Filomat 36:18 (2022), 6369–6373 https://doi.org/10.2298/FIL2218369K

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Lifts of Metallic Structure on a Cross-Section

Mohammad Nazrul Islam Khan^a, Uday Chand De^b

^aDepartment of Computer Engineering, College of Computer, Qassim University, Buraydah 51452, Saudi Arabia. ^bDepartment of Pure Mathematics, University of Calcutta 35, Ballygaunge Circular Road, Kolkata 700019, West Bengal, India

Abstract. The purpose of the present work is to study the behavior of the cross-section of the metallic structure in *M* to the tangent bundle *TM*.

1. Introduction

The study of tensor fields and connections on a cross-section in the tangent bundle over the manifold M was initiated by Yano [19], Tani [21], Okubo and Houh [18], Houh and Ishihara [20], etc. Fattaev [23] studied the lifts of vector fields to the semitensor bundle of the type (2, 0) in 2008. Recently, Yildirim [22] investigated lifts of vector felds on a cross-section in the semi-tensor bundle of a tensor bundle of type (2,0). Yano and Ishihara [5] studied the cross-section of an almost complex structure F i.e. $F^2 = -I$ in an almost complex manifold M. This paper is to study the behavior of the cross-section of the metallic structure Ψ i.e. $\Psi^2 - \alpha \Psi - \beta I = 0$, α and β are positive integers, in the differentiable manifold M to the tangent bundle TM, which generalizes the notion of almost complex structure F introduced by Yano and Ishihara [5]. The metallic structure have been studied by numerous investigators [3, 4, 7, 12, 16, 24, 25]

In an *n*-dimensional differentiable manifold M, $T_p(M)$ is the tangent space at a point p of M i.e. the set of all tangent vectors of M at p. Then the set $TM = \bigcup_{p \in M} T_p(M)$ is the tangent bundle over the manifold M [8, 10, 14, 15].

The following notations will be used throughout the paper: let $\mathfrak{I}_0^0(M)$, $\mathfrak{I}_1^0(M)$, $\mathfrak{I}_1^1(M)$ be the set of functions, vector fields, 1-forms and tensor fields of type (1,1) in M, respectively. Similarly, let $\mathfrak{I}_0^0(TM)$, $\mathfrak{I}_1^0(TM)$, $\mathfrak{I}_1^1(TM)$, $\mathfrak{I}_1^1(TM)$ be the set of functions, vector fields, 1-forms and tensor fields of type (1,1) in TM, respectively.

If *f* is a function in \tilde{M} , we write f^C for the function in T(M) defined by

$$f^{\rm C} = i(df)$$

and call f^{C} the complete lift of the function f. The complete lift f^{C} of a function f has the local expression

$$f^{C} = y^{i}\partial_{i}f = \partial f$$

Keywords. Metallic structure, Tangent bundle, Mathematical Operators, Integrability, Nijenhuis tensor, Partial differential equations.

Received: 05 January 2022; Accepted: 21 April 2022

Communicated by Mića Stanković

(1)

(2)

²⁰²⁰ Mathematics Subject Classification. Primary 53C15 ; Secondary 51D15, 58A30

The researchers would like to thank the Deanship of Scientific Research, Qassim University for funding the publication of this project.

Email addresses: m.nazrul@qu.eu.sa, mnazrul@rediffmail.com (Mohammad Nazrul Islam Khan), uc_de@yahoo.com (Uday Chand De)

with respect to the induced coordinates in T(M), where (1) and (2) are partial differential equations. Suppose that $X \in \mathfrak{T}_0^1(M)$. We define a vector field X^C in T(M) by

$$X^C f^C = (Xf)^C \tag{3}$$

f being an arbitrary function in *M* and call X^C the complete lift of *X* in *T*(*M*). The complete lift X^C of *X* with components x^h in *M* has components

$$X^{C}:\left[\begin{array}{c}x^{h}\\\partial x^{h}\end{array}\right]$$
(4)

with respect to the induced coordinates in T(M).

The complete lifts to a unique algebraic isomorphism of the tensor algebra $\mathfrak{I}(M)$ into the tensor algebra $\mathfrak{I}(T(M))$ with respect to constant coefficients by mathematical operators

$$(P \otimes Q)^C = P^C \otimes Q^V + P^V \otimes Q^C, (P+R)^C = P^C + R^C,$$

where *P*, *Q* and *R* being arbitrary elements of $\mathfrak{I}(M)$ and $\mathfrak{I}_r^s(M)$ represents the set of all tensor fields of type (*r*,*s*) in *M* [11, 13].

Metallic structure: Let *M* be a differentiable manifold of class C^{∞} . A tensor field Ψ of type (1,1) on *M* is called the metallic structure if Ψ satisfies the equation

$$\Psi^2 - \alpha \Psi - \beta I = 0, \tag{5}$$

where α , β are positive integers [1, 9].

The complete lift Ψ^C of the metallic structure Ψ has the local expression [5]

$$\Psi^{C} = \begin{bmatrix} \Psi_{i}^{h} & 0\\ \partial \Psi_{i}^{h} & \Psi_{i}^{h} \end{bmatrix}.$$
(6)

Nijenhuis tensor: The Nijenhuis tensor N_{Ψ} of Ψ is given by [17]

$$N_{\Psi}(X,Y) = [\Psi X,\Psi Y] - \Psi[\Psi X,Y] - \Psi[X,\Psi Y] + \Psi^{2}[X,Y], \quad \forall X,Y \in \mathfrak{S}_{0}^{1}(M).$$
(7)

The metallic structure Ψ is said to be integrable if $N_{\Psi}(X, Y) = 0$.

2. Lifts of metallic structure on a cross-section

Let *V* be a vector field in an *n*-dimensional manifold *M* and *TM* its tangent bundle. An *n*-dimensional submanifold $\beta_V(M)$ of *TM* is called the cross section determined by *V*, where β_V is a mapping $\beta_V : M \to TM$. If the vector field *V* has local components $V^h(x)$ in *M*, then the cross section is locally defined by [5]

$$x^h = x^h, y^h = V^h(x) \tag{8}$$

with respect to the induced coordinates $(x^A) = (x^h, y^h)$ in *TM*. Let x^h be the local component of a field $X \in \mathfrak{I}_0^1(M)$ and the local components of the vector field *BX* is

$$BX: (B_i^A X^i) = \begin{bmatrix} x^h \\ x^i \partial_i V^h \end{bmatrix}$$
(9)

in *TM*, where *BX* is tangent to $\beta_V(M)$ and defined globally along submanifold $\beta_V(M)$. The local component of a vector field *DX* is

$$DX: (D_i^A X^i) = \begin{bmatrix} 0\\ x^{l_i} \end{bmatrix},$$
(10)

which is tangent to the fibre, since a fibre is locally expressed by x^h =constant, $y^h = y^h$, y^h are parameters. From (9) and (10), we have

$$[BX, BY] = B[X, Y], \qquad [DX, DY] = 0 \tag{11}$$

for any $X, Y \in \mathfrak{I}_0^1(M)$. By the definitions of complete and vertical lifts and equations (9) and (10), we have along $\beta_V(M)$ the formulas

$$X^{C} = BX + D(L_{V}X), \quad X^{V} = DX$$
⁽¹²⁾

for any $X \in \mathfrak{I}_0^1(M)$, where $L_V X$ denotes the Lie derivative of X with respect to V. The complete lift X^C and vertical lift X^V of a vector field X in M along $\beta_V(M)$ has components of the form

$$X^{C}: \begin{bmatrix} x^{h} \\ L_{V}x^{h} \end{bmatrix}, X^{V}: \begin{bmatrix} 0 \\ x^{h} \end{bmatrix}.$$
(13)

The complete lift Ψ^C of an element Ψ of $\mathfrak{I}^1_1(M)$ along $\beta_V(M)$ in *M* to T(M) has components of the form

$$\Psi^{C}: \begin{bmatrix} \Psi_{i}^{h} & 0\\ L_{V}\Psi_{i}^{h} & \Psi_{i}^{h} \end{bmatrix}$$
(14)

and then, we have along the cross section $\beta_V(M)$ the formula

$$\Psi^{C}(BX) = B(\Psi X) + D(L_{V}\Psi)X$$
(15)

for any $X \in \mathfrak{I}_0^1(M)$. When $\Psi^C(BX)$ is tangent to $\beta_V(M)$, then Ψ^C is said to leave $\beta_V(M)$ invariant. Thus we have

Theorem 2.1 [5] The complete lift Ψ^C of an element Ψ of $\mathfrak{I}_1^1(M)$ leaves the cross section $\beta_V(M)$ invariant iff $L_V \Psi = 0$.

Theorem 2.2 Let Ψ be an almost product structure in M and satisfies the condition $L_V \Psi = 0$, V is a vector field in M, then $\Psi^{C\#}$ is a metallic structure on the cross section in T(M) determined by V.

Proof. The complete lift Ψ of an element Ψ of $\mathfrak{I}_1^1(M)$ leaves the cross section $\beta_V(M)$ invariant. Let us define an element $\Psi^{C^{\#}} \in \mathfrak{I}_1^1(\beta_V(M))$ by

$$\Psi^{C\#}(BX) = \Psi^{C}(BX) = \Psi(BX), \forall X \in \mathfrak{I}_{1}^{1}(\beta_{V}(M)).$$

$$\tag{16}$$

The element $\Psi^{C^{\#}}$ is called the tensor field induced on $\beta_V(M)$ from Ψ^C . Since Ψ is a metallic structure in M and $L_V \Psi = 0$ i.e

$$\Psi^2 - \alpha \Psi - \beta I = 0 \quad and \quad L_V \Psi = 0, \tag{17}$$

from (16), we have

$$(\Psi^{C^{\#}})^2 - \alpha \Psi^{C^{\#}} - \beta I = 0.$$
⁽¹⁸⁾

Hence, $\Psi^{C\#}$ is a metallic structure in $\beta_V(M)$.

Let N_{Ψ} and $N_{\Psi^{C}}$ be Nijenhuis tensors of $\Psi \in \mathfrak{I}_{1}^{1}(M)$ and of the complete lift Ψ^{C} of Ψ respectively. From page [5, pg. 36], we obtain

$$N_{\Psi}^{C} = (N_{\Psi})^{C}$$

which implies from (15),

$$N_{\Psi^{C}}(BX, BY) = B(N_{\Psi}(X, Y)) + D((L_{V}N_{\Psi})(X, Y)$$
(19)

for any $X, Y \in \mathfrak{I}_0^1(M)$. Thus we have from (19)

Theorem 2.3 Let N_{Ψ} and $N_{\Psi^{C}}$ be Nijenhuis tensors of $\Psi \in \mathfrak{I}_{1}^{1}(M)$ and of the complete lift Ψ^{C} of Ψ respectively. Then , in order that $N_{\Psi^{C}}(BX, BY)$ is tangent to the cross-section $\beta_{V}(M)$ determined by $V \in \mathfrak{I}_{0}^{1}(M)$ for any $X, Y \in \mathfrak{I}_{0}^{1}(M)$, it is necessary and sufficient that $L_{V}N_{\Psi} = 0$.

Suppose that the complete lift Ψ^{C} of an element Ψ of $\mathfrak{I}_{1}^{1}(M)$ leave the cross section $\beta_{V}(M)$ invariant. From (16) and (11), we obtain

$$N_{\Psi^{C}}(BX, BY) = [\Psi^{C}(BX), \Psi^{C}(BY)] - \Psi^{C}[\Psi^{C}(BX), (BY)] - \Psi^{C}[(BX), \Psi^{C}(BY)] + (\Psi^{C})^{2}[\Psi^{C}(BX), \Psi^{C}(BY)] = [\Psi^{C^{\#}}(BX), \Psi^{C^{\#}}(BY)] - \Psi^{C^{\#}}[\Psi^{C^{\#}}(BX), (BY)] - \Psi^{C^{\#}}[(BX), \Psi^{C^{\#}}(BY)] + (\Psi^{C^{\#}})^{2}[\Psi^{C^{\#}}(BX), \Psi^{C^{\#}}(BY)]$$
(20)

i.e.

$$N_{\Psi^{C}}(BX, BY) = N_{\Psi^{C\#}}(BX, BY) \tag{21}$$

for any $X, Y \in \mathfrak{I}_0^1(M)$. From(19),

$$N_{\Psi^{C}}(BX, BY) = B(N_{\Psi}(X, Y)) + D((L_{V}N_{\Psi})(X, Y)$$
(22)

for any $X, Y \in \mathfrak{T}_0^1(M)$. As $L_V \Psi = 0$ implies that $L_V N_{\Psi} = 0$. Thus we have

Theorem 2.4 Let the complete lift $\Psi^{\overline{C}}$ of an element Ψ of $\mathfrak{I}_1^1(M)$ leave the cross section $\beta_V(M)$ invariant. Then

$$N_{\Psi^{C\#}} = 0$$

iff

 $N_{\Psi} = 0.$

References

- C.E. Hretcanu and M. Crasmareanu, Metallic Structures on Riemannian manifolds, Revista De La Union Matematica Argentina, 54(2) (2013) 15-27.
- [2] C.E. Hretcanu and M. Crasmareanu, Applications of the Golden ratio on Riemannian manifolds, Turk J. Math. 33 (2009) 179-191.
- [3] C.E. Hretcanu and A.M. Blaga, Hemi-slant submanifolds in metallic Riemannian manifolds, Carpathian Journal of Mathematics, 35(1) (2019) 59-68.
- [4] S. Azami, General Natural Metallic Structure on Tangent Bundle, Iran J Sci Technol Trans Sci, 42 (2018) 81–88.
- [5] K. Yano and S. Ishihara, Tangent and Cotangent Bundles, Marcel Dekker, 1973.
- [6] L.S. Das and M.N.I. Khan, Almost r-contact structures on the Tangent bundle, Differential Geometry-Dynamical Systems, 7 (2005) 34-41.
- [7] M.A. Akyol, Remarks on metallic maps between metallic Riemannian manifolds and constancy of certain maps, Honam Mathematical J., 41(2) (2019) 343–356.
- [8] M.N.I. Khan, Lifts of hypersurfaces with Quarter-symmetric semi-metric connection to tangent bundles, Afr. Mat., 25(2) (2014) 475-482.
- [9] M.N.I. Khan, Novel theorems for the frame bundle endowed with metallic structures on an almost contact metric manifold, Chaos, Solitons & Fractals, 146 (2021) 110872.
- [10] M.N.I. Khan, Tangent bundle endowed with quarter-symmetric non-metric connection on an almost Hermitian manifold, Facta Universitatis, Series: Mathematics and Informatics, 35 (1) (2020) 167-178.
- [11] M.N.I. Khan, Submanifolds of a Riemannian manifold endowed with a new type of semi-symmetric non-metric connection in the tangent bundle, International Journal of Mathematics and Computer Science, 17(1) (2022) 265–275.
- [12] M.N.I. Khan, Complete and horizontal lifts of Metallic structures, International Journal of Mathematics and Computer Science, 15(4) (2020) 983–992.
- [13] M.N.I. Khan, Tangent bundles endowed with semi-symmetric non-metric connection on a Riemannian manifold, Facta Universitatis, Series: Mathematics and Informatics, 36(4) (2021) 855-878.
- [14] S.I. Goldberg and K. Yano, Polynomial structures on manifolds, Kodai Math Sem Rep., 22 (1970) 199-218.

- [15] T. Omran, A. Sharfuddin and S.I.Husain, Lifts of structures on manifolds, Publications De L'institut Math., 36(50) (1984) 93-97.
- [16] V.W. de Spinadel, The Metallic Means family and multifractal spectra, Nonlinear Analysis, 36 (1999) 721-745 .
- [17] S. Gonul, I.K. Erken, A. Yazla and C. Murathan, A neutral relation between metallic structure and almost quadratic φ-structure. Turk J Math., 43 (2019) 268-278.
- [18] T. Okubo and C.S. Houh, Some cross-section theorems on the tangent bundle over a finslerian manifold. Annali di Matematica, 92, 129 (1972). https://doi.org/10.1007/BF02417941
- [19] K. Yano, Tensor fields and connections on cross-sections in the tangent bundle of a differentiable manifold, Proe. Royal Soc. of Edinburgh, 67 (1967) 277-288.
- [20] C.S. Houh and S. Ishihara, Tensor fields and connections on cross-sections in the tangent bundle of order *r*, Kodai Math Sem. Rep., 24 (1972) 234-250.
- [21] M. Tani, Tensor fields and connections in cross-sections in the tangent bundle of order 2, Kodai Math Sem. Rep., 21 (1969) 310-325.
- [22] F. Yıldırım, Some Notes On (2,0)-Semitensor Bundle, Konuralp Journal of Mathematics, 6(2) (2018) 246-252.
- [23] H. Fattaev, The lifts of vector fields to the semitensor bundle of the Type (2,0), Journal of Qafqaz University, 25(1) (2009) 136-140.
 [24] E. Peyghan, F. Firuzi and U.C. De, Golden Riemannian structures on the tangent bundle with g-natural metrics, Filomat 33 (8) (2019), 2543-2554.
- [25] A. Gezer, F. Topcuoglu and U. C. De, Some notes on metallic Kähler manifolds, Filomat, 35 (6) (2021) 1963-1975.