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Abstract. In this paper, we are interested to establish inequalities of Hermite-Hadamard type involving
operator h-convex functions. We provide some generalizations to operators of some inequalities with real
arguments recently pointed out. Several applications to some weighted operator means are presented as
well.

1. Introduction and basic notions

Let (H, ⟨, ⟩) be a complex Hilbert space. As usual, the notation B(H) refers to the C∗-algebra of all
bounded linear operators acting on H. An operator A ∈ B(H) is called positive, and we write A ≥ 0, if A
is self-adjoint and ⟨Ax, x⟩ ≥ 0 for all x ∈ H. We denote by B+(H) the closed cone of all positive operators
in B(H) and by B+∗(H) the open cone of all positive invertible operators in B(H). The concept of positive
operators induces a partial order defined on the subspace of self-adjoint operators by: For A,B ∈ B(H) both
self-adjoint, we write A ≤ B for meaning that B −A ∈ B+(H). Henceforth, whenever we consider a positive
operator or an operator inequality, it will be assumed that the involved operators are self-adjoint.

Let f be a real valued function defined on a nonempty interval I ⊂ R. We say that f is operator convex
(resp. operator concave) on I if the inequality

f
(
(1 − λ)A + λB

)
≤ (≥)(1 − λ) f (A) + λ f (B), (1)

holds for all self-adjoint operators A,B ∈ B(H) with spectrums in I. Here, f (A) is defined via the techniques
of functional calculus.

For the class of operator convex functions, we have the Hermite-Hadamard inequalities

f
(A + B

2

)
≤

∫ 1

0
f
(
(1 − t)A + tB

)
dt ≤

f (A) + f (B)
2

, (2)

which hold for all self-adjoint operators A,B ∈ B(H) with spectrums in I. If f is operator concave on I then
the inequalities in (2) are reversed.
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We will now focus on the h-convexity property introduced by Varošanec in [14]. Let I, J ⊆ R with
(0, 1) ⊆ J, h : J → R and f : I→ R be two real nonnegative functions with h is not identically equal to 0. By
analogy with (1), we say that f is operator h-convex (resp. operator h-concave) on I if, [2]

f
(
(1 − λ)A + λB

)
≤ (≥)h(1 − λ) f (A) + h(λ) f (B) (3)

holds for all self-adjoint operators A,B ∈ B(H) with spectrums in I.
We mention the following remark which may be of interest for the reader.

Remark 1.1. If we put A = B in (3) we get(
h(1 − λ) + h(λ) − 1

)
f (A) ≥ 0

for all λ ∈ [0, 1] and all self-adjoint operator A ∈ B(H) with spectra in I. So, the fact that f is nonnegative is
imposed for saying if f is operator h-convex. However, this condition is not needed for defining the concept of operator
convexity. In another word, (3) extends (1) only when f is assumed to be nonnegative.

Sarikaya [13] generalized the Hermite-Hadamard inequalities for real h-convex functions as follows:
Let f : I→ R be h-convex function on I, a, b ∈ I with a < b, and f ∈ L1 ([a, b]). Then

1

2h
(

1
2

) f
(

a + b
2

)
≤

1
b − a

∫ b

a
f (x)dx ≤

(
f (a) + f (b)

) ∫ 1

0
h(t) dt. (4)

Later, Darvish et al. pointed out in [2] the operator version of (4) as follows

1

2h
(

1
2

) f
(A + B

2

)
≤

∫ 1

0
f
(
tA + (1 − t)B

)
dt ≤

(
f (A) + f (B)

) ∫ 1

0
h(t)dt. (5)

If f is h-concave (resp. operator h-concave) then the inequalities in (4) and in (5) are reversed. If h(t) = t, 0 ≤
t ≤ 1, then (5) coincides with (2)

In recent decades, some refinements, reverses, extensions and generalizations for the Hermite-Hadamard
type inequalities have been investigated in the literature, see [1–6, 11, 13] and the related references cited
therein.

We also need to recall some operator means. Let A,B ∈ B+∗(H) and λ ∈ [0, 1]. The following expressions

A∇λB := (1 − λ)A + λB, A♯λB := A1/2
(
A−1/2BA−1/2

)λ
A1/2, A!λB :=

(
(1 − λ)A−1 + λB−1

)−1

are known in the literature as the λ-weighted arithmetic mean, λ-weighted geometric mean and λ-weighted
harmonic mean of A and B, respectively. When λ = 1/2, they are simply denoted by A∇B,A♯B and A!B,
respectively. The following operator inequalities hold, [8]

A!λB ≤ A♯λB ≤ A∇λB.

We also define the weighted power mean as follows:

Pλ,s(A,B) :=


A1/2

(
(1 − λ)IH + λ

(
A−1/2BA−1/2

)s)1/s
A1/2 if 0 < |s| ≤ 1,

A1/2
(
A−1/2BA−1/2

)λ
A1/2 if s = 0,

(6)

where IH denotes the identity operator of H, and the Heinz mean as

HZλ(A,B) :=
A♯λB + A♯1−λB

2
. (7)
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As pointed out in [7], we set A♯νB = A1/2
(
A−1/2BA−1/2

)ν
A1/2, for any ν ∈ R, as extension of the weighted

geometric mean. With this, Liao and Wu established the following mixed mean operator inequalities, [10]

A♯(A∇B) ≥
∫ 1

0
A♯ (A∇tB) dt ≥ A∇(A♯B) (8)

and, for s ∈ [−1, 0] ∪ [1, 2]

A♯s (A∇λB) ≤ A∇λ
(
A♯sB

)
, A♯s (A!λB) ≥ A!λ

(
A♯sB

)
. (9)

The remainder of this paper will be organized as follows. In Section 2, we present some new Hermite-
Hadamard type inequalities for operator h-convex functions. Section 3 is devoted to illustrate our theoretical
results by some concrete examples. In section 4, applications to operator mean inequalities are provided.

2. Main results

The current section will be devoted to establish some Hermite-Hadamard type inequalities involving
operator h-convex (resp. h-concave) functions and so allow us to generalize some other inequalities existing
in the literature.

Before stating our first result, we notice the following. As already pointed out before, the λ-weighted
arithmetic mean of A and B, A∇λB := (1 − λ)A + λB, is usually defined for λ ∈ [0, 1] and A,B ∈ B+∗(H).
However, for the sake of simplicity we will use the same notation, namely C∇λD = (1 − λ)C + λD for
λ ∈ [0, 1] and any operators C,D ∈ B(H).

Now, we are in a position to state the following main result.

Theorem 2.1. Let f : I→ R be an operator h-convex function on I and h be an integrable function on [0, 1]. For all
self-adjoint operators A,B ∈ B(H) with spectrums in I and 0 ≤ p < q ≤ 1, we have

1

2h
(

1
2

) f
(
A∇ p+q

2
B
)
≤

1
q − p

∫ q

p
f (A∇tB)dt ≤

1
q − p

∫ q

p

(
h(1 − x) f (A) + h(x) f (B)

)
dx. (10)

If f is operator h-concave on I then the inequalities in (10) are reversed.

Proof. For 0 ≤ p < q ≤ 1 we can set p = λ−α and q = λ+αwithλ = p+q
2 ∈ (0, 1) and 0 < α = q−p

2 ≤ min{1−λ, λ}.
With this, for all t ∈ [0, 1] we can easily check that

1 − λ ± α ∓ 2αt ∈ [0, 1], λ ∓ α ± 2αt ∈ [0, 1], (1 − λ ± α ∓ 2αt) + (λ ∓ α ± 2αt) = 1.

It follows that, Sp (A∇1−λ∓α±2αtB) ⊂ I and Sp (A∇1−λ±α∓2αtB) ⊂ I. Otherwise, the obvious scalar identity

λ =
(λ − α + 2αt) + (λ + α − 2αt)

2
,

implies the following operator equality

A∇λB =
[
A∇λ−α+2αtB]∇[A∇λ+α−2αtB

]
.

So, applying two times (3), we obtain

f ((1 − λ)A + λB) ≤ h
(1

2

)
f (A∇λ−α+2αtB) + h

(1
2

)
f (A∇λ+α−2αtB)

≤ h
(1

2

) [
h(1 − λ + α − 2αt) f (A) + h(λ − α + 2αt) f (B)

]
+

h
(1

2

) [
h(1 − λ − α + 2αt) f (A) + h(λ + α − 2αt) f (B)

]
.
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Integrating side by side these latter inequalities with respect to t ∈ [0, 1], we get∫ 1

0
f ((1 − λ)A + λB) dt ≤ h

(1
2

) (∫ 1

0
f (A∇λ−α+2αtB) dt +

∫ 1

0
f (A∇λ+α−2αtB) dt

)
≤ h

(1
2

) [∫ 1

0

(
h(1 − λ + α − 2αt) + h(1 − λ − α + 2αt)

)
dt

]
f (A)+

h
(1

2

) [∫ 1

0

(
h(λ − α + 2αt) + h(λ + α − 2αt)

)
dt

]
f (B). (11)

Making simple change of variables, u = λ − α + 2αt/ u = λ + α − 2αt, we get the following formulas∫ 1

0
f (A∇λ−α+2αtB) dt =

∫ 1

0
f (A∇λ+α−2αtB) dt =

1
2α

∫ λ+α

λ−α
f (A∇uB) du,

∫ 1

0
h(1 − λ + α − 2αt)dt =

∫ 1

0
h(1 − λ − α + 2αt)dt =

1
2α

∫ λ+α

λ−α
h(1 − u)du,

∫ 1

0
h(λ − α + 2αt)dt =

∫ 1

0
h(λ + α − 2αt)dt =

1
2α

∫ λ+α

λ−α
h(u)du.

Substituting these latter formulas in (11) it holds

f
(
A∇λB

)
:= f

(
(1 − λ)A + λB

)
≤

h
(

1
2

)
α

∫ λ+α

λ−α
f (A∇tB) dt

≤

h
(

1
2

)
α

[
f (A)

∫ λ+α

λ−α
h(1 − x)dx + f (B)

∫ λ+α

λ−α
h(x)dx

]
,

hence (10) after simple algebraic manipulations. The proof is complete.

Theorem 2.1 provides a generalization for (5), in the sense that taking p = 0, q = 1 in (10) leads to (5).
Furthermore, Theorem 2.1 has many consequences. For instance, we mention the following corollary which
states a generalization of (2).

Corollary 2.2. Let f : I → R be operator convex on I. For all self-adjoint operators A,B ∈ B(H) with spectrums in
I, the following inequalities

f (A∇ p+q
2

B) ≤
1

q − p

∫ q

p
f (A∇tB)dt ≤ f (A)∇ p+q

2
f (B), (12)

hold for any 0 ≤ p < q ≤ 1. If f is operator concave on I then (12) are reversed.

Proof. Assume that f is with positive values. Since f is operator convex on I, so f is operator h-convex on
I, with h(x) = x, x ∈ [0, 1]. Whence (12), since h(1/2) = 1/2 and∫ q

p
h(1 − x)dx = (q − p)

(
1 −

p + q
2

)
, and

∫ q

p
h(x)dx = (q − p)

p + q
2
.

Otherwise, the same proof as for Theorem 2.1 works for f operator convex not necessarily with positive
values.
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The following remark may be of interest for the reader.

Remark 2.3. Let f (x) = 1/x, x > 0, which is operator convex on (0,∞). Applying (12) we get(
A∇ p+q

2
B
)−1
≤

1
q − p

∫ q

p

(
A∇tB

)−1
dt ≤ A−1

∇ p+q
2

B−1,

which was obtained in [12, Corollary 3.8] under a functional point of view.

The left inequalities in (10) and in (12) can be generalized as recited in what follows.

Corollary 2.4. Let f , h and A,B be as in Theorem 2.1. Let n ≥ 0 be an integer and 0 ≤ p := x0 < x1 < ... < xn <
xn+1 := q ≤ 1. Then we have∫ q

p
f
(
A∇tB

)
dt ≥

1
2h(1/2)

n∑
i=0

(xi+1 − xi) f
(
A∇ xi+xi+1

2
B
)
. (13)

In particular, if f is operator convex on I then∫ q

p
f
(
A∇tB

)
dt ≥

n∑
i=0

(xi+1 − xi) f
(
A∇ xi+xi+1

2
B
)
. (14)

If f is operator h-concave, resp. operator concave, then (13) and (14) are reversed.

Proof. We apply successively the left inequality of (10) in the subintervals [xi, xi+1] of [p, q]. So, for any fixed
i = 0, 1, ...,n + 1, we have ∫ xi+1

xi

f
(
A∇tB

)
dt ≥

1
2h(1/2)

(xi+1 − xi) f
(
A∇ xi+xi+1

2
B
)
.

Summing side by side these latter inequalities from i = 0 to i = n, with the fact that x0 = p and xn+1 = q, we
get (13).

Remark 2.5. (i) For n = 0, (13) and (14) coincide with the left inequality of (10) and (12), respectively.
(ii) If we apply the same way, as in the previous corollary, to the right inequality in (10) we can easily see that its
upper bound is still unchanged.
(iii) The right expression in (13), as in (14), increases with respect to n ≥ 0. This implies two facts. Firstly, (13) and
(14) refine (10) and (12), respectively. Secondly, an upper bound for the integral

∫ q

p f
(
A∇tB

)
dt similar to the right

expression in (14) does not provide any new information.

The following example illustrates and explains more the previous discussions.

Example 2.6. If in Corollary 2.4 we choose an equidistant subdivision of [p, q], namely xi+1 − xi =
q−p
n+1 , then (13)

becomes, after elementary computations

1
q − p

∫ q

p
f
(
A∇tB

)
dt ≥

1
2h(1/2)

1
n + 1

n∑
i=0

f
(
A∇rp,q

i,n
B
)
≥

1
2h(1/2)

f
(
A∇ p+q

2
B
)
,

where we set
rp,q

i,n := p∇si,n q, with si,n :=
2i + 1

2(n + 1)
.

The details are simple and therefore omitted here.
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Another example of application for Corollary 2.4 is contained in the following result.

Theorem 2.7. Let f and h be as in Theorem 2.1 and let A,B ∈ B(H) be self-adjoint with spectrums in I. For any
0 ≤ p < q ≤ 1 and r ∈ [0, 1], we have the following operator inequalities

1
2h(1/2)

{
f
(
A∇r1 B

)
∇1−r f

(
A∇r2 B

)}
≤

1
q − p

∫ q

p
f
(
A∇tB

)
dt

≤

{
f (A∇pB) + f (A∇qB)

} ∫ 1

0
h(x) dx ≤

{(
h(1 − p) + h(1 − q)

)
f (A) +

(
h(p) + h(q)

)
f (B)

} ∫ 1

0
h(x)dx, (15)

where we set

r1 := r1(p, q) := p∇ r
2
q, r2 := r2(p, q) := p∇ 1+r

2
q. (16)

If f is operator h-concave on I then (15) are reversed.

Proof. If we take n = 1 in (13) with x0 = p < x1 = (1 − r)p + rq < x2 = q, r ∈ [0, 1] we get the left inequality of
(15) after simple algebraic operations. To show the second inequality in (15), we use the change of variable
t = (1 − s)p + sq, s ∈ [0, 1]. With this, it is easy to check that

A∇tB := (1 − t)A + tB = (1 − s)A∇pB + sA∇qB.

It follows that
1

q − p

∫ q

p
f
(
A∇tB

)
dt =

∫ 1

0
f
(
(1 − s)A∇pB + sA∇qB

)
ds,

which, with (10) and the fact that
∫ 1

0 h(1 − x)dx =
∫ 1

0 h(x), yields the middle inequality of (15). We then
deduce the last inequality by using (3).

As for Corollary 2.2, the following result is immediate from Theorem 15.

Corollary 2.8. Let f : I → R be operator convex on I. For all self-adjoint operators A,B ∈ B(H) with spectrums in
I, the following inequalities

f
(
A∇r1 B

)
∇1−r f

(
A∇r2 B

)
≤

1
q − p

∫ q

p
f
(
A∇tB

)
dt ≤ f (A∇pB)∇ f (A∇qB) ≤ f (A)∇ p+q

2
f (B), (17)

hold for any 0 ≤ p < q ≤ 1 and r ∈ [0, 1], where r1 and r2 are given by (16). If f is operator concave on I then (17)
are reversed.

If we choose p = 0, q = 1 and r ∈ {0, 1} in Theorem 15 and in Corollary 2.8 we get (5) and (2), respectively.
Otherwise, taking r = 0 or r = 1 in the left inequalities of (15) and (17) we get the left ones in (10) and
(12), respectively. More precisely, we have the following result which provides refinements for the left
inequalities of (10) and (12).

Corollary 2.9. With the same hypotheses as in Theorem 2.1, we have

1
q − p

∫ q

p
f
(
A∇tB

)
dt ≥

1
2h(1/2)

sup
r∈[0,1]

{
f
(
A∇r1 B

)
∇1−r f

(
A∇r2 B

)}
≥

1
2h(1/2)

f
(
A∇ p+q

2
B
)
, (18)

with reversed inequalities and ” inf ” instead of ” sup ”, if f is operator h-concave on I. Similar inequalities can be
stated for (17).
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Theorem 2.10. Let f : I → R be operator h-convex on I and A,B ∈ B(H) be self-adjoint with Sp(A) ∪ Sp(B) ⊆ I.
Let a and b be two real numbers such that 0 ≤ b ≤ 1 ≤ a ≤ 2 and a + b ≥ 2. Then the following inequalities

1

(a + b)h
(

1
2

) f
(

(a −m)A + (b +m)B
a + b

)
≤

a + b − 1
b −m(a + b − 1)

∫ b
a+b−1

βa,b,m

f (A∇tB)dt

≤ f (A∇mB)
∫ 1

a+b−2
a+b

h(1 − x)dx +
[
h
( a − 1

a + b − 1

)
f (A) + h

(
b

a + b − 1

)
f (B)

] ∫ 1

a+b−2
a+b

h(x)dx

≤

h(1 −m)
∫ 1

a+b−2
a+b

h(1 − x)dx + h
( a − 1

a + b − 1

) ∫ 1

a+b−2
a+b

h(x)

 f (A)

+

h(m)
∫ 1

a+b−2
a+b

h(1 − x)dx + h
(

b
a + b − 1

) ∫ 1

a+b−2
a+b

h(x)dx

 f (B) (19)

hold for any m ∈ [0, 1] with m ,
b

a + b − 1
, where we set

βa,b,m :=
2m

a + b
+

b(a + b − 2)
(a + b)(a + b − 1)

.

Proof. Let us consider

C := A∇mB and D :=
a − 1

a + b − 1
A +

b
a + b − 1

B.

It is easy to check that

(a −m)A + (b +m)B
a + b

=
1

a + b
C +

(a + b − 1)
a + b

D. (20)

So, the condition Sp(A)∪ Sp(B) ⊆ I ensures that Sp(C)∪ Sp (D) ⊆ I. Applying Theorem 2.1 for the operators

C and D with λ =
a + b − 1

a + b
and α = 1 − λ =

1
a + b

≤ λ, we deduce

1

(a + b)h
(

1
2

) f
(

1
a + b

C +
a + b − 1

a + b
D
)
≤

∫ 1

a+b−2
a+b

f (C∇tD)dt

≤ f (C)
∫ 1

a+b−2
a+b

h(1 − x)dx + f (D)
∫ 1

a+b−2
a+b

h(x)dx. (21)

Simple computations lead to C∇t D = A∇vB, t ∈ [0, 1], with v = m+
(

b
a + b − 1

−m
)

t, and simple integration

by change of variable yields∫ 1

a+b−2
a+b

f (C∇tD)dt =
a + b − 1

b −m(a + b − 1)

∫ b
a+b−1

βa,b,m

f (A∇vB)dv. (22)

On the other hand, since f is operator h-convex on I then we have

f (D) = f
(

a − 1
a + b − 1

A +
b

a + b − 1
B
)
≤ h

( a − 1
a + b − 1

)
f (A) + h

(
b

a + b − 1

)
f (B) (23)

and

f (A∇mB) ≤ h(1 −m) f (A) + h(m) f (B). (24)

Combining (20), (21), (22), (23) and (24) we get (19).
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Remark 2.11. Choosing in Theorem 2.10, h(t) = t, t ∈ [0, 1] and taking successively (a, b) = (2, 0) and (a, b) = (1, 1),
m ∈ (0, 1), we obtain the following refinements of Hermite-Hadamard inequalities stated by Dragomir in [6] for
operator convex functions,

f
(A + B

2

)
≤ (1 −m) f

[
(1 −m)A + (1 +m)B

2

]
+m f

[
(2 −m)A +mB

2

]
≤

∫ 1

0
f ((1 − t)A + tB)dt ≤

1
2

[ f ((1 −m)A +mB) + (1 −m) f (B) +m f (A)] ≤
f (A) + f (B)

2
. (25)

3. Some examples

In this section, we shall be dealing with some examples illustrating the previous theoretical results. We
then preserve the same notations as in the previous section.

Recall that, a function f : I −→ R is called operator monotone if A ≥ B implies f (A) ≥ f (B), for any
self-adjoint operators A,B ∈ B(H) with spectrums in I. As useful examples of monotone/ operator convex
(resp. operator concave) functions we recall the following.

Example 3.1. (i) The function x 7−→ xr, x ∈ (0,∞), is operator convex for r ∈ [−1, 0] ∪ [1, 2], operator concave for
r ∈ [0, 1], neither operator convex nor operator concave if r ∈ (−∞,−1) ∪ (2,+∞). It is operator monotone on [0,∞)
for r ∈ [0, 1].
(ii) The logarithm function x 7−→ log x is operator monotone and operator concave on (0,∞) while the exponential
function x 7−→ ex is neither operator monotone nor operator convex.

We now may state the following result as example of application.

Proposition 3.2. Let A,B ∈ B+∗(H). For any s ∈ [−1, 0] ∪ [1, 2] we have

(
A∇B

)s
≤ sup

r∈[0,1]

{(
A∇r1 B

)s
∇1−r

(
A∇r2 B

)s}
≤

1
q − p

∫ q

p

(
A∇tB

)s
dt ≤

(
A∇pB

)s
∇

(
A∇qB

)s
,

with reversed inequalities if s ∈ [0, 1]. Here r1 and r2 are as in (16).

Proof. Using Theorem 15 and Corollary 2.9, with Example 3.1,(i) we get the requested inequalities.

In order to give more examples, we need to recall the following lemma [9], known in the literature as
Hansen’s theorem.

Lemma 3.3. If f is a nonnegative operator monotone function on [0,+∞), then the following inequality

C∗ f (A)C ≤ f
(
C∗AC

)
(26)

holds for every positive operator A and every contraction C, i.e. C∗C ≤ IH.

Using this lemma, we state the following result which provides an example of an operator h-concave
function.

Proposition 3.4. The function f (x) = xs, for s ∈ [0, 1], is operator h-concave on (0,∞), with h(t) =
ts

a1−s for any
a ≥ 2.
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Proof. Let A,B ∈ B(H) be two self-adjoint operators, λ ∈ [0, 1] and a ≥ 2. We put,

C =
1
√

a
IH, U = a(1 − λ)A and V = aλB.

We have C∗ = C and 2C∗C ≤ IH, so
(

C 0
C 0

)
is a contraction. Since f is a nonnegative operator monotone

function on (0,∞), by virtue of (26) we get(
C
(

f (U) + f (V)
)
C 0

0 0

)
=

(
C C
0 0

) (
f (U) 0
0 f (V)

) (
C 0
C 0

)
=

(
C 0
C 0

)∗
f
((

U 0
0 V

)) (
C 0
C 0

)
≤ f

((
C 0
C 0

)∗ (
U 0
0 V

) (
C 0
C 0

))
=

(
f (C(U + V)C) 0

0 f (0)

)
.

Thus, we have
f
(
C(U + V)C

)
≥ C

(
f (U) + f (V)

)
C,

which means that(
(1 − λ)A + λB

)s
≥

1
a

(
a(1 − λ)A

)s
+

1
a

(aλB)s

or, equivalently,(
(1 − λ)A + λB

)s
≥

(1 − λ)s

a1−s As +
λs

a1−s Bs. (27)

Hence, f is operator h-concave on (0,∞) with h(t) =
ts

a1−s .

Now, a pertinent question arises from the above: Is Proposition 3.4 stronger than the operator concavity
of x 7−→ xs, s ∈ [0, 1]? In what follows we discuss the answer to this question. Indeed, for s ∈ [0, 1] the
function x 7−→ xs is operator concave and so we have(

(1 − t)A + tB
)s
≥ (1 − t)As + tBs. (28)

With h(t) =
ts

a1−s , Proposition 3.4 is equivalent to

(
(1 − t)A + tB

)s
≥ h(1 − t)As + h(t)Bs. (29)

It is then natural to compare (28) and (29). It is easy to check that h(t) ≤ t for t ≥ 1/a and, h(t) ≥ t for
t ≤ 1/a. This means that, neither (28) nor (29) is uniformly stronger than the other. Concluding, (29) is an
improvement of (28) for t ∈ [1/a, 1].

Using Proposition 3.4 we will now establish the following result which contains, in its turn, an example
of application.
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Proposition 3.5. Let A,B ∈ B+∗(H), 0 ≤ p < q ≤ 1 and a ≥ 2. For any s ∈ [0, 1] we have( a
2

)1−s(
A∇ p+q

2
B
)s
≥

( a
2

)1−s
inf

r∈[0,1]

{(
A∇r1 B

)s
∇1−r

(
A∇r2 B

)s}
≥

1
q − p

∫ q

p

(
A∇tB

)s
dt, (30)

where r1 and r2 are defined as in (16).

Proof. By Proposition 3.4, the function f (x) = xs, s ∈ [0, 1] is operator h-concave on (0,∞) with h(t) = as−1ts.
Applying Theorem 15 and Corollary 2.9, with the fact that h(1/2) = as−12−s, we obtain (30).

Finally, the following result gives another example of application.

Proposition 3.6. Let a, b,m be as in Theorem 2.10 and s ∈ [0, 1]. For all A,B ∈ B+∗(H), the following inequalities
hold ( 2

a + b

)s ( (a −m)A + (b +m)B
a + b

)s

≥
a + b − 1

b −m(a + b − 1)

∫ b
a+b−1

βa,b,m

(A∇tB)sdt

≥
1

(1 + s)(a + b)2

[
2s+1(A∇mB)s +

γa,b,s

(a + b)1−s
((a − 1)sAs + bsBs)

]
≥

1
(1 + s)(a + b)3−s

[(
2s+1(1 −m)s + (a − 1)sγa,b,s

)
As +

(
2s+1ms + bsγa,b,s

)
Bs

]
, (31)

where

βa,b,m =
2m

a + b
+

b(a + b − 2)
(a + b)(a + b − 1)

, γa,b,s =
(a + b)1+s

− (a + b − 2)1+s

(a + b − 1)s .

In particular, for any m ∈ [0, 1) we have(
(1 −m)A + (1 +m)B

2

)s

≥
1

1 −m

∫ 1

m
(A∇tB)sdt ≥

1
4(1 + s)

[
2s+1(A∇mB)s + 22sBs

]
≥

1
41−s(1 + s)

[(1 −m)sAs + (1 +ms)Bs] . (32)

Proof. According to Proposition 3.4, the function f (x) = xs is operator h-concave on (0,∞) with h(t) =
ts

(a + b)1−s . Furthermore, we have∫ 1

a+b−2
a+b

h(x)dx =
(a + b)1+s

− (a + b − 2)1+s

(s + 1)(a + b)2 ,

∫ 1

a+b−2
a+b

h(1 − x)dx =
21+s

(s + 1)(a + b)2 .

Substituting these latter expressions in (19), we obtain (31). Taking a = b = 1 in (31) we get (32).

4. Application to operator means

In this section, we will apply our main results in establishing some operator mean inequalities. Our
first result in this context is recited as follows.

Theorem 4.1. Let A,B ∈ B+∗(H), ν ∈ [0, 1] and 0 < α ≤ min{1 − ν, ν}. Then the following inequalities

Pν,s(A,B) ≥
1

2α

∫ ν+α

ν−α
Pt,s(A,B)dt ≥ A∇ν B, (33)

Pν,−s(A,B) ≤ 2α
(∫ ν+α

ν−α

(
Pt,−s(A,B)

)−1 dt
)−1

≤ A!νB. (34)

hold for any s ∈ [1, 2]. If s ∈
[

1
2 , 1

]
, then (33) and (34) are reversed.
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Proof. Consider the function f (x) = x
1
s , x ∈ (0,+∞).

• If s ∈ [1, 2] then Example 3.1,(i) tells us that f is operator concave on (0,+∞). Hence, using (12) with
X = IH and Y =

(
A−

1
2 BA−

1
2

)s
we get

(
(1 − ν)IH + ν

(
A−1/2BA−1/2

)s)1/s
≥

1
2α

∫ ν+α

ν−α

(
(1 − t)IH + t

(
A−1/2BA−1/2

)s)1/s
dt

≥ (1 − ν)IH + νA−1/2BA−1/2. (35)

Multiplying (35) at left and at right by A1/2, and utilizing (6), we obtain

Pν,s(A,B) ≥
1

2α

∫ ν+α

ν−α
Pt,s(A,B)dt ≥ (1 − ν)A + νB = A∇ν B.

Thus, (33) is established. Now, let us replace in (33) A and B by A−1 and B−1 respectively. Then we get

Pν,s(A−1,B−1) ≥
1

2α

∫ ν+α

ν−α
Pt,s(A−1,B−1)dt ≥ A−1

∇ν B−1. (36)

Taking into account the following relations,

A−1
∇ν B−1 = (A!νB)−1 and Pν,s(A−1,B−1) =

(
Pν,−s(A,B)

)−1
,

with the fact that x 7−→ 1/x is operator monotone decreasing on (0,∞), we get (34).
• If s ∈

[
1
2 , 1

]
then, following Example 3.1,(i), f is operator convex on (0,+∞). Thus, by Corollary 2.2 the

inequalities (35) should be reversed.

The following theorem provides our second result of application.

Theorem 4.2. Let A,B ∈ B+∗(H), ν ∈ [0, 1] and 0 < α ≤ min{1 − ν, ν}. The following inequalities

A♯s(A∇ν B) ≥
1

2α

∫ ν+α

ν−α
A♯s (A∇t B) dt ≥ A∇ν(A♯s B) (37)

A♯s(A!νB) ≤ 2α
(∫ ν+α

ν−α

(
A♯s (A!tB)

)−1 dt
)−1

≤ A!ν(A♯s B) (38)

hold for any s ∈ [0, 1]. If s ∈ [−1, 0] ∪ [1, 2] then (37) and (38) are reversed.

Proof. Let us define the function 1 by 1(x) = xs, x ∈ (0,∞).
• For s ∈ [0, 1], again by Example 3.1,(i), 1 is operator concave on (0,+∞). So, applying (12) with X = IH

and Y = A−
1
2 BA−

1
2 , we deduce

(
(1 − ν)IH + νA−1/2BA−1/2

)s
≥

1
2α

∫ ν+α

ν−α

(
(1 − t)IH + tA−1/2BA−1/2

)s
dt

≥ (1 − ν)IH + ν
(
A−1/2BA−1/2

)s
, (39)

which can be rewritten as follows(
A−1/2 ((1 − ν)A + νB) A−1/2

)s
≥

1
2α

∫ ν+α

ν−α

(
A−1/2 ((1 − t)A + tB) A−1/2

)s
dt

≥ A−1/2
(
(1 − ν)A + νA1/2

(
A−1/2BA−1/2

)s
A1/2

)
A−1/2.
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Multiplying left and right each term in these last inequalities by A1/2, we obtain (37).
Replacing (37) A and B by A−1 and B−1, respectively, and remarking that

A−1♯s
(
A−1
∇ν B−1

)
=

(
A♯s (A!νB)

)−1
and A−1

∇ν

(
A−1♯s B−1

)
=

(
A!ν

(
A♯s B

) )−1
,

we get

(
A♯s(A!νB)

)−1
≥

1
2α

∫ ν+α

ν−α

(
A♯s (A!tB)

)−1
dt ≥

(
A!ν(A♯s B)

)−1
(40)

Since x 7−→ 1/x is operator monotone decreasing on (0,∞) we then obtain (38).
• For s ∈ [−1, 0] ∪ [1, 2], 1 is operator convex on (0,∞). So, (39) should be reversed and the proof is

finished.

Remark 4.3. Theorem 4.1 and Theorem 4.2 give generalizations for (8) and (9), respectively.

As a deduction of Theorem 4.2, we have the following corollary.

Corollary 4.4. Let A,B ∈ B+∗(H), ν ∈ [0, 1], 0 < α ≤ min{1 − ν, ν}. For any s ∈ [0, 1] we have

HZs(A,A∇ν B) ≥
1

2α

∫ ν+α

ν−α
HZs(A,A∇t B)dt ≥ A∇νHZs(A,B), (41)

with reversed inequalities if s ∈ [−1, 0] ∪ [1, 2].

Proof. Let s ∈ [0, 1]. From (33) we deduce

A♯s(A∇ν B) ≥
1

2α

∫ ν+α

ν−α
A♯s (A∇t B) dt ≥ A∇ν(A♯s B)

and

A♯1−s(A∇ν B) ≥
1

2α

∫ ν+α

ν−α
A♯1−s (A∇t B) dt ≥ A∇ν(A♯1−s B).

Summing these latter inequalities side by side, we obtain

A♯s(A∇ν B) + A♯1−s(A∇ν B) ≥
1

2α

∫ ν+α

ν−α

[
A♯s (A∇t B) + A♯1−s (A∇t B)

]
dt

≥ A∇ν(A♯s B) + A∇ν(A♯1−s B) = A∇ν
(
A♯sB + A♯1−sB

)
.

This, with (7), yields (41). If s ∈ [−1, 0] ∪ [1, 2] the previous inequalities should be reversed and the proof is
complete.

Another main result of application may be stated as follows.

Theorem 4.5. Let A,B ∈ B+∗(H), ν ∈ [0, 1] and 0 < α ≤ min{1 − ν, ν}. We have the following assertions:
(i) If s ∈ [−1, 0] ∪ [1, 2] then

A♯s(A∇B) ≤ [A♯s(A∇ 1+ν
2

B)]∇ν[A♯s(A∇ ν2 B)]

≤

∫ 1

0
A♯s(A∇t B)dt ≤ [A♯s(A∇ν B)]∇[(A♯s B)∇ν A] ≤ A∇(A♯s B) (42)
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and

A♯s(A!B) ≥ [A♯s(A! 1+ν
2

B)]!ν[A♯s(A! ν
2
B)]

≥

(∫ 1

0
(A♯s(A!tB))−1dt

)−1

≥ [A♯s(A!νB)]![(A♯s B)!νA] ≥ A!(A♯s B) (43)

(ii) If s ∈ [0, 1] then (42) and (43) are reversed.

Proof. Let f (x) = xs, x ∈ (0,+∞) which is operator convex on (0,+∞) for s ∈ [−1, 0] ∪ [1, 2]. Thus, applying
(25) for the operators IH and A−1/2BA−1/2, we get(

IH + A−1/2BA−1/2

2

)s

≤ (1 − ν)
(

(1 − ν)IH + (1 + ν)A−1/2BA−1/2

2

)s

+ ν

(
(2 − ν)IH + νA−1/2BA−1/2

2

)s

≤

∫ 1

0

(
(1 − t)IH + tA−1/2BA−1/2

)s
dt

≤
1
2

[(
(1 − ν)IH + νA−

1
2 BA−1/2

)s
+ (1 − ν)

(
A−1/2BA−1/2

)s
+ νIH

]
≤

IH +
(
A−1/2BA−1/2

)s

2
.

Multiplying at left and at right by A1/2 all sides of this latter chain of inequalities, the required inequality (42)
is deduced. Substituting A and B by A−1 and B−1 successively and taking the inverse in (42), we obtain (43).
The remainder of the theorem is deduced from the fact that the previous inequalities should be reversed
since f is operator convex on (0,+∞) for s ∈ [0, 1].

Finally, we state the following result.

Theorem 4.6. Let A,B ∈ B+∗(H), ν ∈ [0, 1] and 0 < α ≤ min{1 − ν, ν}. For any s ∈ [0, 1] and a ≥ 2, we have( a
2

)1−s
A♯s(A∇ν B) ≥

1
2α

∫ ν+α

ν−α
A♯s(A∇t B)dt ≥

2
(s + 1)a1−s

[
A♯s(A∇ν−α B)

]
∇

[
A♯s(A∇ν+α B)

]
(44)

and (2
a

)1−s

A♯s(A!νB) ⩽ 2α
(∫ ν+α

ν−α
(A♯s(A!tB))−1dt

)−1

⩽
(s + 1)a1−s

2

[
A♯s(A!ν−αB)

]
!
[
A♯s(A!ν+αB)

]
. (45)

Proof. Let s ∈ [0, 1] and f (x) = xs, x ∈ (0,+∞). By Proposition 3.4, f is operator h-concave on (0,+∞), with

h(t) =
ts

a1−s . From (17) with (18), we have

1

2h
(

1
2

) f (A∇λ B) ⩽
1

2α

∫ λ+α

λ−α
f (A∇t B)dt ⩽ [ f (A∇λ−α B) + f (A∇λ+α B)]

∫ 1

0
h(t)dt.

So,

a1−s

2
(

1
2

)s

(
(1 − ν)IH + νA−1/2BA−1/2

)s
≥

1
2α

∫ ν+α

ν−α

(
(1 − t)IH + tA−1/2BA−1/2

)s
dt

≥

[ (
(1 − ν + α)IH + (ν − α)A−1/2BA−1/2

)s
+

(
(1 − ν − α)IH + (ν + α)A−1/2BA−1/2

)s ] ∫ 1

0

ts

a1−s dt.
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Multiplying both sides at left and at right by A1/2, we obtain( a
2

)1−s
A♯s(A∇ν B) ≥

1
2α

∫ ν+α

ν−α
A♯s(A∇t B)dt ≥

1
(s + 1)a1−s

(
A♯s(A∇ν−α B) + A♯s(A∇ν+α B)

)
.

Whence (44). Substituting, in a similar manner as previously, A and B by A−1 and B−1 respectively, we get
(45).
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