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Abstract. The two-dimensional systems of first order nonlinear differential equations

(S1) x′ = p(t)yα, y′ = q(t)xβ and (S2) x′ + p(t)yα = 0, y′ + q(t)xβ = 0

are analyzed using the theory of rapid variation. This approach allows us to prove that all strongly
increasing solutions of system (S1) (and, respectively, all strongly decreasing solutions of system (S2) ) are
rapidly varying functions under the assumption that p and q are rapidly varying. Also, the asymptotic
equivalence relations for these solutions are given.

1. Introduction

We consider the two-dimensional first order systems of nonlinear differential equations

(S1) x′ = p(t)yα, y′ = q(t)xβ

and

(S2) x′ + p(t)yα = 0, y′ + q(t)xβ = 0,

where α and β are positive constants such that αβ < 1 and p, q are positive, continuous functions on [a,∞),
a > 0.

We study positive solutions of (Si) , i = 1, 2 . By a positive solution of (Si) , i = 1, 2 we mean a continu-
ously differentiable couple (x, y) whose components x and y are defined and positive in a neighborhood of
infinity and satisfy the system (Si) , i = 1, 2 there. Due to the positivity of the coefficients p and q, for system
(S1) both components are then eventually increasing and tend to infinity or to a positive constant, and for
system (S2) both components are then eventually decreasing and tend to zero or to a positive constant. Of
the four possible cases for each of the systems, we are interested only in positive solutions of (S1) and (S2)
such that both components tend to infinity or zero, respectively. Hence, we denote

SI = {(x, y) is a positive increasing solution of (S1) : lim
t→∞

x(t) = ∞, lim
t→∞

y(t) = ∞},
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which are the so-called strongly increasing solutions, and

SD = {(x, y) is a positive decreasing solution of (S2) : lim
t→∞

x(t) = 0, lim
t→∞

y(t) = 0},

which are the so-called strongly decreasing solutions.
We notice the connection between the systems (Si) , i = 1, 2 and the second order generalized Emden-

Fowler differential equation

(E)
(
p(t)|x′|α−1x′

)′
= q(t)|x|β−1x,

where α and β are positive constants such that α > β and p, q are positive continuous functions on [a,∞).
The equation (E) is called sublinear, half-linear or superlinear depending on if α > β, α = β or α < β. For the
equation (E) we can also defined strongly monotone solutions as follows. A positive solution x of (E) is
said to be strongly increasing if it satisfies

lim
t→∞

x(t) = ∞, lim
t→∞

p(t)|x′(t)|α−1x′(t) = ∞,

and strongly decreasing if it satisfies

lim
t→∞

x(t) = 0, lim
t→∞

p(t)|x′(t)|α−1x′(t) = 0.

If x is a strongly increasing solution of (E) , putting y(t) = p(t)x′(t)α, we get that (x, y) is a strongly increasing
solution of the following system of first order differential equations

x′ = p(t)−1/αy1/α, y′ = q(t)xβ. (1.1)

Also, if x is a strongly decreasing solution of (E) , putting y(t) = p(t)(−x′(t))α, we get that (x, y) is a strongly
decreasing solution of the following system of first order differential equations

x′ + p(t)−1/αy1/α = 0, y′ + q(t)xβ = 0. (1.2)

Conversely, if (x, y) is a strongly increasing solution of (1.1) [resp. strongly decreasing solution of (1.2)],
then x is a strongly increasing [resp. strongly decreasing] solution of (E) .

The existence of the strongly monotone solutions of (E) has been studied in [2].

Proposition 1.1. [2, Proposition 1] Sublinear equation (E) has strongly increasing solution if and only if∫
∞

a

1
p(t)1/α

(∫ t

a
q(s)ds

)1/α

dt = ∞ ∧

∫
∞

a
q(t)

(∫ t

a

ds
p(s)1/α

)β
dt = ∞.

Proposition 1.2. [2, Proposition 2] Sublinear equation (E) has strongly decreasing solution if∫
∞

a

1
p(t)1/α

(∫
∞

t
q(s) ds

)1/α

dt < ∞ ∨

∫
∞

a
q(t)

(∫
∞

t

ds
p(s)1/α

)β
dt < ∞.

Based on the mentioned connection between the systems (Si) , i = 1, 2 and the equation (E) , using Propo-
sition 1.1 and Proposition 1.2, we can derive the conditions (necessary or sufficient) for the existence of
strongly increasing solutions of (S1) and strongly decreasing solutions of (S2) as follows.

Proposition 1.3. System (S1) has strongly increasing solution if and only if∫
∞

a
p(t)

(∫ t

a
q(s)ds

)α
dt = ∞ ∧

∫
∞

a
q(t)

(∫ t

a
p(s)ds

)β
dt = ∞. (1.3)
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Proposition 1.4. System (S2) has strongly decreasing solution if∫
∞

a
p(t)

(∫
∞

t
q(s) ds

)α
dt < ∞ ∨

∫
∞

a
q(t)

(∫
∞

t
p(s)ds

)β
dt < ∞. (1.4)

The theory of regularly varying functions has been proved to be very useful in studying the existence and
asymptotic behavior of positive solutions of various types of differential equations and systems, see [11–
16, 18]. In particular, the existence and precise asymptotic behavior of regularly varying strongly monotone
solutions of the systems (S1) and (S2) are considered in [8, 9]. This paper represents a continuation of that
research in terms of the application of the theory of rapidly varying functions in studying the asymptotic
behavior of rapidly varying strongly monotone solutions of these systems. After the pioneer work by Marić
[17] dealing with the study of second order linear differential equation in the framework of rapid variation,
there are only a few papers related to the application of the theory of rapid variation. In [19–21] half-linear
differential equations in the framework of the Karamata theory and the de Haan theory were studied. Also,
the existence of regularly and rapidly varying solutions of third order nonlinear differential equations was
studied in [10].

Our goal in this paper is to prove that all strongly increasing solutions of (S1) as well as all strongly
decreasing solutions of (S2) are rapidly varying functions under the assumption that the coefficients of
the corresponding system are rapidly varying functions and to give some information about asymptotic
behavior of these solutions.

This paper is organized as follows. The basic definitions and properties of the regularly and rapidly
varying functions are given in Section 2. Also, the definitions and properties of asymptotic equivalence
relations on the class RPV(∞) are presented. Based on those, we introduce new analogous relations on the
class RPV(−∞) and investigate their properties. In Section 3 we deal with strongly increasing solutions of
(S1) . For these solutions, we state and prove the main result as well as some auxiliary lemmas, which help
us to prove the main results more elegantly. In Section 4 we turn our attention to the study of strongly
decreasing solutions of (S2) . We also state and prove some auxiliary lemmas, and the main result. Section
5 is dedicated to the application of main results to the equation (E) . Section 6 presents some illustrative
examples.

2. Preliminaries

Let us recall the definitions of regularly and rapidly varying functions.

Definition 2.1. Let f : [a,∞)→ (0,∞) be a measurable function.

(1) f is regularly varying of index ρ ∈ R if lim
t→∞

f (λt)
f (t)

= λρ for all λ > 0.

(2) f is rapidly varying of index ∞ if lim
t→∞

f (λt)
f (t)

= ∞ for all λ > 1.

(3) f is rapidly varying of index −∞ if lim
t→∞

f (λt)
f (t)

= 0 for all λ > 1.

The set of all regularly varying functions of index ρ is denoted by RV(ρ) , while the set of rapidly varying
functions of index∞ (or −∞) is denoted by RPV(∞) (or RPV(−∞)).

The book of Bingaham, Goldie and Teugels [1] is a very good source of information on the theory of
regular and rapid variation. Also a more recent contribution to the theory of rapid variation can be found
in [6, 7].

Now we present some selected properties of rapidly varying functions.
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Proposition 2.2.

(1) If f , 1 ∈ RPV(∞) and h ∈ RV(ρ), ρ ∈ R, then

(i) f p
∈ RPV(∞) for any p > 0.

(ii) f · h ∈ RPV(∞) and f · 1 ∈ RPV(∞).

(2) f ∈ RPV(∞) if and only if 1/ f ∈ RPV(−∞).

(3) Let f : [a,∞)→ (0,∞) be a measurable function, monotone for large t. Then

(i) f ∈ RPV(∞) implies f is increasing for large t and lim
t→∞

f (t) = ∞.

(ii) f ∈ RPV(−∞) implies f is decreasing for large t and lim
t→∞

f (t) = 0.

Proof. The parts (2) and (3) are shown in [22, Proposition 2]. The part (1) of the proposition is easy to
prove.

Next, we consider some useful equivalence relations on the classes RPV(∞) and RPV(−∞). The following
relation is introduced in [1] and further considered in [3, 4].

Definition 2.3. Let f and 1 be positive functions in [a,∞). These two functions are called mutually inversely
asymptotic at∞, denoted by f (t) ⋆∼ 1(t), t→∞ , if for every λ > 1 there exists t0 = t0(λ) such that

f
( t
λ

)
≤ 1(t) ≤ f (λt), for all t ≥ t0.

The definition of a stronger relation is given by Elez and Djurčić in [5] as follows.

Definition 2.4. Let f and 1 be positive functions in [a,∞). These two functions are called mutually rapidly equivalent
at∞, denoted by f (t) r

∼ 1(t), t→∞ , if

lim
t→∞

f (λt)
1(t)

= lim
t→∞

1(λt)
f (t)

= ∞, for all λ > 1.

In the same paper [5], some very useful properties of relation r
∼ are given.

Proposition 2.5. Let f and 1 be positive functions in [a,∞). Then, the following assertions hold:

(a) if f and 1 are measurable functions such that f (t) r
∼ 1(t) for t→∞, then f and 1 both belong to RPV(∞);

(b) the relation r
∼ is an equivalence relation in the class RPV(∞).

It is easy to prove the following proposition.

Proposition 2.6. Let f , 1 ∈ RPV(∞) and f (t) r
∼ 1(t), t→∞ , then

(a) f (t)p r
∼ 1(t)p, t→∞ for all p > 0,

(b) h(t) · f (t) r
∼ h(t) · 1(t), t→∞ for h ∈ RV(ρ), ρ ∈ R or h ∈ RPV(∞).

The following proposition, given in [5], represents an analogue of the Karamata’s integration theorem for
regularly varying functions in the theory of rapidly varying functions.

Proposition 2.7. Let f ∈ RPV(∞) be a locally bounded function on [a,∞). Also, let 1/ f be a locally bounded
function on [a,∞). Then, the following assertions are true:
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(a) f (t) r
∼

1
t

∫ t

a
f (s)ds, t→∞ and consequently t · f (t) r

∼

∫ t

a
f (s)ds, t→∞;

(b) f (t) r
∼

1

t
∫
∞

t

ds
s2 f (s)

, t→∞;

(c) F ∈ RPV(∞) , where F(t) =
∫ t

a
f (s)ds, t > a;

(d) φ ∈ RPV(∞) , where φ(t) =
1∫
∞

t

ds
f (s)

, t > a.

Proposition 2.8. (i) Let f ∈ RPV(∞). Then

lim
t→∞

F(t,T) = ∞, for every T ≥ a, where F(t,T) =
∫ t

T
f (s)ds, t ≥ T. (2.1)

(ii) Let 1 ∈ RPV(−∞). Then

lim
t→∞

G(t) = 0, where G(t) =
∫
∞

t
1(s)ds, t ≥ a. (2.2)

Proof.

(i) Fix arbitrary T ≥ a. Using Proposition 2.7 (c) it follows that F(t,T) is a rapidly varying function of
index∞ and since F is a monotone function, based on Proposition 2.2 (3), we have that (2.1) is satisfied.

(ii) Using Proposition 2.7 (d) and Proposition 2.2 (2) it follows that G(t) is a rapidly varying function
of index −∞ and since G is a monotone function, based on Proposition 2.2 (3), we have that (2.2) is
satisfied.

Now, we introduce two new relations on RPV(−∞).

Definition 2.9. Let f and 1 be positive functions in [a,∞). These two functions are called mutually inversely
asymptotic at −∞, denoted by f (t) ∼

⋆
1(t), t→∞ , if for every λ > 1 there exists t0 = t0(λ) such that

f (λt) ≤ 1(t) ≤ f
( t
λ

)
, for all t ≥ t0.

Definition 2.10. Let f and 1 be positive functions in [a,∞). These two functions are called mutually rapidly
equivalent at −∞, denoted by f (t) ∼

r
1(t), t→∞ , if

lim
t→∞

f (λt)
1(t)

= lim
t→∞

1(λt)
f (t)

= 0, for all λ > 1.

In order to establish a connection between relations r
∼ and ∼

r
, we give the next proposition.

Proposition 2.11. Let f and 1 be positive functions in [a,∞). Then

f (t) r
∼ 1(t), t→∞ if and only if

1
f (t)
∼
r

1
1(t)
, t→∞.



J. Manojlović, J. Milošević / Filomat 36:18 (2022), 6317–6332 6322

Proof. The proposition directly follows from the equalities

lim
t→∞

f (λt)
1(t)

=

lim
t→∞

1
f (λt)

1
1(t)


−1

and lim
t→∞

1(λt)
f (t)

=

lim
t→∞

1
1(λt)

1
f (t)


−1

The next proposition follows from Proposition 2.11, Proposition 2.5 and Proposition 2.2 (2).

Proposition 2.12. Let f and 1 be positive functions in [a,∞). Then, the following assertions hold:

(a) if f and 1 are measurable functions such that f (t) ∼
r
1(t) for t→∞, then f and 1 both belong to RPV(−∞);

(b) the relation ∼
r

is an equivalence relation in the class RPV(−∞).

It is easy to prove the following proposition using Proposition 2.11 and Proposition 2.6.

Proposition 2.13. Let f , 1 ∈ RPV(−∞) and f (t) ∼
r
1(t), t→∞ , then

(a) f (t)p
∼
r
1(t)p, t→∞ for all p > 0,

(b) f (t) · h(t) ∼
r
1(t) · h(t), t→∞ for h ∈ RV(ρ), ρ ∈ R or h ∈ RPV(−∞).

In the following proposition we give a more convenient form of Proposition 2.7 (b).

Proposition 2.14. Let 1 ∈ RPV(−∞) be a locally bounded function on [a,∞). Then,

t · 1(t) ∼
r

∫
∞

t
1(s)ds, t→∞.

Proof. Denote 1(t) = 1
t2 f (t) . Since 1 ∈ RPV(−∞), we conclude that f ∈ RPV(∞). Also, since 1 is a locally

bounded function on [a,∞), so is 1/ f . Hence, by Proposition 2.7 (b) and Proposition 2.6 (b) we have

t · f (t) r
∼

1∫
∞

t
1(s)ds

, t→∞

which implies by Proposition 2.11

t · 1(t) =
1

t · f (t)
∼
r

∫
∞

t
1(s)ds, t→∞.

3. Strongly increasing solutions of (S1)

In this section, we deal with strongly increasing solutions of (S1) . Main result of this section is the
following theorem which ensures that all positive increasing solutions of (S1) are strongly increasing and
rapidly varying assuming that p, q are rapidly varying functions and gives the asymptotic equivalence
relation for these solutions.
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Theorem 3.1. Suppose that p and q are rapidly varying of index ∞. Every positive increasing solution of (S1)
is strongly increasing and rapidly varying of index ∞. Moreover, any such solution (x, y) satisfies the asymptotic
relation

x(t) ⋆∼ X(t), y(t) ⋆∼ Y(t), t→∞, (3.1)

where the functions X and Y are given respectively by

X(t) =
(
tα+1p(t) q(t)α

) 1
1−αβ , (3.2)

and

Y(t) =
(
tβ+1p(t)β q(t)

) 1
1−αβ . (3.3)

We first state and prove some auxiliary lemmas, which help us to prove the main result more elegantly. To
this end, let us denote by

X11(t) =
(∫ t

a
p(s) R1(s)ds

) 1
β+1

, X12(t) = (P1(t) Q1(t)α)
1

1−αβ , (3.4)

Y11(t) =
(∫ t

a
q(s) R1(s)ds

) 1
α+1

, Y12(t) =
(
P1(t)β Q1(t))

) 1
1−αβ , (3.5)

where

P1(t) =
∫ t

a
p(s)ds, Q1(t) =

∫ t

a
q(s)ds, R1(t) =

(∫ t

a
p(s)

β(α+1)
2αβ+α+β q(s)

α(β+1)
2αβ+α+β ds

) 2αβ+α+β
1−αβ

. (3.6)

Lemma 3.2. Suppose that p and q are rapidly varying of index ∞. Then, the following assertions hold:

(i) I = SI, where I denote the set of all positive increasing solutions of (S1) ;

(ii) for every (x, y) ∈ I there exist positive constants mi, Mi, i = 1, 2 such that

m1 X11(t) ≤ x(t) ≤M1 X12(t) ∧ m2 Y11(t) ≤ y(t) ≤M2 Y12(t), (3.7)

for large t, where X11, X12 and Y11, Y12 are given by (3.4) and (3.5), respectively.

Proof. Take any (x, y) ∈ I defined on [t0,∞), t0 ≥ a. Integrating both equations in (S1) on [t0, t] and taking
into account that x and y are increasing, we get

x(t) = x(t0) +
∫ t

t0

p(s) y(s)αds ≥ x(t0) + y(t0)α
∫ t

t0

p(s)ds, t ≥ t0,

(3.8)

y(t) = y(t0) +
∫ t

t0

q(s) x(s)βds ≥ y(t0) + x(t0)β
∫ t

t0

q(s)ds, t ≥ t0,

and

x(t) ≤ x(t0) + y(t)α
∫ t

t0

p(s)ds ≤ x(t0) + y(t)α P1(t), t ≥ t0,

(3.9)

y(t) ≤ y(t0) + x(t)β
∫ t

t0

q(s)ds ≤ y(t0) + x(t)β Q1(t), t ≥ t0.
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Since p, q ∈ RPV(∞), using Proposition 2.8 (i), we conclude that

lim
t→∞

P1(t) = ∞, lim
t→∞

Q1(t) = ∞. (3.10)

From (3.8) and (3.10) we have (x, y) ∈ SI. Hence, I = SI. Also, from (3.9) and (3.10) we obtain that there
exist Ki > 0, i = 1, 2 and t1 ≥ t0 sufficiently large such that

x(t) ≤ K1 y(t)α P1(t), t ≥ t1 (3.11)

and

y(t) ≤ K2 x(t)β Q1(t), t ≥ t1. (3.12)

To find an upper estimate for x, we substitute (3.12) into (3.11) to obtain

x(t) ≤ K1 Kα2 x(t)αβ P1(t) Q1(t)α, t ≥ t1

and similar, to find an upper estimate for y, we substitute (3.11) into (3.12) to obtain

y(t) ≤ Kβ1 K2 y(t)αβP1(t)β Q1(t), t ≥ t1

implying that there exist Mi > 0, i = 1, 2 such that

x(t) ≤M1 (P1(t) Q1(t)α)
1

1−αβ =M1 X12(t), t ≥ t1

and

y(t) ≤M2

(
P1(t)β Q1(t)

) 1
1−αβ
=M2 Y12(t), t ≥ t1.

Now we prove the lower estimate for x and y. To this end let ω(t) = x(t)βy(t)α and

µ =
β(α + 1)

2αβ + α + β
, ν =

α(β + 1)
2αβ + α + β

, η =
1 − αβ

2αβ + α + β
. (3.13)

It is easy to verify that µ, ν, η > 0 , µ + ν = 1 and
βν − µ

β
=
αµ − ν

α
= −η . Applying Young’s inequality we

get

ω′(t) = ω(t)
(
β

p(t)y(t)α

x(t)
+ α

q(t)x(t)β

y(t)

)
≥ ω(t)

βµαν

µµνν

(
p(t)y(t)α

x(t)

)µ (q(t)x(t)β

y(t)

)ν
= ω(t)

βµαν

µµνν
p(t)µ q(t)ν (x(t)βy(t)α)−η

yielding

ω′(t) ≥
βµαν

µµνν
ω(t)1−η p(t)µ q(t)ν, t ≥ t1. (3.14)

After dividing (3.14) with ω(t)1−η and then integrating the obtained inequality on [t1, t] we find k1 > 0 such
that

ω(t) ≥ k1

(∫ t

t1

p(s)µ q(s)νds
)1/η

, t ≥ t1,
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in the view of (3.13). Using Proposition 2.8 (i) we conclude that lim
t→∞

R(t) = ∞. Therefore, we find k2 > 0 and

sufficiently large t2 ≥ t1 such that

x(t)βy(t)α ≥ k2 R1(t), t ≥ t2. (3.15)

By substituting y(t)α = x′(t)
p(t) into (3.15) we have

x(t)βx′(t) ≥ k2 p(t) R1(t), t ≥ t2. (3.16)

Integrating (3.16) from t2 to t, we find m1 > 0 such that

x(t) ≥ m1

(∫ t

a
p(s)R1(s)ds

) 1
β+1

= m1 X11(t),

for sufficiently large t. Similar arguments lead to the existence of m2 > 0 such that

y(t) ≥ m2

(∫ t

a
q(s)R1(s)ds

) 1
α+1

= m2 Y11(t),

for sufficiently large t. This completes the proof of Lemma 3.2.

Next, we show that functions X, X11 and X12 are in the relation r
∼ under the assumption that p and q are

rapidly varying functions of index∞.

Lemma 3.3. Suppose that p and q are rapidly varying of index ∞. Then

X11(t) r
∼ X12(t) r

∼ X(t), t→∞, (3.17)

where the functions X11, X12 and X are given by (3.4) and (3.2), respectively.

Proof. In the view of (3.6), using Proposition 2.7 (a) we have

P1(t) =
∫ t

a
p(s)ds r

∼ t · p(t), Q1(t) =
∫ t

a
q(s)ds r

∼ t · q(t), t→∞ (3.18)

and

R1(t) r
∼

(
t p(t)

β(α+1)
2αβ+α+β q(t)

α(β+1)
2αβ+α+β

) 2αβ+α+β
1−αβ

= t
2αβ+α+β

1−αβ p(t)
β(α+1)
1−αβ q(t)

α(β+1)
1−αβ , t→∞, (3.19)

since 2αβ+α+β
1−αβ > 0, which implies by Proposition 2.6 (b)

p(t) R1(t) r
∼ t

2αβ+α+β
1−αβ p(t)

β+1
1−αβ q(t)

α(β+1)
1−αβ , t→∞. (3.20)

From (3.18) we obtain

X12(t) = (P1(t) Q1(t)α)
1

1−αβ r
∼

(
t p(t) tα q(t)α

) 1
1−αβ = X(t), t→∞. (3.21)

Using (3.20), another application of Proposition 2.7 (a) gives us

X11(t) r
∼

(
t

(α+1)(β+1)
1−αβ p(t)

β+1
1−αβ q(t)

α(β+1)
1−αβ

) 1
β+1

= X(t), t→∞. (3.22)

Since the relation r
∼ is an equivalence relation in RPV(∞), from (3.21) and (3.22) we conclude that (3.17) is

satisfied. This completes the proof of Lemma 3.3.
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Similarly, we show that functions Y, Y11 and Y12 are in the relation r
∼ under the assumption that p and q

are rapidly varying functions of index∞.

Lemma 3.4. Suppose that p and q are rapidly varying of index ∞. Then

Y11(t) r
∼ Y12(t) r

∼ Y(t), t→∞, (3.23)

where the functions Y11, Y12 and Y are given by (3.5) and (3.3), respectively.

Proof. From (3.18) we have

Y12(t) =
(
P1(t)β Q1(t))

) 1
1−αβ r
∼

(
tβ p(t)β t q(t))

) 1
1−αβ
= Y(t), t→∞. (3.24)

Using (3.19) and Proposition 2.6 (b) we get

q(t) R1(t) r
∼ t

2αβ+α+β
1−αβ p(t)

β(α+1)
1−αβ q(t)

α+1
1−αβ , t→∞,

implying

Y11(t) r
∼

(
t

(α+1)(β+1)
1−αβ p(t)

β(α+1)
1−αβ q(t)

α+1
1−αβ

) 1
α+1

= Y(t), t→∞, (3.25)

where we use Proposition 2.7 (a) once again. Since the relation r
∼ is an equivalence relation in RPV(∞),

from (3.24) and (3.25) we conclude that (3.23) is satisfied. This completes the proof of Lemma 3.4.

Proof of Theorem 3.1: Since p and q are rapidly varying of index ∞ we conclude that (3.10) is satisfied
implying that both condition in (1.3) are satisfied, so that SI , ∅ or consequently using Lemma 3.2(i)
I = SI , ∅.

Take any (x, y) ∈ I. From Lemma 3.2 (ii) we have that there exist positive constants mi,Mi, i = 1, 2 such
that (3.7) holds for large t. For brevity, we will not mention the phrase ”for large t” repeatedly.

First, we show that x and y are rapidly varying functions of index ∞. Fix arbitrary λ > 1. In view of
(3.7) we obtain

m1 X11(λt) ≤ x(λt) ≤M1 X12(λt) ∧ m2 Y11(λt) ≤ y(λt) ≤M2 Y12(λt), (3.26)

and

1
M1X12(t)

≤
1

x(t)
≤

1
m1X11(t)

∧
1

M2Y12(t)
≤

1
y(t)
≤

1
m2Y11(t)

. (3.27)

From (3.26) and (3.27) we get

m1

M1

X11(λ t)
X12(t)

≤
x(λ t)
x(t)

≤
M1

m1

X12(λ t)
X11(t)

∧
m2

M2

Y11(λ t)
Y12(t)

≤
y(λ t)
y(t)

≤
M2

m2

Y12(λ t)
Y11(t)

. (3.28)

Lemma 3.3 and Lemma 3.4 ensures that functions X11 and X12 are in the relation r
∼ , as well as functions

Y11 and Y12, which by definition means

lim
t→∞

X11(λ t)
X12(t)

= lim
t→∞

X12(λ t)
X11(t)

= ∞ ∧ lim
t→∞

Y11(λ t)
Y12(t)

= lim
t→∞

Y12(λ t)
Y11(t)

= ∞. (3.29)

Since λwas arbitrary, combining (3.28) and (3.29) gives us

lim
t→∞

x(λt)
x(t)

= ∞ ∧ lim
t→∞

y(λt)
y(t)

= ∞
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for all λ > 1. Thus, x, y ∈ RPV(∞).
It remains to establish the asymptotic relation (3.1). Fix arbitrary λ > 1. Let mi and Mi, i = 1, 2 be positive

numbers that satisfy (3.7). By Lemma 3.3 and Lemma 3.4 we have (3.17) and (3.23), or consequently

M1 X12(t) ≤ X(λ t) ∧ X
( t
λ

)
≤ m1 X11(t),

and

M2 Y12(t) ≤ Y(λ t) ∧ Y
( t
λ

)
≤ m2 Y11(t),

which in the view of (3.7) implies

X
( t
λ

)
≤ x(t) ≤ X(λ t) ∧ Y

( t
λ

)
≤ y(t) ≤ Y(λ t),

that is (3.1). This completes the proof of Theorem 3.1. □

4. Strongly decreasing solutions of (S2)

Now we turn our attention to the study of strongly decreasing solutions of (S2) . The following theorem
is the main result of this section.

Theorem 4.1. Suppose that p and q are rapidly varying of index −∞. Every strongly decreasing solution of (S2) is
rapidly varying of index −∞. Moreover, any such solution (x, y) satisfies the asymptotic relation

x(t) ∼
⋆

X(t), y(t) ∼
⋆

Y(t), t→∞, (4.1)

where the functions X and Y are given by (3.2) and (3.3), respectively.

Lemma 4.2. If (x, y) ∈ SD, then there exist positive constants li, i = 1, 2 such that

l1 X21(t) ≤ x(t) ≤ X22(t) ∧ l2 Y21(t) ≤ y(t) ≤ Y22(t), (4.2)

for large t, where X21, X22 and Y21, Y22 are given by

X21(t) =
(∫

∞

t
p(s) R2(s)ds

) 1
β+1

, X22(t) = (P2(t) Q2(t)α)
1

1−αβ , (4.3)

Y21(t) =
(∫

∞

t
q(s) R2(s)ds

) 1
α+1

, Y22(t) =
(
P2(t)β Q2(t))

) 1
1−αβ , (4.4)

with

P2(t) =
∫
∞

t
p(s)ds, Q2(t) =

∫
∞

t
q(s)ds, R2(t) =

(∫
∞

t
p(s)

β(α+1)
2αβ+α+β q(s)

α(β+1)
2αβ+α+β ds

) 2αβ+α+β
1−αβ

. (4.5)

Proof. Let (x, y) ∈ SD. Using the fact that x(t) → 0 and y(t) → 0 as t → ∞ and that x, y are decreasing,
integration of (S2) on (t,∞) gives us

x(t) =
∫
∞

t
p(s)y(s)αds ≤ y(t)α

∫
∞

t
p(s)ds = y(t)α P2(t), (4.6)

y(t) =
∫
∞

t
q(s)x(s)βds ≤ x(t)β

∫
∞

t
q(s)ds = x(t)βQ2(t). (4.7)
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By substituting (4.7) into (4.6) we obtain

x(t) ≤ (P2(t) Q2(t)α)
1

1−αβ = X22(t),

and by substituting (4.6) into (4.7) we get

y(t) ≤
(
P2(t)β Q2(t)

) 1
1−αβ
= Y22(t).

Thus, the right-hand side of the inequality (4.2) is proved.
Now we prove the left-hand side of (4.2). Setting ω(t) = x(t)βy(t)α and µ, ν, η as in (3.13), application of

Young’s inequality gives

−ω′(t) = ω(t)
(
β

p(t)y(t)α

x(t)
+ α

q(t)x(t)β

y(t)

)
≥ ω(t)

βµαν

µµνν

(
p(t)y(t)α

x(t)

)µ (q(t)x(t)β

y(t)

)ν
=
βµαν

µµνν
ω(t)1−η p(t)µ q(t)ν.

Then, there is k1 > 0 such that

−ω(t)η−1 ω′(t) ≥ k1 p(t)µ q(t)ν. (4.8)

Since ω(t)→ 0 as t→∞ and η > 0, integrating (4.8) from t to∞we have

ω(t) ≥ k2

(∫
∞

t
p(s)µ q(s)νds

)1/η

or

x(t)βy(t)α ≥ k2

(∫
∞

t
p(s)µ q(s)νds

)1/η

= k2 R2(t), (4.9)

for some k2 > 0. Using first equation of (S2) , we substitute y(t)α into (4.9) to get

−x(t)βx′(t) ≥ k2 p(t) R2(t). (4.10)

Integrating (4.10) from t to∞, we find l1 > 0 such that

x(t) ≥ l1

(∫
∞

t
p(s)R2(s)ds

) 1
β+1

= l1 X21(t).

Similar arguments lead to the existence of l2 > 0 such that

y(t) ≥ l2

(∫
∞

t
q(s)R2(s)ds

) 1
α+1

= l2 Y21(t).

This completes the proof of Lemma 4.2.

Lemma 4.3. Suppose that p and q are rapidly varying of index −∞. Then

X21(t) ∼
r

X22(t) ∼
r

X(t), t→∞, (4.11)

where the functions X21, X22 and X are given by (4.3) and (3.2), respectively.

Proof. In the view of (4.5), applying Proposition 2.14 we conclude that

P2(t) =
∫
∞

t
p(s)ds ∼

r
t · p(t), Q2(t) =

∫
∞

t
q(s)ds ∼

r
t · q(t), t→∞ (4.12)
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and

R2(t) ∼
r

t
2αβ+α+β

1−αβ p(t)
β(α+1)
1−αβ q(t)

α(β+1)
1−αβ , t→∞. (4.13)

From (4.12) we have

X22(t) ∼
r

X(t), t→∞. (4.14)

Multiplying (4.13) with p ∈ RPV(−∞) gives us by Proposition 2.13 (b)

p(t) R2(t) ∼
r

t
2αβ+α+β

1−αβ p(t)
β+1

1−αβ q(t)
α(β+1)
1−αβ , t→∞,

implying

X21(t) ∼
r

(
t

(α+1)(β+1)
1−αβ p(t)

β+1
1−αβ q(t)

α(β+1)
1−αβ

) 1
β+1

= X(t), t→∞, (4.15)

where we use Proposition 2.14 once again. Combining (4.14) and (4.15), we conclude that (4.11) is satisfied.
This completes the proof of Lemma 4.3.

Lemma 4.4. Suppose that p and q are rapidly varying of index −∞. Then

Y21(t) ∼
r

Y22(t) ∼
r

Y(t), t→∞, (4.16)

where the functions Y21, Y22 and Y are given by (4.4) and (3.3), respectively.

Proof. Directly using (4.12) we obtain

Y22(t) ∼
r

Y(t), t→∞. (4.17)

Using Proposition 2.13 (b), from (4.13) we get

q(t) R2(t) ∼
r

t
2αβ+α+β

1−αβ p(t)
β(α+1)
1−αβ q(t)

α+1
1−αβ , t→∞,

which with application of Proposition 2.14 implies

Y21(t) ∼
r

Y(t), t→∞. (4.18)

From (4.17) and (4.18) we have that (4.16) is satisfied. This completes the proof of Lemma 4.4.

Proof of Theorem 4.1: Since p and q are rapidly varying of index −∞ using Proposition 2.8 (ii) we conclude
that

lim
t→∞

P2(t) = 0 ∧ lim
t→∞

Q2(t) = 0

or respectively ∫
∞

a
p(t)dt < ∞ ∧

∫
∞

a
q(t)dt < ∞

implying that both condition in (1.4) are satisfied, so that SD , ∅.
Take any (x, y) ∈ SD. From Lemma 4.2, we have that there exist positive constants li, i = 1, 2 such that

(4.2) holds for large t.
That x, y ∈ RPV(−∞) and satisfy the asymptotic relation (4.1) can be proved in the same way as in the

proof of Theorem 3.1, using Lemma 4.3 and Lemma 4.4.
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5. Application to the generalized Emden-Fowler equation

This section is dedicated to applying the main results to the generalized Emden-Fowler equation (E) .
We derive new results, that give the conditions under which all strongly monotone solutions of the equation
(E) are rapidly varying functions if p, q are rapidly varying and determine the asymptotic behavior of these
solutions in terms of relations ⋆

∼ or ∼
⋆

.

Indeed, if x is a strongly increasing solution of (E) , putting y(t) = p(t)x′(t)α, we get that (x, y) is a strongly
increasing solution of the system (1.1). In order to study the equation (E) in the framework of rapid
variation we need to require that p ∈ RPV(−∞) and q ∈ RPV(∞), from which follows that p−1/α, q ∈ RPV(∞).
We can now apply the Theorem 3.1 to the system (1.1), concluding that every strongly increasing solution
of (1.1) is rapidly varying of index ∞. Also, the component x satisfies the asymptotic relation

x(t) ⋆∼
(
t

1
α+1 p(t)−

1
α q(t)

1
α

) 1

1−
β
α =

(
tα+1 q(t)

p(t)

) 1
α−β

, t→∞.

Similarly, if x is a strongly decreasing solution of (E) , putting y(t) = p(t)(−x′(t))α, we get that (x, y) is a
strongly decreasing solution of the system (1.2). We should assume p ∈ RPV(∞) and q ∈ RPV(−∞) whence
it follows that p−1/α, q ∈ RPV(−∞). Applying Theorem 4.1 on the system (1.2) for the component x we
conclude that

x(t) ∼
⋆

(
t

1
α+1 p(t)−

1
α q(t)

1
α

) 1

1−
β
α =

(
tα+1 q(t)

p(t)

) 1
α−β

, t→∞.

Therefore, we have the following two theorems.

Theorem 5.1. Suppose that p ∈ RPV(−∞), q ∈ RPV(∞). Every strongly increasing solution of (E) is rapidly
varying of index ∞. Moreover, any such solution x satisfies the asymptotic relation

x(t) ⋆∼
(
tα+1 q(t)

p(t)

) 1
α−β

, t→∞.

Theorem 5.2. Suppose that p ∈ RPV(∞), q ∈ RPV(−∞). Every strongly decreasing solution of (E) is rapidly
varying of index −∞. Moreover, any such solution x satisfies the asymptotic relation

x(t) ∼
⋆

(
tα+1 q(t)

p(t)

) 1
α−β

, t→∞.

6. Examples

Now, we present two examples that illustrate main results stated by Theorem 3.1 and Theorem 4.1.

Example 6.1. Consider the system

x′ = p1(t) yα, y′ = q1(t) xβ, 0 < α < 1, 0 < β < 1, (6.1)

where
p1(t) = β−1 e

1−β
β t

∧ q1(t) = α−1 e
1−α
α t.

Since p1, q1 ∈ RPV(∞) applying Theorem 3.1 we conclude that every strongly increasing solution of (6.1) is
rapidly varying of index∞ and any such solution (x, y) satisfies the asymptotic relation

x(t) ⋆∼ X1(t), y(t) ⋆∼ Y1(t) t→∞, (6.2)
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where

X1(t) = (tα+1 p1(t) q1(t)α)
1

1−αβ =
(
αα β

) 1
αβ−1 t

α+1
1−αβ e

t
β ∧ Y1(t) = (tβ+1 p1(t)β q1(t))

1
1−αβ =

(
α ββ

) 1
αβ−1 t

β+1
1−αβ e

t
α .

It is easy to check that (x1(t), y1(t)) = (e
t
β , e

t
α ) is such an solution of (6.1), since

lim
t→∞

x1(λt)
X1(t)

= lim
t→∞

X1(λt)
x1(t)

= ∞ ∧ lim
t→∞

y1(λt)
Y1(t)

= lim
t→∞

Y1(λt)
y1(t)

= ∞,

implying that (x1, y1) satisfies the asymptotic relation (6.2) and x1, y1 ∈ RPV(∞).

Example 6.2. Consider the system

x′ + p2(t) yα = 0, y′ + q2(t) xβ = 0, 0 < α < 1, 0 < β < 1, (6.3)

where
p2(t) = β−1 e

β−1
β t

∧ q2(t) = α−1 e
α−1
α t.

Since p2, q2 ∈ RPV(−∞) applying Theorem 4.1 we obtain that every strongly decreasing solution of (6.3) is
rapidly varying of index −∞ and any such solution (x, y) satisfies the asymptotic relation

x(t) ∼
⋆

X2(t), y(t) ∼
⋆

Y2(t) t→∞, (6.4)

where

X2(t) = (tα+1 p2(t) q2(t)α)
1

1−αβ =
(
αα β

) 1
αβ−1 t

α+1
1−αβ e−

t
β ∧ Y2(t) = (tβ+1 p2(t)β q2(t))

1
1−αβ =

(
α ββ

) 1
αβ−1 t

β+1
1−αβ e−

t
α .

It is easy to check that (x2(t), y2(t)) = (e−
t
β , e−

t
α ) is such an solution of (6.3), since

lim
t→∞

x2(λt)
X2(t)

= lim
t→∞

X2(λt)
x2(t)

= 0 ∧ lim
t→∞

y2(λt)
Y2(t)

= lim
t→∞

Y2(λt)
y2(t)

= 0,

implying that (x2, y2) satisfies the asymptotic relation (6.4) and x2, y2 ∈ RPV(−∞) .
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