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Abstract. In this paper, we analyze the index relation of anti-triangular block matrices and their entries to
separately obtain new and strict expressions for the Drazin inverse of them under certain circumstances. As
applications, we utilize the relationship between the anti-triangular block matrix and a 2 × 2 block matrix
to establish several formulae. Our results generalize and unify a series of results in the literature.

1. Introduction

There are some original applications of Drazin inverse of block matrices in systems of linear differential
equations and liner difference equations [8], finite Markov chains [26], iterative methods [27] and so on
[1, 14, 15, 17, 23, 24, 29, 31–34], precisely because it has important spectral properties.

The Drazin inverse of A is the unique matrix Ad satisfying the equations applicable only to square matrices
as follows

AAd = AdA, AdAAd = Ad, Ak = Ak+1Ad,

in these equations k is the smallest non-negative integer such that rank(Ak) = rank(Ak+1), called index of
A and denoted by ind(A). The spectral idempotent Aπ of A corresponding to {0} is given by Aπ = I − Ae,
where Ae = AAd. If ind(A) = 1, then Ad = A#, where A# is a special case of the Drazin inverse, the group
inverse.

Especially, the expression problem of the Drazin inverse of anti-triangular block matrices occurred in
[7], is to obtain the solution of the second-order singular differential equations. This problem was firstly
proposed by Campbell and Meyer [8], and it is still an open problem without additional assumptions upon
the blocks herein. Consider two anti-triangular block matrices

N =
[
A B
C 0

]
, (1)

2020 Mathematics Subject Classification. P15A09; 15A23; 39B42; 65F20
Keywords. Drazin inverseBlock matrixAnti-triangular matrixindex
Received: 12 December 2021; Accepted: 06 July 2022
Communicated by Dragan S. Djordjević
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and

N̄ =
[
A B
I 0

]
. (2)

Up to now, many formulae for the Drazin inverse of a 2×2 block matrix under several certain restrictions
were considered (see [18, 20, 37, 38]). Let a 2 × 2 block complex matrix

M =
[
A B
C D

]
. (3)

We note former fornulae for Md studied under appropriate restrictions, and list them as follows:

1. in [16], BC = 0,BD = 0 and DC = 0;
2. in [18], BC = 0,BDC = 0 and BD2 = 0;
3. in [20], BC = 0,DC = 0 (or BD = 0) and D is nilpotent;
4. in [6], A = 0 and D = 0;
5. in [11], ABC = 0,DC = 0 and BD = 0 (or BC is nilpotent, or D is nilpotent);
6. in [3], ABC = 0 and DC = 0 (or BD = 0);
7. in [35], BCA = 0,BCB = 0,DCA = 0 and DCB = 0.

The additional research focus on the research of the Drazin inverse of the anti-triangular block matrix
N partitioned as in the form (1), is also widely investigated in [2, 5, 9, 12, 19, 22, 25].

Note that, in [13], the representation for the Drazin inverse of the anti-triangular block matrix N as in
(1) was shown respectively under different assumptions as follows

1. AB = 0;
2. ABC = 0.

It is worth mentioning that the Drazin inverse of matrices partitioned as N̂ =
[
A I
B 0

]
were also concerned,

for instance, [4, 30, 36].
In the paper, we note the relationship between N̄ of the form (2) and N̂, through simple calculation,

N̂d = (RN̄R−1)d = RN̄dR−1,

where R =
[
0 I
I −A

]
.

The research about the Drazin inverse of N̄ is significantly less than the same research of M or N, but it
is original and equally important. Our aim is, by analyzing the index relationship of anti-triangular block
matrices and their entries, to give accurate representations for the Drazin inverse of N̄ on new restrictions,
and establish a relationship among N̄, N and M to respectively derive new and strict expressions for the
Drazin inverse of N and the Drazin inverse of M under certain conditions. In this way, we generalize and
unify a series of results in the literature.

The next symbol description will be used throughout the paper. Cm×n is the set of m×n complex matrices
and I is the identity matrix of proper size. We always define the sum to be 0, if the lower limit of a sum is

greater than its upper limit. For example, the sum
−1∑
k=0
∗ = 0. We adopt the convention that [x] stands for

the truncates integer of x, and A0 = I. Since (Ad)n = (An)d for any A ∈ Cn×n, we adopt the convention that
Adn = And = (Ad)n.
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2. Key lemmas

In this section, we state key lemmas for proving the results of this paper.
We begin with the well-known Cline’s Formula.

Lemma 2.1. [10] (Cline’s Formula) For A ∈ Cm×n and B ∈ Cn×m, (BA)d = B[(AB)2d]A.

The Drazin inverse of triangle matrices are shown as the following auxiliary result.

Lemma 2.2. [21, 28] Let M =
[

A B
0 D

]
and N =

[
D 0
B A

]
∈ Cn×n, where A and D are square matrices. Then

Md =

[
Ad X
0 Dd

]
and Nd =

[
Dd 0
X Ad

]
,

where

X =
s−1∑
i=0

(Ad)i+2BDiDπ + Aπ
r−1∑
i=0

AiB(Dd)i+2
− AdBDd

such that ind(A) = r and ind(D) = s.

To prove the main results, a needed formula for the Drazin inverse of a sum is taken into consideration.

Lemma 2.3. [35, Theorem 2.1] Let PQP = 0 and PQ2 = 0, where P,Q ∈ Cn×n such that ind(P) = r and ind(Q) = s.
Then

(P +Q)d = Qπ
s−1∑
i=0

Qi(Pd)i+1 +

r−1∑
i=0

(Qd)i+1PiPπ

+Qπ
s−1∑
i=0

Qi(Pd)i+2Q +
r−2∑
i=0

(Qd)i+3Pi+1PπQ

−QdPdQ − (Qd)2PPdQ. (4)

3. Main results

Under the new assumptions, we develop expressions for the Drazin inverse of N̄ and N given by (2)
and (1), respectively.

Recall that Ae = AAd and Aid = (Ad)i, where i is nonnegative integer. We now consider the Drazin
inverse of a anti-triangle matrix N̄ as the main result of this paper.

Theorem 3.1. Let N̄ be a matrix of the form (2), where A and B are square matrices of the same size. If

AB2 = 0, A2BA = 0, ABA2 = 0 and (AB)2 = 0,

then

N̄d =

[
E1 E2
E3 E4

]
,
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where

E1 = −BdAdB +
s−1∑
i=0

BπBiA(2i+3)dB +
s−1∑
i=0

BπBiA(2i+1)d +

[ r
2 ]−1∑
i=0

B(i+2)dA2i+1AπB +
[ r

2 ]−1∑
i=0

B(i+1)dA2i+1Aπ,

E2 =

s−1∑
i=0

BπBiA(2i+2)dB +
[ r

2 ]∑
i=0

B(i+1)dA2iAπB,

E3 = B3dABA − BdA2dB − Bd +

s−1∑
i=0

BπBiA(2i+2)d +

[ r
2 ]∑

i=0

B(i+1)dA2iAπ +
s−1∑
i=0

BπBiA(2i+4)dB +
[ r

2 ]∑
i=0

B(i+2)dA2iAπB,

E4 = −BdAdB +
s−1∑
i=0

BπBiA(2i+3)dB +
[ r

2 ]∑
i=0

B(i+2)dA2i+1AπB

such that ind(A) = r and ind(B) = s.

Proof. We consider the splitting of N̄2 as follows

N̄2 =

[
A2 + B AB

A B

]
=

[
A2 0
A AeB

]
+

[
B AB
0 AπB

]
, (5)

and denote by P and Q the left matrix and the right matrix of the right-hand side in (5), respectively. We
obtain the following relations derived directly from the condition

(AeB)d = 0, (AπB)n = Bn−1AπB, n ≥ 1.

Note that

(AπB)d = AπB[(AπB)d]2 = AπB[(AπB)2]d = AπB[B(AπB)]d = AπB2[(AπB)B]2dAπB
= AπB2(B2)2dAπB = Aπ(B2)dAπB = B2dAπB.

Then we utilize Lemma 2.2 to obtain

Pd =

[
A2d 0
A3d 0

]
, Qd =

[
Bd B2dAB
0 B2dAπB

]
,

and so

Pπ =
[

Aπ 0
−Ad I

]
, Qπ =

[
Bπ −BdAB
0 I − BdAπB

]
.

Furthermore, we prove, for any n ≥ 2,

Pn =

[
A2n 0

A2n−1 0

]
,

and for any n ≥ 1,

Qn =

[
Bn Bn−1AB
0 Bn−1AπB

]
, Pnd =

[
A(2n)d 0

A(2n+1)d 0

]
, and Qnd =

[
Bnd B(n+1)dAB
0 B(n+1)dAπB

]
.

Let ind(A) = r and ind(B) = s. We combine the computations of PiPπ such that i ≥ 2 and QiQπ such that
i ≥ 1 to give ind(P) = [ r

2 ] + 1 and ind(Q) = s + 1 as follows

PiPπ =
[

A2i 0
A2i−1 0

] [
Aπ 0
−Ad I

]
=

[
A2iAπ 0

A2i−1Aπ 0

]
,
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and

QiQπ =
[
Bi Bi−1AB
0 Bi−1AπB

] [
Bπ −BdAB
0 I − BdAπB

]
=

[
BiBπ Bi−1BπAB

0 Bi−1BπAπB

]
.

Easy computation gives PQ2 = 0 and PQP = 0, which are the conditions in Lemma 2.3. Hence, we focus
on obtaining the following relations as in (4):

Qπ
s∑

i=0

Qi(Pd)i+1 =


Bπ

s∑
i=0

BiA(2i+2)d 0

Bπ
s∑

i=0
BiA(2i+3)d 0

 ,

[ r
2 ]∑

i=0

(Qd)i+1PiPπ =


[ r

2 ]∑
i=0

B(i+1)dA2iAπ + B3dABA B2dAB

[ r
2 ]∑

i=1
B(i+1)dA2i−1Aπ − BdAd Bd

 ,

Qπ
s∑

i=0

Qi(Pd)i+2Q =


Bπ

s∑
i=0

BiA(2i+4)dB Bπ
s∑

i=0
BiA(2i+3)dB

Bπ
s∑

i=0
BiA(2i+5)dB Bπ

s∑
i=0

BiA(2i+4)dB

 ,
[ r

2 ]−1∑
i=0

(Qd)i+3Pi+1PπQ =


[ r

2 ]−1∑
i=0

B(i+3)dA2i+2AπB
[ r

2 ]−1∑
i=0

B(i+3)dA2i+3AπB

[ r
2 ]−1∑
i=0

B(i+3)dA2i+1AπB
[ r

2 ]−1∑
i=0

B(i+3)dA2i+2AπB

 ,

QdPdQ =
[
BdA2dB BdAdB
BdA3dB BdA2dB

]
,

and

(Qd)2PPdQ =
[
B2dAeB B2dAeAB
B2dAdB B2dAeB

]
.

Hence, we substitute the above expressions into (4) to conclude

N̄2d = (P +Q)d =

[
α β
γ δ

]
,

where

α = B3dABA − BdA2dB − B2dAeB +
s∑

i=0

BπBiA(2i+2)d

+

[ r
2 ]∑

i=0

B(i+1)dA2iAπ +
s∑

i=0

BπBiA(2i+4)dB +
[ r

2 ]−1∑
i=0

B(i+3)dA2i+2AπB,

β = B2dAB − BdAdB − B2dAeAB +
s∑

i=0

BπBiA(2i+3)dB +
[ r

2 ]−1∑
i=0

B(i+3)dA2i+3AπB,
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γ = −BdAd
− BdA3dB − B2dAdB +

s∑
i=0

BπBiA(2i+5)dB

+

s∑
i=0

BπBiA(2i+3)d +

[ r
2 ]−1∑
i=0

B(i+3)dA2i+1AπB +
[ r

2 ]∑
i=1

B(i+1)dA2i−1Aπ,

δ = Bd
− BdA2dB − B2dAeB +

s∑
i=0

BπBiA(2i+4)dB +
[ r

2 ]−1∑
i=0

B(i+3)dA2i+2AπB

such that ind(A) = r and ind(B) = s.
Next we compute N̄d = N̄N̄2d to get the following expression

N̄d =

[
E1 E2
E3 E4

]
,

where

E1 = BπAd + BπA3dB − BdAdB +
s∑

i=0

BπBi+1A(2i+5)dB

+

s∑
i=0

BπBi+1A(2i+3)d +

[ r
2 ]−1∑
i=0

B(i+2)dA2i+1AπB +
[ r

2 ]∑
i=1

BidA2i−1Aπ,

E2 = BπA2dB + BdAπB +
s∑

i=0

BπBi+1A(2i+4)dB +
[ r

2 ]−1∑
i=0

B(i+2)dA2i+2AπB,

E3 = B3dABA − BdA2dB − B2dAeB +
s∑

i=0

BπBiA(2i+2)d

+

[ r
2 ]∑

i=0

B(i+1)dA2iAπ +
s∑

i=0

BπBiA(2i+4)dB +
[ r

2 ]−1∑
i=0

B(i+3)dA2i+2AπB,

E4 = B2dAπAB − BdAdB +
s∑

i=0

BπBiA(2i+3)dB +
[ r

2 ]−1∑
i=0

B(i+3)dA2i+3AπB

such that ind(A) = r and ind(B) = s. It is clearly that r and s are respectively the least nonnegative integers
as follows

ArAπ = 0, BsBπ = 0,

and
r − 2 ≤ 2[

r
2

] − 1 ≤ r − 1, r − 1 ≤ 2[
r
2

] ≤ r, r ≤ 2[
r
2

] + 1 ≤ r + 1

for any nonnegative integer r. Therefore, we adjust appropriately the upper and lower limits of the
corresponding sum to complete the proof.

We next establish a relationship between N̄ and N to derive the exact expression for the Drazin inverse
of N under certain conditions as the second main result of this paper.
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Theorem 3.2. Let N be a matrix of the form (1), where A and BC are square matrices of the same size. If

A(BC)2 = 0, A2BCA = 0, ABCA2 = 0 and (ABC)2 = 0,

then

Nd =

[
F1 F2
F3 F4

]
, (6)

where

F1 =

s−1∑
i=0

(BC)π(BC)iA(2i+1)d +

[ r
2 ]−1∑
i=0

(BC)(i+1)dA2i+1Aπ +
s−1∑
i=0

(BC)π(BC)iA(2i+3)dBC

+

[ r
2 ]−1∑
i=0

(BC)(i+2)dA2i+1AπBC − (BC)dAdBC,

F2 =

s−1∑
i=0

(BC)π(BC)iA(2i+2)dB +
s−1∑
i=0

(BC)π(BC)iA(2i+4)dBCB +
[ r

2 ]∑
i=0

(BC)(i+1)dA2iAπB

+

[ r
2 ]∑

i=0

(BC)(i+2)dA2iAπBCB + (BC)3dABCAB − (BC)dA2dBCB − (BC)dB,

F3 = C
[ r

2 ]∑
i=0

(BC)(i+1)dA2iAπ + C
s−1∑
i=0

(BC)π(BC)iA(2i+2)d + C
[ r

2 ]∑
i=0

(BC)(i+2)dA2iAπBC

+ C
s−1∑
i=0

(BC)π(BC)iA(2i+4)dBC − C(BC)dA2dBC − C(BC)d,

F4 = C
[ r

2 ]−1∑
i=0

(BC)(i+2)dA2i+1AπB + C
[ r

2 ]−1∑
i=0

(BC)(i+3)dA2i+1AπBCB + C
s−1∑
i=0

(BC)π(BC)iA(2i+3)dB

+ C
s−1∑
i=0

(BC)π(BC)iA(2i+5)dBCB − C(BC)dAdB − C(BC)dA3dBCB − C(BC)2dAdBCB

such that ind(A) = r and ind(BC) = s.

Proof. We use the following splitting of N:

N =
[
I 0
0 C

] [
A B
I 0

]
, (7)

and denote by P and Q the left matrix and the right matrix of the right-hand side in (7), respectively. Then
we switch P and Q to state

QP =
[
A BC
I 0

]
.

Utilizing Theorem 3.1, we rewrite the (QP)d as follows

(QP)d =

[
λ µ
ν ξ

]
,
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where

λ =

s−1∑
i=0

(BC)π(BC)iA(2i+3)dBC +
s−1∑
i=0

(BC)π(BC)iA(2i+1)d +

[ r
2 ]−1∑
i=0

(BC)(i+2)dA2i+1AπBC

+

[ r
2 ]−1∑
i=0

(BC)(i+1)dA2i+1Aπ − (BC)dAdBC,

µ =

s−1∑
i=0

(BC)π(BC)iA(2i+2)dBC +
[ r

2 ]∑
i=0

(BC)(i+1)dA2iAπBC,

ν =
s−1∑
i=0

(BC)π(BC)iA(2i+2)d +

[ r
2 ]∑

i=0

(BC)(i+1)dA2iAπ +
s−1∑
i=0

(BC)π(BC)iA(2i+4)dBC

+

[ r
2 ]∑

i=0

(BC)(i+2)dA2iAπBC + (BC)3dABCA − (BC)dA2dBC − (BC)d,

ξ =

s−1∑
i=0

(BC)π(BC)iA(2i+3)dBC +
[ r

2 ]∑
i=0

(BC)(i+2)dA2i+1AπBC − (BC)dAdBC

such that ind(A) = r and ind(BC) = s.We apply the Cline’s Formula as in Lemma 2.1 to give

Nd = P(QP)2dQ =
[
λ2A + µνA + λµ + µξ λ2B + µνB

CνλA + CξνA + Cνµ + Cξ2 CνλB + CξνB

]
. (8)

Routine computations conclude the following main items ξ2 = 0, ξν = 0, and

λ2 =

s−1∑
i=0

(BC)i(BC)πA(2i+2)d +

s−1∑
i=0

(BC)i(BC)πA(2i+4)dBC,

µν =

[ r
2 ]∑

i=0

(BC)(i+1)dA2iAπ +
[ r

2 ]∑
i=0

(BC)(i+2)dA2iAπBC + (BC)3dABCA − (BC)dA2dBC − (BC)d,

λµ =

s−1∑
i=0

(BC)i(BC)πA(2i+3)dBC,

νλ =

[ r
2 ]−1∑
i=0

(BC)(i+2)dA2i+1Aπ +
[ r

2 ]−1∑
i=0

(BC)(i+3)dA2i+1AπBC +
s−1∑
i=0

(BC)i(BC)πA(2i+3)d

+

s−1∑
i=0

(BC)i(BC)πA(2i+5)dBC − (BC)dAd
− (BC)dA3dBC − (BC)2dAdBC,

νµ =

[ r
2 ]∑

i=0

(BC)(i+2)dA2iAπBC +
s−1∑
i=0

(BC)i(BC)πA(2i+4)dBC − (BC)dA2dBC,

µξ =

[ r
2 ]∑

i=0

(BC)(i+2)dA2i+1AπBC − (BC)dAdBC

such that ind(A) = r and ind(BC) = s. Finally we substitute the above expressions into (8) to conclude the
rest.
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Next we consider some specializations of our main result. Using Theorem 3.2 in the above, we both
generalize [13, Theorem 3.1] and [13, Theorem 3.3] as follows.

Corollary 3.3. [13, Theorem 3.3] Let N be a matrix of the form (1), where A and BC are square matrices of the same
size. If ABC = 0, then

Nd =

[
XA XB
CX C[XAd + (BC)d(XA − Ad)]B

]
,

where

X =

[ r
2 ]∑

i=0

(BC)(i+1)dA2iAπ +
s−1∑
i=0

(BC)π(BC)iA(2i+2)d (9)

such that ind(A) = r and ind(BC) = s.

Proof. It is clear by Theorem 3.2 and equalities

XA =
s−1∑
i=0

(BC)π(BC)iA(2i+1)d +

[ r
2 ]−1∑
i=0

(BC)(i+1)dA2i+1Aπ,

XB =
s−1∑
i=0

(BC)i(BC)πA(2i+2)dB +
[ r

2 ]∑
i=0

(BC)(i+1)dA2iAπB,

CX = C
[ r

2 ]∑
i=0

(BC)(i+1)dA2iAπ + C
s−1∑
i=0

(BC)π(BC)iA(2i+2)d,

C[XAd + (BC)d(XA − Ad)]B = C
[ r

2 ]−1∑
i=0

(BC)(i+2)dA2i+1AπB + C
s−1∑
i=0

(BC)π(BC)iA(2i+3)dB − C(BC)dAdB

as desired.

As a consequence of Corollary 3.3, we obtain the next result.

Corollary 3.4. [13, Theorem 3.1] Let N be a matrix of the form (1), where A and BC are square matrices of the same
size. If AB = 0, then

Nd =

[
XA (BC)dB
CX 0

]
,

where X is represented as in (9), ind(A) = r and ind(BC) = s.

In order to illustrate our results, we present an example involving 4 × 4 matrices A, B and C which do
not satisfy the assumptions of [13, Theorem 3.1 and Theorem 3.3], whereas the conditions of Theorem 3.2
are met, which allows us to compute Nd.

Example 3.5. Consider 4 × 4 complex block matrices

A =


0 a 0 0
0 0 a 0
0 0 0 a
0 0 0 0

 , B =


0 b 0 0
0 0 b 0
0 0 0 b
0 0 0 0

 and C =


0 c 0 0
0 0 c 0
0 0 0 c
0 0 0 0

 ,
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where a , 0, b , 0 and c , 0. We observe that

AB =


0 0 ab 0
0 0 0 ab
0 0 0 0
0 0 0 0

 , 0 and ABC =


0 0 0 abc
0 0 0 0
0 0 0 0
0 0 0 0

 , 0.

Because the assumptions of [13, Theorem 3.1 and Theorem 3.3] are not satisfied, we can not use these results. Since
ABCA = 0 and ABCB = 0, we can apply Theorem 3.2 to get

Nd =



0 a 0 0 0 b 0 0
0 0 a 0 0 0 b 0
0 0 0 a 0 0 0 b
0 0 0 0 0 0 0 0
0 c 0 0 0 0 0 0
0 0 c 0 0 0 0 0
0 0 0 c 0 0 0 0
0 0 0 0 0 0 0 0



d

= 0.

4. Application of main results

As application, we utilize the relationship between the matrices N and M given by (1) and (3), respec-
tively, to establish representations for the Drazin inverse of M under certain restriction, which generalize
and unify a series of results in the literature.

Theorem 4.1. Let M be a matrix of the form (3) and N be a matrix of the form (1), where A, D and BC are square
matrices such that A and BC are of the same size. If

A(BC)2 = 0, A2BCA = 0, ABCA2 = 0, (ABC)2 = 0, BDC = 0 and BD2 = 0,

then

Md =

[
I 0
0 Dπ

] s−1∑
i=0

[
0 0
0 D

]i
N(i+1)d

[
I F2D
0 I + F4D

]
+

r−2∑
i=0

[
0 0
0 D(i+3)d

]
Ni+1

[
0 −F1BD
0 (I − F3B)D

]

+

r−1∑
i=0

[
0 0
0 D(i+1)d

]
Ni
[

I − XA2
− (BC)2dABCA − XBC −F1B

−CXA − C[XAd + (BC)d(XA − Ad)]BC I − F3B

]
−

[
0 0
0 Dd(F4 +DdF3B)D

]
,

where Nd is given by (6) and X is given by (9) such that ind(N) = r and ind(D) = s.

Proof. Let

M =
[
A B
C 0

]
+

[
0 0
0 D

]
:= N +Q.

Then NQN = 0 and NQ2 = 0. By Theorem 3.2, Nd is given by (6) and

Nπ =
[
I − F1A − F2C −F1B
−F3A − F4C I − F3B

]
.

Routine calculation gives as follows

F1A = XA2 + (BC)2dABCA,
F2C = XBC,
F3A = CXA,
F4C = C[XAd + (BC)d(XA − Ad)]BC.
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So,

Nπ =
[

I − XA2
− (BC)2dABCA − XBC −F1B

−CXA − C[XAd + (BC)d(XA − Ad)]BC I − F3B

]
.

Also, notice that

Qd =

[
0 0
0 Dd

]
and Qπ =

[
I 0
0 Dπ

]
.

Applying Lemma 2.3, we finish this proof.

Remark 4.2. Theorem 4.1 can generalize and unify the following conditions about the expression for Md.

1. BC = 0,BDC = 0 and BD2 = 0 (see [18, Theorem 2.2]);
2. BC = 0,BD = 0 and DC = 0 (see [16, Theorem 5.3]);
3. BC = 0,BD = 0 and D is nilpotent (see [20, Corollary 2.3]);
4. A = 0 and D = 0 (see [6, Theorem 2.1]) ;
5. ABC = 0,DC = 0 and BD = 0 (see [11, Theorem 1]).

Moreover, we give some specific corollaries as follows. It is worth mentioning that the following
corollary of Theorem 4.1 also respectively generalizes all conditions above.

Corollary 4.3. Let M be a matrix of the form (3) and N be a matrix of the form (1), where A, D and BC are square
matrices such that A and BC are of the same size. If

ABC = 0, BDC = 0 and BD2 = 0,

then

Md =

[
I 0
0 Dπ

] s−1∑
i=0

[
0 0
0 D

]i
N(i+1)d

[
I XBD
0 I + C[XAd + (BC)d(XA − Ad)]BD

]

+

r−2∑
i=0

[
0 0
0 D(i+3)d

]
Ni+1

[
0 −XABD
0 (I − CXB)D

]

+

r−1∑
i=0

[
0 0
0 D(i+1)d

]
Ni
[
(BC)π − XA2

−XAB
−CXA I − CXB

]
−

[
0 0
0 Dd[C(XAd + (BC)d(XA − Ad)) +DdCX]BD

]
,

where Nd is given as in Corollary 3.3 and X is represented by (9) such that ind(N) = r and ind(D) = s.

Utilizing Corollary 4.3, we obtain the expression for Md as in [3, Theorem 2.3].

Corollary 4.4. [3, Theorem 2.3] Let M be a matrix of the form (3) and N be a matrix of the form (1), where A, D
and BC are square matrices such that A and BC are of the same size. If

ABC = 0 and BD = 0,

then

Md =

[
I 0
0 Dπ

] s−1∑
i=0

[
0 0
0 D

]i
N(i+1)d +

r−1∑
i=0

[
0 0
0 D(i+1)d

]
Ni
[
(BC)π − XA2

−XAB
−CXA I − CXB

]
,

where Nd is given as in Corollary 3.3 and X is represented by (9) such that ind(N) = r and ind(D) = s.

We utilize Corollary 4.4 to get the next formula.
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Corollary 4.5. Let M be a matrix of the form (3) and N be a matrix of the form (1), where A, D and BC are square
matrices such that A and BC are of the same size. If

AB = 0 and BD = 0,

then

Md =

[
I 0
0 Dπ

] s−1∑
i=0

[
0 0
0 D

]i
N(i+1)d +

r−1∑
i=0

[
0 0
0 D(i+1)d

]
Ni
[
(BC)π − XA2 0
−CXA I − C(BC)dB

]
,

where Nd is given as in Corollary 3.4 and X is represented by (9) such that ind(N) = r and ind(D) = s.

Similarly as Theorem 4.1, we can verify the following main result, which generalizes and unifies some
more results than Theorem 4.1 in the literature.

Theorem 4.6. Let M be a matrix of the form (3) and N be a matrix of the form (1), where A, D and BC are square
matrices such that A and BC are of the same size. If

A(BC)2 = 0, A2BCA = 0, ABCA2 = 0, (ABC)2 = 0, DCA = 0 and DCB = 0,

then

Md =

[
I − XA2

− (BC)2dABCA − XBC −F1B
−CXA − C[XAd + (BC)d(XA − Ad)]BC I − F3B

] r−1∑
i=0

Ni
[

0 0
D(i+2)dC D(i+1)d

]

+

s−1∑
i=0

N(i+1)d
[
0 0
0 D

]i [
I 0
0 Dπ

]
+

s−2∑
i=0

N(i+3)d
[

0 0
Di+1DπC 0

]
−

[
F2DdC 0
F4DdC 0

]
−N2d

[
0 0

DeC 0

]
,

where Nd is given by (6) and X is given by (9) such that ind(N) = r and ind(D) = s.

Proof. Using the same notations as in the proof of Theorem 4.1, we observe that QNQ = 0 and QN2 = 0. We
utilize Theorem 3.2 and Lemma 2.3 to prove the rest as in the proof of Theorem 4.1.

Remark 4.7. Using Theorem 4.6, we can obtain some results in Remark 4.2 such as [16, Theorem 5.3], [6, Theorem
2.1] and [11, Theorem 1], and some others as follows

1. BC = 0,DC = 0 and D is nilpotent (see [20, Lemma 2.2]);
2. ABC = 0,DC = 0 and BC is nilpotent (or D is nilpotent) (see [11, Theorem 2 and Theorem 3]);
3. BCB = 0, BCA = 0, DCA = 0 and DCB = 0 (see [35, Theorem 3.1]).

In particular, we next give some extra and specific corollaries as follows. Applying Theorem 4.6, we develop
the formula for the Drazin inverse of M under the assumptions ABC = 0, DCB = 0 and DCA = 0.

Corollary 4.8. Let M be a matrix of the form (3) and N be a matrix of the form (1), where A, D and BC are square
matrices such that A and BC are of the same size. If

ABC = 0, DCB = 0 and DCA = 0,
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then

Md =

[
(BC)π − XA2

−XAB
−CXA I − CXB

] r−1∑
i=0

Ni
[

0 0
D(i+2)dC D(i+1)d

]

+

s−1∑
i=0

N(i+1)d
[
0 0
0 D

]i [
I 0
0 Dπ

]
+

s−2∑
i=0

N(i+3)d
[

0 0
Di+1DπC 0

]
−

[
XBDdC 0

C[XAd + (BC)d(XA − Ad)]BDdC 0

]
−N2d

[
0 0

DeC 0

]
,

where Nd is given as in Corollary 3.3 and X is represented by (9) such that ind(N) = r and ind(D) = s.

We utilize Corollary 4.8 to develop the formula for the Drazin inverse of M in the case of [3, Theorem
2.2].

Corollary 4.9. [3, Theorem 2.2] Let M be a matrix of the form (3) and N be a matrix of the form (1), where A, D
and BC are square matrices such that A and BC are of the same size. If

ABC = 0 and DC = 0,

then

Md =

[
I − XA2

− (BC)dBC −XAB
−CXA I − CXB

] r−1∑
i=0

Ni
[
0 0
0 D(i+1)d

]
+

s−1∑
i=0

N(i+1)d
[
0 0
0 D

]i [
I 0
0 Dπ

]
,

where Nd is given as in Corollary 3.3 and X is represented by (9) such that ind(N) = r and ind(D) = s.

Corollary 4.9 gives the next expression for Md.

Corollary 4.10. Let M be a matrix of the form (3) and N be a matrix of the form (1), where A, D and BC are square
matrices such that A and BC are of the same size. If

AB = 0 and DC = 0,

then

Md =

[
(BC)π − XA2 0
−CXA I − CXB

] r−1∑
i=0

Ni
[
0 0
0 D(i+1)d

]
+

s−1∑
i=0

N(i+1)d
[
0 0
0 D

]i [
I 0
0 Dπ

]
,

where Nd is given as in Corollary 3.4 and X is represented by (9) such that ind(N) = r and ind(D) = s.

In the end, we give an example with 4×4 matrices A, B, C and D and apply Theorem 4.1 to calculate Md.

Example 4.11. Let A, B and C be as in Example 3.5 and

D =


1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

 .
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Notice that D = D2 = D#, BD = 0 and Nd = 0 by Example 3.5. Applying Theorem 4.1, we calculate

Md =



0 a 0 0 0 b 0 0
0 0 a 0 0 0 b 0
0 0 0 a 0 0 0 b
0 0 0 0 0 0 0 0
0 c 0 0 1 1 1 1
0 0 c 0 0 0 0 0
0 0 0 c 0 0 0 0
0 0 0 0 0 0 0 0



d

=



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 c c + ca c + ca + ca2 + cbc 1 1 1 + cb 1 + cb + cab
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


.
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