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Abstract. Throughout the present paper, K denotes a complete, non-trivially valued, ultrametric (or non-
archimedean) field. Sequences, infinite series and infinite matrices have their entries in K. The sequence
spaces mλ, cλ, cλ0 were introduced in K earlier by the author in [8–10] and some studies were made. The
purpose of the present paper is to characterize the matrix classes (cλ0 , c

µ
0 ), (cλ0 ,m

µ), (cλ0 , c
µ) and (cλ, cµ0 ).

1. Introduction and Preliminaries

Throughout the present paper, K denotes a complete, non-trivially valued, ultrametric (or non-archimedean)
field. Entries of sequences, infinite series and infinite matrices are in K. Given a sequence x = {xk} in K and
an infinite matrix A = (ank), ank ∈ K, n, k = 0, 1, 2, . . . , let

(Ax)n =

∞∑
k=0

ankxk, n = 0, 1, 2, . . . ,

where we suppose that the series on the right converge. A(x) = {(Ax)n} is called the A-transform of the
sequence x = {xk}.

If X,Y are sequence spaces, we write A = (ank) ∈ (X,Y) if {(Ax)n} ∈ Y, whenever x = {xk} ∈ X. In
the sequel, m, c, c0 respectively denote the ultrametric Banach spaces of bounded, convergent and null
sequences in K under the ultrametric norm

∥x∥ = sup
k≥0
|xk|, x = {xk} ∈ m, c, c0.

Following Kangro [1], the author of the present paper introduced the analogues in ultrametric analysis
of the concepts of λ-convergence, λ-boundedness etc. and made a study in [8–10]. We continue the study
in the present paper. For a detailed investigation of the above concepts λ-convergence, λ-boundedness etc.
in the classical case, a standard reference is [1]. For a study of summability theory and its applications in
the classical case, the reader can refer to [2, 3, 6].

To make the paper self-contained, we recall the following definitions [8–10].
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Definition 1.1. Let λ = {λn} be a sequence in K such that

0 < |λn| ↗ ∞, n→∞.

A sequence {xn} in K is said to be convergent with speed λ or λ-convergent if {xn} ∈ c with lim
n→∞

xn = s (say) and

lim
n→∞
λn(xn − s) exists.

Let cλ denote the set of all λ-convergent sequences in K. From the definition, we have,

cλ ⊂ c.

In the above context, we note that the sequences

ek = {0, 0, . . . , 0, 1, 0, . . . },

1 occurring in the kth place only, k = 0, 1, 2, . . . ;

e = {1, 1, 1, . . . }

and

eλ =
{ 1
λ0
,

1
λ1
, . . .

}
all belong to cλ.

Definition 1.2. A sequence {xn} in K is said to be bounded with speed λ or λ-bounded, if x = {xn} ∈ c with lim
n→∞

xn = s
and

{λn(xn − s)} is bounded.

Let mλ denote the set of all λ-bounded sequences in K. Note that

cλ ⊂ mλ ⊂ c.

Definition 1.3. Let cλ0 denote the set of all sequences x = {xn} in K such that {xn} ∈ c with lim
n→∞

xn = s and

lim
n→∞
λn(xn − s) = 0.

Note again that

cλ0 ⊂ cλ ⊂ mλ ⊂ c.

The following results can be easily proved.

Theorem 1.4 ([5, 7]). A = (ank) ∈ (c0, c0) if and only if

sup
n,k
|ank| < ∞; (1)

and

lim
n→∞

ank = 0, k = 0, 1, 2, . . . . (2)
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Theorem 1.5 ([5, 7]). A = (ank) ∈ (c, c0) if and only if (1), (2) hold and

lim
n→∞

∞∑
k=0

ank = 0. (3)

Theorem 1.6 ([5, 7]). A = (ank) ∈ (c0, c) if and only if (1) holds and

lim
n→∞

ank = ak, k = 0, 1, 2, . . . . (4)

In such a case,

lim
n→∞

(Ax)n =

∞∑
k=0

akxk. (5)

Proof. Leaving out the former part, we prove (5). Let x = {xk} ∈ c0.

(Ax)n =

∞∑
k=0

ankxk

=

∞∑
k=0

(ank − ak)xk +

∞∑
k=0

akxk.

Since x = {xk} ∈ c0, given ϵ > 0, there exists a positive integer N such that

|xk| <
ϵ
H
, k > N,

where |ank| ≤ H, n, k = 0, 1, 2, . . . .
Since

lim
n→∞

ank = ak, k = 0, 1, 2, . . . ,N,

there exists a positive integer M such that

|ank − ak| <
ϵ
L
, k = 0, 1, 2, . . . ,N and n >M,

where |xk| ≤ L, k = 0, 1, 2, . . . .
Thus, for n >M, we have,∣∣∣∣∣∣∣

∞∑
k=0

(ank − ak)xk

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

N∑
k=0

(ank − ak)xk +
∑
k>N

(ank − ak)xk

∣∣∣∣∣∣∣
≤Max

[
max
0≤k≤N

|ank − ak||xk|,max
k>N
|ank − ak||xk|

]
≤Max

[
ϵ
L

L,
ϵ
H

H
]

= ϵ,

from which it follows that

lim
n→∞

∞∑
k=0

(ank − ak)xk = 0.

Consequently

lim
n→∞

(Ax)n =

∞∑
k=0

akxk,

completing the proof.
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Theorem 1.7 (Kojima-Schur)(see [4, 5, 7]). A = (ank) ∈ (c, c) if and only if (1), (4) hold and

lim
n→∞

∞∑
k=0

ank = a exists. (6)

In such a case,

lim
n→∞

(Ax)n =

∞∑
k=0

ak(xk − s) + sa (7)

where x = {xk} ∈ c with lim
k→∞

xk = s.

2. Main Results

Let µ = {µn} be a sequence in K such that

0 < |µn| ↗ ∞, n→∞.

We now prove the main results in this section.

Theorem 2.1. A = (ank) ∈ (cλ0 , c
µ
0 ) if and only if

A(e),A(ek) ∈ cµ0 , k = 0, 1, 2, . . . ; (8)

sup
n,k

∣∣∣∣∣ank

λk

∣∣∣∣∣ < ∞; (9)

and

sup
n,k

∣∣∣∣∣µn(an,k − ak)
λk

∣∣∣∣∣ < ∞, (10)

where lim
n→∞

ank = ak, k = 0, 1, 2, . . . .

Proof. Necessity. Let A ∈ (cλ0 , c
µ
0 ). Since e, ek ∈ cλ0 , k = 0, 1, 2, . . . , it follows that A(e),A(ek) ∈ cµ0 , k = 0, 1, 2, . . . ,

i.e., (8) holds. Since A(ek) ∈ cµ0 , lim
n→∞

ank = ak, k = 0, 1, 2, . . . .

Since A(e) ∈ cµ0 , lim
n→∞

∞∑
k=0

ank = a.

Next, let x = {xk} ∈ cλ0 so that x = {xk} ∈ c.
Let lim

k→∞
xk = s and

βk = λk(xk − s).

So,

(Ax)n =

∞∑
k=0

ankxk

=

∞∑
k=0

ank

(
βk

λk
+ s

)

=

∞∑
k=0

ank

λk
βk + s

∞∑
k=0

ank. (11)
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Now, {(Ax)n} ∈ c, lim
n→∞

∞∑
k=0

ank exists and {βk} ∈ c0.

Using (11), the infinite matrix(ank

λk

)
∈ (c0, c).

In view of Theorem 1.6,

sup
n,k

∣∣∣∣∣ank

λk

∣∣∣∣∣ < ∞,
i.e., (9)holds

and

lim
n→∞

∞∑
k=0

ank

λk
βk =

∞∑
k=0

ak

λk
βk.

Taking the limit as n→∞ in (11), we get,

y = lim
n→∞

(Ax)n =

∞∑
k=0

ak

λk
βk + sa. (12)

Using (11) and (12), we have,

(Ax)n − y =
∞∑

k=0

ank − ak

λk
βk + s

 ∞∑
k=0

ank − a

 ,
and consequently,

µn{(Ax)n − y} =
∞∑

k=0

µn(ank − ak)
λk

βk + sµn

 ∞∑
k=0

ank − a

 . (13)

Since {(Ax)n} ∈ cµ0 ,

lim
n→∞
µn{(Ax)n − y} exists.

Since A(e) ∈ cµ0 ,

lim
n→∞
µn

 ∞∑
k=0

ank − a

 exists.

Using (13) and the fact that {βk} ∈ c0, the infinite matrix(
µn(ank − ak)
λk

)
∈ (c0, c0).

In view of Theorem 1.4, we have,

sup
n,k

∣∣∣∣∣µn(ank − ak)
λk

∣∣∣∣∣ < ∞,
i.e., (10)holds.
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Sufficiency. Let the conditions (8), (9) and (10) hold. Let x = {xk} ∈ cλ0 . So x = {xk} ∈ c with lim
k→∞

xk = s.

Because of (8),

lim
n→∞

ank = ak, k = 0, 1, 2, . . . ;

and

lim
n→∞

∞∑
k=0

ank = a.

Now, (11) holds. In view of (9) and the fact that

lim
n→∞

ank

λk
=

ak

λk
, k = 0, 1, 2, . . . ,

using Theorem 1.6, it follows that the infinite matrix(ank

λk

)
∈ (c0, c).

Since {βk} ∈ c0,

lim
n→∞

∞∑
k=0

ank

λk
βk exists,

i.e., lim
n→∞

(Ax)n exists, using (11).

At this stage, we note that (13) also holds and

lim
n→∞
µn(ank − ak) = 0, k = 0, 1, 2, . . . .

Now, using (10) and Theorem 1.4, the infinite matrix(
µn(ank − ak)
λk

)
∈ (c0, c0).

Since {βk} ∈ c0, we have,

lim
n→∞

∞∑
k=0

µn(ank − ak)
λk

βk = 0.

Already,

lim
n→∞
µn

 ∞∑
k=0

ank − a

 = 0.

Using (13), we conclude that

lim
n→∞
µn{(Ax)n − y} = 0,

i.e., {(Ax)n} ∈ cµ0 ,

completing the proof of the theorem.

Using Theorem 1.4 and Theorem 1.6, we can establish the following theorem in a similar fashion.
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Theorem 2.2. A = (ank) ∈ (cλ0 ,m
µ) if and only if

A(e),A(ek) ∈ mµ, k = 0, 1, 2, . . . ; (14)

and (9), (10) hold.

Next, we prove the following result.

Theorem 2.3. A = (ank) ∈ (cλ, cµ0 ) if and only if

A(e),A(eλ),A(ek) ∈ cµ0 , k = 0, 1, 2, . . . ; (15)

(9) and (10) hold.

Proof. Necessity. Let A = (ank) ∈ (cλ, cµ0 ). Since e, eλ, ek ∈ cλ, it follows that A(e),A(eλ),A(ek) ∈ cµ0 , k = 0, 1, 2, . . . ,
i.e., (15) holds. Thus,

lim
n→∞

ank = ak, k = 0, 1, 2, . . . ;

lim
n→∞

∞∑
k=0

ank = a;

and

lim
n→∞

∞∑
k=0

ank

λk
= aλ.

Let, now, x = {xk} ∈ cλ. So lim
k→∞

xk = s (say). Let, as usual,

βk = λk(xk − s).

Then {βk} ∈ c. Let lim
k→∞
βk = β. Note that (11) holds and {(Ax)n} ∈ c. Hence the infinite matrix

(ank

λk

)
∈ (c, c).

In view of Theorem 1.7, (9) holds. Also,

y = lim
n→∞

(Ax)n =

∞∑
k=0

ak

λk
(βk − β) + βaλ + sa.

Consequently,

(Ax)n − y =
∞∑

k=0

ank

λk
βk + s

∞∑
k=0

ank −

∞∑
k=0

ak

λk
(βk − β) − βaλ − sa

=

∞∑
k=0

ank

λk
(βk − β) + β

∞∑
k=0

ank

λk
+ s

∞∑
k=0

ank −

∞∑
k=0

ak

λk
(βk − β) − βaλ − sa

=

∞∑
k=0

ank − ak

λk
(βk − β) + β

 ∞∑
k=0

ank

λk
− aλ

 + s

 ∞∑
k=0

ank − a
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and so

µn{(Ax)n − y} =
∞∑

k=0

µn(ank − ak)
λk

(βk − β) + βµn

 ∞∑
k=0

ank

λk
− aλ


+ sµn

 ∞∑
k=0

ank − a

 . (16)

We note that since {(Ax)n} ∈ cµ0 ,

lim
n→∞
µn{(Ax)n − y} = 0;

Since A(eλ) ∈ cµ0 ,

lim
n→∞
µn

 ∞∑
k=0

ank

λk
− aλ

 = 0;

Since A(e) ∈ cµ0 ,

lim
n→∞
µn

 ∞∑
k=0

ank − a

 = 0.

Thus, using (16), it follows that the infinite matrix(
µn(ank − ak)
λk

)
∈ (c0, c0).

In view of Theorem 1.4, (10) holds.
Sufficiency. Let (9), (10) and (15) hold. Note that (11) holds. Because of (9) and the fact that

lim
n→∞

ank

λk
=

ak

λk
, k = 0, 1, 2, . . .

and

lim
n→∞

∞∑
k=0

ank

λk
= aλ,

we have,(ank

λk

)
∈ (c, c).

Since {βk} ∈ c,

lim
n→∞

∞∑
k=0

ank

λk
βk exists.

In view of (11), {(Ax)n} ∈ c. At this juncture, we note that (16) holds. Because of (10) and the fact that

lim
n→∞

µn(ank − ak)
λk

= 0, k = 0, 1, 2, . . . ,
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we have,(
µn(ank − ak)
λk

)
∈ (c0, c0).

Hence

lim
n→∞

∞∑
k=0

µn(ank − ak)
λk

(βk − β) = 0,

observing that {βk − β} ∈ c0. Now, appealing to (16), we conclude that

lim
n→∞
µn{(Ax)n − y} = 0,

i.e., {(Ax)n} ∈ cµ0 ,

completing the proof of the theorem.

Using Theorem 1.6, we can establish the following theorem in a similar fashion.

Theorem 2.4. A = (ank) ∈ (cλ0 , c
µ) if and only if

A(e),A(ek) ∈ cµ, k = 0, 1, 2, . . . ; (17)

(9) and (10) hold.
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