Matrix Transformations Between Certain New Sequence Spaces over Ultrametric Fields

P. N. Natarajan ${ }^{\text {a }}$
${ }^{a}$ Old No. 2/3, New No. 3/3, Second Main Road, R.A. Puram, Chennai 600 028, India

Abstract

Throughout the present paper, K denotes a complete, non-trivially valued, ultrametric (or nonarchimedean) field. Sequences, infinite series and infinite matrices have their entries in K. The sequence spaces $m^{\lambda}, c^{\lambda}, c_{0}^{\lambda}$ were introduced in K earlier by the author in [8-10] and some studies were made. The purpose of the present paper is to characterize the matrix classes $\left(c_{0}^{\lambda}, c_{0}^{\mu}\right),\left(c_{0}^{\lambda}, m^{\mu}\right),\left(c_{0}^{\lambda}, c^{\mu}\right)$ and $\left(c^{\lambda}, c_{0}^{\mu}\right)$.

1. Introduction and Preliminaries

Throughout the present paper, K denotes a complete, non-trivially valued, ultrametric (or non-archimedean) field. Entries of sequences, infinite series and infinite matrices are in K. Given a sequence $x=\left\{x_{k}\right\}$ in K and an infinite matrix $A=\left(a_{n k}\right), a_{n k} \in K, n, k=0,1,2, \ldots$, let

$$
(A x)_{n}=\sum_{k=0}^{\infty} a_{n k} x_{k}, n=0,1,2, \ldots
$$

where we suppose that the series on the right converge. $A(x)=\left\{(A x)_{n}\right\}$ is called the A-transform of the sequence $x=\left\{x_{k}\right\}$.

If X, Y are sequence spaces, we write $A=\left(a_{n k}\right) \in(X, Y)$ if $\left\{(A x)_{n}\right\} \in Y$, whenever $x=\left\{x_{k}\right\} \in X$. In the sequel, m, c, c_{0} respectively denote the ultrametric Banach spaces of bounded, convergent and null sequences in K under the ultrametric norm

$$
\|x\|=\sup _{k \geq 0}\left|x_{k}\right|, x=\left\{x_{k}\right\} \in m, c, c_{0}
$$

Following Kangro [1], the author of the present paper introduced the analogues in ultrametric analysis of the concepts of λ-convergence, λ-boundedness etc. and made a study in [8-10]. We continue the study in the present paper. For a detailed investigation of the above concepts λ-convergence, λ-boundedness etc. in the classical case, a standard reference is [1]. For a study of summability theory and its applications in the classical case, the reader can refer to [2,3,6].

To make the paper self-contained, we recall the following definitions [8-10].

[^0]Definition 1.1. Let $\lambda=\left\{\lambda_{n}\right\}$ be a sequence in K such that

$$
0<\left|\lambda_{n}\right| \nearrow \infty, n \rightarrow \infty .
$$

A sequence $\left\{x_{n}\right\}$ in K is said to be convergent with speed λ or λ-convergent if $\left\{x_{n}\right\} \in c$ with $\lim _{n \rightarrow \infty} x_{n}=s$ (say) and $\lim _{n \rightarrow \infty} \lambda_{n}\left(x_{n}-s\right)$ exists.

Let c^{λ} denote the set of all λ-convergent sequences in K. From the definition, we have,

$$
c^{\lambda} \subset c
$$

In the above context, we note that the sequences

$$
e_{k}=\{0,0, \ldots, 0,1,0, \ldots\}
$$

1 occurring in the k th place only, $k=0,1,2, \ldots$;

$$
e=\{1,1,1, \ldots\}
$$

and

$$
e^{\lambda}=\left\{\frac{1}{\lambda_{0}}, \frac{1}{\lambda_{1}}, \ldots\right\}
$$

all belong to c^{λ}.
Definition 1.2. A sequence $\left\{x_{n}\right\}$ in K is said to be bounded with speed λ or λ-bounded, if $x=\left\{x_{n}\right\} \in c$ with $\lim _{n \rightarrow \infty} x_{n}=s$ and

$$
\left\{\lambda_{n}\left(x_{n}-s\right)\right\} \text { is bounded. }
$$

Let m^{λ} denote the set of all λ-bounded sequences in K. Note that

$$
c^{\lambda} \subset m^{\lambda} \subset c
$$

Definition 1.3. Let c_{0}^{λ} denote the set of all sequences $x=\left\{x_{n}\right\}$ in K such that $\left\{x_{n}\right\} \in c$ with $\lim _{n \rightarrow \infty} x_{n}=$ s and

$$
\lim _{n \rightarrow \infty} \lambda_{n}\left(x_{n}-s\right)=0
$$

Note again that

$$
c_{0}^{\lambda} \subset c^{\lambda} \subset m^{\lambda} \subset c .
$$

The following results can be easily proved.
Theorem $1.4([5,7]) . A=\left(a_{n k}\right) \in\left(c_{0}, c_{0}\right)$ if and only if

$$
\begin{equation*}
\sup _{n, k}\left|a_{n k}\right|<\infty \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n k}=0, k=0,1,2, \ldots \tag{2}
\end{equation*}
$$

Theorem $1.5([5,7]) . A=\left(a_{n k}\right) \in\left(c, c_{0}\right)$ if and only if (1), (2) hold and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=0}^{\infty} a_{n k}=0 \tag{3}
\end{equation*}
$$

Theorem $1.6([5,7]) . A=\left(a_{n k}\right) \in\left(c_{0}, c\right)$ if and only if (1) holds and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n k}=a_{k}, k=0,1,2, \ldots \tag{4}
\end{equation*}
$$

In such a case,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}(A x)_{n}=\sum_{k=0}^{\infty} a_{k} x_{k} \tag{5}
\end{equation*}
$$

Proof. Leaving out the former part, we prove (5). Let $x=\left\{x_{k}\right\} \in c_{0}$.

$$
\begin{aligned}
(A x)_{n} & =\sum_{k=0}^{\infty} a_{n k} x_{k} \\
& =\sum_{k=0}^{\infty}\left(a_{n k}-a_{k}\right) x_{k}+\sum_{k=0}^{\infty} a_{k} x_{k} .
\end{aligned}
$$

Since $x=\left\{x_{k}\right\} \in c_{0}$, given $\epsilon>0$, there exists a positive integer N such that

$$
\left|x_{k}\right|<\frac{\epsilon}{H}, k>N,
$$

where $\left|a_{n k}\right| \leq H, n, k=0,1,2, \ldots$.
Since

$$
\lim _{n \rightarrow \infty} a_{n k}=a_{k}, k=0,1,2, \ldots, N,
$$

there exists a positive integer M such that

$$
\left|a_{n k}-a_{k}\right|<\frac{\epsilon}{L}, k=0,1,2, \ldots, N \text { and } n>M
$$

where $\left|x_{k}\right| \leq L, k=0,1,2, \ldots$
Thus, for $n>M$, we have,

$$
\begin{aligned}
\left|\sum_{k=0}^{\infty}\left(a_{n k}-a_{k}\right) x_{k}\right| & =\left|\sum_{k=0}^{N}\left(a_{n k}-a_{k}\right) x_{k}+\sum_{k>N}\left(a_{n k}-a_{k}\right) x_{k}\right| \\
& \leq \operatorname{Max}\left[\max _{0 \leq k \leq N}\left|a_{n k}-a_{k}\left\|x_{k}\left|, \max _{k>N}\right| a_{n k}-a_{k}\right\| x_{k}\right|\right] \\
& \leq \operatorname{Max}\left[\frac{\epsilon}{L} L, \frac{\epsilon}{H} H\right] \\
& =\epsilon
\end{aligned}
$$

from which it follows that

$$
\lim _{n \rightarrow \infty} \sum_{k=0}^{\infty}\left(a_{n k}-a_{k}\right) x_{k}=0
$$

Consequently

$$
\lim _{n \rightarrow \infty}(A x)_{n}=\sum_{k=0}^{\infty} a_{k} x_{k}
$$

completing the proof.

Theorem 1.7 (Kojima-Schur)(see [4, 5, 7]). $A=\left(a_{n k}\right) \in(c, c)$ if and only if (1), (4) hold and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=0}^{\infty} a_{n k}=a \text { exists } \tag{6}
\end{equation*}
$$

In such a case,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}(A x)_{n}=\sum_{k=0}^{\infty} a_{k}\left(x_{k}-s\right)+s a \tag{7}
\end{equation*}
$$

where $x=\left\{x_{k}\right\} \in c$ with $\lim _{k \rightarrow \infty} x_{k}=s$.

2. Main Results

Let $\mu=\left\{\mu_{n}\right\}$ be a sequence in K such that

$$
0<\left|\mu_{n}\right| \nearrow \infty, n \rightarrow \infty .
$$

We now prove the main results in this section.
Theorem 2.1. $A=\left(a_{n k}\right) \in\left(c_{0}^{\lambda}, c_{0}^{\mu}\right)$ if and only if

$$
\begin{align*}
& A(e), A\left(e_{k}\right) \in c_{0}^{\mu}, k=0,1,2, \ldots ; \tag{8}\\
& \sup _{n, k}\left|\frac{a_{n k}}{\lambda_{k}}\right|<\infty \tag{9}
\end{align*}
$$

and

$$
\begin{equation*}
\sup _{n, k}\left|\frac{\mu_{n}\left(a_{n, k}-a_{k}\right)}{\lambda_{k}}\right|<\infty \tag{10}
\end{equation*}
$$

where $\lim _{n \rightarrow \infty} a_{n k}=a_{k}, k=0,1,2, \ldots$.
Proof. Necessity. Let $A \in\left(c_{0}^{\lambda}, c_{0}^{\mu}\right)$. Since $e, e_{k} \in c_{0}^{\lambda}, k=0,1,2, \ldots$, it follows that $A(e), A\left(e_{k}\right) \in c_{0}^{\mu}, k=0,1,2, \ldots$, i.e., (8) holds. Since $A\left(e_{k}\right) \in c_{0}^{\mu}, \lim _{n \rightarrow \infty} a_{n k}=a_{k}, k=0,1,2, \ldots$.

Since $A(e) \in c_{0}^{\mu}, \lim _{n \rightarrow \infty} \sum_{k=0}^{\infty} a_{n k}=a$.
Next, let $x=\left\{x_{k}\right\} \in c_{0}^{\lambda}$ so that $x=\left\{x_{k}\right\} \in c$.
Let $\lim _{k \rightarrow \infty} x_{k}=s$ and

$$
\beta_{k}=\lambda_{k}\left(x_{k}-s\right)
$$

So,

$$
\begin{align*}
(A x)_{n} & =\sum_{k=0}^{\infty} a_{n k} x_{k} \\
& =\sum_{k=0}^{\infty} a_{n k}\left(\frac{\beta_{k}}{\lambda_{k}}+s\right) \\
& =\sum_{k=0}^{\infty} \frac{a_{n k}}{\lambda_{k}} \beta_{k}+s \sum_{k=0}^{\infty} a_{n k} . \tag{11}
\end{align*}
$$

Now, $\left\{(A x)_{n}\right\} \in c, \lim _{n \rightarrow \infty} \sum_{k=0}^{\infty} a_{n k}$ exists and $\left\{\beta_{k}\right\} \in c_{0}$.
Using (11), the infinite matrix

$$
\left(\frac{a_{n k}}{\lambda_{k}}\right) \in\left(c_{0}, c\right)
$$

In view of Theorem 1.6,

$$
\sup _{n, k}\left|\frac{a_{n k}}{\lambda_{k}}\right|<\infty
$$

i.e., (9)holds
and

$$
\lim _{n \rightarrow \infty} \sum_{k=0}^{\infty} \frac{a_{n k}}{\lambda_{k}} \beta_{k}=\sum_{k=0}^{\infty} \frac{a_{k}}{\lambda_{k}} \beta_{k} .
$$

Taking the limit as $n \rightarrow \infty$ in (11), we get,

$$
\begin{equation*}
y=\lim _{n \rightarrow \infty}(A x)_{n}=\sum_{k=0}^{\infty} \frac{a_{k}}{\lambda_{k}} \beta_{k}+s a . \tag{12}
\end{equation*}
$$

Using (11) and (12), we have,

$$
(A x)_{n}-y=\sum_{k=0}^{\infty} \frac{a_{n k}-a_{k}}{\lambda_{k}} \beta_{k}+s\left(\sum_{k=0}^{\infty} a_{n k}-a\right)
$$

and consequently,

$$
\begin{equation*}
\mu_{n}\left\{(A x)_{n}-y\right\}=\sum_{k=0}^{\infty} \frac{\mu_{n}\left(a_{n k}-a_{k}\right)}{\lambda_{k}} \beta_{k}+s \mu_{n}\left(\sum_{k=0}^{\infty} a_{n k}-a\right) . \tag{13}
\end{equation*}
$$

Since $\left\{(A x)_{n}\right\} \in c_{0}^{\mu}$,

$$
\lim _{n \rightarrow \infty} \mu_{n}\left\{(A x)_{n}-y\right\} \text { exists. }
$$

Since $A(e) \in c_{0}^{\mu}$,

$$
\lim _{n \rightarrow \infty} \mu_{n}\left(\sum_{k=0}^{\infty} a_{n k}-a\right) \text { exists. }
$$

Using (13) and the fact that $\left\{\beta_{k}\right\} \in c_{0}$, the infinite matrix

$$
\left(\frac{\mu_{n}\left(a_{n k}-a_{k}\right)}{\lambda_{k}}\right) \in\left(c_{0}, c_{0}\right)
$$

In view of Theorem 1.4, we have,
$\sup _{n, k}\left|\frac{\mu_{n}\left(a_{n k}-a_{k}\right)}{\lambda_{k}}\right|<\infty$,
i.e., (10)holds.

Sufficiency. Let the conditions (8), (9) and (10) hold. Let $x=\left\{x_{k}\right\} \in c_{0}^{\lambda}$. So $x=\left\{x_{k}\right\} \in c$ with $\lim _{k \rightarrow \infty} x_{k}=s$. Because of (8),

$$
\lim _{n \rightarrow \infty} a_{n k}=a_{k}, k=0,1,2, \ldots ;
$$

and

$$
\lim _{n \rightarrow \infty} \sum_{k=0}^{\infty} a_{n k}=a
$$

Now, (11) holds. In view of (9) and the fact that

$$
\lim _{n \rightarrow \infty} \frac{a_{n k}}{\lambda_{k}}=\frac{a_{k}}{\lambda_{k}}, k=0,1,2, \ldots
$$

using Theorem 1.6, it follows that the infinite matrix

$$
\left(\frac{a_{n k}}{\lambda_{k}}\right) \in\left(c_{0}, c\right)
$$

Since $\left\{\beta_{k}\right\} \in c_{0}$,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sum_{k=0}^{\infty} \frac{a_{n k}}{\lambda_{k}} \beta_{k} \text { exists, } \\
& \text { i.e., } \lim _{n \rightarrow \infty}(A x)_{n} \text { exists, using (11). }
\end{aligned}
$$

At this stage, we note that (13) also holds and

$$
\lim _{n \rightarrow \infty} \mu_{n}\left(a_{n k}-a_{k}\right)=0, k=0,1,2, \ldots
$$

Now, using (10) and Theorem 1.4, the infinite matrix

$$
\left(\frac{\mu_{n}\left(a_{n k}-a_{k}\right)}{\lambda_{k}}\right) \in\left(c_{0}, c_{0}\right)
$$

Since $\left\{\beta_{k}\right\} \in c_{0}$, we have,

$$
\lim _{n \rightarrow \infty} \sum_{k=0}^{\infty} \frac{\mu_{n}\left(a_{n k}-a_{k}\right)}{\lambda_{k}} \beta_{k}=0
$$

Already,

$$
\lim _{n \rightarrow \infty} \mu_{n}\left(\sum_{k=0}^{\infty} a_{n k}-a\right)=0
$$

Using (13), we conclude that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \mu_{n}\left\{(A x)_{n}-y\right\}=0 \\
& \text { i.e., }\left\{(A x)_{n}\right\} \in c_{0}^{\mu}
\end{aligned}
$$

completing the proof of the theorem.
Using Theorem 1.4 and Theorem 1.6, we can establish the following theorem in a similar fashion.

Theorem 2.2. $A=\left(a_{n k}\right) \in\left(c_{0}^{\lambda}, m^{\mu}\right)$ if and only if

$$
\begin{equation*}
A(e), A\left(e_{k}\right) \in m^{\mu}, k=0,1,2, \ldots ; \tag{14}
\end{equation*}
$$

and (9), (10) hold.
Next, we prove the following result.
Theorem 2.3. $A=\left(a_{n k}\right) \in\left(c^{\lambda}, c_{0}^{\mu}\right)$ if and only if

$$
\begin{equation*}
A(e), A\left(e^{\lambda}\right), A\left(e_{k}\right) \in c_{0}^{\mu}, k=0,1,2, \ldots ; \tag{15}
\end{equation*}
$$

(9) and (10) hold.

Proof. Necessity. Let $A=\left(a_{n k}\right) \in\left(c^{\lambda}, c_{0}^{\mu}\right)$. Since $e, e^{\lambda}, e_{k} \in c^{\lambda}$, it follows that $A(e), A\left(e^{\lambda}\right), A\left(e_{k}\right) \in c_{0}^{\mu}, k=0,1,2, \ldots$, i.e., (15) holds. Thus,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} a_{n k}=a_{k}, k=0,1,2, \ldots \\
& \lim _{n \rightarrow \infty} \sum_{k=0}^{\infty} a_{n k}=a
\end{aligned}
$$

and

$$
\lim _{n \rightarrow \infty} \sum_{k=0}^{\infty} \frac{a_{n k}}{\lambda_{k}}=a^{\lambda}
$$

Let, now, $x=\left\{x_{k}\right\} \in c^{\lambda}$. So $\lim _{k \rightarrow \infty} x_{k}=s$ (say). Let, as usual,

$$
\beta_{k}=\lambda_{k}\left(x_{k}-s\right)
$$

Then $\left\{\beta_{k}\right\} \in c$. Let $\lim _{k \rightarrow \infty} \beta_{k}=\beta$. Note that (11) holds and $\left\{(A x)_{n}\right\} \in c$. Hence the infinite matrix

$$
\left(\frac{a_{n k}}{\lambda_{k}}\right) \in(c, c) .
$$

In view of Theorem 1.7, (9) holds. Also,

$$
y=\lim _{n \rightarrow \infty}(A x)_{n}=\sum_{k=0}^{\infty} \frac{a_{k}}{\lambda_{k}}\left(\beta_{k}-\beta\right)+\beta a^{\lambda}+s a .
$$

Consequently,

$$
\begin{aligned}
(A x)_{n}-y & =\sum_{k=0}^{\infty} \frac{a_{n k}}{\lambda_{k}} \beta_{k}+s \sum_{k=0}^{\infty} a_{n k}-\sum_{k=0}^{\infty} \frac{a_{k}}{\lambda_{k}}\left(\beta_{k}-\beta\right)-\beta a^{\lambda}-s a \\
& =\sum_{k=0}^{\infty} \frac{a_{n k}}{\lambda_{k}}\left(\beta_{k}-\beta\right)+\beta \sum_{k=0}^{\infty} \frac{a_{n k}}{\lambda_{k}}+s \sum_{k=0}^{\infty} a_{n k}-\sum_{k=0}^{\infty} \frac{a_{k}}{\lambda_{k}}\left(\beta_{k}-\beta\right)-\beta a^{\lambda}-s a \\
& =\sum_{k=0}^{\infty} \frac{a_{n k}-a_{k}}{\lambda_{k}}\left(\beta_{k}-\beta\right)+\beta\left(\sum_{k=0}^{\infty} \frac{a_{n k}}{\lambda_{k}}-a^{\lambda}\right)+s\left(\sum_{k=0}^{\infty} a_{n k}-a\right)
\end{aligned}
$$

and so

$$
\begin{align*}
\mu_{n}\left\{(A x)_{n}-y\right\}= & \sum_{k=0}^{\infty} \frac{\mu_{n}\left(a_{n k}-a_{k}\right)}{\lambda_{k}}\left(\beta_{k}-\beta\right)+\beta \mu_{n}\left(\sum_{k=0}^{\infty} \frac{a_{n k}}{\lambda_{k}}-a^{\lambda}\right) \\
& +s \mu_{n}\left(\sum_{k=0}^{\infty} a_{n k}-a\right) \tag{16}
\end{align*}
$$

We note that since $\left\{(A x)_{n}\right\} \in c_{0}^{\mu}$,

$$
\lim _{n \rightarrow \infty} \mu_{n}\left\{(A x)_{n}-y\right\}=0
$$

Since $A\left(e^{\lambda}\right) \in c_{0}^{\mu}$,

$$
\lim _{n \rightarrow \infty} \mu_{n}\left(\sum_{k=0}^{\infty} \frac{a_{n k}}{\lambda_{k}}-a^{\lambda}\right)=0
$$

Since $A(e) \in c_{0}^{\mu}$,

$$
\lim _{n \rightarrow \infty} \mu_{n}\left(\sum_{k=0}^{\infty} a_{n k}-a\right)=0
$$

Thus, using (16), it follows that the infinite matrix

$$
\left(\frac{\mu_{n}\left(a_{n k}-a_{k}\right)}{\lambda_{k}}\right) \in\left(c_{0}, c_{0}\right) .
$$

In view of Theorem 1.4, (10) holds.
Sufficiency. Let (9), (10) and (15) hold. Note that (11) holds. Because of (9) and the fact that

$$
\lim _{n \rightarrow \infty} \frac{a_{n k}}{\lambda_{k}}=\frac{a_{k}}{\lambda_{k}}, k=0,1,2, \ldots
$$

and

$$
\lim _{n \rightarrow \infty} \sum_{k=0}^{\infty} \frac{a_{n k}}{\lambda_{k}}=a^{\lambda}
$$

we have,

$$
\left(\frac{a_{n k}}{\lambda_{k}}\right) \in(c, c) .
$$

Since $\left\{\beta_{k}\right\} \in c$,

$$
\lim _{n \rightarrow \infty} \sum_{k=0}^{\infty} \frac{a_{n k}}{\lambda_{k}} \beta_{k} \text { exists. }
$$

In view of (11), $\left\{(A x)_{n}\right\} \in c$. At this juncture, we note that (16) holds. Because of (10) and the fact that

$$
\lim _{n \rightarrow \infty} \frac{\mu_{n}\left(a_{n k}-a_{k}\right)}{\lambda_{k}}=0, k=0,1,2, \ldots,
$$

we have,

$$
\left(\frac{\mu_{n}\left(a_{n k}-a_{k}\right)}{\lambda_{k}}\right) \in\left(c_{0}, c_{0}\right)
$$

Hence

$$
\lim _{n \rightarrow \infty} \sum_{k=0}^{\infty} \frac{\mu_{n}\left(a_{n k}-a_{k}\right)}{\lambda_{k}}\left(\beta_{k}-\beta\right)=0
$$

observing that $\left\{\beta_{k}-\beta\right\} \in c_{0}$. Now, appealing to (16), we conclude that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \mu_{n}\left\{(A x)_{n}-y\right\}=0, \\
& \text { i.e., }\left\{(A x)_{n}\right\} \in c_{0}^{\mu},
\end{aligned}
$$

completing the proof of the theorem.
Using Theorem 1.6, we can establish the following theorem in a similar fashion.
Theorem 2.4. $A=\left(a_{n k}\right) \in\left(c_{0}^{\lambda}, c^{\mu}\right)$ if and only if

$$
\begin{equation*}
A(e), A\left(e_{k}\right) \in c^{\mu}, k=0,1,2, \ldots ; \tag{17}
\end{equation*}
$$

(9) and (10) hold.

References

[1] Ants Aasma, Hemen Dutta and P.N. Natarajan, An Introductory Course in Summability Theory, Wiley, 2017.
[2] F. Başar, Summability Theory and its Applications, Bentham Science Publishers, İstanbul, 2012.
[3] E. Malkowsky and V. Rakočević, Summability methods and applications, Mathematical Institute of the Serbian Academy of Sciences and Arts, 2020.
[4] A.F. Monna, Sur le théorème de Banach-Steinhaus, Indag. Math., 25 (1963), 121-131.
[5] P.N. Natarajan, An Introduction to Ultrametric Summability Theory, Springer, 2014.
[6] P.N. Natarajan, Classical Summability Theory, Springer, 2017.
[7] P.N. Natarajan, Sequence spaces and summability over valued fields, CRC Press, 2020.
[8] P.N. Natarajan, On convergence and summability with speed in ultrametric fields, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) (to appear).
[9] P.N. Natarajan, On boundedness with speed λ in ultrametric fields (submitted for publication).
[10] P.N. Natarajan, Characterization of some new matrix classes over ultrametric fields (submitted for publication).

[^0]: 2020 Mathematics Subject Classification. 40C05, 40D05, 40H05, 46 S10.
 Keywords. Ultrametric (or non-archimedean) field, matrix class, characterization, the sequence spaces m^{λ}, c^{λ} and c_{0}^{λ}.
 Received: 01 January 2022; Revised: 27 January 2022; Accepted: 28 January 2022
 Communicated by Eberhard Malkowsky
 Email address: pinnangudinatarajan@gmail.com (P. N. Natarajan)

