zh(x, b U1 U, )Vum_1 ] (ugf) - um_l)i
+ [D2D3h(x, ty_) + Dzh(x, t, um_l)u;n_l]( k) — Vity,— 1)

+D3h(x, t, - 1)( o — v, _ 1)

[DleD h(x, t,u,_1) + D1Dl+1h(x t, U1 )U),_; + D”lh(x t, Up—1) Vi,
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N-1 .
+ 5(1 - 1)D’ h(x, t, uy,_ 1)( - um_1)l_2 (ugf) - u;n_l) (u,(,}?Y - Vum_l)
=2
—
+ . %Dgh(x t um_l)(uff? — Uy 1) ( 1 ® - Vu;, )
;12_21 i i-1
+ f [DzD’ (x,t, ty—1) +Dl+1h(x t, )], ]( ,(ff) —um_l) (uff;; —Vum_l),
=2

then

IN

KM(y)(l + M) + Ky (p)(1 + MM + Ky ()M

+Z ’KM ()( 1+M)(,/sfj?()+M)

-1

+ Z IR+ M) + KM + Kaa(p)(1+ M)M ] ( N M)
i=1

+Knp(u)(1 + M) ( \/T() + M) + Kni(p) ( M + M)
+Zlﬂ<z—1>KM<u>(\/W +M)i+ij—;I<M<u>(W il
+Z;1<My)1+M)(\/%+M)

p=
= 25(1+M)KM(y)(\/T(+M)i+N1% 1+ 3M + M? KM(lu)(\/%+M)i

[Po)

=1 =0
N-1 . i = / i
+ZZ—,(1 1)KM(u)(\/S(")()+M) + %KM(”)( SS?(MM)
— i=1
N-1 i
+ 11,(1 + M)Ky (u)(x/Sfé)(fHM)
i=1
N-1

IA
gl
N

21 11 +M)KM(y)[ S0 +M1]
gk

+ZO‘%2’ (14 3M + M? ) Kna(u) [(\/ (t)) + M
N-1 N-1

+ 11',(1 127K (u)[ S(n’i +M‘]+ ] £2f‘1KM(u)[(V5$)(f>)+Mi]
- i=1

S(k)( )+ ’]

1+( S(k)(t)) }

21 1+ M)KM(y

IA

21 11 +M)I<M(y) 2+MN 1
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N-1
1+(\/s(">( )) }
N-1
'(1—1)27 TKa(p) (2+MN 1)[1 +(\/§ff?(t)) ]
. N-1
72 K (2+ MY 1)[1+(\/S$>(t)) ]

1

7!
1

Z

1
tln

i

271 (14 3M + M? ) Kpa(w) (2 + M)

Iy
(=}
.

Z
N
| =.

+

i

||
N
~.

+
\
| ~

N
—_
~.

i

z
N

N-1
+ 2711 + M)Ky(u) (2 + MN- 1)[1 +( Sf,’?(t)) ]

>_=u
z
N
Z
w

i

| N2,

|(3+2M)+2 .

N-1
}(2+MN Y Kna(u) [1 +( Siﬁ)(t)) ]

I\

o
=

I\

(=}
=

i

N-
= [ = (1+3M+M?) +
i=0 i
N-1
(.M + B E*)(2+MN‘1)KM(/,1)[1+( o) ]

N-1
= C<M>1<M<u>[1+( s><t>) ]

(vii), (viii) Evaluating ||Qf()]| . and [|QA(t)]|. Replacing Ku(u) by Ku(@) in the above estimations of
[P 1)) . and [[PSB)]|, we get that

A

IN

N-1
ool = conkum|is(Vso) |,

N-1
Q| c(M)KM(m[H( S;?(t)) :

Lemma 3.4 is proved completely. O

Now, we continue to estimate I; — I;; of (3.8).

Using Lemma 3.4-(vii), (viii) and the inequality ||ugfi(t)|| + IIAuf,’?(t)II + IIAL’tf,}?(t)II <3 52?(t), we have

b =2 f o(t = ) [(QD e, ulh(0) + (Qe), Auld(e) + 8l (0)] ds

N-1
< 2V3C.(M)Ku (i) f |g(t—s)|[1+(,/s<k>(s)) } 50 (1)ds
N-1 2
1+(\/ <k><s)) ]ds) (3.17)

~ — ~ N-1
Sﬁsff?(t)+ECE(M)KZZ\A(P)“!]||L2(O,T») fo [1+(sgy(s)) ]ds

t
—ps0+ [ o (s8e) s
0

<BS9t) + ﬁC2(M)K12VI(y) ( f lg(t - 5)|
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where x7 (z) = gCE(M)KfM(ﬁ) ”!7“?2(0,?) (1 + ZN—l),

- _ t L _ (®) (k) (®) (®) (k)
Is = Zfdffg(f 9)[{Q6), uh(0) + ( Q). Au (1) + Ay (1)) | ds
N-1
1+(\/s("> )) ] S®(1)ds
N-1 2
(T —s))(l + (\/551'?(5)) ]ds] ld'c

f (1 + (S;k,)(s))Nl)ds] dt
( +(s;5>(s))N‘1)]ds

d’c

T—S)|

< VBC.(M)Kn(p) fo 5'55)(T>+( i (3.18)
| 3.18

< V3C.(M)Ki (1) f

< V3C.(M)Ky (1) f »

t
- [ ws(so) s

where x3(z) = @C*(M)KM(‘H) [Z +2T* Hg,HiZ(O,T*) (1 + ZN_l)] .

Iy = ~29(0) fo | [{QI76), () + (QUr(s), Aup) ) + Aitf)(s)) | s

t N-1
< 2V3|9(0)| C.(M)Km () f [l+(\/5$)(s)) ] 5®(s)ds (3.19)
0
t
— 5(k) ds,
[ o (ste)as

where o (z) ds = 2 \fg)g(O)| C.(M)Kp (i) ( Vz + \/z_N)

Using Lemma 3.4-(vii), (viii) and the inequality ||u k)(t)” + Hu(k) ) “ <2 Sg?(t), we get that

t
— (k) - (k) (k) d
ho =2 [ (00, 180) + (R0 100 + 186)] s
t
< 2C.(M)Ru(f) fo [ +(\/ %)) }Hu"‘)<s>||+llu )|+ [[ias) ] ds
t
=2k [ [H(J k><s>) ]Hu<k><s>||+||u 6] ds
N-1
t 1+(\/ (k)(s)) ]”ui,’?(s)”ds

+2C. (MR f) fo
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t N-1
< 2V2C.(M)Ru(f) f {1+(\/5$)(s)) ] 5®(s)ds

+ﬁC2(M)K12w(f)f 1+ S(k)(s) ds+ﬁf s (s)” ds

N
< B5Y(1) +22C, (M)KM(f)f[ (k)(s)+(\/§gf)(s)) ]ds

ﬁCZ(M)KIZVI(f) f 1+ (59s)" ]ds

= B3 + f X0 (39©) s,

where )10 (2) = 2 V2C.(M)Ru(f) ( vz + V2N) + %CE(M)K%A( AL+,
Rewriting I1, by

I

Using Lemma 3.4-(vii), (viii) and the inequality IIu(k) Ol + ||Au k)(t)ll <\2 S(k) (t), we have

@
Ly

-2 ft [<P(k)(s) - (k) (S)> + <P(k) (S) Au(k)(s) + Aﬁﬁﬁ)(s»] ds
0

_ 7@ 2
= IH+IH.

= f[ (k)(s) 1% (s < PE(s), Au(k)(5)>] ds

-1
2V2C.(M)Kpi() f [1+(\/§5}?(s)) }\/Sg?(s)ds.
0

IA

Integrating 1(2) by part, we obtain

@
Iy

f[ (k)(s),Au(k)(s)]ds

t
_ (k) =\ (k) . (k) (k) . (k)
= 2(Pi0) a) ~2(PR0, 000 0) +2 [ (PR, 20 s

Using Lemma 3.4-(vi), we get

1P

then

~2(Pi(t), Ay ()

A

t
ol < [P+ [ [PRo]

IA

N-1
(\/5%)) ]ds,

t
PO + C.MKa() fo 1+

laa ol + £ [Pl

IN

IN

t
_ (k) (k) (k) . (k) _ (k) (k)
2 fo (P89, 2690) = (Phcon ) s =2 [ (PR, i) 9) s

50 + 2 [“pac)(o)uz+:r*cz(M)1<§4(H) fo t [1+(55§>(s))N_1]ds],

5784

(3.20)
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and

t t N-1
2 f (PS(s), Ay (5)) ds < 2C.(M)Kn(p) f [1+(\/§§,§>(5)) ] 59 (s)ds.
0 0

Therefore

19 < 2(PR.0), Adiyy) + S (1)

2 - t ] -
3 [HP&’&(O)HZ + T'C2(M)K3, (1) fo [1 +(39) 1]ds]

t N-1
+2C.(M)Kpi (i) fo [1+(\/§ff?(s)) ] 5B (s)ds.

By the above estimations of Iill) and Iﬁ), we deduce that
s = 2 2
Iy < 2(P3(0), Adtyi ) + BS () + 5 PO

t _
+§T*CE(M)K12\A(#) fo |1+ (50e)" | as

¢ N (3.21)
+2(1+ V2)C.(M)Kpi(u) f [\/g(nf’(s) + (\/S;?(s)) ]ds
0
¢
<2(P0), ) + 6550 + 5 [PRO + [ (88 s,
0
where x11 () = 2T*CA(M)K3, (1) (1+2N1) +2(1 + V2)C.(M)Ku(p) (Vz + V2N).
By the estimations (3.10)-(3.21), we get from (3.8) and (3.9) that
¢
SW(#) < Som + f x(5%())ds, (3.22)
0
where
2 11
x@ = =Y. xi,
e ==
= 2 (5] 4 49 N~ - 4 (k) - 40 (k) 2
Somk = Esm (0) + E(E [DSF(O/ uOk)Mka] ’, AMlk> + E <me(0)/ AMlk> + g ”me(o)”
40 10 i N | &
v [T (2+|90)]) + o (1 4T gHLZ(O/T*))] HE (D30, do0)iiow]| -
We shall check that Sy, is bounded by a constant independent of m and k.
Note that, due to AE’,?(O) = D3u(x, 0, igr(x)) is independent of m and
2 2
SO = Ml + 1l + || VAR O)ifowe]| + || VAL Ao+ AllAdiyl?,

P{Mx,0) = DiDiu(x,0,iio(x)) + DsDipa(x, 0, fo(x))ifox(x)
Y S (DD, 0, ) + DI D, 0, B (x) | () — o))

# Y DAD (0,0, 00(0) ek (3) ~ o)) e (),
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s0 S}y (0) and P} (0), too.
This shows that there exists a constant M > 0 independent of k and m such that

Somk < — M , forall m, k € IN. (3.23)

Lemma 3.5. There is a constant T > 0 such that
5W(t) < M?, forall t € [0,T], Vm, k € N. (3.24)

Proof. From (3.22) and (3.23), we have

2 t
s < M f g
=7+ | (5%())ds.

By setting y(t) = Moy fo (S(k) )ds and y is a continuous and strictly increasing function, we get that

0 59t < y(h), y(0) = M

vy = x(S0)<xw®).

From the above inequality, we obtain

IA

vO gy Ly (s)ds
H(y(t)) — H = — = <t
) - ) = ﬁ @y x4
where H(y) = fo 1s a continuous and strictly increasing function on IR,.

We shall prove that H(oo) = fo ( ) is a convergent integral.

Indeed, by the definitions of 4 (z) X3(2), x11(z) as in Lemma 3.3, (3.13) and (3.21) respectively, we
have

Y1) = (1+@Q+2V2z+ V222 ) ol ()
> (IDE’] (2)2% > w2 x3 (z) = 4(1 + i_l—OT*gbl ( \/Z)) zPy (\/E)
80
>

2T P (Vz) 2 E—OT*Z (uez)? > 80T .2

@ = TR (1) + 20+ VDCMIKu() (VE + VEF)

> 2 =T CHM)K3 (1) = = O T (22.)* u? > 80T"E > 0.
. .
So
2 2 3 3 * =D
x@) z — (@) +xn@)= . (80T" .2 + 80T"2)

= 160T*(H N 2)>160T*(z +c*),
[l [

with ¢, > 0.



D.T.N. Quynh et al. / Filomat 36:17 (2022), 5765-5794 5787

) dZ 00
On the other hand, because fo —— is convergent, then H(c0) = fo is, too.
z

Az
S+a X (2)
By this, we have that H : R, — [0, H(c0)) is a continuous bijection, then H™! : [0, H(%0)) — R, is also
continuous and strictly increasing.
2

M
Due to the fact that H(M?) — H (7) > 0, we can choose T such that

MZ
0<T<HM?- H(—) (3.25)
and
kr = Mp¥ <1, (3.26)
where
pr = 3D}(M) «/Texp (TDy (D),

D) = 2P+ o3 (B0 + BT o)

NU:s
g
|

leM(u)(l +M)+y (MZKIZ\A(;J) (1+M?) K2 (@T

*)) .
2 2

0 < H(y(H) < t + H(%) <T+ H(%) < H(M?) < H().

LZ(OT))
4 Ll P2 2 (-
() + o (B0 + o

By (3.25), for all t € [0, T], we have

Due to H™! : [0, H(c0)) — R, is strictly increasing, we get
59 < y() = H (Hy(1) < H (HOD) = M2,

Lemma 3.5 is proved. O
Finally, by using some argument of compactness, we shall prove the convergence of the Faedo-Galerkin
approximation solution u® . This is presented as follows.

Because of the boundness of 5% (¢) given by (3.24), there exists a subsequence of {u®)} still denoted by
the same symbol such that

u® o, in  L*(0, T; H> N H}) weak*,

il — ), in L*(0,T; H* N H}) weak?, 627)
i® > urin L0, T;HI) weak, :
1ty € WM, T).

Applying the compactness lemma of Aubin-Lions, we can deduce from (3.27);,3 that there exists a
subsequence still denoted by {u®} such that

{ uﬁ,’? —u, stronglyin C° (0, T; Hé), (3.28)

ffi) —u), stronglyin C° (O, T; Hé)
On the other hand, due to the fact that
|AY (x, £) = Dap(x, t, i (x, 1)) D5, t, u(k)(x 1) = Dapi(x, t, tt(x, 1))
K(u) u < Kn() ||l (8) = (0
K ”um - ”m“co(o,T;H},) ’

IA

IN
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and (3.28);, we get
Aff? — Dsu(:, -, ty) strongly in L* (Qr) . (3.29)
Similarly
Bg? — D3f(:, -, ) strongly in L (Qr) . (3.30)

We also have
[F9 @, ) = Pulf, tt-1, 113, )|

= |Pm[f/ Um-1, M,(j;) (x/ t) - Pm[fr Um-1, le](x, t)|
< Y DAttt o) (166, ) a5, a6 = a2, )]

R Yo 2 ) = e O] 3 [020, 0 = sn1 2, 5) ™ ) 1)

IN

< Rl Y B oy
Hence
FY = Pulf, 1, ity] strongly in L (Qs). 31
Similarly
PY —  P,[Di, -1, 1t,] strongly in L (Qr),
© = Pu[Dift, -1, ] strongly in L™ (Qr) . o

Because of the convergences given in (3.27), (3.29)-(3.32), and passing the limit as k — oo in (3.5), we
have that u,, satisfies

(1), 0) J? Aty (£), Ux) + (Daplt, tn(t)) thmx (t), U2
= J(; g(t - S)<D3[._1(S, um(s))umx(s)/ Vyyds
+ [ g0t = Pl D11, e, e )(8), v2)ds (3.33)

—<Pm[D1!J/ Um-1, um](t)r Ux> + <Pm[f/ Um-1, um](t)l U)/ Yove H(l)/
un(0) = do, uy,(0) = 7.

On the other hand, we deduce from (3.27), and (3.33); that
’” ’ a
u, = A”mxx + g [D3[J(t/ um(t))umx(t) + Pm[Dll»lr Um-1, um](t) ]

- f 9 (t - S) % [D3ﬁ(s, ”m(s))umx(s) + Pm[Dl.ar Um-1, um](s) ]dS + Pm[f/ Um-1, um](t)
0
= F, eL®0,T;L?).

Thus u,, € W1(M, T). The existence result follows. Theorem 3.1 is proved. O

4. Convergence of a N-order iterative scheme

In this section, by using Theorem 3.1 and the compact imbedding theorems, we prove the existence
and uniqueness of weak local solution to the problem (1.1). First, we introduce the Banach space (see Lions

[8])
Wi(T) = {u € C°([0, T}; HY) N C'([0, T}, L?) : w’ € LX(0, T; Hy)},
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with respect to the norm ||u|ly, () = IIuIICO([O,T];Hé) + 1t llcoo, 12y + “u,”LZ(O,T;H(]J) .

Then, we have the following theorem.

Theorem 4.1. Suppose (H1) — (Hy) hold. Then, there exist constants M > 0 and T > O such that the problem
(1.1) admits a unique weak solution u € W1(M, T) and the recurrent sequence {u,,} obtained by Theorem 3.1 strongly
converges at N—order rate to u in Wq(T) in sense of

ot = tllw,ry < Cllts =l ) 1)
or all m > 1, where C is a suitable constant. Moreover, we have the following estimate
g
[t = ullw,(ry < Cr k)N, forallm € N, (4.2)

where Cr and 0 < kr < 1 are the constants depending onlyon T, f, g, 1, i, tip and iy.
Proof. First, we prove the local existence of (1.1). It is necessary to show that {u,,} (in Theorem 3.1) is a
Cauchy sequence in Wy (T) . Let w,, = ;41 — U, then w,, satisfies the variational problem

<w~:y,1(t)/ v) + /\(w;,,x(t), Uy) + <D3[J(t/ um+1(t))wmx(t)/ Uy)
= _<[tD3‘U(t’ Um+1 (t)) - D3[J(t/ um(t)) ] umx(t)/ Ux)
+ j(; g(t - S)<D3[1(5; Uin+1(8)) Wi (8), Ux)ds
+ j(;t g(t - S)([D?)P(S/ um+1(5)) - D3[._1(S, Mnl(s)) ] umx(s)/ Ux>d5 (43)
+<Ptm+1 [f/ Um, um+1](t) - Pm[fr Um-1, um](t)/ U>
+ fO g(t = sKP1[D1 [, U, Unm+1](8) — Pu[D1 B, Um—1, Un](8), vx)ds
~(Pus1[D1ft, th, ths1)(t) = Pra[D1gt, thinr, um](t), vx), Y0 € Hy,
wm(0) = wy,(0) =0,

where Py f, -1, uml(x, 1), PulD1pt, hm-1, tim](x, ), Pru[D1f1, thm-1, um](x, t) are defined by (3.4).
Taking v = wy,(t) in (4.3); and then integrating in t, we get

¢ 1
p*gnl(t)gfdsf i[Dw(x,s,umH(x,s))] w?, (x,s)dx
0 g 0s
t T
+2f de g(t — S)D3 (S, Up+1(S))Wix(S), W), (T))ds
0 0

t T
2 f it f 9T = S)[D3 (s, trsr (5)) = Dfi(s, t(5)) T tue(s), W (1))
0 0

t
- 2f <[D3H(S/ Um+1(8)) — Dap(s, um(s)) [ ttmnx(s), W), (5))ds
0
t
+2 f <Pm+1 [f/ Um, um+1](5) - Pm[f/ Um-1, um](s)r w;n(s»ds
0
+2 [ e [ g6 = P lD s t0116) = PalDfs -1, 0016, ) (44
0 0

t
-2 f (Pus1 D1, th, thns11(8) — P D1pt, =1, Um](S), W), (s))ds
0
_ 7
- i=1 ]i/

where fi. = min(1, u., 24} and

Su(t) = | WS ds. (4.5)

t
Wy O + o OIP + fo |
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Next, we need to estimate the integrals on the right-hand side of (4.4).

For estimating [; — J7 of (4.4) below, we always choose 8 = T e
By the following inequalities

IDsfi(x, tuma (v, )] < Ku(@),
‘% [D3u(x, t, tpan (x, t))]’ < |DaDsu(x t et (x, )| + |Dapr(x, £y st (x, B)| |14, (x, )
< Ku(p) (1+|[Vae,,, )]])
< KM(‘U) (1 + M) 7 D3[J(x, t/ Mm+](x, t)) - DS“(xr t/ um(xl t))|
< Ku(p) [wm(x, I < Ky(p) llwm Bl

D36, b, s (6, 1)) = DafiCx, (¥, )] < Kna(@) oo (x, D] < Kna(@) o (B,
we estimate J1, [», 3, J4 as follows

t 1
_ & 2
]1—10“15](; %[DB#(xislunHl(xrs))]wmx(x/s)dx
t t
< Kn(1) (1 + M) fo a&)IP ds < Kna(g) (1 + M) fo 5(e)ds,
t T
]2=2f(; dT‘fO‘ g(T_S)<D3‘a(slum+1(s))wmx(s)/w:nx(T»dS
t T
< 2K () fo dr fo 196z = 9)| o)
t
< 2K (i
< 2K(f) fo |

< 2Ky (@) VT*

w’mx(”t)” ds

wnn@]dr [ Jote=9] {Bacoas

¢ 172
g”LZ(O,T*) V Sm(t) [L Sm(s)dS:I
t
. fo 5,u(s)ds,

t T
=2 [ [ e~ DR () = Dt ) D), (46)

< BSult) + %K]%A(p)T*

W), (7)|| ds

t T
< 2K(@) fo dn fo 1902 — ) [0l s |
; 1/2
< 2MKu (@) VT |9l 0.7y /Sm(®) [ fo Sm(s)ds]

t
g“iZ(O’T*) jo‘ Sm(s)dsr

f
Ji=—2 fo (D345, 1 (5)) = Dails, tm(5))  haee(5), 0l (5))dls

< B5ut) + %MZK@(;&)T*

t
< 2Ko(p) fo s s |

sﬁf0t|

_ 1 b
< BSu(t) + BMzKI%A(y) fo Sn(s)ds.

w:ﬂx(s)“ ds

1 t
@) ds + MK 1) fo ()P ds
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For J5, J6, J7, we shall need the following lemma.
Lemma 4.2. We have

@ ||Pwsilf s s 18) = Pualfy st und®) - < Mf)( S(t) + ||wm-1ll%m),
(ii) ”Pm[DLur Uy U ](F) — Pm[Dl,Ur Um-1, um](t)H < d_M(/J) ( \ gm(t) + ”wm—llll]X/l(T)) ’
(i) ||Prl D1, tt, 1 )(B) = Pl D1t e, u®)]| < (@) ( St + ||wm_1||%lm),

where
dm(f)
p(M)

Ru(f)pM), du(p) = Kn(u)p(M), du(p) = Kn(@)p(M),
N-1 Mi—l 1
Yoo AT

Proof. (i) We note that

Pm+1 [f Um, um+1](x t) f Um-1, um](x/ t)

ZZV; ﬂDg F i, B0l (, t)—Z:\]: %Dg £ byt (3, D)0 (3, £)
Zi\]; ,—le(x £, U (x, t))w (x, 1) + f(x, t,um(x, 1)) = f(x, t, up_a(x, t)
Y DAt (5, D) ().

Using Taylor’s expansion of the function f(x, t, 0, (x, 1)) = f(x, t, um-1(x, t) + Wy—1(x, t)) around the point
um-1(x,t) up to order N, we obtain

N,
Flx,t, u(x, 1) — f(x, 8, um1(x, 1)) = Z —Dl Sft upq(x, t))wm 1(x, 1)

=1 il

1, DY f(x, t, ilp)w (%, t),

N
where i, = u,;-1(x,t) + Ow,—1(x,£),0 < 6 < 1.
This leads to
m+1 [f ul’H/ um+1](x t) f Um-1, Z’lm](x/ t)
_ ; 1 ~
- Z y Z—'D SO bt )20}, 06, £) + 5D Fx ey (),

therefore, we have

||Pm+1[f um/um+1](t) - f Um— 1rum (t)”

< R (Y0 5 ol + < Vw201
i—1

< KM(f) (Z Nli! ng(t) + % ||wm1||11>,v1(7))

<

JM(f) ( \ Su(t) + ||wm—1||11>1v1(T)) .

Similarly, we also have (ii), (iii) hold. Lemma 4.2 is proved. O



D.T.N. Quynh et al. / Filomat 36:17 (2022), 5765-5794

Using Lemma 4.2, the integrals J5, J, 7, can be estimated by
t
]5 = Zf <Pm+1[fr Up, Mm+1](5) - Pm[fl Um-1, um](s)/ w;n(s))ds

< ZdM(f)f I: m(S) + |- 1||W1(T)] Sm(S)dS

—_

t
< L) sl g, + () fo 5(e)ds;

N

t T
Jo=2 f it f 95 = Y Porss D1yt s 1(5) = PoulDifty s, 4] (5), W) (1))l
0 0

£ T
< Zd_M(Fl)]O‘ Hw;ﬂx(ﬂf)” deO‘ |g(T - S)| |:\[ Sm(s) + ”wm—ln%l(]")] ds
f
ror [Tuwm_ln%im ' fo S,n(s)ds];

t
J7=-2 f (Pus1 D1, i, Ums11(8) = Pl D1, U1, m](8), W}, (5))ds
0

< B3,(8) + %@(p)?

t
7’0‘:nx(s)||2 dS + 1 f ||Pm+1 [DLU/ U, um+l](s) - Pm[DLLl, Um-1, Mm](s)||2 ds

t
< ﬁsm(t) + ﬁd_z (H) [T”wm 1“W1(T) L gm(s)ds] .

By (4.6), (4.7), it follows from (4.4) that

t
S0 < TD} D s, + 2D50) [ Sl
0

where

Dy(M)

1 - 40 - 2
EdM(f) + E (‘iﬁ/x(#) +dy (mT gHLZ(O,T*))’

DyM) = ﬁlKM<u><1+M>+%(MZK%M+(1+MZ)K§A@>T* o)

)

F () + 25 (B
il p2 \"M
Using Gronwall’s lemma, we deduce from (4.8) that
lwmllw,(ry < fir ||wm—1||%l(T) ,

where fir = 3D} (M) T exp (TD* (M)) and kr = Mﬁ” 2 < 1. This confirms (4.1).
It follows from (4.11) that

||um - ”’”ﬂ’”wl(T) <(1- yT)‘l(yT)N;jl ()/T)Nm , forallmand p € N.
This shows that {u,,} is a Cauchy sequence in Wi (T). Thus, there exists u € W1(T) such that
u,, — u strongly in Wy(T).

Moreover, by letting p — oo, we get from (4.10) that (4.2) is valid.

5792

4.7)

(4.8)

(4.9)

(4.10)

(4.11)
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Note that, because of u,, € Wi(M, T), then there exists a subsequence {um]} of {u,,} such that

Uy, > U in L®0,T;H*>nN H(l)) weak?*,

]

iy = U’ in L¥(0,T; H*> N Hy) weak?,

uy, >’ in L*(0,T; Hy) weak, (4.12)
ueWmM,T).
On the other hand
|Pm[f/ Um—-1, um](x/ t) - f(x, t, u(x, t))'
N-11 . i
= |f(x, E um_l(x' t)) - f(x' i u(x, t))| + Zi:l Z_' |D1 f(x/ t, um—l(x/ t)) |(um(x, t) - Mm—l(x/ t)) |
- N-11 ;
< Ku(f) [”um—l = ullw, () + Zizl =l - ”m—l”wlm]r
we have
Pulf, 1, um] = f(-,-, u) strongly in L*(Qr). (4.13)
Simiilarly

Pm [D][J, Um-1, Mm] - DlH('/ ‘Y u) Strongly in L% (QT) ’

PyuD1fi, thy—1, 4] = D1fi(-,-,u)  stronglyin L% (Qr), (4.14)
D3u(, -, m) = Dsu(-,-,u) stronglyin L% (Qr), '
Dsa(, -, um) = D3f(,-,u) stronglyin  L*(Qr).

Due to (4.13), (4.14), and passing the limit in (3.4) as m = m; — oo, there exists u € W(M, T) satisfying
the equation

W (#),0) + Au(t), vx) + (Dapt, u(t))ux(t), vx)

t
= — sKDsfi(s, +(5), vy )d
fo gt = s)XD3i(s, u(s))ux(s), vy )ds (4.15)
¥ fo g(t — s)(D1fi(s, u(s)), vxyds — (D1 u(t, u(t)), vy + (f(t, u(t)), v,

for all v € H} and u(0) = i, u’(0) = 1.

On the other hand, it follows from (4.12), and (4.15) that

2 2

t
wo= A+ % [pct, u@®))uc ()] - fo g(t— s)% [1(s, u(s))ux(s)] ds + f(x,t,u) € L™(0, T; L?),

hence, u € W1 (M, T).

Applying the similar arguments used in the proof of Theorem 3.1, one can prove that u is a unique local
weak solution of (1.1). Therefore, Theorem 4.1 is proved completely. O
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