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Abstract. This paper is concerned with a boundary value problem (BVP) for discrete Sturm-Liouville
equation with point interaction and boundary conditions depending on a hyperbolic eigenvalue parameter.
This paper presents some spectral and scattering properties of this BVP in terms of Jost solution, scattering
solutions, scattering function, continuous and discrete spectrum. In addition, the resolvent operator of the
BVP is obtained to get the properties of eigenvalues. Furthermore, an example is considered as a special
case of the main problem to demonstrate the effectiveness of our results.

1. Introduction

Boundary value problems in physics and applied mathematics have been intensively studied in many
articles. Many papers such as [1 − 3] consist boundary value problems on infinite intervals which frequently
occur in mathematical modeling of various applied problems, for example, analysis of the mass transfer on a
rotating disk in a non-Newtonian fluid [1] , discussion of electrostatic probe measurements [2], heat transfer
in the radial flow between parallel circular disks [1] , and plasma physics [3] . Recently, many researchers
have paid more attention to the boundary value problems on unbounded intervals with a point interaction
in terms of spectral and scattering analysis, for instance see [4 − 12]. Boundary value problems with
point interaction have discontinuities inside an interval and have great interest in mathematical physics
and quantum mechanics. To solve these discontinuities, some extra conditions are necessary which are on
the discontinuous point. These extra conditions are often called interface conditions, point interactions,
transmission conditions, jump conditions or impulsive conditions. Since the theory of discrete Sturm-
Liouville equations is related to theory of continuous Sturm-Liouville equations, for the mathematical
theory of discrete Sturm-Liouville equations with point interaction, we refer to [13 − 17]. It is well-known
that differential equations with point interaction and discrete analogs of them are widely used in mechanical
engineer, medical science, life science and other fields. Many researchers have made a great contribution to
this topic. There are also some recent works on spectral and scattering analysis of boundary value problems
with point interactions or impulsive conditions [4 − 12].

In this work, we are interested in a boundary value problem with a point interaction and it is generated
by a discrete Sturm-Liouville equation. Differently from these recent works, our boundary value problem
consists hyperbolic eigenparameter in boundary conditions that provides a new perspective in terms of
applications.
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Let us introduce a discrete Sturm-Liouville boundary value problem with a point interaction (BVP)

an−1yn−1 + bnyn + anyn+1 = λyn, n ∈N\ {k − 1, k, k + 1} (1)

(α0 + α1λ) y1 +
(
β0 + β1λ

)
y0 = 0, α0β1 − α1β0 , 0, β1 , 0, α1 ,

β0

a0
(2)

yk+1 = γ1yk−1 (3)
yk+2 = γ2yk−2,

where γ1γ2 , 0, γ1, γ2 ∈ R, λ = 2 cosh z and {an}n∈N∪{0}, {bn}n∈N are real sequences in ℓ2 (N) . Throughout the
paper, we will assume that an , 0 for all n ∈N ∪ {0} and the sequences {an} and {bn} satisfy

∞∑
n=1

n (|1 − an| + |bn|) < ∞. (4)

Also, we introduce two semi-strips given by

T− :=
{
z ∈ C : Re(z) < 0, Im(z) ∈

[
−
π
2
,

3π
2

]}
and T: = T−∪ T0, where T0 :=

{
z ∈ C : Re(z) = 0, Im(z) ∈

[
−
π
2
,

3π
2

]}
. Throughout the paper, we will show

the set T0 by
[
−
π
2

i,
3π
2

i
]

shortly. The rest of the paper is organized as follows. In Section 2, we get the Jost

solution, scattering solutions and scattering function of the BVP (1)-(3). Also, we investigate the properties
of the scattering function in this section. In Section 3, we present the Green function, resolvent operator and
continuous spectrum of the problem. Furthermore, we give an asymptotic equation to point the eigenvalues
of the BVP (1)-(3). Section 4 consists an unperturbated form of BVP (1)-(3). We investigate our main results
for this unperturbated BVP as an example.

2. Jost Solution and Scattering Function of BVP (1)-(3)

In this part, we present the solutions of BVP (1)-(3) including Jost and scattering solutions, and the
relations between them. Moreover, we find the scattering function of the boundary value problem (1)-(3)
and examine the properties of this scattering function.

Let P(z) = {Pn (z)} and Q(z) = {Qn (z)} are the fundamental solutions of (1) for z ∈ T and n = 0, 1, . . . , k− 1
satisfying the initial conditions

P0 (z) = 0, P1 (z) = 1

and

Q0 (z) =
1
a0
, Q1 (z) = 0,

respectively. It is well-known that Pn (z) is the first kind, Qn (z) is the second kind polynomials. Because for
each n ≥ 0, Pn (z) is a polynomial of degree (n − 1) and Qn (z) is a polynomial of degree (n − 2). Also, they
are entire functions with respect to z. The Wronskian of these solutions is equal to −1 for all z ∈ C. Note
that the Wronskian for arbitrary two solutions y =

{
yn (z)

}
and u = {un (z)} of (1) is given by

W
[
y,u

]
:= an

[
yn (z) un+1 (z) − yn+1 (z) un (z)

]
.

So, Pn (z) and Qn (z) are linear independent solutions of (1). As a result of this, we can get the other solutions
of (1) as
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ψn (z) = −
(
β0 + λβ1

)
Pn (z) + a0 (α0 + λα1) Qn (z) , n = 0, 1, . . . , k − 1 (5)

by using the solutions Pn (z), Qn (z) and the boundary condition (2). Note that, equation (1) also has the
following bounded solution represented by f (z) =

{
fn (z)

}
,

fn (z) = ρnenz

1 +
∞∑

m=1

Anmemz

 , n = k + 1, k + 2, . . .

with the condition lim
n→∞

e−nz fn (z) = 1, z ∈ T, where ρn and Anm are given in terms of the sequences {an} and

{bn} as

ρn:=
∞∏

k=n

a−1
k ,

An1:= −
∞∑

k=n+1

bk,

An2 :=
∞∑

k=n+1

1 − a2
k + bk

∞∑
p=k+1

bp

 ,
An,m+2 := An+1,m +

∞∑
k=n+1

{(
1 − a2

k

)
Ak+1,m − bkAk,m+1

}
for m ≥ 1. fn (z) is analytic according to z inCle f t := {z ∈ C : Re(z) < 0} , continuous inCle f t := {z ∈ C : Re(z) ≤ 0}
and fn (z) = fn (z + 2π) for all z ∈ Cle f t. For n = k+1, k+2, . . .we also shall introduce the unbounded solution
of (1) by f̃n (z) with the condition lim

n→∞
enz f̃n (z) = 1, z ∈ Cle f t. By using the definition of Wronskian, it is clear

that

W
[

fn (z) , f̃n (z)
]
= −2 sinh z

for n = k + 1, k + 2, . . . and z ∈ T and they are independent solutions of (1) for z ∈ T\ {0, πi} . Now, we will
define the following function for z ∈ T by using the solutions f (z), P(z) and Q(z)

En (z) =
{

v (z) Pn (z) + τ (z) Qn (z) ; n = 1, 2, . . . , k − 1
fn (z) ; n = k + 1, k + 2, . . . . (6)

Using the condition (3), we get for z ∈ T

1
γ1

fk+1 (z) = v (z) Pk−1 (z) + τ (z) Qk−1 (z)

1
γ2

fk+2 (z) = v (z) Pk−2 (z) + τ (z) Qk−2 (z) ,

and from these equations, we find the coefficients v (z) and τ (z) as

v (z) = −
ak−2

γ1γ2

[
γ1 fk+2 (z) Qk−1 (z) − γ2 fk+1 (z) Qk−2 (z)

]
(7)

τ(z) =
ak−2

γ1γ2

[
γ1 fk+2 (z) Pk−1 (z) − γ2 fk+1 (z) Pk−2 (z)

]
(8)
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for z ∈ T. The function E (z) = {En (z)} is called the Jost solution of BVP (1)-(3). Since Pn (z) = Pn (−z) and
Qn (z) = Qn (−z) for z ∈ T, then we find v (−z) = v (z) and τ (−z) = τ (z). Moreover, for all z ∈ T\ {0, iπ} , we
say that fn (z) and fn (−z) are independent solutions , because it is clear that

W
[

fn (z) , fn (−z)
]
= −2 sinh z

for z ∈ T\ {0, iπ} . Next, we will think other solution F (z) = {Fn (z)} of BVP (1)-(3) by

Fn (z) :=
{

ψn (z) , n = 1, 2, . . . , k − 1
c (z) fn (z) + d (z) fn (−z) , n = k + 1, k + 2, . . .

for z ∈
[
−
π
2

i,
3π
2

i
]
\ {0, πi}. Since the solution F (z) provides the condition (3), we get

c (z) = −
ak+1

2 sinh z
[
γ1 fk+2 (−z)ψk−1 (z) − γ2 fk+1 (−z)ψk−2 (z)

]
(9)

and

d (z) =
ak+1

2 sinh z
[
γ1 fk+2 (z)ψk−1 (z) − γ2 fk+1 (z)ψk−2 (z)

]
(10)

for z ∈
[
−
π
2

i,
3π
2

i
]
\ {0, πi}. It follows from that d (z) = c(−z) = c (z) because of ψn (z) = ψn (−z) .

Lemma 2.1. For all z ∈
[
−
π
2

i,
3π
2

i
]
\ {0, πi} , the following equation holds

W [En (z) ,Fn (z)] =


ak−2

ak+1

2 sinh z
γ1γ2

d (z) , n = 1, 2, . . . , k − 1

−2 sinh zd (z) , n = k + 1, k + 2, . . .

.

Proof. From the definition of wronskian for n = 1, 2, . . . , k − 1, we write

W [En (z) ,Fn (z)] = a0 [E0(z)F1(z) − F0(z)E1(z)] .

Since P0(z) = 0, P1(z) = 1, Q0(z) =
1
a0

and Q1(z) = 0, the last equation gives

W [En (z) ,Fn (z)] = −a0 (α0 + α1λ) v(z) −
(
β0 + β1λ

)
τ(z)

by using the definition ofψ1(z) andψ0(z). Last equation is equal to
ak−2

ak+1

2 sinh z
γ1γ2

d (z) by (7), (8), (10) and the definition

of ψ (z) . Similarly, for n = k + 1, k + 2, . . . , we write

W [En (z) ,Fn (z)] = ak+1
[
Ek+1 (z)Fk+2 (z) − Fk+1 (z)Ek+2 (z)

]
,

and the right side of this equation gives

ak+1d(z)
[

fk+1 (z) fk+2 (−z) − fk+1 (−z) fk+2 (z)
]

that equals to d(z)W
[

fn (z) , fn (−z)
]

n=k+1 . Finally, for n = k + 1, k + 2, ... we get

W [En (z) ,Fn (z)] = d(z)W
[

fn (z) , fn (−z)
]

n=k+1 = d(z)(−2 sinh z).

It completes the proof.
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Using the boundary condition (2) and the function En (z) , we define the Jost function of BVP (1)-(3) by

J (z) := (α0 + λα1) E1 +
(
β0 + λβ1

)
E0

= (α0 + λα1) v (z) +
τ (z)
a0

(
β0 + λβ1

)
. (11)

It can be easily written that J is analytic in Cle f t and continuous in Cle f t.

Lemma 2.2. For all z ∈
[
−
π
2

i,
3π
2

i
]
\ {0, πi} ,we get

J (z) = −
1
a0

ak−2

ak+1

2 sinh z
γ1γ2

d (z) .

Proof. We can write from (5), (10) and (11)

d(z) =
ak+1

2 sinh z
[
γ1 fk+2(z)ψk−1(z) − γ2 fk+2(z)ψk−2(z)

]
=

ak+1

2 sinh z

[
−

(
β0 + λβ1

)
τ (z)

γ1γ2

ak−2
− a0 (α0 + λα1) v (z)

γ1γ2

ak−2

]
=

ak+1

2 sinh z
γ1γ2

ak−2

[
−

(
β0 + λβ1

)
τ (z) − a0 (α0 + λα1) v (z)

]
= −a0

ak+1

ak−2

γ1γ2

2 sinh z

[ 1
a0

(
β0 + λβ1

)
τ (z) + (α0 + λα1) v (z)

]
= −a0

ak+1

ak−2

γ1γ2

2 sinh z
J(z).

It completes the proof of Lemma 2.2.

Theorem 2.3. For all z ∈
[
−
π
2

i,
3π
2

i
]
\ {0, πi} , d(z) , 0.

Proof. Let d(z0) = 0 for at least z0 ∈

[
−
π
2

i,
3π
2

i
]
\ {0, πi} . Since

d(z) = c(−z) = c (z)

for all z ∈
[
−
π
2

i,
3π
2

i
]
\ {0, πi} , we can write d(z0) = c(z0) = 0. It follows from that Fn(z0) = 0 for allN ∪ {0} ,

but it gives a contradiction. It completes the proof of theorem.

Definition 2.4. The function S(z) :=
J(z)
J(z)

, z ∈
[
−
π
2

i,
3π
2

i
]
\ {0, πi} is called the scattering function of BVP (1)-(3).

We know that there is a relation between J(z) and d(z), we give the scattering function by d(z)

S(z) =
J(z)
J(z)
=

J(−z)
J(z)

= −
d(z)
d(z)

= −
d(−z)
d(z)

, z ∈
[
−
π
2

i,
3π
2

i
]
\ {0, πi} . (12)

Theorem 2.5. For all z ∈
[
−
π
2

i,
3π
2

i
]
\ {0, πi}, the scattering function satisfies

S(−z) = S−1(z) = S(z), |S(z)| = 1.
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Proof. Using the definition of function J and (12), we obtain

S(−z) =
J(z)

J(−z)
= S−1(z) = S(z)

for all z ∈
[
−
π
2

i,
3π
2

i
]
\ {0, πi} . Furthermore,

|S(z)|2 = S(z)S(z) = S−1(z)S(z) = 1

and it gives us |S(z)| = 1 for all z ∈
[
−
π
2

i,
3π
2

i
]
\ {0, πi} .

In the following, we will define another solution G (z) = {Gn (z)} of the BVP (1)-(3) for all z ∈ T to get the
resolvent operator in next section

Gn (z) :=
{

ψn (z) , n = 1, 2, . . . , k − 1
q (z) fn (z) + k (z) f̃n (z) , n = k + 1, k + 2, . . .

,

where

q (z) = −
ak+1

2 sinh z

[
γ1ψk−1 (z) f̃k+2 (z) − γ2ψk−2 (z) f̃k+1 (z)

]
and

k(z) =
ak+1

2 sinh z
[
γ1ψk−1 (z) fk+2(z) − γ2ψk−2 (z) fk+1(z)

]
.

Note that for all z ∈ T

W [En (z) ,Gn (z)] =


ak−2

ak+1

2 sinh z
γ1γ2

d (z) , n = 1, 2, . . . , k − 1

−2 sinh zd (z) , n = k + 1, k + 2, . . .
.

It is clear from Lemma 2.1 that for all z ∈
[
−
π
2

i,
3π
2

i
]
\ {0, πi} ,we can write W [En (z) ,Fn (z)] =W [En (z) ,Gn (z)] .

3. Resolvent Operator, Eigenvalues and Continuous Spectrum

In this section, we find the resolvent operator, discrete spectrum and continuous spectrum of the BVP
(1)-(3) by using scattering solutions and Jost solution. We also obtain an asymptotic equation to definite the
set of eigenvalues and continuous spectrum of BVP (1)-(3).

Theorem 3.1. The resolvent operator of BVP (1)-(3) has the representation

Rλ1n :=
∞∑

m=1

Inm (z) 1m,
{
1m

}
∈ l2 (N) ,

where

Inm (z) =


−

Gm(z)En(z)
W[Em(z),Gm(z)] ; m ≤ n

−
Gn(z)Em(z)

W[Em(z),Gm(z)] ; m > n

is the Green function of BVP (1)-(3) for m,n , k.
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Proof. To get the Green function of BVP (1)-(3), we need to find the solution of the following equation

▽
(
an △ yn

)
+ hnyn − λyn = 1n, (13)

where hn = an−1 + an + bn, △ and ▽ are respectively the forward and backward difference operators defined
by △yn = yn+1 − yn and ▽yn = yn − yn−1. Since En (z) and Gn (z) are the fundamental solutions of BVP (1)-(3),
we can write the general solution y =

{
yn (z)

}
of (13) as

yn (z) = snEn (z) + tnGn (z) , (14)

where sn, tn are nonzero coefficients. Using the method of variation of parameters, we find qn and tn by

sn = −

n∑
m=1

Gm1m

W [Em,Gm]
, m , k (15)

tn = −

∞∑
m=n+1

Em1m

W [Em,Gm]
, m , k. (16)

It follows from (14), (15) and (16) that the Green function of the BVP (1)-(3) is Inm (z) given in Theorem 3.1.

As a result of this, the resolvent operator of BVP (1)-(3) is Rλ1n :=
∞∑

m=1
Inm (z) 1m,

{
1m

}
∈ l2 (N) .

With the help of Theorem 3.1 and the definition of eigenvalues, we write the set of eigenvalues σd of BVP
(1)-(3) as

σd := {λ = 2 cosh z : z ∈ T−, d (z) = 0} .

Theorem 3.2. For all z ∈ T−, d(z) satisfies the following asymptotic equation under the condition (4).

d (z) = e4z (D + o (1)) , |z| → ∞, D , 0.

Proof. As we know that, the polynomial function Pn (z) is (n − 1) degree polynomial function and Qn (z) is
(n − 2) degree polynomial function of λ, we can get that

lim
|z|→∞

{
ψn (z) enz} = − β1

a1a2 . . . an−1
, n = 0, 1, 2, . . . , k − 1 (17)

and

lim
|z|→∞

{
fn (z) e−nz} = ρn, n = k + 1, k + 2, ... (18)

by using (2), (5) and (10) for z ∈ T−, where ρi :=
(
∞∏
k=i

ak

)−1

. After that we write

d (z) =
ak+1

2 sinh z

{
γ1ψk−1 (z) e(k−1)z fk+2 (z) e−(k+2)ze3z

−γ2ψk−2 (z) e(k−2)z fk+1 (z) e−(k+1)ze3z

}
by using (10), (17) and (18). Then it follows from that

d (z) e−4z =
ak+1

2 sinh z

{
−γ1

β1

a1a2 . . . ak−2
ρk+2 +

γ2β1

a1a2 . . . ak−3
ρk+1

}
=

−D
e2z − 1

, (19)

where

D = −
ak+1β1γ1ρk+1

(a1a2 . . . ak−3)

(
ak+1

ak−2
−
γ2

γ1

)
.

By using (19), we obtain lim
|z|→∞

d (z) e−4z = D for all z ∈ T−.
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We can say from Theorem 3.2 that the set of eigenvalues of BVP (1)-(3) is bounded under the condition
(4).

Theorem 3.3. Assume (4). Then the continuous spectrum of the BVP (1)-(3) is equal to the set [−2, 2].

Proof. First, we will show the operator generated by the BVP (1)-(3) by L. If we introduce the operators L1
and L2 generated by the following difference expressions in l2 (N) together with (2) and (3)(

L1y
)

n = yn−1 + yn+1, N\ {k − 1, k + 1}

(
L2y

)
n = (an−1 − 1) yn−1 + bnyn + (an − 1) yn+1, N\ {k − 1, k, k + 1} ,

respectively. As you see L = L1+L2 and we find that L2 is a compact operator in l2 (N) under the assumption
(4) by using the compactness criteria in l2 (N) (see [18]). On the other hand, we can write L1 = L3 + L4,
where L3 is a selfadjoint operator with σc (L3) = [−2, 2], σc denotes the continuous spectrum and L4 is a finite
dimensional operator in l2 (N) . Since L4 is a finite dimensional operator in l2 (N), it is a compact operator
in l2 (N) . It gives that the sum of two compact operators L2 + L4, is also a compact operator. Finally, we can
write our main operator L as L = L3 + L4 + L2 and by using Weyl theorem [19] of a compact perturbation,
we find σc (L3) = σc (L) = [−2, 2] .

4. An Example

In this part, we will be interested in an example which is a special or simple case of our main problem.
We will discuss our main results given in previous sections for this simple problem. In that way, readers
will have an opportunity to understand the main results easily. Let us consider the following discrete
boundary value problem with point interaction

yn−1 + yn+1 = 2 cosh zyn, n ∈N\ {3, 4, 5} (20)

(α0 + α1λ) y1 +
(
β0 + β1λ

)
y0 = 0, α0β1 − α1β0 , 0, β1 , 0, α1 , β0 (21)

y5 = γ1y3 (22)
y6 = γ2y1,

where α0, α1, β0, β1, γ1, γ2 ∈ R and γ1γ2 , 0. It is evident that we get this problem taking an ≡ 1, bn ≡ 0 for
all n ∈N and k = 4 in problem (1)-(3). Then, the solution fn (z) turns into enz and the fundamental solutions
Pn (z) and Qn (z) of (3) have the following values for the problem (20)-(22) for n = 0, 1, 2, 3

P0 (z) = 0, P1 (z) = 1, P2 (z) = λ, P3 (z) = λ2
− 1

Q0 (z) = 1, Q1 (z) = 0, Q2 (z) = −1, Q3 (z) = −λ.

Thus, by using (6) and (10), we find d (z) and Jost solution of this problem

d (z) =
1

2 sinh z
[
γ1 f6 (z)ψ3 (z) − γ2 f5 (z)ψ2 (z)

]
(23)

En (z) =
{

v (z) Pn (z) + τ (z) Qn (z) ; n = 0, 1, 2, 3
fn (z) ; n = 5, 6, 7, . . . .

From the equation (23), we obtain the scattering function of (20)-(22)

S (z) = −e−10z
[
γ1ψ3 (z) e7

− γ2ψ1 (z)
γ1ψ3 (z) e7 − γ2ψ2 (z)

]
.
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Also, continuous spectrum of the problem (20)-(22) is [−2, 2] from Theorem 3.3. It is necessary to find the
zeros of d (z) for z ∈ T− to obtain the eigenvalues of the problem (20)-(22). Because the set of eigenvalues of
the problem (20)-(22) is given by

σd = {λ = 2 cosh z : z ∈ T−, d (z) = 0} (24)

where d (z) is defined by (23). By using the values of Pi (z) , Qi (z) ; i = 0, 1, 2, 3, we obtain

ψ2 (z) = −λ(β0 + λβ1) − (α0 + λα1)

ψ3 (z) =
(
1 − λ2

)
(β0 + λβ1) − λ(α0 + λα1).

It follows from last equations and (23) that

d (z) =
1

2 sinh z

{
γ1[

(
1 − λ2

)
(β0 + λβ1) − λ(α0 + λα1)]e6z

+γ2[λ(β0 + λβ1) + (α0 + λα1)]e5z

}
. (25)

Equation (25) implies that d (z) = 0 if and only if

γ2

γ1
=

(
λ2
− 1

)
(β0 + λβ1) + λ(α0 + λα1)

λ(β0 + λβ1) + (α0 + λα1)
ez. (26)

For the simplicity on calculations, if we choose α0 = 1, α1 = −2, β1 = 0 and β0 = 2 in (26), we find

(ez
− 1)2 =

γ2

γ1
.

Let γ2 = 4a2γ1, a ∈ R. By using last equation, we find ez = 2a + 1 or ez = 1 − 2a.
Case 1: If ez = 2a + 1, then it gives

zm = ln |2a + 1| + iAr1 (2a + 1) + 2imπ, m ∈ Z. (27)

It is clear from (24) and (27) that the boundary value problem (20)-(22) has eigenvalues if and only if
ln |2a + 1| < 0. It implies that −1 < 2a + 1 < 1. Consequently, the necessary condition for the boundary
value problem (20)-(22) to have an eigenvalue is that −1 < a < 0. These eigenvalues are real and lie on
(−∞,−2) ∪ (2,∞) . Note that, a , 0. Because the impulsive conditions do not work when a = 0. Moreover,

a , −1. Because if a = −1, then zm = i (2m + 1)π, m ∈ Z. But only for m = 0, i.e., z0 = iπ ∈
[
−
πi
2
,

3πi
2

]
. For

z0 = iπ, we obtain λ0 = 2 cosh z0 = −2. Since λ = −2 is in continuous spectrum, it is not an eigenvalue of
the boundary value problem (20)-(22).

Case 2: If ez = 1 − 2a, then it gives

zm = ln |1 − 2a| + iAr1 (1 − 2a) + 2imπ, m ∈ Z. (28)

It is clear from (24) and (28) that the boundary value problem (20)-(22) has eigenvalues if and only if
ln |1 − 2a| < 0. It implies that −1 < 1 − 2a < 1. Consequently, the necessary condition for the boundary
value problem (20)-(22) to have an eigenvalue is that 0 < a < 1. These eigenvalues are real and lie on
(−∞,−2) ∪ (2,∞) . Note that, a , 0 and a , 1 because of the same reasons with case 1.

Therefore, the necessary condition or the boundary value problem (20)-(22) to have an eigenvalue is
that a ∈ (−1, 0) ∪ (0, 1) .
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5. Conclusion

The investigation of boundary value problems with point interaction on scattering analysis, specifically
questions about the scattering solutions and scattering function, as well as its spectral analysis in terms
of finding resolvent operator, spectrum, eigenvalues, is a recent research topic; see [4-12] and references
therein. In this paper, we have concerned a discrete boundary value problem with point interaction and
with boundary condition depending on spectral parameter. We have presented the main properties of
scattering function of this BVP by using the scattering solutions and Jost solution. Furthermore, we have
examined the resolvent operator, eigenvalues and continuous spectrum of the BVP. We also have looked
on the effects of spectral parameter on the problem both when it is hyperbolic and when it is found in
the boundary condition. We hope that the results obtained in this article will initiate new and interesting
developments. The results can be generalized by taking n ∈ Z or by taking more complicated impulsive
conditions.
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