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Abstract. The purpose of the present work is to study the behavior of the cross-section of the metallic
structure in M to the tangent bundle TM.

1. Introduction

The study of tensor fields and connections on a cross-section in the tangent bundle over the manifold
M was initiated by Yano [19], Tani [21], Okubo and Houh [18], Houh and Ishihara [20], etc. Fattaev [23]
studied the lifts of vector fields to the semitensor bundle of the type (2, 0) in 2008. Recently, Yildirim [22]
investigated lifts of vector felds on a cross-section in the semi-tensor bundle of a tensor bundle of type (2,0).
Yano and Ishihara [5] studied the cross-section of an almost complex structure F i.e. F2 = −I in an almost
complex manifold M. This paper is to study the behavior of the cross-section of the metallic structure Ψ
i.e. Ψ2

− αΨ − βI = 0, α and β are positive integers, in the differentiable manifold M to the tangent bundle
TM, which generalizes the notion of almost complex structure F introduced by Yano and Ishihara [5]. The
metallic structure have been studied by numerous investigators [3, 4, 7, 12, 16, 24, 25]

In an n-dimensional differentiable manifold M, Tp(M) is the tangent space at a point p of M i.e. the set
of all tangent vectors of M at p. Then the set TM =

⋃
p∈M Tp(M) is the tangent bundle over the manifold M

[8, 10, 14, 15].
The following notations will be used throughout the paper: let ℑ0

0(M),ℑ1
0(M), ℑ0

1(M),ℑ1
1(M) be the

set of functions, vector fields, 1-forms and tensor fields of type (1,1) in M, respectively. Similarly, let
ℑ

0
0(TM),ℑ1

0(TM),ℑ0
1(TM),ℑ1

1(TM) be the set of functions, vector fields, 1-forms and tensor fields of type
(1,1) in TM, respectively.

If f is a function in M, we write f C for the function in T(M) defined by

f C = i(d f ) (1)

and call f C the complete lift of the function f . The complete lift f C of a function f has the local expression

f C = yi∂i f = ∂ f (2)
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with respect to the induced coordinates in T(M), where (1) and (2) are partial differential equations.
Suppose that X ∈ ℑ1

0(M). We define a vector field XC in T(M) by

XC f C = (X f )C (3)

f being an arbitrary function in M and call XC the complete lift of X in T(M). The complete lift XC of X with
components xh in M has components

XC :
[

xh

∂xh

]
(4)

with respect to the induced coordinates in T(M).
The complete lifts to a unique algebraic isomorphism of the tensor algebra ℑ(M) into the tensor algebra

ℑ(T(M)) with respect to constant coefficients by mathematical operators

(P ⊗Q)C = PC
⊗QV + PV

⊗QC, (P + R)C = PC + RC,

where P,Q and R being arbitrary elements of ℑ(M) and ℑs
r(M) represents the set of all tensor fields of type

(r, s) in M [11, 13].

Metallic structure: Let M be a differentiable manifold of class C∞. A tensor fieldΨ of type (1,1) on M is
called the metallic structure ifΨ satisfies the equation

Ψ2
− αΨ − βI = 0, (5)

where α, β are positive integers [1, 9].

The complete liftΨC of the metallic structureΨ has the local expression [5]

ΨC =

[
Ψh

i 0
∂Ψh

i Ψh
i

]
. (6)

Nijenhuis tensor: The Nijenhuis tensor NΨ ofΨ is given by [17]

NΨ(X,Y) = [ΨX,ΨY] −Ψ[ΨX,Y] −Ψ[X,ΨY] +Ψ2[X,Y], ∀ X,Y ∈ ℑ1
0(M). (7)

The metallic structureΨ is said to be integrable if NΨ(X,Y) = 0.

2. Lifts of metallic structure on a cross-section

Let V be a vector field in an n-dimensional manifold M and TM its tangent bundle. An n-dimensional
submanifold βV(M) of TM is called the cross section determined by V, where βV is a mapping βV : M→ TM.
If the vector field V has local components Vh(x) in M, then the cross section is locally defined by [5]

xh = xh, yh = Vh(x) (8)

with respect to the induced coordinates (xA) = (xh, yh) in TM. Let xh be the local component of a field
X ∈ ℑ1

0(M) and the local components of the vector field BX is

BX : (BA
i Xi) =

[
xh

xi∂iVh

]
(9)

in TM, where BX is tangent to βV(M) and defined globally along submanifold βV(M). The local component
of a vector field DX is

DX : (DA
i Xi) =

[
0
xh

]
, (10)
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which is tangent to the fibre, since a fibre is locally expressed by xh =constant, yh = yh, yh are parameters.
From (9) and (10), we have

[BX,BY] = B[X,Y], [DX,DY] = 0 (11)

for any X,Y ∈ ℑ1
0(M). By the definitions of complete and vertical lifts and equations (9) and (10), we have

along βV(M) the formulas

XC = BX +D(LVX), XV = DX (12)

for any X ∈ ℑ1
0(M), where LVX denotes the Lie derivative of X with respect to V.

The complete lift XC and vertical lift XV of a vector field X in M along βV(M) has components of the form

XC :
[

xh

LVxh

]
,XV :

[
0
xh

]
. (13)

The complete liftΨC of an elementΨ of ℑ1
1(M) along βV(M) in M to T(M) has components of the form

ΨC :
[
Ψh

i 0
LVΨ

h
i Ψh

i

]
(14)

and then, we have along the cross section βV(M) the formula

ΨC(BX) = B(ΨX) +D(LVΨ)X (15)

for any X ∈ ℑ1
0(M). When ΨC(BX) is tangent to βV(M), then ΨC is said to leave βV(M) invariant. Thus we

have
Theorem 2.1 [5] The complete liftΨC of an elementΨ of ℑ1

1(M) leaves the cross section βV(M) invariant iff
LVΨ = 0.
Theorem 2.2 Let Ψ be an almost product structure in M and satisfies the condition LVΨ = 0,V is a vector
field in M, thenΨC# is a metallic structure on the cross section in T(M) determined by V.
Proof. The complete liftΨ of an elementΨ of ℑ1

1(M) leaves the cross section βV(M) invariant. Let us define
an elementΨC#

∈ ℑ
1
1(βV(M)) by

ΨC#(BX) = ΨC(BX) = Ψ(BX),∀X ∈ ℑ1
1(βV(M)). (16)

The element ΨC# is called the tensor field induced on βV(M) from ΨC. Since Ψ is a metallic structure in M
and LVΨ = 0 i.e

Ψ2
− αΨ − βI = 0 and LVΨ = 0, (17)

from (16), we have

(ΨC#)2
− αΨC#

− βI = 0. (18)

Hence,ΨC# is a metallic structure in βV(M).

Let NΨ and NΨC be Nijenhuis tensors of Ψ ∈ ℑ1
1(M) and of the complete lift ΨC of Ψ respectively. From

page [5, pg. 36], we obtain

NC
Ψ = (NΨ)C

which implies from (15),

NΨC (BX,BY) = B(NΨ(X,Y)) +D((LVNΨ)(X,Y) (19)
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for any X,Y ∈ ℑ1
0(M). Thus we have from (19)

Theorem 2.3 Let NΨ and NΨC be Nijenhuis tensors of Ψ ∈ ℑ1
1(M) and of the complete lift ΨC of Ψ respec-

tively. Then , in order that NΨC (BX,BY) is tangent to the cross-section βV(M) determined by V ∈ ℑ1
0(M) for

any X,Y ∈ ℑ1
0(M), it is necessary and sufficient that LVNΨ = 0.

Suppose that the complete lift ΨC of an element Ψ of ℑ1
1(M) leave the cross section βV(M) invariant.

From (16) and (11), we obtain

NΨC (BX,BY) = [ΨC(BX),ΨC(BY)] −ΨC[ΨC(BX), (BY)] −ΨC[(BX),ΨC(BY)]

+(ΨC)2[ΨC(BX),ΨC(BY)]

= [ΨC#(BX),ΨC#(BY)] −ΨC#[ΨC#(BX), (BY)] −ΨC#[(BX),ΨC#(BY)]

+(ΨC#)2[ΨC#(BX),ΨC#(BY)] (20)

i.e.

NΨC (BX,BY) = NΨC# (BX,BY) (21)

for any X,Y ∈ ℑ1
0(M). From(19),

NΨC (BX,BY) = B(NΨ(X,Y)) +D((LVNΨ)(X,Y) (22)

for any X,Y ∈ ℑ1
0(M). As LVΨ = 0 implies that LVNΨ = 0. Thus we have

Theorem 2.4 Let the complete lift ΨC of an element Ψ of ℑ1
1(M) leave the cross section βV(M) invariant.

Then

NΨC# = 0

iff

NΨ = 0.
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