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Abstract. The competition-independence game, as introduced by Phillips and Slater, is played on a graph
by two players, Diminisher and Sweller, who are taking turns in choosing a vertex that is not in the closed
neighborhood of any of the previously chosen vertices. The goal of Diminisher is to minimize the (maximal
independent) set of chosen vertices at the end of the game, while Sweller wants just the opposite. Assuming
that both players are playing optimally according to their goals, two graph invariants arise depending on
who starts the game. In this paper, we introduce a variation of the game in which players are allowed at
any stage in the game to use an alternative move called prevention. That is, a player can decide that in
his/her move he/she will mark (not choose!) a previously unplayed vertex x by which x is prevented to be
chosen during the rest of the game; in particular, x is not in the final set of chosen vertices. Given a graph G,
and assuming that both players play optimally according to their goals, Ĩd(G) (resp. Ĩs(G)) denotes the size
of the set of chosen vertices in the competition-independence game with prevention if Diminisher (resp.
Sweller) moves first. By using the Partition Strategy we prove that for any positive integer n, Ĩd(Pn) =

⌊
2n+3

6

⌋
and Ĩs(Pn) =

⌊
2n+4

6

⌋
. While it is not hard to establish the general bounds, 1 ≤ Ĩd(G) ≤

⌊
n
2

⌋
and 1 ≤ Ĩs(G) ≤

⌈
n
2

⌉
,

we characterize the classes of (connected) graphs G that attain each of the four bounds. Finally, a close
connection of the new game with a version of the coloring game called the packing coloring game is
established for graphs with diameter 2, and several open problems are posed.

1. Introduction

The competition-independence game is played on a graph G by two players, Diminisher and Sweller, who
are taking turns in constructing a maximal independent set of G. On each turn a player chooses a vertex
that has not been chosen earlier and is not adjacent to any of the vertices already chosen until there is no
such vertex. Upon completion of the game, the resulting set of chosen vertices is a maximal independent set
of G. The goal of Diminisher is to make the final set as small as possible while Sweller wants to maximize
it. Given a graph G, the game played on G when both players play optimally according to their goals yields
two graph invariants known as the competition-independence numbers. Notably, Id(G) denotes the size of the
resulting maximal independent set in the competition-independence game if Diminisher moves first, and
Is(G) denotes the size of the maximal independent set if Sweller starts the game.
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The competition-independence game was initiated by Philips and Slater [15, 16], and was further de-
veloped by Goddard and Henning [11]. The game can also be considered as a variation of the domination
game, introduced in [7], which received great amount of attention in the last decade that culminated in
the monograph [5] surveying the theory of these games. In the book, the game was called the independent
domination game in accordance with the terminology of domination-type games, but here we use the name
from the original paper. Phillips and Slater [16] determined the competition-independence numbers of path
and cycles; in particular, if n ≥ 1, then Id(Pn) =

⌊
3n+4

7

⌋
and Is(Pn) =

⌊
3n+5

7

⌋
. The competition-independence

game turns out to be highly non-trivial even when played on trees. Goddard and Henning [11] proved
that Id(T) ≤ 4

7 n and Is(T) ≥ 3
8 n holds for any tree T of order n ≥ 2 and maximum degree at most 3. They

conjectured that in general trees T the bound Id(T) ≤ 3
4 n(T) holds, which is known as the independence game

3/4-conjecture (see [5]). Henning in [12] proposed a conjecture about the Sweller-start competition indepen-
dence number on trees stating that Is(T) ≥ 3

7 n for any tree T of order n ≥ 2. In addition, Worawannotai and
Ruksasakchai compared the competition-independence game with the domination game [18].

The competition-independence game with prevention is a variation of the competition-independence game
in which players have an additional option in every move, which is to prevent a vertex from being put
into the independent set that is built during the game. More precisely, while the game is played with the
same rules as the competition-independence game, the difference is that on each turn player’s move can
be of two types. By saying that a player plays a vertex x we mean any of the two types of moves are made
on vertex x. The types of moves are choosing a vertex and preventing a vertex from being chosen. When
a player chooses a vertex x this means that x is put into the independent set M that is being built; in this
case x must not coincide nor may x be adjacent to any vertex that has been chosen earlier (and was thus
put in M). When a player prevents a vertex y this means that y has not been played earlier, and it should
not be played until the rest of the game. In particular, y is not in the independent set M at the end of the
game. (Note that in the competition-independence game with prevention the resulting set M need not be a
maximal independent set of G.) Again, the goal of Diminisher is to make the final set M as small as possible
while Sweller wants to maximize it. Given a graph G let Ĩd(G) denote the size of the resulting independent
set in the competition-independence game with prevention if Diminisher moves first and both players play
optimally, and let Ĩs(G) denote the size of the resulting independent set if Sweller moves first and both
players play optimally. These numbers are called the competition-independence numbers with prevention.

The paper is organized as follows. In the next paragraph, we give some necessary definitions that will be
used in later sections. In Section 2 we establish the competition-independence numbers of paths, showing
that Ĩd(Pn) =

⌊
2n+3

6

⌋
and Ĩs(Pn) =

⌊
2n+4

6

⌋
for any n ≥ 1. Already this case is non-trivial, and may serve as

a good introduction to proof techniques used in dealing with the new game(s). In particular, we present
and apply the proof method, which we call the Partition Strategy. We follow in Section 3 with some general
bounds on both competition-independence numbers with prevention. The bounds are either in terms of
the (lower) independence number or in terms of the order. In Section 4 we characterize the connected
graphs G, which attain the upper bound Ĩs(G) ≤

⌈
n
2

⌉
, while in Section 5 the connected graphs G attaining the

upper bound Ĩd(G) ≤
⌊

n
2

⌋
are characterized. Interestingly, the latter family consists of ten sporadic graphs,

while the former family is infinite, yet each graph in it has diameter at most 3. In Section 6, the graphs
whose competition-independence numbers are equal to 1 are characterized, while in Section 7 we establish
the announced connection between the competition-independence games with prevention and the packing
coloring game. The latter is a version of the standard coloring game in which the rules adhere to the packing
coloring condition, where two vertices that are given the same color i must be at distance at least i+ 1 apart.
We end the paper with concluding remarks and pose several open problems.

Throughout the paper we consider simple undirected graphs. The graph K4−e is also called the diamond,
while Pn, n ≥ 1, and Cn, n ≥ 3, denote a path and a cycle, respectively. The graph with one vertex is trivial.
The neighborhood of a vertex v ∈ V(G), denoted by NG(v), is the set of vertices adjacent to v, and the degree,
degG(v), of v ∈ V(G), is the cardinality of its neighborhood. The maximum degree of vertices in G is denoted
by ∆(G). The neighborhood of a set S ⊆ V(G) is NG(S) = ∪v∈SNG(v). The distance between two vertices x
and y of a connected graph G is the length of a shortest path between them, and is denoted by dG(x, y).
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The index G in the above definitions may be omitted if the graph G is understood from the context. The
diameter of G is diam(G) = max{dG(u, v) : u, v ∈ V(G)}. An independent set of G is a set of vertices in G, no
two of which are adjacent. The size of a largest independent set, α(G), is the independence number of G and
the lower independence number of G, i(G), is defined as the size of a smallest maximal independent set (that
is, an independent set that is not a proper subset of any other independent set) in G. A vertex dominates
itself and its neighbors. When building an independent set during a competition-independence game with
prevention we will often say that a vertex is (not) dominated (by vertices from M), meaning that the vertex
is (not) in the closed neighborhood of any vertex from the independent set M of chosen vertices. For a
positive integer n, we write {1, . . . ,n} shortly as [n], and {0, 1, . . . ,n}will be shortened to [n]0.

2. Paths and the Partition Strategy

In this section, we establish the competition-independence numbers of paths and cycles. We present a
detailed proof in the case of paths, which involves the strategy that has been (implicitly) used in the context
of domination games and probably other types of games as well. However, it seems that its usefulness
comes forth especially in the context of the new game(s), which involve the possibility of prevention. The
Partition Strategy essentially means that a player in some useful way partitions the vertex set of a graph
prior to the game, and during the game each of his moves is generally made in the same set of the partition
as the preceding move of the opponent.

Theorem 2.1. For a positive integer n, Ĩd(Pn) =
⌊

2n+3
6

⌋
and Ĩs(Pn) =

⌊
2n+4

6

⌋
.

Proof. Let V(Pn) = {v1, . . . , vn}, and k =
⌊

n
3

⌋
. For i ∈ [k−1]0, call Ti = {v3i+1, v3i+2, v3i+3} a triple, while v3i+1, v3i+2

and v3i+3 are the left, the middle, and the right vertex of the triple Ti, respectively. Let R = V(Pn) − ∪k−1
i=0 Ti.

Note that R = ∅ if n = 3k, R = {vn} if n = 3k + 1, and R = {vn−1, vn} if n = 3k + 2. The proof relies on the
Partition Strategy, where V(G) is partitioned into triples Ti and also R when n , 3k.

Dividing the formulas of the theorem into three cases with respect to n modulo 3, we get the following
six statements:

Ĩd(P3k) = k, Ĩs(P3k) = k,
Ĩd(P3k+1) = k, Ĩs(P3k+1) = k + 1,
Ĩd(P3k+2) = k + 1, Ĩs(P3k+2) = k + 1.

(1)

In the first part of the proof we present Diminsher’s strategy that provides upper bounds for the six
equalities in (1).

In P3k, Diminisher’s strategy is to respond to Sweller’s preceding move with the following rule:

• If Sweller chooses left/right vertex of a triple, then Diminisher prevents the right/left vertex of the
same triple.

In all other cases (that is, if Diminisher starts the game or if Sweller plays a move in which he does not
choose a left/right vertex of a triple), Diminisher plays in any triple in which no move had been made,
and chooses the middle vertex of that triple. Clearly, if a middle vertex of a triple is chosen, then no other
vertex from the triple can be chosen. However, if a right or left vertex of a triple is chosen, this is done
only by Sweller (by Diminisher’s strategy), and with the subsequent move Diminisher achieves that no
other vertex of the triple will be chosen during the game. This yields that at most one vertex of a triple
will be chosen during the game, regardless of who starts the game. We infer Ĩd(P3k) ≤ k and Ĩs(P3k) ≤ k.
In the Diminisher-start game on P3k+1, the first move of Diminisher is to prevent the only vertex of R.
Henceforth essentially the Sweller-start game is played on P3k, which implies Ĩd(P3k+1) ≤ k. The proofs of
Ĩs(P3k+1) ≤ k + 1, Ĩd(P3k+2) ≤ k + 1, and Ĩs(P3k+2) ≤ k + 1, are similar to the above proof. Note that R plays the
role of a (“damaged”) triple, in which Diminsher need not respond on Sweller’s move, since at most one
vertex can be chosen in R. Otherwise, the strategy of Diminisher is the same in P3k.
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Next, we focus on Sweller’s strategies that provide lower bounds for the six equalities in (1). The
most involved case turns out to be the Sweller-start game on P3k+1, and we will first present the proof of
Ĩs(P3k+1) ≥ k + 1 in detail. (Other cases follow similar lines, and will be briefly discussed later.)

Let Sweller-start game be played on P3k+1. Sweller starts the game by choosing vn. Sweller’s strategy is
to maintain the following property after each of her moves:

(P) if a right vertex of a triple Ti is chosen, then Ti+1 also has a vertex chosen.

Clearly, (P) holds after the first move of Sweller (choosing vn). Sweller never chooses the right vertex of a
triple. More precisely, her strategy is to respond to Diminisher’s moves by the following rules:

• If Diminisher prevents the left/right vertex of a triple in which no move had been made earlier, then
Sweller chooses the middle vertex of that triple.

• If Diminisher prevents the middle vertex of a triple in which no moves had been made earlier, then
Sweller chooses the left vertex of that triple (which is possible by property (P)).

• If Diminisher chooses the right vertex of Ti and no move has been made in Ti+1, then Sweller chooses
the middle vertex of Ti+1.

In all other cases (that is, if Diminisher chooses the left or the middle vertex of a triple, or if Diminisher
chooses the right vertex of Ti and a vertex of Ti+1 had been chosen earlier, or if Diminisher prevents a vertex
in a triple in which moves had been made earlier), then Sweller plays in any triple in which no move had
been made (if there is still such a triple), and chooses the middle vertex of that triple.

Note that the third rule ensures that property (P) is maintained throughout the game. Hence the second
rule can always be applied by Sweller. Indeed, when Diminisher prevents the middle vertex of Ti in a
triple in which no moves had been made, this implies that the right vertex of Ti−1 (namely, v3i) had not been
chosen (for otherwise, property (P) would not hold). Thus playing v3i+1 is a legal move of Sweller.

Now, by the first two rules of Diminsher’s strategy, in any triple in which Diminisher prevents a vertex,
there will always be a vertex chosen (by Sweller in her subsequent move). It is also clear that in all other
triples a vertex is chosen, since as long as there is a triple in which no vertex had been played, the game is
not over (as the middle vertex can still be chosen). Together with vn, which is chosen in the beginning of
the game, there are at least k + 1 vertices chosen, yielding Ĩs(P3k+1) ≥ k + 1.

In the proof of Ĩd(P3k) ≥ k, Ĩs(P3k) ≥ k, Sweller’s strategy applies the same set of rules. The difference
in Sweller-start game in P3k is that Sweller starts by choosing the middle vertex of any triple. The proof
of Ĩs(P3k+2) ≥ k + 1 can be directly translated to the proof of Ĩs(P3k+1) ≥ k + 1 by Sweller starting the game
in vn−1. The proof of Ĩd(P3k+2) ≥ k + 1 is also very similar to the proof of Ĩs(P3k+1) ≥ k + 1. Indeed, in this
game Diminisher starts the game, and Sweller follows with responses according to the described set of
rules. Note that a vertex of R is always chosen, and there are several ways in which this happens. First,
if Diminisher plays v3k, which is the right vertex of Tk−1, then by the adjusted third rule, Sweller plays vn
(the middle vertex of the “damaged” triple R). If Diminisher prevents one of the two vertices of R, then
by the adjusted first and second rule, Sweller chooses the other vertex of R. Finally, it is also possible
that Diminisher chooses a vertex of R, or, if there is a move of Diminisher that does not trigger Sweller’s
response by one of the three rules, then Sweller may choose any (middle) vertex of a triple, in which no
moves had been made, and this includes choosing vn.

In a similar way as for paths, we can establish exact values of the competition-independence number
with prevention for cycles. The proof is omitted to contain reasonable length of the paper.

Theorem 2.2. For any positive integer n, Ĩd(Cn) =
⌊

n+1
3

⌋
and Ĩs(Cn) =

⌊
2n+3

6

⌋
.
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3. General bounds

In this section, we prove several upper and lower bounds on the competition-independence numbers
with prevention. The bounds hold for (almost) all graphs, and all of them are sharp.

Proposition 3.1. For every graph G,⌊
i(G)

2

⌋
≤ Ĩd(G) ≤ α(G) and

⌈
i(G)

2

⌉
≤ Ĩs(G) ≤ α(G),

and the bounds are sharp.

Proof. Let G be an arbitrary graph. First, let us prove the lower bounds. Regardless of who starts the game
let S be the set of vertices chosen by Sweller, where we assume that Sweller never prevented a vertex,
and let D be the set of vertices played by Diminisher (where some and perhaps all of his moves could be
preventing a vertex). At the end of the game every vertex in V(G) \ (D ∪ S) is adjacent to a chosen vertex,
which implies that D ∪ S contains a maximal independent set. Thus, |D ∪ S| ≥ i(G). Noting that at least
|S| vertices have been chosen in the game, and |S| =

⌊
|D∪S|

2

⌋
if Diminisher starts the game and |S| =

⌈
|D∪S|

2

⌉
if

Sweller starts the game, we derive the stated lower bounds. The upper bound α(G) in both formulas is a
direct consequence of the fact that chosen vertices form an independent set.

Sharpness of the bounds follows from Ĩd(K2r,2r) = r and Ĩs(K2r,2r) = r, where r ≥ 1, noting that i(K2r,2r) = 2r.
The upper bound is sharp in Kn, where Ĩd(Kn) = Ĩs(Kn) = α(Kn) = 1 for any n ≥ 2.

Proposition 3.2. For every graph G on n ≥ 2 vertices,

1 ≤ Ĩd(G) ≤
⌊n

2

⌋
and 1 ≤ Ĩs(G) ≤

⌈n
2

⌉
,

and the bounds are sharp.

Proof. The lower bound 1 in the above two formulas is obvious, since G has at least two vertices, and
prevention of a vertex in the first move of Diminisher still allows Sweller to choose a vertex. The lower
bounds are attained in non-trivial complete graphs.

To prove the upper bounds, we present Diminisher’s strategy in the game on G, which is essentially the
same regardless of who starts the game. Notably, Diminisher prevents any previously non-played vertex
of G in each of his moves. Then, the game started by Diminisher ends with at most

⌊
n
2

⌋
and the game

started by Sweller ends with at most
⌈

n
2

⌉
chosen vertices. The bounds are attained, for instance, in a graph

consisting of n isolated vertices.

In the second formula of Proposition 3.2, the lower bound holds also in the trivial graph K1. However,
Ĩd(K1) = 0.

In the following sections we will characterize the graphs that achieve the bounds in Proposition 3.2. In
the case of upper bounds we will restrict to connected graphs.

4. Connected graphs with Ĩs(G) =
⌈

n
2

⌉
We start the investigation with a lemma that immediately follows from the fact that during the game

a player may choose only a vertex that had not been dominated by vertices so far chosen nor had been
prevented by some player earlier in the game.

Lemma 4.1. Let the competition-independence game with prevention be played on G. If at a certain point in the game
there are at most k vertices that are not adjacent to already chosen vertices nor have they been chosen or prevented,
then the rest of the game takes at most k moves.
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Lemma 4.2. Let G be a connected graph on n = 2k + 1 vertices, k ≥ 1. Then Ĩs(G) ≤
⌈

n
2

⌉
− 1.

Proof. If k = 1, then G � P3 or G � K3. In either case, Ĩs(G) = 1 =
⌈

n
2

⌉
− 1. Next, let k ≥ 2. Diminisher’s

strategy that provides Ĩs(G) ≤
⌈

n
2

⌉
− 1 is to prevent in each of his moves any previously non-dominated and

non-prevented vertex of G. If Sweller chooses any vertex v of G in the first move, he dominates at least two
vertices, v and, say, v′, since G is a connected graph. Therefore, after the response of Diminisher, there are at
most 2k−2 vertices left in G that have not been dominated nor prevented. By Lemma 4.1, the rest of the game
takes at most 2k − 2 moves, and in half of these moves, Diminisher prevents a vertex. Therefore, together
with the first move, Sweller choses at most k vertices throughout the game, hence Ĩs(G) ≤ k =

⌈
n
2

⌉
− 1.

By using the same strategy of Diminisher as described above, one can easily prove that the number of
chosen vertices in a graph of even order is at most n

2 − 1 if Sweller makes a move of preventing a vertex.
We formally state this as follows.

Lemma 4.3. Let G be a connected graph on n = 2k vertices, k ≥ 1. If Sweller prevents any vertex of G in any of her
moves in the Sweller-start game played on G, then the game ends with at most n

2 − 1 chosen vertices.

Next, we prove that a graph having a (not necessarily induced) 4-cycle will not be in the class of graphs
with Ĩs(G) =

⌈
n
2

⌉
.

Lemma 4.4. Let G be a connected graph on n = 2k vertices, k ≥ 2. If G contains a cycle C4, then Ĩs(G) ≤
⌈

n
2

⌉
− 1.

Proof. Let G be a connected graph on n = 2k vertices, k ≥ 2, which contains a cycle C isomorphic to C4.
Diminisher’s strategy ensuring that no more than

⌈
n
2

⌉
−1 vertices are chosen in the game, is as follows (note

that using Lemma 4.3, we may assume that Sweller never prevents a vertex):

• If Sweller chooses a vertex outside C, then Diminisher prevents a vertex outside C.

• If Sweller chooses a vertex v of C, then Diminisher prevents the antipodal vertex on C (that is, the
vertex in C, which is not adjacent to v in C).

Since there are even number of vertices outside C, it follows, by the first rule of Diminisher’s strategy, that
outside the cycle at most half of the vertices (that is, k − 2 vertices) will be chosen during the game. (Note
that Diminisher is allowed to prevent also vertices that are dominated by chosen vertices.) By the above
strategy, Sweller has the first move on C. By choosing a vertex on the cycle, two of its neighbors on C are
dominated and so by the second rule of Diminisher’s strategy, no other vertex of C will be chosen during
the game. Thus, at most k − 2 + 1 = k − 1 vertices will be chosen during the game.

Also, a path on 6 vertices (not necessarily induced) is forbidden in our graphs.

Lemma 4.5. Let G be a connected graph on n = 2k vertices, k ≥ 3. If G contains a path on 6 vertices, then
Ĩs(G) ≤

⌈
n
2

⌉
− 1.

Proof. Let G be a connected graph on n = 2k vertices, k ≥ 3, and let P : a0a1a2a3a4a5 be a path in G.
First, using Lemma 4.3 we observe that Sweller chooses a vertex in every move. Next, until no vertex

of P is chosen, if Sweller chooses a vertex of V(G) \ V(P), Diminisher responds by preventing a vertex of
V(G) \ V(P). Note that such a move of Diminisher is possible, since the number of vertices of V(G) \ V(P)
is even and Diminisher is allowed to prevent already dominated vertices. Hence, Sweller will have to
play first on P. When Sweller plays on P, Diminisher’s strategy is to respond to Sweller’s move using the
following rules:
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• If Sweller chooses vertex a1 (resp. a4), Diminisher responds by preventing vertex a3 (resp. a2). Then
he continues to prevent unplayed vertices of V(G) \ {a0, a2} (resp. V(G) \ {a3, a5}).

Note that, by choosing a1 (the case a4 is symmetric), Sweller dominates vertices a0 and a2, which can
then no longer be chosen. Hence, at most 2 vertices are chosen on P and at most half (which is k − 3)
vertices will be chosen on V(G) \ V(P) during the game. Altogether, no more than 2 + k − 3 = n

2 − 1
vertices are chosen during the game.

• If Sweller chooses vertex a2 (resp. a3), Diminisher responds by preventing vertex a0 (resp. a5). Then
he continues to prevent unplayed vertices of V(G) \ {a1, a3} (resp. V(G) \ {a2, a4}).

Similarly as in the previous case, by choosing vertex a2 (resp. a3), Sweller dominates vertices a1 and
a3 (resp. a2 and a4), which can then no longer be chosen. Therefore, preventing every second of the
2k − 2 vertices of V(G) \ {a1, a3} (V(G) \ {a2, a4}) ensures Diminisher that no more than k − 1 = n

2 − 1
vertices are chosen during the game.

• If Sweller chooses vertex a0 (resp. a5), Diminisher responds by preventing vertex a2 (resp. a3). Then
he continues to prevent unplayed vertices outside of V(G) \V(P), until Sweller again chooses a vertex
in P. Then Diminisher prevents eventual non-dominated vertex of P.

In this way, the game ends with at most k−1 = n
2 −1 chosen vertices, since only two vertices of P have

been chosen, and every second of the remaining 2k − 6 vertices was prevented.

Corollary 4.6. Let G be a connected graph on n = 2k vertices, k ≥ 2. If G contains a cycle Ck, where k ≥ 4, then
Ĩs(G) ≤

⌈
n
2

⌉
− 1.

Proof. Let G be a connected graph with even number of vertices, and suppose that G contains a cycle Ck,
where k ≥ 4. The case k = 4 follows by Lemma 4.4. If k ≥ 6, then G contains a path P6, and the proof
follows by Lemma 4.5. Finally, if G contains a 5-cycle C, then since G is connected and has even number of
vertices, there exists a vertex v adjacent to a vertex of C. Now, V(C) ∪ {v} contains a path on 6 vertices, and
by Lemma 4.5 we infer Ĩs(G) ≤

⌈
n
2

⌉
− 1.

Lemma 4.7. Let G be a connected graph on n = 2k vertices, k ≥ 2, in which there are no cycles of length greater than
3. If G contains at least two vertices of degree at least 3, then Ĩs(G) ≤

⌈
n
2

⌉
− 1.

Proof. Assuming the conditions of the statement of the lemma, suppose that Sweller chooses in her first
move a non pendant vertex of G. Then, at least three vertices are dominated after such a move, and
Diminisher responds by preventing any non dominated vertex of G. Hence, after the first two moves, at
least four vertices can no longer be chosen during the game, and let V′ be the set of remaining vertices (that
can still be chosen). Diminisher’s strategy in the rest of the game is to prevent an unplayed vertex of V′.
Since |V′| ≤ 2k − 4, we infer that at most k − 2 vertices are chosen from V′ during the game, and together
with the first move of Sweller, at most k − 1 = n

2 − 1 vertices are chosen during the entire game. Hence, we
assume in the rest of the proof that the first move of Sweller is to choose a pendant vertex p and thus two
vertices are dominated after her first move.

Let u and v be vertices of degree at least 3. Denote by u1,u2,u3 three neighbors of u and by v1, v2, v3 three
neighbors of v (note that it is possible that ui = v j for some i ∈ [3], j ∈ [3]). Suppose that p is not adjacent to
any vertex in {u,u1,u2,u3}. Then Diminisher responds by choosing u by which at least four vertices become
dominated. Hence, after the first two moves at least six vertices (p, its neighbor and vertices in N[u]) can no
longer be chosen during the game, and let V′ be the set of remaining vertices. Diminisher’s strategy in the
rest of the game is to prevent an unplayed vertex of V′. Since |V′| ≤ 2k−6, we infer that at most k−3 vertices
are chosen from V′ during the game, and together with the first two moves, at most k−1 = n

2 −1 vertices are
chosen during the entire game. Since by symmetry the same conclusion holds if p is not adjacent to v and
its three neighbors, we may assume that p is adjacent to at least one vertex in {u,u1,u2,u3} and at least one
vertex in {v, v1, v2, v3}. There are two possibilities how this can happen. Without loss of generality (since
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the indices of vertices ui can be permuted), these possibilities are u1 = v1 and u1 = v, and in either case p is
adjacent to u1.

Suppose u1 = v1, and p is adjacent to u1. We may assume that degG(u) = degG(v) = 3 for otherwise,
Diminisher could choose a vertex of degree at least four in her next move, and again there are at least six
vertices dominated after the first two moves, so we are in the case settled by the previous paragraph. First,
we consider the case when u and v are not adjacent. Note that we may assume that {v2, v3} ∩ {u2,u3} = ∅ for
otherwise G contains a 4-cycle, a contradiction to the assumption. Now, let V′ = V(G) \ (N[u] ∪N[v] ∪ {p}).
Note that |V′| is even. In his response to the first move of Sweller, Diminisher chooses u by which all
vertices in N[u] are dominated. Then, his strategy is as follows. Whenever Sweller chooses a vertex in
V′, he responds by preventing a vertex in V′. Since |V′| is even, Sweller is forced to eventually play on
N[v]. When Sweller chooses a vertex in N[v], then at most one vertex in N[v] remains undominated, and
Diminisher prevents it (if there is one). By this strategy, at most three vertices will be chosen in the set
N[u] ∪ N[v] ∪ {p} during the entire game, and at most half (which is k − 4) of the vertices of V′ will be
chosen during the entire game. Thus, altogether at most k − 1 vertices will be chosen during the entire
game. Second, suppose that u and v are adjacent, and we may write u2 = v and v2 = u. The response of
Diminisher to Sweller choosing p is to prevent u3. Now, in the rest of the game Diminisher’s strategy is as
follows. If Sweller plays in V′ = V(G) \ (N[u] ∪ N[v] ∪ {p}), then Diminsher responds in V′ by preventing
a vertex. By this strategy, Sweller will be the first to play in N[u] ∪ N[v] if there are still any vertices left
that can be chosen. There are three possibilities for the move of Sweller, namely, vertices u, v and v3. The
responses of Diminisher are as follows. If Sweller chooses u or v, Diminisher prevents v3; if Sweller chooses
v3, Diminisher prevents u. By this strategy, there will be at most two vertices chosen in N[u] ∪ N[v] ∪ {p}
and at most half (which is k − 3) vertices chosen in V′ during the entire game. This yields the upper bound
k − 1 for the number of chosen vertices.

Now, suppose that p is adjacent to v. Then we may write u1 = v, v1 = u and v2 = p. That is, u and v are
adjacent, and the first chosen vertex p in the game is adjacent to v. If deg(u) ≥ 4, then we can conclude the
proof as in the beginning of the third paragraph of this proof. Hence we may assume that N(u) = {v,u2,u3}.

If u and v have no common neighbor, then the response of Diminisher to the first move of Sweller is to
prevent v3. Next, whenever Sweller plays in V′ = V(G)\ (N[u]∪{p, v3}), Diminisher responds by preventing
a vertex in V′. Since |V′| is even, it is Sweller who will be the first to play in N[u], if any vertex in N[u]
remains to be played at all. Now, if Sweller chooses u2, Diminisher prevents u3 and the other way around.
(If Sweller chooses u, Diminisher can prevent any vertex.) By this strategy, Diminisher enforces that at most
two vertices are chosen from {u,u2,u3, v, p, v3}, and since at most half of the vertices are chosen from V′, we
infer that at most k − 1 vertices will be chosen during the entire game.

Finally, let u and v have a common neighbor, say, u3 = v3. Consider the set W = {u,u2,u3, v, p} of five
vertices. Since G is connected and of even order, there exists a vertex w adjacent to a vertex in W. Clearly,
w is not adjacent to u or p. If w is adjacent to u2, then G contains the path wu2uu3vp on 6 vertices. Therefore,
using Lemma 4.5, we immediately infer that Ĩs(G) ≤

⌈
n
2

⌉
− 1. Finally, suppose that w is adjacent to v or u3.

Then the response of Diminisher to the first move of Sweller is to prevent vertex w. In the rest of the game
Diminisher’s strategy is as follows. If Sweller plays in V′ = V(G) \ (W ∪ {w}), then Diminisher responds
in V′ by preventing a vertex. Since |V′| is even, it is Sweller who will be forced to start to play again in
W unless all vertices of W are already dominated. Now, if Sweller chooses u3, Diminisher responds by
preventing u2 and the other way around. (If Sweller chooses u, Diminisher can prevent any vertex, since
then none of the vertices in W ∪ {w} can be chosen anymore.) By this strategy, Diminisher enforces that at
most two vertices are chosen from W ∪ {w}, and since at most half of the vertices are chosen from V′, we
infer that at most k − 1 vertices will be chosen during the entire game. This completes the proof.

Lemma 4.8. Let G be a connected graph on n = 2k vertices, k ≥ 2, which contains a vertex u of degree at least 3. If
Ĩs(G) =

⌈
n
2

⌉
, then each component of G − u has at most two vertices, and odd number of them have only one vertex.

Proof. Let G be a connected graph on n = 2k vertices, k ≥ 2, containing a a vertex u of degree at least 3. Since
Ĩs(G) =

⌈
n
2

⌉
, we infer by combining Corollary 4.6 and Lemma 4.7 that u is the only vertex of degree at least

3 in G.
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First, suppose that all components of G − u are isomorphic to K1. Then G � K1,m. Since n is even, we
infer that m is odd, so there are indeed odd number of components of G − u, which have only one vertex.
Hence, assume from now on, that G − u has at least one component, say C, which has at least two vertices.
Let v1 ∈ C be the neighbor of u. Since u is the only vertex of degree more than 2 in G, we infer that v1 has
only one additional neighbor (apart from u), say v2. From the same reason, v2 has at most one additional
neighbor beside v1, say v3, and so on. By this reasoning we infer that in C there is a path on |C| vertices with
v1 as an endvertex.

Now, if C has three vertices, then all other components of G−u have at most one vertex. Indeed, suppose
that D was a component different from C with at least two vertices, say w1 and w2, and let w1u ∈ E(G). Then
P : v3v2v1uw1w2 is a path on 6 vertices, which implies by Lemma 4.5 that Ĩs(G) <

⌈
n
2

⌉
, a contradiction. A

similar argument, using Lemma 4.5, shows that C cannot have more than 3 vertices.
Suppose that C has indeed 3 vertices, and v1v2v3 is a path in C. Let w1, . . . ,wt be the leaves attached to

u, and suppose that competition-independence game with prevention is played on G. Note that t is even.
If Sweller starts by choosing a leaf, then Diminsher prevents another leaf, and he responds in the same
way, as long as Sweller plays on leaves. Hence, Sweller is forced to be the first to play on a vertex of C. If
Sweller chooses v1, Diminisher prevents v3, and if Sweller chooses v3, Diminisher prevents v1. In this way,
at most half of the leaf are chosen and only vertex from {u, v1, v2, v3} is chosen, which yields Ĩs(G) <

⌈
n
2

⌉
, a

contradiction. If Sweller does not start with a leaf, then in a similar way Diminisher can ensure that less
than

⌈
n
2

⌉
are chosen. This implies that none of the components of G − u can have more than two vertices,

and the first part of the lemma is proved. To see that there are odd number of components with only one
vertex, one only needs to note that other components have two vertices, and the order of G is even.

u

2m + 1

Figure 1: The infinite family of graphs with Ĩs(G) =
⌈

n
2

⌉
.

Theorem 4.9. If G is a connected graph, then Ĩs(G) =
⌈

n
2

⌉
if and only if G � K1, G � K2, G � P4, or G contains a

vertex u of degree at least 3, each component of G− u has at most two vertices, and odd number of them have only one
vertex.

Proof. First, let G be a graph with Ĩs(G) =
⌈

n
2

⌉
. By Lemma 4.2, either G has only one vertex or even number of

vertices. Suppose G has no vertex of degree more than 2. By Corollary 4.6, G is a path, and from Theorem 2.1
we infer that Ĩs(G) <

⌈
n
2

⌉
, when n > 4. Hence G is isomorphic to P1,P2 or P4. Now, let G have a vertex u

of degree at least 3. By Lemma 4.8, each component of G − u has at most two vertices, and odd number of
them have only one vertex. (See also Fig. 1 depicting the infinite family of graphs with this property.)

For the converse, we first note that Ĩs(K1) = 1, Ĩs(K2) = 1, and Ĩs(P4) = 2. Now, if G contains a vertex
u of degree at least 3, with the property that each component of G − u has at most two vertices, and odd
number of them have only one vertex, then the strategy of Sweller is as follows. She chooses a leaf as his
first move, and follows by responding to Diminsher’s moves in the following way. If Diminisher prevents
a vertex in a component of G − u with two vertices, then she chooses the other vertex of that component.
In all other cases, she chooses a leaf if there is still one non-played leaf, or, otherwise, chooses a vertex
in the component of G − u with two vertices. By this strategy, in each component with two vertices one



B. Brešar, D. Mesarič Štesl / Filomat 36:18 (2022), 6197–6213 6206

vertex is chosen, and among all 2ℓ + 1 leaves at least ℓ + 1 leaves are chosen, which gives Ĩs(G) ≥
⌈

n
2

⌉
. By

Proposition 3.2, Ĩs(G) ≤
⌈

n
2

⌉
.

5. Connected graphs with Ĩd(G) =
⌊

n
2

⌋
In this section, we consider Diminisher-start competition-independence game with prevention.

Lemma 5.1. Let G be a connected graph on n vertices. If Sweller prevents any vertex of G in any of her moves in the
Diminisher-start game played on G, then the game ends with at most

⌊
n
2

⌋
− 1 chosen vertices.

Proof. Let a Diminisher-start game be played on a connected graph G on n vertices. Assume that Sweller
prevents a vertex of G in any of her moves. Diminisher’s strategy by which in each of his moves he
prevents any previously unplayed vertex of G yields that at least

⌊
n
2

⌋
+ 1 vertices will be prevented in the

game (counting also the vertex prevented by Sweller). Consequently, the game ends with at most
⌊

n
2

⌋
− 1

chosen vertices.

Lemma 5.2. Let G be a connected graph on n vertices. If G contains a path on 6 vertices, then Ĩd(G) ≤
⌊

n
2

⌋
− 1.

Proof. Let G be a connected graph on n vertices which contains a (not necessarily induced) path P :
a0a1a2a3a4a5.

If V(G) = {a0, a1, a2, a3, a4, a5}, then Diminisher uses the following strategy. In his first move, he chooses
a1, by which a0 and a2 can no longer be chosen. By Lemma 5.1, Sweller never prevents a vertex, hence in
her response she chooses a vertex with which she dominates at least two vertices that were not dominated
before here move. Consequently, at most one vertex remains non-dominated, and Diminisher prevents it
in his eventual last move. Thus, at most 2 =

⌊
n
2

⌋
− 1 vertices are chosen in the game played on G.

Therefore, assume that V(G) , {a0, a1, a2, a3, a4, a5}, and so there exists at least one vertex in V(G) \ V(P).
Diminisher’s strategy ensuring that at most

⌊
n
2

⌋
− 1 are chosen during the game is as follows:

• If n = 2k, then Diminisher prevents in his first move a vertex v such that G − v remains connected.

Note that G − v is a connected graph that contains odd number of vertices, and the rest of the game
translates to a Sweller-start game on G − v. Thus, by Lemma 4.2, at most

⌈
2k−1

2

⌉
− 1 = k − 1 vertices

of G − v are chosen during the game. Since in the first move Diminisher only prevented a vertex, we
infer that at most k − 1 vertices are chosen in the game played on G.

• If n = 2k + 1, then Diminisher prevents in his first move a vertex v ∈ V(G) \ V(P) such that G − v is
connected.

It follows that G − v is a connected graph with even number of vertices, which contains a path on
6 vertices. Now Sweller has the first move on G − v, and Lemma 4.5 implies that no more than⌈

2k
2

⌉
− 1 = k− 1 vertices of G− v are chosen during the game. Together with the first vertex prevented

by Diminisher, we conclude that at most k − 1 vertices are chosen during the game played on G.

Lemma 5.3. Let G be a connected graph on n vertices. If G contains a cycle C4, then Ĩd(G) ≤
⌊

n
2

⌋
− 1.

Proof. Let G be a connected graph on n vertices, which contains a cycle C isomorphic to C4. Diminisher’s
strategy providing that no more than

⌊
n
2

⌋
− 1 are chosen in the game is as follows:
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• If n = 2k, then Diminisher prevents in his first move a vertex v such that G − v is connected.

Note that G − v is a connected graph containing odd number of vertices, and Sweller has the first
move in G − v. Hence, Lemma 4.2 implies that at most

⌈
2k−1

2

⌉
− 1 = k − 1 vertices of G − v are chosen

in the rest of the game. Considering also the first move of Diminisher (preventing a vertex), we infer
that at most k − 1 vertices are chosen during the game on G.

• If n = 2k+1, then Diminisher prevents in his first move a vertex v such that G−v is a connected graph
containing C (note that, such Diminisher’s move is possible since the number of vertices of G is odd,
thus there exists at least one vertex outside C).

Then, G − v is a connected graph with even number of vertices, which contains the cycle C. Now,
Sweller starts the game on G−v, and by using Lemma 4.4 we infer that at most

⌈
2k
2

⌉
−1 = k−1 vertices

of G − v are chosen during the game. Since the first played vertex in the game was prevented by
Diminisher, we conclude that at most k − 1 vertices are chosen in the game played on G.

Corollary 5.4. Let G be a connected graph on n vertices, and G � C5. If G contains a cycle Ck, where k ≥ 4, then
Ĩd(G) ≤

⌊
n
2

⌋
− 1.

Proof. Let G be a connected graph on n vertices, which is not isomorphic to C5. Assume that G contains a
cycle Ck, where k ≥ 4. If k = 4, the result follows by Lemma 5.3. If k ≥ 6, then G contains a path P6, thus
the proof follows by Lemma 5.2. Finally, suppose that G contains a cycle C5. Since G is connected and is
not isomorphic to C5 there are only two possibilities. First, if G contains a vertex v adjacent to a vertex of a
cycle C5, then V(C5) ∪ {v} contains a path on 6 vertices. Hence, using Lemma 5.2, we infer Ĩd(G) ≤

⌊
n
2

⌋
− 1.

Second, let G be isomorphic to a graph obtained from C5 by adding at least one additional chord. Denote
V(G) = {a1, a2, a3, a4, a5} and suppose without loss of generality that a1a3 ∈ E(G) is a chord in G. To prove
that Ĩd(G) ≤

⌊
n
2

⌋
− 1 = 1 we use the following strategy of Diminisher. In the first move, Diminisher prevents

vertex a2, and then responds to Sweller’s move by preventing the vertex, which is antipodal on the 4-cycle
a1a3a4a5a1 to the vertex chosen by Sweller. The game ends with only one chosen vertex, which concludes
the proof.

In the following lemma, two graphs on 5 vertices appear, the bull (the graph obtained by attaching a
single leaf to two vertices of C3) and graph P (the graph obtained from the copy of C3 and the copy of K2 by
adding an edge between a vertex of C3 and a vertex of K2). See Figs. 2h and 2i.

Lemma 5.5. Let G be a connected graph on n vertices, which contains a cycle C3 as a proper subgraph and does not
contain any cycle of length greater than 3. Then, Ĩd(G) =

⌊
n
2

⌋
if and only if G is isomorphic either to the bull or P.

Proof. Let G be a connected graph on n vertices which contains a cycle C isomorphic to C3 and does not
contain any cycle of length at least 4. Suppose that Ĩd(G) =

⌊
n
2

⌋
.

First, assume that G contains a vertex v of degree at least 4. Then, by choosing v in his first move,
Diminisher dominates at least 5 vertices, which can then no longer been chosen. In his remaining moves,
Diminisher prevents any non-dominated and non-prevented vertex. Thus, among vertices in V(G) − N[v]
at most

⌈
n−5

2

⌉
vertices are chosen during the game. Together with v, the number of vertices that are chosen

during the game of G is 1 +
⌈

n−5
2

⌉
≤

n
2 − 1, which is a contradiction. We may thus assume that G does not

contain any vertex of degree more than 3.
Next, we prove that n ≤ 6. Suppose to the contrary that n ≥ 7. Then, since G is a connected graph,

which contains C and has no vertex of degree more than 3, it is straightforward to derive that G contains
a path on 6 vertices. Now, using Lemma 5.2 we infer that Ĩd(G) ≤

⌊
n
2

⌋
− 1. Again, this is a contradiction,

which implies n ≤ 6. Moreover, since C is a proper subgraph of G, it follows that n ≥ 4.
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(a) K1 (b) K2 (c) P3 (d) P5 (e) C3 (f) C5

(g) fork (h) bull (i) P (j) S(K1,3)

Figure 2: Graphs G with Ĩd(G) =
⌊

n
2

⌋
If n = 4, G can only be obtained by attaching a single leaf to a vertex of C. Clearly, this is not possible,

since by choosing a vertex of degree 3 in the first move, Diminisher dominates all other vertices of G and
the game ends with only one chosen vertex.

Assume that n = 5. Taking into account all the assumptions (G contains C, does not contain any cycle of
length greater than 3 and no vertex of degree at least 4), we infer that G is either a bull or P.

Finally, let n = 6. Lemma 5.2 implies that G does not contain a path on 6 vertices since Ĩd(G) =
⌊

n
2

⌋
.

Thus, G can only be isomorphic to the net graph (the graph obtained by attaching a single leaf to each
vertex of C). But in this case, Diminisher has a strategy in the Diminisher-start game on G to ensure at most⌊

n
2

⌋
− 1 = 2 vertices are chosen during the game. Indeed, if he chooses a vertex of C in his first move, three

of its neighbors are dominated and can then no longer be chosen. Clearly, Sweller chooses in her next move
another non-dominated vertex, and Diminisher responds by preventing the last non-dominated vertex of
G. In this way, the game ends with only 2 chosen vertices, a contradiction.

For the converse, let G be a bull or P. In either case, Proposition 3.2 implies that Ĩd(G) ≤
⌊

n
2

⌋
. One can

easily find strategies of Sweller by which at least
⌊

n
2

⌋
= 2 vertices are chosen for either bull and P, which

concludes the proof.

The following theorem gives the characterization of the connected graphs G with Ĩd(G) =
⌊

n
2

⌋
. (The

graph S(K1,3) is obtained from the star with three leaves by subdividing each of its edges once; see Fig. 2j.
The graph fork is obtained from the star K1,3 by subdividing one of its edges once; see Fig. 2g.)

Theorem 5.6. Let G be a connected graph on n vertices. Then, Ĩd(G) =
⌊

n
2

⌋
if and only if G is either K1, K2, P3, P5,

C3, C5, the fork, the bull, P or S(K1,3) (see Fig. 2).

Proof. First, consider the sufficient condition, that the graphs G from the list satisfy Ĩd(G) =
⌊

n
2

⌋
. For some of

the graphs in the list, the result follows from previous results. In other cases, the proofs are straightforward.
As a demonstration of proof techniques, let us give more details only in the case of the largest graph from
the list, which is S(K1,3). Sweller’s strategy ensuring that at least

⌊
n
2

⌋
= 3 vertices are chosen in the game on

S(K1,3) is as follows:

• If Diminisher chooses a leaf, Sweller chooses another leaf in her response.

• If Diminisher chooses a neighbor of a leaf, Sweller chooses a non-dominated leaf.

• If Diminisher chooses the center of G, Sweller chooses a leaf.

• If Diminisher prevents a leaf, Sweller chooses its neighbor, if this is possible, otherwise, she chooses
a leaf.
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• If Diminisher prevents a neighbor of a leaf, Sweller chooses its leaf neighbor.

• If Diminisher prevents the center of G, Sweller chooses any non-dominated and non-prevented vertex
of G.

It is straightforward to check that using the described strategy the game ends with at least 3 chosen vertices.
To prove the converse, suppose that G is a connected graph with Ĩd(G) =

⌊
n
2

⌋
. If n ≤ 2, then we get K1

and K2, so assume that n ≥ 3. We may also assume that G � C3 and G � C5. If G contains a cycle, then by
Corollary 5.4, the cycle is isomorphic to C3. Thus, according to Lemma 5.5, G is a bull or P.

Hence, it remains to consider the case when G is a tree. Now, Lemma 5.2 implies that diam(G) ≤ 4.
Since G is connected and n ≥ 3, we infer that diam(G) ≥ 2.

Let diam(G) = 2. Then, G is a star K1,m with m ≥ 2. If m = 2, then G � P3, which is on the list. Otherwise,
when m > 2, Diminisher has a strategy ensuring that Ĩd(G) ≤

⌊
n
2

⌋
− 1 by playing the center of the star in his

first move, which ends the game.
If diam(G) = 3, then let u, v ∈ V(G) be such that d(u, v) = 3. Denote by P : u = a0a1a2a3 = v a shortest

u, v-path in G. If G � P, then G � P4, and using Theorem 2.1 we get a contradiction. Otherwise, G contains
a vertex of degree at least 3. However, we observe that G does not contain a vertex of degree at least 4, since
by choosing this vertex in the first move of the game, Diminisher can ensure that at most

⌊
n
2

⌋
− 1 vertices

will be chosen during the game (similarly, as in the proof of Lemma 5.5). Further, since diam(G) = 3 and
G is a tree, a0 and a3 are leaves. We infer that G is obtained by attaching another leaf to one or to both
non-pendant vertices of P. In the first case, G is a fork. In the second case, choosing a vertex of degree 3
in his first move, Diminisher ensures that at most one new vertex will be chosen in the rest of the game,
which gives the contradiction Ĩd(G) ≤

⌊
n
2

⌋
− 1.

Finally, let diam(G) = 4. Let u, v ∈ V(G) be vertices of G such that d(u, v) = 4 and let P : u = a0a1a2a3a4 = v
be a shortest u, v-path in G. If G � P, then G � P5, which is on the list. Since diam(G) = 4 and G is a tree, a0
and a4 are leaves. Moreover, in the same way as earlier we derive that G does not contain a vertex of degree
at least 4. Hence, only two leaves can be attached to vertices a1 and a3. In addition, if vertex a2 has neighbors
outside P, then a2 can either be connected a leaf or to one vertex of the graph K2 or to the center of the path
P3. Clearly, we may assume that G is not isomorphic to S(K1,3). Note that each of the graphs constructed in
this way contains at least three leaves. If G has an odd number of vertices, then Diminisher’s strategy is to
prevent a leaf u. Now, the graph G − u has even number of vertices, and the game essentially translates to
the Sweller-start game on G−u. We notice that G−u is not in the class of extremal graphs from Theorem 4.9.
Thus Ĩd(G) = Ĩs(G − u) < n−1

2 =
⌊

n
2

⌋
. Hence we may assume that G has an even number of vertices. There

are six such graphs, and we denote them by Gi, where i ∈ [6]. Graphs G1 and G2 have six vertices, and are
obtained from P by adding a leaf x; in G1 vertex x is attached to a2, while in G2 vertex x is attached to a1. In
either case, the strategy of Diminisher is to prevent x in his first move. The game translates to Sweller-start
game on P5, which ends with two chosen vertices by Theorem 2.1. Thus Ĩd(Gi) = Ĩs(P5) = 2 = 6

2 − 1 for
i ∈ [2]. The next three possibilities for graph G have 8 vertices. Firstly, G3 is obtained from P by attaching
one (additional) leaf on each of a1, a2 and a3. Let the leaf adjacent to a1 be denoted by x, the leaf adjacent
to a2 by x′, and the leaf attached to a3 by x′′. Diminisher starts by preventing x′. Then, if Sweller chooses
a leaf (say x) in any of her moves, then Diminisher prevents the other leaf with the same neighbor (that is,
u). With this strategy, at most two leaves will be chosen, and we derive Ĩd(G3) ≤ 3 = 8

2 − 1. Secondly, G4
is obtained from P by attaching one leaf, say x, on a1 and by connecting a2 to one vertex of the graph K2.
Now, Diminisher’s strategy is to prevent a2 in his first move. Then, if Sweller chooses a leaf adjacent to a1,
Diminisher prevents the other leaf adjacent to this vertex in his next move. Using the described strategy, at
most three vertices will be chosen during the game on G4 (one from the attached K2, one from the pair a3, a4

and one from the triple a0, a1, x). Therefore, Ĩd(G4) ≤ 3 = 8
2 − 1. Thirdly, G5 is obtained from P by adding a

new neighbor x to a2 and then attaching two leaves, x′ and x′′, to x. In his first move, Diminisher prevents
a2. Then, if Sweller chooses a leaf adjacent to x (say x′), then in his next move, Diminisher prevents the
other leaf adjacent to x (that is x′′). Similarly as in the previous case, in this way at most three vertices will
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be played during the game on G5 (one from the pair a0, a1, one from the pair a3, a4 and one from the triple
x, x′, x′′). Hence, Ĩd(G4) ≤ 3 = 8

2 − 1. Finally, G6 has 10 vertices and can be described as follows. Let G5 be
obtained from K1,3 with the center c (the role of which is taken from a2) by attaching two leaves to each of
the leaf-vertices bi, i ∈ [3], of K1,3. Let the leaves adjacent to bi be denoted by d1

i and d2
i , for all i ∈ [3]. The

strategy of Diminisher is similar as in the previous case. In his first move, Diminisher prevents c. Then,
whenever Sweller chooses a leaf (say d1

i ), in his next move Diminisher prevents the other leaf adjacent to bi

(that is, d2
i ). With this strategy, at most three vertices will be played during the game on G5 (one from each

of the triples bi, d1
i , d

2
i ), which yields Ĩd(G5) ≤ 3 = 10

2 − 2. This final case implies the necessary condition for
a graph G to enjoy Ĩd(G) =

⌊
n
2

⌋
.

6. Graphs with Ĩd(G) = 1 or Ĩs(G) = 1

In this section, we no longer restrict to connected graphs. We start with the characterization of (all)
graphs, which attain the value 1 in a Diminisher-start game.

Theorem 6.1. If G is a graph on n ≥ 2 vertices, then Ĩd(G) = 1 if and only if one of the following holds:

1. ∆(G) = n − 1,

2. there exists a vertex u ∈ V(G) such that δ(G − u) ≥ n − 3,

3. G � K1 + K1 + K1.

Proof. First, let us prove that if G is a graph that satisfies one of the conditions from the list, then Ĩd(G) = 1.
If ∆(G) = n − 1, then also γ(G) = 1, and Diminisher can complete the game in one move by choosing a
vertex with the largest degree. Further, let G be a graph in which there exists a vertex u ∈ V(G) such that
δ(G − u) ≥ n − 3. In this case, Diminisher prevents vertex u in the first move. Then, if Sweller chooses a
vertex x, then at most one vertex in G − u remains, which is not adjacent to x. If there is such a vertex,
Diminisher prevents it, and the game ends with only one chosen vertex. (Otherwise, if all non-prevented
vertices in G are adjacent to x, the game is already over.) If the first move of Sweller is not to choose a vertex,
then as long as Sweller prevents vertices, Diminisher also prevents vertices. Clearly, it is in Sweller’s favor
to choose a vertex at least once, but then Diminisher proceeds as described above. Thus, Ĩd(G) = 1. Lastly,
it is clear that Ĩd(K1 + K1 + K1) = 1.

To prove the reverse direction, suppose that G is a graph on n vertices with Ĩd(G) = 1. First, consider
the case when G is a connected graph. If Diminisher’s first move is to choose a vertex u ∈ V(G), then
deg(u) = n−1. Indeed, if there is a vertex in G not adjacent to u, then Sweller can choose it in the next move,
which yields Ĩd(G) ≥ 2, a contradiction. In this case, we get the graphs G with ∆(G) = n − 1. Otherwise,
suppose that Diminisher’s first move is to prevent a vertex u ∈ V(G). If δ(G − u) ≥ n − 3, then we get the
class of graphs from the second line of the list. Hence, assume that δ(G − u) < n − 3. Then, Sweller can
choose a vertex v ∈ V(G− u) such that deg(v) < n− 3. There exist at least two vertices w, z ∈ V(G− u) which
are not adjacent to v. Since Diminisher cannot prevent both of them in the next move, Sweller is able to
choose a new vertex in her second move. It follows that Ĩd(G) ≥ 2, a contradiction.

Further, assume that G is disconnected. First, observe that if G has at least four connected components,
then Sweller has a strategy providing that at least two vertices are chosen during the game by choosing
vertex in her first and her second move in a component in which no move had been made before. Next,
if G has three components, then we claim that each of them consists of only one vertex. Indeed, if there
is a component with at least two vertices, Sweller is able to choose one of them and a vertex of one of the
remaining two components, again a contradiction to Ĩd(G) = 1. Hence, G � K1 + K1 + K1, which in third
line of the list. It remains to consider the case, when G has exactly two components. If none of them is
isomorphic to K1, then Sweller has a strategy ensuring that at least two vertices are chosen in the game.
Namely, if Diminisher chooses a vertex in one component, Sweller responds by choosing a vertex in the
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second component, but if Diminisher prevents a vertex in any of his first two moves, Sweller is able to
choose a vertex in the same component in the next move. This yields Ĩd(G) ≥ 2, a contradiction. We conclude
that one of the two components of G is K1, and let u be the vertex of K1. Clearly, Diminisher’s optimal first
move is to prevent u, for otherwise u will be chosen by Sweller in the next move (and another vertex of
G−u can be chosen in Sweller’s second move). Now, similarly as above, we derive that δ(G−u) ≥ n− 3, for
otherwise Sweller can choose a vertex of smallest degree in G − u and enforce at least two chosen vertices
in the game. This again yields that G is one of the graphs from the second line of the list.

Theorem 6.2. Let G be a graph on n vertices. Then Ĩs(G) = 1 if and only if either δ(G) ≥ n − 2 or G � K1 + K1.

Proof. First, we check that δ(G) ≥ n − 2, implies Ĩs(G) = 1. For this purpose we present a strategy of
Diminisher to ensure at most one vertex is chosen during the game on G. If Sweller chooses a vertex x in
the first move on G, then (since δ(G) ≥ n− 2) there exists at most one vertex not adjacent to x, and if it does,
Diminisher prevents it in his response. In this way, the game ends with only one chosen vertex. Otherwise,
if Sweller prevents a vertex, say v, in the first move, then there exists a vertex which is adjacent to all vertices
of G except perhaps v. By choosing this vertex in his response, Diminisher ensures that Ĩs(G) = 1. Second,
it is clear that Ĩs(K1 + K1) = 1, which ends the proof of the sufficient condition for Ĩs(G) = 1.

For the converse we assume that Ĩs(G) = 1. First, let G be a connected graph. If δ(G) < n − 2, then
Sweller can enforce at least two chosen vertices during the game. Namely, in the first move she chooses a
vertex with deg(v) < n− 2, and there remain at least two vertices not dominated by v. Since Diminisher can
prevent only one of them in next move, Sweller chooses the second one in her second move, thus, Ĩs(G) ≥ 2,
a contradiction. Thus, δ(G) ≥ n − 2, as desired. Finally, if G is a disconnected graph, then it is easy to see
that it must have two components or else Sweller can choose two vertices during the game. If one of the
components contains at least two vertices, then the first move Sweller chooses a vertex in a component with
fewer vertices. In his response, Diminisher can prevent only one vertex, hence there remains an unplayed
vertex in the component in which Sweller did not make a move. Sweller chooses a vertex in that component
which yield the contradiction Ĩs(G) ≥ 2. Thus, we conclude that G � K1 + K1.

7. Relations with the packing coloring game

Many graph coloring games have been introduced, starting with the game version of graph coloring due
to Brams (see Gardner [8]) and Boedlander[2], and followed by a number of variations [1, 3, 9, 13, 14, 17].
Most versions of coloring games are played on a graph G by two players, Alice and Bob, who are taking
turns in coloring a (previously uncolored) vertex of a graph. They have opposite goals, Alice aiming to
finish the game with as small number of colors as possible, while Bob wants to maximize the number of
colors needed in the game to end. They must obey the rule of proper coloring, that is, in each move a vertex
chosen by either player has to receive different color than the vertices in its neighborhood that have already
received a color (in previous turns). In this paper we propose yet another variation of the coloring game,
which is related to a special type of proper coloring – the packing coloring.

Packing coloring was introduced by Goddard, Hedetniemi, Harris and Rall [10] under the name broad-
cast coloring, though all subsequent papers starting from [6] used the term packing coloring. This type of
coloring became quite popular and was recently surveyed in [4], where one can find 68 citations. Given
a graph G and a positive integer i, an i-packing in G is a subset W of the vertex set of G such that the
distance between any two distinct vertices from W is greater than i. Note that a 1-packing is equivalent
to an independent set. The packing chromatic number of G, denoted by χρ(G), is the smallest integer k such
that the vertex set of G can be partitioned into sets V1, . . . ,Vk, where Vi is an i-packing for each i ∈ [k]. The
corresponding mapping c : V(G) −→ [k] having the property that c(u) = c(v) = i implies d(u, v) > i, is a
k-packing coloring.

The packing coloring game is played by two players, Alice and Bob, on a graph G having a fixed number
of colors t. They are taking turns in coloring a (previously uncolored) vertex v of a graph by any color i in
[t] such that v is at distance greater than i to any vertex of G that received color i in earlier moves. The game
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ends either when all vertices are colored (in which case Alice wins) or when no legal move is possible. In
the latter case Bob wins. In other words, Bob’s aim during the game is to reach the situation, where there is
a vertex v such that for every color i ∈ [t] there exists a vertex u ∈ V(G) that received color i and u is within
distance i from v. The minimum number of colors that are needed for Alice to win the packing coloring
game on a graph G is the game packing chromatic number of G, denoted χ1ρ(G).

A general upper bound on the packing chromatic number in terms of the independence number follows
from the fact that a coloring in which vertices of a maximum independent set receive color 1 while all other
vertices receive pairwise distinct colors greater than 1 is a packing coloring.

Proposition 7.1. [10] If G is a graph, then χρ(G) ≤ n(G) − α(G) + 1, with equality if diam(G) = 2.

Restricting to diameter 2 graphs and noting that χ1ρ(G) ≥ χρ(G) for any graph G, we immediately get the
following bound for the game packing chromatic number for graphs G with diameter 2:

χ1ρ(G) ≥ n(G) − α(G) + 1.

Note that when the packing coloring game is played on diameter 2 graph G two types of moves are possible:
either a player gives color 1 to a vertex, which is independent from all other vertices that received color 1,
or a player gives a color greater than 1 and distinct from previously chosen colors to a vertex that has not
been previously colored. With the latter type of move, the player prevents the selected vertex to be in the
(independent) set of vertices colored by color 1. Since Alice wants to minimize the number of colors used
in the game, she wants to maximize the number of vertices that are given color 1, while Bob wants just the
opposite. Hence, they are essentially playing the competition-independence game with prevention on G,
with Alice taking the role of Sweller and Bob that of Diminisher. Since Alice starts the packing coloring
game, we derive the following

Corollary 7.2. If G is a graph with diam(G) = 2, then χ1ρ(G) = n(G) − Ĩs(G) + 1.

The dual result χ1Bρ (G) = n(G) − Ĩd(G) + 1 for graphs with diameter 2 is obtained in a similar way, where

χ1Bρ (G) denotes the version of the game packing chromatic number in which Bob starts the game.

8. Concluding remarks

In the special context of Lemma 4.3 we could assume that Sweller never prevents a vertex. However,
we could not prove that this holds in general, though it seems plausible.

Question 8.1. Is it true that an optimal move of Sweller is always to choose a vertex?

On the other hand, it would be interesting to investigate the graphs in which none of the players needs
to use the prevention move. In other words, we ask the following question.

Question 8.2. In which graphs G, Ĩd(G) = Id(G) or Ĩs(G) = Is(G), respectively?

It seems reasonable that it is never in Diminisher’s favour to let Sweller be the first to play a game.
However, we could not prove this in general, therefore we pose the following question.

Question 8.3. Is there any graph G for which Ĩd(G) > Ĩs(G) holds?

If the above question happens to have positive answer, then we would be interested in finding the
largest integer k (if it exists) such that for every graph G, Ĩd(G) − Ĩs(G) ≤ k? Note that if the roles of Ĩd and
Ĩs are reversed, then there is no such integer k. For example take the star K1,n, and observe that Ĩd(K1,n) = 1
while Ĩs(K1,n) = ⌈n/2⌉. If the answer to Question 8.3 is negative, this will be in big contrast with the standard
competition-independence numbers for which it was proved in [18] that for any positive integers a and b
there exists a connected graph G such that Id(G) = a and Is(G) = b.
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In Sections 4, 5 and 6, we characterized the extremal graphs that attain lower and upper bounds in
Proposition 3.2; a similar task with respect to the bounds in Proposition 3.1 triggers the following questions.

Question 8.4. Which are the graphs G with Ĩd(G) = α(G), and Ĩs(G) = α(G), respectively? Which are the graphs G
with Ĩd(G) =

⌊
i(G)

2

⌋
, and Ĩs(G) =

⌈
i(G)

2

⌉
, respectively?

The upper bounds Ĩd(G) ≤
⌊

n
2

⌋
and Ĩs(G) ≤

⌈
n
2

⌉
hold in general graphs. It would be interesting to find

better bounds in some special classes of graphs. For the standard version of the competition independence
games such bounds were studied in trees [11]. Since there are trees T that attain the values Ĩd(T) =

⌊
n
2

⌋
, and

Ĩs(T) =
⌈

n
2

⌉
respectively, the bounds cannot be improved in the class of (all) trees.
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