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Available at: http://www.pmf.ni.ac.rs/filomat

Weighted Generalized Tensor Functions Based on the Tensor-Product
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Abstract. There are three weighted decompositions of tensors proposed in this paper, and the correspond-
ing definitions of the weighted generalized tensor functions are given. The Cauchy integral formula of the
weighted Moore-Penrose inverse is developed for solving the tensor equations. Besides above, we give the
weighted projection tensors to discuss the representations of the weighted generalized power of tensors.
Finally, some special tensors are studied which can preserve the structural invariance under the tensor
functions defined in this paper.

1. Introduction

Tensors are used to represent multi-dimensional arrays. In 2005, the eigenvalues of real tensors which
defined by Qi provide an important theoretical basis for some applications of positive definiteness in
polynomial form [25]. After that, the studies of tensors have entered a new stages, including tensor
singular value, tensor product, tensor norm and tensor calculation and so on [6, 8, 17, 24, 26, 27, 30, 39]. The
product operation of tensors is regarded as a representation of tensor. There are some product operations
of tensors, such as Einstein product [21, 31, 32, 35], ϕ-product [29], T-product. In 2011, Kilmer and Martin
gave a tensor representation based on a tensor multiplication which called the T-product [14], at the same
time, the T-SVD is given and applied to the image deblurring. Then Kilmer et al. proposed the concepts
of orthogonal projection and tensor characteristic formula in [13], and discussed the relationship between
tensor characteristic formula and tensor characteristic group. In 2020, Wang studied the tensor neural
network model under the T-SVD in [37]. In recent years, there are some research and applications on
tensors via the T-product, which could be found in [4, 9, 14, 15, 18, 19, 22, 34, 40]. In [22], Miao first defined
the generalized inverse of tensors via the T-product. In this content, the weighted decompositions of tensors
are proposed for giving the expressions of the weighted Moore-Penrose inverse of tensors.

The proposal of matrix function is beneficial to deal with the problems in matrix theory and matrix
calculation [11]. Matrix function is also widely used in various applications. According to different
applications, matrix function can be defined in many ways. As for its definition on the square matrix, it can
be defined by the expansion of matrix power series or Jordan canonical form. For the generalized matrix
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function on a rectangular matrix, we can refer to the results given by Hawkins in [10]. Yang and Li proposed
the weighted spectral decomposition and gave the definition of the weighted generalized matrix functions
[38]. Tensors as high-order generalization of matrices are applied to multidimensional differential equations
[7, 12]. Tensor function is regarded as a tool to study multidimensional array. According to the definition of
T-product, Lund gives the concept of function on F-square tensor and introduces its calculation method in
[20]. By taking advantage of the T-SVD, Miao extends the results given by Lund to the generalized tensor
functions of rectangular tensors [23]. In this paper, the weighted generalized tensor function is written as
T-WGTF, we mainly study the definition, properties and applications of T-WGTF.

The arrangement of paper as below. In section 2, the relative concepts about the T-product and the
MN-SVD of matrices are reviewed. In section 3, the T-MN-SVD, the T-MN-CSVD of tensors are proposed,
and the definition of T-WGTF are given. The Cauchy integral formula formula of T-WGTF is proposed
for solving the tensor equation. Furthermore, the weighted generalized power of tensors are given by the
weighted projection tensors. In section 4, the structural properties invariance of some special tensors under
T-WGTF are studied.

2. Preliminaries

2.1. The Tensor T-product

It is generally to called that a is complex-value if a ∈ C, and b is real-value as b ∈ R. It is written that
A ∈ Cp1×p2×p3 is a complex tensor of order 3, where p1, p2 and p3 are arbitrary nonzero natural numbers. If
all entries of a tensor are zeros, we call the tensor as zero tensor and denote it by O. The discrete fourier
transform matrix is abbreviated as the DFT matrix. The T-product is a closed multiplication operation
which preserves the order of tensors. There are some operations which derive the definition of the T-
product [9, 13, 14]. IfA ∈ Cp1×p2×p3 , and its every frontal slice is written as p1× p2 matrix A(k), k = 1, 2, · · · , p3,
then

bcirc(A) =


A(1) A(p3)

· · · A(2)

A(2) A(1)
· · · A(3)

...
...

. . .
...

A(p3) A(p3−1)
· · · A(1)

 ,
and the inverse operation bcirc−1(bcirc(A)) = A. The first block column of bcirc(A) is written by

unfold(A) =


A(1)

A(2)

...
A(p3)

 ,
the operation “unfold” transfers a p1 × p2 × p3 tensor to a p1p3 × p2 matrix. The operation “fold” takes the
matrix unfold(A) back to a tensor, that is

fold(unfold(A)) = A.

The p3 × p3 DFT matrix is defined as follows [5],

Fp3 =
1
√

p3


1 1 1 1 · · · 1
1 ω ω2 ω3

· · · ωp3−1

...
...

...
...

. . .
...

1 ωp3−1 ω2(p3−1) ω3(p3−1)
· · · ω(p3−1)(p3−1)

 ,
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where ω = e−2πi/p3 , i is imaginary unit and Ip1 and Ip2 are identity matrices. For any block-circulant matrix
can be transformed to a block diagonal matrix, ifA ∈ Cp1×p2×p3 , then

(FH
p3
⊗ Ip1 )bcirc(A)(Fp3 ⊗ Ip2 ) =


A1

A2
. . .

Ap3

 ,
where “⊗” is the Kronecker product and Ai ∈ Cp1×p2 , i = 1, 2, · · · , p3.

Here are some related concepts about the T-product which can refer to [14, 22, 23].

Definition 2.1. [14] SupposeA ∈ Cp1×p2×p3 , B ∈ Cp2×p4×p3 , the T-productA ∗ B is a tensor which defined by

A ∗ B = fold(bcirc(A)unfold(B)) ∈ Cp1×p4×p3 .

Example 2.2. IfA ∈ Cp1×p2×3 and B ∈ Cp2×p4×3. Then

A ∗ B = fold
( A(1) A(3) A(2)

A(2) A(1) A(3)

A(3) A(2) A(1)


B(1)

B(2)

B(3)


)
∈ Cp1×p4×3.

Definition 2.3. [14] LetA ∈ Cp1×p2×p3 , the transpose ofA is defined as

A
T = fold


A(1)T

A(p3)T

...
A(2)T

 ,
and the conjugate transpose ofA is defined by

A
H = fold


A(1)H

A(p3)H

...
A(2)H

 .
Definition 2.4. [14]The identity tensor Ip2p2p3 is defined as

Ip2p2p3 = fold((Ip2 ,O, · · · ,O)T),

where Ip2 is a p2 × p2 identity matrix, and zero matrix O ∈ Rp2×p2 .

Definition 2.5. [14] AssumeA ∈ Cp2×p2×p3 , the unique inverse ofA is B = A−1 if

A ∗ B = Ip2p2p3 and B ∗A = Ip2p2p3 .

Definition 2.6. [14] N ∈ Rp2×p2×p3 is orthogonal if NT
∗ N = N ∗ NT = Ip2p2p3 . M ∈ Cp2×p2×p3 is unitary if

M
H
∗M =M∗MH = Ip2p2p3 .

Definition 2.7. [23] IfA ∈ Cp1×p2×p3 , the T-range space ofA is defined as

R(A) = Ran((FH
p3
⊗ Ip1 )bcirc(A)(Fp3 ⊗ Ip2 )),

where “Ran” is column space of matrix. Moreover, the T-null space ofA is defined as

N(A) = Null((FH
p3
⊗ Ip1 )bcirc(A)(Fp3 ⊗ Ip2 )),

where “Null” is written as null space of matrix.
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Definition 2.8. [23] Suppose thatA ∈ Cp1×p2×p3 , we design the T-norm ofA as

∥A∥ = ∥bcirc(A)∥,

where “∥ · ∥” is a unitary invariant matrix norm.

The T-SVD as a new representation of tensors is proposed by Kilmer in [14], which is developed for
raising the T-WGTF.

Lemma 2.9. [14] IfA ∈ Cp1×p2×p3 , then

A =U ∗ S ∗ VH, (1)

where U ∈ Cp1×p1×p3 , V ∈ Cp2×p2×p3 are unitary, the F-diagonal tensor (each frontal slice is diagonal matrix) S is
p1 × p2 × p3.

The representation (1) is called as the T-SVD ofA.

Lemma 2.10. [9, 13, 14] Suppose A ∈ Cp1×p2×p3 , B ∈ Cp2×p4×p3 and C ∈ Cp4×p2×p3 , then the following equations
hold,
(1) (A ∗ B) ∗ C = A ∗ (B ∗ C),
(2) bcirc(A ∗ B) = bcirc(A)bcirc(B),
(3) (A ∗ B)H = BH

∗ A
H,

(4) bcirc(AT) = bcirc(A)T, bcirc(AH) = bcirc(A)H.

Next, we give the concepts of some special tensors as follows, which including the Hermite tensor,
positive definite tensor, the weighted conjugate transform of tensor andN-unitary tensor.

Definition 2.11. A ∈ Cp2×p2×p3 is Hermite tensor ifAH = A, andB ∈ Rp2×p2×p3 is real symmetric tensor ifBT = B,
respectively.

Definition 2.12. A p1 × p1 × p3 complex tensorM is called the positive definite tensor, if

M = fold


M
O
...

O

 ,
where M ∈ Cp1×p1 is a positive definite matrix and “O” is a p1 × p1 zero matrix.

Definition 2.13. If A ∈ Cp1×p2×p3 , M and N are p1 × p1 × p3 and p2 × p2 × p3 Hermite positive definite tensors,
denote the weighted conjugate transpose ofA asA#,

A
# = N−1

∗ A
H
∗M. (2)

The block diagonal matrices of (FH
p3
⊗ Ip2 )bcirc(N)(Fp3 ⊗ Ip2 ) are Hermite positive definite matrices, which

are invertible matrices, then the Hermite definite tensorN in (2) is also invertible.

Definition 2.14. Let N ∈ Cp2×p2×p3 be an Hermite positive definite tensor. A tensor Q ∈ Cp2×p2×p3 is N-unitary if
Q

H
∗N ∗Q = Ip2p2p3 . SupposeN and Q are p2 × p2 × p3 real tensors,N is the real symmetric positive definite tensor,

Q isN-orthogonal if QT
∗ N ∗ Q = Ip2p2p3 , respectively.

Analogy with the operation of matrix multiplicative blocks, if there exist multiplicity in tensor blocks,
a result of tensors which similar to that on the matrix may be gained [23].

Lemma 2.15. [23] If A ∈ Ct1×s1×p3 , B ∈ Ct1×s2×p3 , C ∈ Ct2×s1×p3 , D ∈ Ct2×s2×p3 , E ∈ Cs1×q1×p3 , F ∈ Cs1×q2×p3 ,
G ∈ Cs2×q1×p3 andH ∈ Cs2×q2×p3 , then,(

A B

C D

)
∗

(
E F

G H

)
=

(
A ∗ E +B ∗ G A ∗ F +B ∗H
C ∗ E +D ∗ G C ∗ F +D ∗H

)
.
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2.2. The Weighted Matrix Function
In this section, it is reviewed the MN-SVD, MN-CSVD of matrices and the concept of the weighted

matrix functions.

Lemma 2.16. [36, 38] If A ∈ Cp1×p2
r , M ∈ Cp1×p1 and N ∈ Cp2×p2 are coefficient matrices of A, where r =rank(A).

Then UHMU = Ip1 and VHN−1V = Ip2 hold with U ∈ Cp1×p1 and V ∈ Cp2×p2 , furthermore,

A = U
(
Σ̂ O
O O

)
VH = UΣVH,

where Σ̂ = dia1(σ1, · · · , σr), and σ1 ≥ · · · ≥ σr > 0 are written as the nonzero weighted singular values of A.
Furthermore, suppose U = (Ur,U

′

) and V = (Vr,V
′

), where Ur ∈ Cp1×r and Vr ∈ Cp2×r. The CSVD of A is written
as

A = UrΣ̂VH
r . (3)

Lemma 2.17. [28, 33]. If A, Σ, U, V, Ur, Vr are tensors in Lemma 2.16. Then, the weighted Moore-Penrose inverse
A†MN ∈ C

p2×p1 is factorized by A†MN = N−1VrΣ̂
−1UH

r M.

Definition 2.18. [38] Suppose A ∈ Cp1×p2
r , and the scalar function f : C → C, the MN-SVD of A has the form as

(3). The weighted matrix function fMN : Cp1×p2 → Cp1×p2 is defined in terms of f : C→ C as

fMN(A) = Ur fMN(Σ̂)VH
r , fMN(Σ̂) =


f (σ1)

. . .
f (σr)

 , (4)

where each σi is nonzero weighted singular value of A, i = 1, 2, · · · , r.

3. T-MN-SVD and T-WGTF

3.1. T-MN-SVD and T-MN-CSVD
According to the MN-SVD of matrices and the weighted generalized matrix functions in Lemma 2.16

and Definition 2.18, the T-MN-SVD and T-MN-CSVD of tensors are given for defining the T-WGTF.

Theorem 3.1. (T-MN-SVD) If A ∈ Cp1×p2×p3 ,M ∈ Cp1×p1×p3 and N ∈ Cp2×p2×p3 are two Hermite positive definite
tensors, thenA is expressed as

A =U ∗ S ∗ VH (5)

withU ∈ Cp1×p1×p3 isM-unitary,V ∈ Cp2×p2×p3 isN−1-unitary, S ∈ Cp1×p2×p3 is F-diagonal.

Proof. Transform bcirc(M) and bcirc(N) into the Fourier domain,

(FH
p3
⊗ Ip1 )bcirc(M)(Fp3 ⊗ Ip1 ) =


M1

. . .
Mp3

 , (FH
p3
⊗ Ip2 )bcirc(N)(Fp3 ⊗ Ip2 ) =


N1

. . .
Np3

 ,
where Mi ∈ Cp1×p1 and Ni ∈ Cp2×p2 are Hermite definite matrices. Let Mi = LiLH

i and Ni = KiKH
i be the

Cholesky factorizations of Mi and Ni, i = 1, 2, · · · , p3. We define tensors L andK as

bcirc(L) = (Fp3 ⊗ Ip1 )


L1

. . .
Lp3

 (FH
p3
⊗ Ip1 ), bcirc(K ) = (Fp3 ⊗ Ip2 )


K1

. . .
Kp3

 (FH
p3
⊗ Ip2 ),
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andC = LH
∗A∗(K−1)H

∈ Cp1×p2×p3 , according to the T-SVD ofC, there exist two unitary tensors Ũ ∈ Cp1×p1×p3

and Ṽ ∈ Cp2×p2×p3 satisfy

Ũ
H
∗ C ∗ Ṽ = S,

where S is an F-diagonal tensor. We defineU = (L−1)H
∗ Ũ andV = K ∗ Ṽ, therefore,U isM-unitary and

V isN−1-unitary, andA =U ∗ S ∗ VH.

The T-MN-eigenvalues ofA are elements of the set spec((FH
p3
⊗ Ip1 )bcirc(S ∗ S#)(Fp3 ⊗ Ip1 ) = {|σi

j|
2, 1 ≤ i ≤

p3, 1 ≤ j ≤ p1}), we write σi
j as the weighted singular values of A. In the following content, we describe

Hermite positive definite tensors M ∈ Cp1×p1×p3 and N ∈ Cp2×p2×p3 as the weighted coefficient tensors of
A ∈ Cp1×p2×p3 .

A specific example is given to illustrate the T-MN-SVD.

Example 3.2. LetA ∈ C3×2×3, the frontal slices ofA have the following forms,

A(1) =

1 −2
0 2
7 5

 ,A(2) =

 3 −1
5 2

0.1i 8

 ,A(3) =

5 9
3 −0.1i
5 −6

 .
The weighted coefficient tensorsM ∈ C3×3×3 andN ∈ C2×2×3 are given by

M(1) =

 5 −1 2
−1 3 0
2 0 4

 ,M(2) =M(3) =

0 0 0
0 0 0
0 0 0

 ,N(1) =

(
2 −1
−1 5

)
,N(2) = N(3) =

(
0 0
0 0

)
,

Transform bcirc(M) and bcirc(N) into the Fourier domain, since the Cholesky decomposition of matrix, it
is known that

L(1) =

 2.2361 0.0000 0.0000
−0.4472 1.6733 0.0000
0.8944 0.2390 1.7728

 ,L(2) = L(3) =

0 0 0
0 0 0
0 0 0

 .
and

K(1) =

(
3.4142 0.0000
−0.7071 4.1213

)
,K(2) = K(3) =

(
0 0
0 0

)
.

By equation C = LH
∗ A ∗ (K−1)H and the T-SVD of C, we have

S(1) =

9.0432 0
0 2.9151
0 0

 ,S(2) =

2.2337 0
0 −1.2492
0 0

 ,S(3) =

2.2337 0
0 −1.2492
0 0

 .
By equationsU = (L−1)H

∗ Ũ andV = K ∗ Ṽ, we get thatU andV have the following forms,

U(1) =

−0.3379 − 0.0001i −0.0652 − 0.0058i −0.0430 + 0.0012i
−0.0538 + 0.0002i 0.3427 + 0.0119i −0.1555 − 0.0004i
0.2083 − 0.0008i −0.0196 + 0.0027i 0.2101 − 0.0005i

 ,
U(2) =

 0.1249 − 0.0001i 0.0190 − 0.0058i −0.0432 + 0.0012i
−0.0571 + 0.0002i −0.0267 + 0.0119i 0.1788 − 0.0004i
−0.3381 − 0.0008i 0.2264 + 0.0027i 0.1326 − 0.0005i

 ,
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U(3) =

−0.0278 − 0.0001i −0.2044 − 0.0058i −0.3032 + 0.0012i
−0.0896 + 0.0002i 0.1042 + 0.0119i −0.4048 − 0.0004i
−0.1812 − 0.0008i −0.0586 + 0.0027i 0.1039 − 0.0005i

 ,
and

V(1) =

(
−0.2777 − 0.0000i −1.5394 + 0.0000i
−0.1450 − 0.0036i −0.6460 − 0.0053i

)
,

V(2) =

(
−1.2754 − 0.0000i 1.7258 + 0.0000i
−3.0107 − 0.0036i −2.2611 − 0.0053i

)
,

V(3) =

(
−1.2754 − 0.0000i 1.7258 + 0.0000i
1.4333 − 0.0036i −0.9031 − 0.0053i

)
.

The MN-CSVD is applied in the weighted Moore-Penrose inverse theory, the T-MN-CSVD of tensors
is introduced as below. Let A ∈ Cp1×p2×p3 with (M,N) weighted coefficient tensors. The T-MN-SVD of A
as (5) with U ∈ Cp1×p1×p3 , V ∈ Cp2×p2×p3 and F-diagonal tensor S ∈ Cp1×p2×p3 , where U and V satisfying
U

H
∗ M ∗ U = Ip1p1p3 and VH

∗ N
−1
∗ V = Ip2p2p3 . Suppose rank(Σi) = ri, where Σi is the block diagonal

matrices obtained by the discrete Fourier diagonalization of bcirc(S), we denote Ui = (xi
1, x

i
2, · · · , x

i
p1

) and
Vi = (yi

1, y
i
2, · · · , y

i
p2

), i = 1, 2, · · · , p3. Besides, r is the maximum value of ri which written as the T-tubal-rank
ofA and denoted as rankt(A) [14]. The T-MN-CSVD is given by deleting the zero weighted singular values.
In other words,

(Σi)r = dia1(ci
1, c

i
2, · · · , c

i
r) ∈ R

r×r, (Vi)r = (yi
1, y

i
2, · · · , y

i
r) ∈ C

p2×r, (Ui)r = (xi
1, x

i
2, · · · , x

i
r) ∈ C

p1×r,

thus,

bcirc(A) = (Fp3 ⊗ Ip1 )


(U1)r(Σ1)r(VH

1 )r
. . .

(Up3 )r(Σp3 )r(VH
p3

)r

 (FH
p3
⊗ Ip2 )

= bcirc(Ur)bcirc(Sr)bcirc(VH
r ),

whereUr ∈ Cp1×r×p3 , Sr ∈ Rr×r×p3 ,Vr ∈ Cp2×r×p3 . Thus,A has the following expression,

A =Ur ∗ Sr ∗ V
H
r . (6)

The factorization (6) is called the T-MN-CSVD ofA.

Remark 3.3. In matrix theory, the MN-CSVD of A has represented as A = UrSrVH
r , where Sr = dia1(σ1, σ2, · · · , σr),

and σi , 0 for i is a positive integer from 1 to r, as for the T-MN-CSVD ofA, there are some σi
j ofA are zeros as the

choose of the T-tubal-rank ofA. In the following description, denote the nonzero weighted singular values of tensors
as ci

j, j = 1, 2, · · · , r and i = 1, 2, · · · , p3.

3.2. T-W-MP Inverse of Tensor
The weighted Moore-Penrose inverse of tensors is written as T-W-MP inverse and defined by four

equations.

Definition 3.4. [1] LetA ∈ Cp1×p2×p3 with (M,N) weighted coefficient tensors. The T-W-MP inverseX ∈ Cp2×p1×p3

ofA such that

A ∗ X ∗ A = A,X ∗A ∗ X = X, (M∗A ∗ X)H =M∗A ∗ X, (N ∗ X ∗ A)H = N ∗ X ∗ A (7)

hold.
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Corollary 3.5. Suppose A ∈ Cp1×p2×p3 with (M,N) weighted coefficient tensors, the T-MN-CSVD of A is A =
Ur ∗ Sr ∗ V

H
r . Then T-W-MP inverse ofA is given by

A
†

MN
= N−1

∗ Vr ∗ S
†

r ∗ U
H
r ∗M,

where S†r = bcirc−1
(
(Fp3 ⊗ Ir)


(Σ1)†r

(Σ2)†r
. . .

(Σp3 )†r

 (FH
p3
⊗ Ir)

)
.

In view of the concept of T-W-MP inverse of tensors, it is obtained the following inferences.

Corollary 3.6. Suppose A ∈ Cp1×p2×p3 with (M,N) weighted coefficient tensors and the T-MN-CSVD of A is
A =Ur ∗ Sr ∗ V

H
r , then

(1) bcirc(Ur ∗ U
H
r ∗M) = PR(A) = bcirc(A ∗A†

MN
),

(2) bcirc(N−1
∗ Vr ∗ V

H
r ) = PR(A#) = bcirc(A†

MN
∗ A),

(3) The tensor E := Ur ∗ V
H
r is the weighted projection tensor which makes bcirc(E ∗ E#) = PR(E) = PR(A) and

bcirc(E#
∗ E) = PR(E#) = PR(A#) hold.

The p1 × p2 × p3 weighted partial isometry tensors ofA are defined by satisfying

E
i
j ∗ E

k#

l = O,E
k
l ∗ E

i#
j = O (8)

for i , k or j , l, and

E
i
j ∗ E

#
∗ A = A ∗ E#

∗ E
i
j.

By the concept of E,

bcirc(E) = (Fp3 ⊗ Ip1 )


(U1)r

. . .
(Up3 )r



(V1)r

. . .
(Vp3 )r


H

(FH
p3
⊗ Ip2 ),

where (Ui)r ∈ Cp1×r and (Vi)r ∈ Cp2×r, then

bcirc(E(i)
j ) = (Fp3 ⊗ Ip1 )dia1(O,O, · · · ,ui

jv
iH
j , · · · ,O)(FH

p3
⊗ Ip2 ),

where ui
j and vi

j means the j-th column of (Ui)r and (Vi)r, i = 1, 2, · · · , p3, j = 1, 2, · · · , r, then we have

E =
∑

i, j

E
i
j. (9)

Furthermore, (Ei
j)
†

MN
= (Ei

j)
#.

The weighted spectral decomposition of tensors is proposed by using the weighted singular values of
tensors and the weighted partial isometry tensors as followed.

Theorem 3.7. SupposeA ∈ Cp1×p2×p3 with (M,N) weighted coefficient tensors, then the T-MN-spectral decompo-
sition ofA is

A =
∑

i, j

ci
jE

i
j, (10)

where ci
j and Ei

j are the weighted singular values and the weighted partial isometry tensors ofA, j = 1, 2, · · · , r and
i = 1, 2, · · · , p3.
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Proof. By the weighted spectral decomposition of matrices, it is obtained that the following equation holds,

bcirc(A) = (Fp3 ⊗ Ip1 )


∑

j c1
j E

1
j
. . . ∑

j cp3

j Ep3

j

 (FH
p3
⊗ Ip2 ) =

∑
i, j

ci
jbcirc(Ei

j),

then the equation (10) can be obtained by taking “bcirc−1” on the above equation.

By the fact bcirc(A†
MN

) = (bcirc(A))†MN thatA†
MN

could be expressed as

A
†

MN
=

∑
i, j

1
ci

j

E
i#
j .

3.3. T-WGTF
With the T-MN-SVD and the T-MN-CSVD, the T-WGTF could be defined as follows.

Theorem 3.8. If f : C → C, and A ∈ Cp1×p2×p3 with (M,N) weighted coefficient tensors, then the corresponding
T-WGTF f ♢

MN
: Cp1×p2×p3 → Cp1×p2×p3 is defined by

f ♢
MN

(A) =U ∗ f̂MN (S) ∗ VH,

where the function f̂MN (S) is given by

f̂MN (S) = bcirc−1
(
(Fp3 ⊗ Ip1 )


fMN(Σ1)

. . .
fMN(Σp3 )

 (FH
p3
⊗ Ip2 )

)
,

fMN(Σi) are defined in (4) and eachΣi is the diagonal block obtained by the discrete Fourier diagonalization of bcirc(S),
i = 1, 2, · · · , p3.

Proof. According to the T-MN-SVD ofA, by taking “bcirc” on (1) we have

bcirc(A) = bcirc(U ∗ S ∗ VH) = bcirc(U) · bcirc(S) · bcirc(VH),

where bcirc(U) ∈ Cp1p3×p1p3 and bcirc(VH) ∈ Cp2p3×p2p3 are matrices which satisfying bcirc(UH) · bcirc(M) ·
bcirc(U) = bcirc(Ip1p1p3 ), bcirc(VH) · bcirc(N−1) · bcirc(V) = bcirc(Ip2p2p3 ). Besides, bcirc(S) ∈ Cp1p3×p2p3 is
factorized as

bcirc(S) = (Fp3 ⊗ Ip1 )


Σ1

. . .
Σp3

 (FH
p3
⊗ Ip2 ).

By the expression of the weighted GMF in equation (4), the induced function on S is defined by

f̂MN (S) = bcirc−1
(
(Fp3 ⊗ Ip1 )


fMN(Σ1)

. . .
fMN(Σp3 )

 (FH
p3
⊗ Ip2 )

)
,

we define

bcirc( f ♢
MN

(A)) = bcirc(U)bcirc( f̂MN (S))bcirc(VH). (11)

then the above equation turns out

f ♢
MN

(A) =U ∗ f̂MN (S) ∗ VH.
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The following corollary could be easily obtained from Theorem 3.8.

Corollary 3.9. SupposeA ∈ Cp1×p2×p3 with (M,N) weighted coefficient tensors. Let f : C→ C be a scalar function,
f ♢
MN

: Cp1×p2×p3 → Cp1×p2×p3 is the corresponding T-WGTF, then
(1) [ f ♢

MN
(A)]H = f ♢

MN
(AH) and [ f ♢

MN
(A)]# = f ♢

MN
(A#),

(2) f ♢
MN

(P ∗A ∗ Q) = P ∗ f ♢
MN

(A) ∗ Q, where P ∈ Cp1×p1×p3 and Q ∈ Cp2×p2×p3 are unitary tensors.

Since the T-MN-CSVD, the T-WGTF of tensor could be derived as followed without proof.

Theorem 3.10. Suppose A ∈ Cp1×p2×p3 with (M,N) weighted coefficient tensors and the T-MN-CSVD of A is
A =Ur ∗ Sr ∗ V

H
r . If f : C→ C, then f ♢

MN
: Cp1×p2×p3 → Cp1×p2×p3 is defined by

f ♢
MN

(A) =Ur ∗ f̂MN (Sr) ∗ VH
r ,

where “ f̂MN” is given in Theorem 3.8.

According to the weighted projection tensor E, the following results could be obtained.

Corollary 3.11. Let f , 1, h : C → C, and f ♢
MN

, 1♢
MN

, h♢
MN

: Cp1×p2×p3 → Cp1×p2×p3 are induced T-WGTF. Suppose
A ∈ Cp1×p2×p3 with (M,N) weighted coefficient tensors and the T-MN-CSVD ofA isA =Ur ∗ Sr ∗ V

H
r ,

(1) If f (z) = k, then f ♢
MN

(A) = kE,
(2) If f (z) = z, then f ♢

MN
(A) = A,

(3) If f (z) = 1(z) + h(z), then f ♢
MN

(A) = 1♢
MN

(A) + h♢
MN

(A),
(4) If f (z) = 1(z)h(z), then f ♢

MN
(A) = 1♢

MN
(A) ∗ E#

∗ h♢
MN

(A).

For the non-zero weighted singular values of tensor, there may be some same ci,
j s. The same ci,

j s will not

be distinguished in the following theorem, we make different ci
j = γ

l
k, that is, γl

k is differ from one another,
where 1 ≤ k ≤ j and 1 ≤ l ≤ i.

Next, we need the function f : C → C to content the conditions as below. Suppose each Γl
k is a Jordan

curve and f is analytic on and inside Γl
k, then

(1) f (ci
j) = 0 if ci

j = 0,

(2) Each Γl
k only contain one γl

k, and there is no other γl′
k′ on or inside Γl

k.

Besides, we suppose E as

E =
∑
cl

k=γ
l
k

E
l
k.

These assumptions lead to the following result.

Theorem 3.12. SupposeA ∈ Cp1×p2×p3 is represented by

A =
∑

i, j

ci
jE

i
j.

Suppose Γl
k is needed to make above conditions hold.

(1) The connection of El
k and Γl

k is

El
k

#
=

1
2πi

∫
Γl

k

(zE −A)†
MN

dz,
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where the complex-value z stands for the integral variable of function f on the contour Γl
k.

(2) Suppose the scalar function f : C→ C is analytic in a domain which containing the set Γ =
⋃

k,l Γ
l
k, then∑

i, j

f (ci
j)E

l#
k =

1
2πi

∫
Γ

f (z)(zE −A)†
MN

dz, (12)

In particular, if ci
j , 0, then

A
†

MN
=

1
2πi

∫
Γ

1
z

(zE −A)†
MN

dz.

Proof. (1) From (9) and (10),

zE −A =
∑

i, j

(z − ci
j)E

i
j, (13)

Then,

(zE −A)†
MN
=

∑
i, j

1
z − ci

j

E
i#
j .

By (8) and the assumptions on Γl
k, we get

1
2πi

∫
Γl

k

(zE −A)†
MN

dz =
1

2πi

∫
Γl

k

∑
i, j

1
z − ci

j

E
i#
j dz =

∑
cl

k=γ
l
k

E
i#
j = E

l
k

#
.

(2) Similarly,

1
2πi

∫
Γ

f (z)(zE −A)†
MN

dz =
∑

i, j

∑
k,l

1
2πi

(
∫
Γl

k

f (z)

z − ci
j

dz)Ei#
j =

∑
i, j

f (ci
j)E

i#
j .

Finally,A†
MN

could be obtained immediately since the above result and f (z) = 1
z ,

A
†

MN
=

1
2πi

∫
Γ

1
z

(zE −A)†
MN

dz =
∑

i, j

1
ci

j

E
i#
j . (14)

IfA ∈ Cp1×p2×p3 , the following example is given to describe the process of solvingA†
MN
∈ Cp2×p1×p3 .

Example 3.13. LetA ∈ C3×2×3,M ∈ C3×3×3 andN ∈ C2×2×3 have the following forms,

A(1) =

 2 −3
0.1i 3

1 −1

 ,A(2) =

 3 0.03i
5 −2

0.1i 4

 ,A(3) =

 3 2
−1 5
3 4

 ,
M(1) =

 2 1 −2
1 5 3
−2 3 6

 ,M(2) =M(3) =

0 0 0
0 0 0
0 0 0

 ,N(1) =

(
4 −1
−1 3

)
,N(2) = N(3) =

(
0 0
0 0

)
,

by the T-MN-SVD ofA, the weighted T-singular values are c1
1 = 20.0826, c1

2 = 5.0818, c2
1 = 9.9738, c2

2 = 3.5559,
c3

1 = 9.9738, c3
2 = 3.5559, and the weighted partial isometry tensorsEi

j ofA have the following forms, j = 1, 2,
i = 1, 2, 3,

E1(1)

1 = E1(2)

1 = E1(3)

1 =

0.0277 + 0.0004i 0.0469 − 0.0006i
0.0608 + 0.0016i 0.1029 − 0.0000i
0.0681 + 0.0018i 0.1152 − 0.0001i

 ,
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E1(1)

2 = E1(2)

2 = E1(3)

2 =

 0.4153 − 0.0015i −0.2508 + 0.0045i
0.0220 + 0.0000i −0.0133 + 0.0002i
−0.0066 − 0.0006i 0.0040 + 0.0003i

 ,
E2(1)

1 =

 0.0114 − 0.0717i −0.1087 + 0.0726i
−0.0858 − 0.0676i 0.0155 + 0.1960i
0.0379 − 0.0555i −0.1197 + 0.0177i

 ,E2(2)

1 =

0.0564 + 0.0457i −0.0086 − 0.1304i
0.1014 − 0.0405i −0.1775 − 0.0846i
0.0291 + 0.0606i 0.0445 − 0.1125i

 ,
E2(3)

1 =

−0.0678 + 0.0260i 0.1172 + 0.0578i
−0.0156 + 0.1081i 0.1620 − 0.1114i
−0.0670 − 0.0051i 0.0752 + 0.0948i

 ,E2(1)

2 =

−0.1256 + 0.2012i −0.0677 − 0.0428i
0.0532 − 0.2881i 0.0972 + 0.0185i
−0.1451 + 0.3946i −0.1329 − 0.0497i

 ,
E2(2)

2 =

−0.1114 − 0.2093i 0.0709 − 0.0372i
0.2229 + 0.1901i −0.0646 + 0.0749i
−0.2692 − 0.3229i 0.1095 − 0.0903i

 ,E2(3)

2 =

 0.2370 + 0.0082i −0.0032 + 0.0800i
−0.2761 + 0.0980i −0.0326 − 0.0934i
0.4142 − 0.0716i 0.0234 + 0.1400i

 ,
E3(1)

1 =

 0.0114 + 0.0717i −0.1087 − 0.0726i
−0.0858 + 0.0676i 0.0155 − 0.1960i
0.0379 + 0.0555i −0.1197 − 0.0177i

 ,E3(2)

1 =

0.0564 − 0.0457i −0.0086 + 0.1304i
0.1014 + 0.0405i −0.1775 + 0.0846i
0.0291 − 0.0606i 0.0445 + 0.1125i

 ,
E3(3)

1 =

−0.0678 − 0.0260i 0.1172 − 0.0578i
−0.0156 − 0.1081i 0.1620 + 0.1114i
−0.0670 + 0.0051i 0.0752 − 0.0948i

 ,E3(1)

2 =

−0.1256 − 0.2012i −0.0677 + 0.0428i
0.0532 + 0.2881i 0.0972 − 0.0185i
−0.1451 − 0.3946i −0.1329 + 0.0497i

 ,
E3(2)

2 =

−0.1114 + 0.2093i 0.0709 + 0.0372i
0.2229 − 0.1901i −0.0646 − 0.0749i
−0.2692 + 0.3229i 0.1095 + 0.0903i

 ,E3(3)

2 =

 0.2370 − 0.0082i −0.0032 − 0.0800i
−0.2761 − 0.0980i −0.0326 + 0.0934i
0.4142 + 0.0716i 0.0234 − 0.1400i

 .
By (14), we getA†MN has the following frontal slices,

A†
(1)

MN =

(
0.0556 − 0.0000i −0.0349 − 0.0001i −0.1237 − 0.0001i
0.0289 − 0.0005i −0.0391 − 0.0004i −0.0942 + 0.0004i

)
,

A†
(2)

MN =

(
−0.0609 − 0.0000i 0.0454 − 0.0001i 0.1566 − 0.0001i
−0.0548 − 0.0005i 0.0693 − 0.0004i 0.1553 + 0.0004i

)
,

A†
(3)

MN =

(
0.1154 − 0.0000i 0.0887 − 0.0001i −0.1021 − 0.0001i
−0.0419 − 0.0005i −0.0120 − 0.0004i 0.0565 + 0.0004i

)
.

The Cauchy integral formula for the T-WGTF in following corollary is developed for solving tensor equation.

Corollary 3.14. LetA, E, Γ and f have the forms in Theorem 3.12, if f ♢
MN

: Cp1×p2×p3 → Cp1×p2×p3 , then

f ♢
MN

(A) = E ∗ (
1

2πi
(
∫
Γ

f (z)(zE −A)†
MN

dz) ∗ E. (15)

Proof. It follows from (9), (10) and (12) that (15) holds.

Theorem 3.15. The weighted generalized tensor resolvent ofA is denoted by R̂(z,A) and defined as

R̂(z,A) = (zE −A)†
MN
,

then for any λ, µ , ci
j, we have

R̂(λ,A) − R̂(µ,A) = (µ − λ)R̂(λ,A) ∗ E ∗ R̂(µ,A). (16)
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Proof. Since

(zE −A)†
MN
=

∑
i, j

1
z − ci

j

E
i#
j

that the left-hand side of (16) comes to

R̂(λ,A) − R̂(µ,A) =
∑

i, j

(
1
λ − ci

j

−
1
µ − ci

j

)Ei#
j

= (µ − λ)(
∑

i, j

1
λ − ci

j

E
i#
j ) ∗ E ∗ (

∑
k,l

1
µ − ck

l

E
k#

l )

= (µ − λ)R̂(λ,A) ∗ E ∗ R̂(µ,A).

The results in Corollary 3.14 and Theorem 3.15 are used to solve the following tensor equation,

A ∗ X ∗ B = D. (17)

HereA ∈ Cp1×p2×p3 with (M,N) weighted coefficient tensors, B ∈ Ck1×k2×p3 with (P,Q) weighted coefficient
tensors and D ∈ Cp1×k2×p3 . The T-MN-Spectral decomposition and the relative weighted partial isometry
tensors ofA and B are given by

A =

p3,rA∑
i, j=1

ciA
j E

iA
j ,E

A =

p3,rA∑
i, j=1

E
iA
j ,B =

p3,rB∑
i, j=1

ciB
j E

iA
j ,E

B =

p3,rB∑
i, j=1

E
iB
j ,

where rA =rankt(A) and rB =rankt(B).

Theorem 3.16. If A, B and D have the above forms, the curve Γ1 surrounds c(A) = {ciA
j , i = 1, 2, · · · , p3,

j = 1, 2, · · · , rA}and the curve Γ2 surrounds c(B) = {ciB
j , i = 1, 2, · · · , p3, j = 1, 2, · · · , rB}. Then the solution of (17)

is

X = −
1

4π2

∫
Γ1

∫
Γ2

R̂MN (λ,A) ∗ D ∗ R̂PQ(µ,B)
λµ

dµdλ.

Proof. It follows from (15) that

A = EA ∗ (
1

2πi

∫
Γ1

λR̂MN (λ,A)dλ) ∗ EA,

B = EB ∗ (
1

2πi

∫
Γ2

µR̂PQ(µ,B)dµ) ∗ EB.

Therefore,

A ∗ X ∗ B = EA ∗ (
1

2πi

∫
Γ1

R̂MN (λ,A)dλ) ∗ D ∗ (
1

2πi

∫
Γ2

R̂PQ(µ,B)dµ) ∗ EB

= EA ∗ (EA)#
∗ D ∗ (EB)#

∗ (EB) = A ∗A†
MN
∗ D ∗ B

†

PQ
∗ B,

whileA ∗A†
MN
∗ D ∗ B

†

PQ
∗ B = D is equal to the solution of (17) is existent, which means that a solution of

(17) is X = A†
MN
∗ D ∗ B

†

PQ
if (17) holds.
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Next, we give the following example for solving the equation (17).

Example 3.17. LetA with the weighted coefficient tensorsM andN have the following forms,

A(1) =

 3 −0.2i
1 2
−1 4

 ,A(2) =

0.1i 2
−1 3
5 −2

 ,A(3) =

 1 2
−3 2
−1 0

 ,
M(1) =

 4 2 −1
2 5 −1
−1 −1 6

 ,M(2) =M(3) =

0 0 0
0 0 0
0 0 0

 ,N(1) =

(
2 −1
−1 3

)
,N(2) = N(3) =

(
0 0
0 0

)
.

The frontal slices of B with the weighted coefficient tensors P and Q are as follows,

B(1) =

 2 0.1i
−3 5
2 1

 ,B(2) =

 3 0
−2 1
0.2i 5

 ,B(3) =

 5 −2
−1 2
3 0

 ,
P(1) =

 3 2 −0.01i
2 4 2

−0.01i 2 7

 ,P(2) = P(3) =

0 0 0
0 0 0
0 0 0

 ,Q(1) =

(
3 −1
−1 5

)
,Q(2) = Q(3) =

(
0 0
0 0

)
.

Considering the existence of the solution of (17), we suppose the frontal slices ofD as follows,

D(1) =

 0.0776 + 0.0146i −0.0526 + 0.0040i
−0.6927 − 0.0068i 0.5402 + 0.0209i
0.1308 + 0.0073i 0.2673 + 0.0069i

 ,
D(2) =

 0.3265 + 0.0146i 0.1078 + 0.0040i
−0.0431 − 0.0068i 0.2579 + 0.0209i
0.0991 + 0.0073i −0.4260 + 0.0069i

 ,
D(3) =

0.3449 + 0.0146i −0.0265 + 0.0040i
0.3204 − 0.0068i 0.1381 + 0.0209i
0.3176 + 0.0073i 0.0833 + 0.0069i

 .
By Theorem 3.16, the solution of (17) is that X = A†

MN
∗ D ∗ B

†

PQ
. Thus, the solution X ∈ C2×3×3 has the

following frontal slices,

X(1) =

(
0.0168 + 0.0002i −0.0072 + 0.0000i 0.0243 − 0.0002i
−0.0107 − 0.0000i −0.0174 + 0.0002i −0.0082 + 0.0002i

)
,

X(2) =

(
−0.0342 + 0.0003i −0.0374 + 0.0000i −0.0229 + 0.0001i
−0.0134 − 0.0000i −0.0046 + 0.0002i −0.0156 + 0.0003i

)
,

X(3) =

(
0.0296 + 0.0003i 0.0363 + 0.0000i −0.0010 − 0.0001i
0.0251 − 0.0001i 0.0281 + 0.0002i 0.0320 + 0.0002i

)
.

3.4. Weighted Generalized Power of Tensor
The definition of the weighted generalized power of the tensor is given by the projection tensor E.

Definition 3.18. Suppose A ∈ Cp1×p2×p3 with (M,N) weighted coefficient tensors and the T-MN-CSVD of A is
A =Ur ∗ Sr ∗ V

H
r . The weighted generalized powerA(k) ofA can be factorized as,

A
(k) = A(k−1)

∗ E
#
∗ A, k ≥ 1,

A
(k) = A(k+1)

∗ E
#
∗ A

(−1), k < 1,

where

A
(0) = E =Ur ∗ V

H
r ,A

(−1) =Ur ∗ S
†

r ∗ V
H
r .
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Here are expressions of the weighted generalized odd power and even power of tensor which obtained
directly from Definition 3.18.

Corollary 3.19. SupposeA ∈ Cp1×p2×p3 with (M,N) coefficient tensors, then

A
(2k+1) = (A ∗A#)k

∗ A,

A
(2k) = (A ∗A#)k

∗ E.

The Taylor expansion of the T-WGTF which induced by f : C→ C could be obtained as follows.

Theorem 3.20. SupposeA ∈ Cp1×p2×p3 with (M,N) coefficient tensors, the complex-valued function f : C→ C is
introduced by

f (z) =
∞∑

k=0

f (k)(z0)
k!

(z − z0)k

for |z − z0| < R. Then the T-WGTF f ♢
MN

: Cp1×p2×p3 → Cp1×p2×p3 is

f ♢
MN

(A) =
∞∑

k=0

f (k)(z0)
k!

(A− z0E)k

for |ci
j − z0| < R, i = 1, 2, · · · , p3, j = 1, 2, · · · , ri.

Proof. By Definition 3.18 and the T-MN-CSVD, we get

(A− z0E)k =Ur ∗ (Sr − z0I)k
∗ V

H
r , k = 0, 1, · · ·

For n = 0, 1, · · · , we define

f ♢
MNn

(A) =
n∑

k=0

f (k)(z0)
k!

(A− z0E)k

=Ur ∗

( n∑
k=0

f (k)(z0)
k!

(Sr − z0I)k
)
∗ V

H
r ,

such that

∥ f ♢
MN

(A) − f ♢
MNn

(A)∥ ≤ ∥Ur∥∥

∞∑
k=n+1

f (k)(z0)
k!

(Sr − z0I)k
∥∥V

H
r ∥,

According to Definition 2.8, then

∥ f ♢
MN

(A) − f ♢
MNn

(A)∥ → 0, (n→∞).

Example 3.21. LetA ∈ Cp1×p2×p3 with (M,N) coefficient tensors, f : C→ C is given by

f (z) =
∞∑

k=0

f (k)(0)
k!

(z)k

for |z| < R. The functions f1(z) and f2(z) are defined as

f1(z) =
∞∑

k=0

f (2k)(0)
(2k)!

(z)k, f2(z) =
∞∑

k=0

f (2k+1)(0)
(2k + 1)!

(z)k.
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According to Corollary 3.19 and Theorem 3.20, the related T-WGTF f ♢
MN

: Cp1×p2×p3 → Cp1×p2×p3 comes to

f ♢
MN

(A) = f ♢1MN (A ∗A#) ∗ E + f ♢2MN (A ∗A#) ∗ A

for |ci
j| < R. From Maclaurin formulas of complex functions, the Maclaurin formulas of the exponential,

logarithmic and trigonometric T-WGTFs are induced to

exp♢
MN

(A) =
∞∑

k=0

1
(2k)!

(A ∗A#)k
∗ E +

∞∑
k=0

1
(2k + 1)!

(A ∗A#)k
∗ A,

ln♢
MN

(I +A) =
∞∑

k=0

1
(2k + 1)!

(A ∗A#)k
∗ A −

∞∑
k=0

1
(2k)!

(A ∗A#)k
∗ E,

sin♢
MN

(A) =
∞∑

k=0

(−1)k 1
(2k + 1)!

(A ∗A#)k
∗ A,

cos♢
MN

(A) =
∞∑

k=0

(−1)k 1
(2k)!

(A ∗A#)k
∗ E,

sinh♢
MN

(A) =
∞∑

k=0

1
(2k + 1)!

(A ∗A#)k
∗ A,

cosh♢
MN

(A) =
∞∑

k=0

1
(2k)!

(A ∗A#)k
∗ E.

IfA ∈ Cp1×p1×p3 orA ∈ Cp2×p2×p3 , we call it the F-square tensor. The conclusion of applying the T-WGTF
to an F-square block tensor as follows.

Remark 3.22. LetA ∈ Cp1×p2×p3 with (M,N) coefficient tensors and

B =

(
O A

A
#
O

)
.

Assume that f : C→ C is an odd function, the T-WGTF could be expressed as

f(M+N)(M+N)(B) =
(
O f ♢

MN
(A)

f ♢
MN

(A#) O

)
.

Actually, since Lemma 2.15, B is factorized as

B =
1
2

(
Ip1p1p3 O

O N
−1

)
∗

(
Ur −Ur
Vr Vr

)
∗

(
Sr O

O −Sr

)
∗

(
U

H
r −V

H
r

−U
H
r V

H
r

)
∗

(
M O

O Ip2p2p3

)
,

then

2 f(M+N)(M+N)(B)

=

(
Ip1p1p3 O

O N
−1

)
∗

(
Ur −Ur
Vr Vr

)
∗

(
fMN (Sr) O

O − fMN (Sr)

)
∗

(
U

H
r −V

H
r

−U
H
r V

H
r

)
∗

(
M O

O Ip2p2p3

)
=

(
O 2Ur ∗ fMN (Sr) ∗ VH

r
2N−1

∗ Vr ∗ fMN (Sr) ∗ UH
r ∗M O

)
,

which equals to

f(M+N)(M+N)(B) =
(
O f ♢

MN
(A)

f ♢
MN

(A#) O

)
.
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If a complex-value function can be expanded as f (z) =
∑
∞

k=0 akzk, we denote the odd part fodd and even part feven
as following forms,

fodd(z) =
∞∑

k=0

a2k+1z2k+1, feven(z) =
∞∑

k=0

a2kz2k.

Therefore, for B in Remark 3.22,

f(M+N)(M+N)(B) =

 fMNeven (
√
A ∗A#) f ♢

MNodd(A)
f ♢
MNodd(A) fMNeven (

√
A# ∗ A)

 .
Here is an example showed by the T-WGTF and Lemma 2.15.

Example 3.23. LetB ∈ C(p1+p2)×(p1+p2)×p3 be as Remark 3.22, then the weighted exponential function exp(M+N)(M+N)(B)
is denoted by

exp(M+N)(M+N)(B) =

 cosh(
√
A ∗A#) sinh♢

NN
(
√
A# ∗ A)

sinh♢
NN

(
√
A# ∗ A) cosh(

√
A# ∗ A)


=

 cosh(
√
A ∗A#) A ∗ (

√
A# ∗ A)†

NN
∗ sinh(

√
A# ∗ A)

sinh(
√
A# ∗ A) ∗ (

√
A# ∗ A)†

NN
∗ A

# cosh(
√
A# ∗ A)

 .
4. Function Invariance

4.1. Weighted GMF Invariance

It is known that the studying of matrix properties which are invariant is more efficient under matrix
functions at accurate algorithms, and the matrix properties preservation under GMF is provided in [3].
The weighted GMF are introduced in [38], but the structural preservation of matrix under the weighted
GMF has not been mentioned. Before studying the invariance of structural properties of tensors under the
T-WGTF, the related concepts and properties of matrices are given first.

Definition 4.1. [16] A ∈ Cp1×p2 is centrohermitian (skew-centrohermitian) if Rp1 ARp2 = A (respectively, Rp1 ARp2 =

−A), where Rp1 ∈ C
p1×p1 and Rp2 ∈ C

p2×p2 are reverse matrices.

Lemma 4.2. [2] Let A ∈ Cp1×p2
r with coefficient matrices M and N. The scalar function is f : C→ C and the induced

weighted GMF is fMN : Cp1×p2 → Cp1×p2 , then
(1) [ fMN(A)]# = fNM(A#),
(2) If X ∈ Cp1×p1 and Y ∈ Cp2×p2 are unitary, then fMN(XAY) = X fMN(A)Y,
(3) If A = A1 ⊕A2 ⊕ · · · ⊕Ak, then fMN(A) = fMN(A1)⊕ fMN(A2)⊕ · · · ⊕ fMN(Ak), where “⊕ ” means the direct sum
of matrices.

With the above lemma, the structure invariance under the weighted GMF has obtained as follows.

Lemma 4.3. Let A ∈ Cp1×p2
r , M and N are coefficient matrices of A. The scalar function is f : C → C and

fMN : Cp1×p2 → Cp1×p2 is the induced weighted GMF.
(1) If reverse matrices Rp1 ∈ C

p1×p1 , Rp2 ∈ C
p2×p2 make Rp1 ARp2 = A (or Rp1 ARp2 = −A) hold, then Rp1 fMN(A)Rp2 =

fMN(A) (or Rp1 fMN(A)Rp2 = − fMN(A)),
(2) If AA# = A#A, then fMN(A) fMN(A)# = fMN(A)# fMN(A),
(3) If A ∈ Cp2×p2 is a circular matrix, then fMN(A) is also a circular matrix.
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Proof. (1) Since A is centrohermitian, there exist unitary matrices Rp1 and Rp2 such that Rp1 ARp2 = A hold.
By Lemma 4.2, Rp1 fMN(A)Rp2 = fMN(Rp1 ARp2 ) = fMN(A) = fMN(A). Similarly, if A is skew-centrohermitian,
then Rp1 ARp2 = −A. Thus, Rp1 fMN(A)Rp2 = fMN(Rp1 ARp2 ) = fMN(−A) = − fMN(A) = − fMN(A).

(2) According to the MN-SVD of A and A#, we get

AA# = UΣVHN−1VΣHUHM,

then

fMN(AA#) = fMN(UΣVHN−1VΣHUHM)

= U fMN(Σ)VHN−1V fMN(ΣH)UHM = fMN(A) fMN(A#).

Since AA# = A#A, fMN(A) fMN(A)# = fMN(A)# fMN(A) holds directly.
(3) Note that circulant matrices are diagonalized by the DFT matrix, then A can be expressed as

A = Fp2ΛFH
p2
= Fp2


λ1

. . .
λp2

 FH
p2
,

where λ1 ≥ λ2 ≥ · · · ≥ λp2 ≥ 0 are the eigenvalues of A. Note that Fp2 is unitary, then

fMN(A) = Fp2


f (λ1)

. . .
f (λp2 )

 FH
p2
.

Hence, fMN(A) is also circulant.

Definition 4.4. Let A ∈ Rp1×p1 , A is called the permutation matrix if the elements in each row and column contain
the unique 1, and the others are 0.

Lemma 4.5. Let A ∈ Cp1×p2
r with coefficient matrices M and N, f : C → C is a complex-value function, fMN :

Cp1×p2 → Cp1×p2 is weighted GMF.
(1) If each element of a column(row) of A is 0, then the corresponding column(row) of fMN(A) is also composed of 0,
(2) If PAQ is block-diagonal, then fMN(A) is also block-diagonal, where P ∈ Rp1×p1 and Q ∈ Rp2×p2 are permutation
matrices.

Proof. (1) We suppose the last column of A are zeros, for any permutation matrix Q ∈ Cp2×p2 , fMN(AQ) =

fMN(A)Q, denote A =
(
Â O

)
, as A = UrΣrVH

r and Â = ÛrΣ̂rV̂H
r , we have

A =
(
Â O

)
= Ûr

(
Σ̂r O

) (V̂H
r O

O 1

)
= UrΣrVH

r ,

where r =rank(A), thus, the elements of the last row of VH
r are zeros, the result can be obtained.

(2) It is a straightforward result by Lemma 4.2(3).

Lemma 4.6. Let A ∈ Rp1×p2 be nonnegative, M and N are coefficient matrices of A, f : R → R is the odd part
of a differentiable function and the Maclaurin expansion of f is f (z) =

∑
∞

k=0 ckzk with c2k+1 ≥ 0. Suppose f (z) is
convergent for |z| < R. Then fMN(A) is also nonnegative for |σi − z| < R, where σi is the weighted singular values of
A, i = 1, 2, ..., r, r = rank(A).
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Proof. We assume that f is

f (x) =
∞∑

k=0

c2k+1x2k+1 and c2k+1 ≥ 0.

According to the MN-CSVD of A,

AA# = AN−1AHM = UrΣ
2
r U−1

r ≥ 0,

which means that (AA#)kA = UrΣ
2k+1
r VH

r ≥ 0. Then

fMN(A) = Ur fMN(Σr)VT
r = Ur

∞∑
k=0

c2k+1Σ
2k+1
r VT

r =

∞∑
k=0

c2k+1UrΣ
2k+1
r VT

r ≥ 0.

4.2. Tensor Function Invariance
With the study of structure invariance of the weighted GMF, the structure invariance of the T-WGTF of

tensor could be obtained similarly in this section.

Definition 4.7. [23] R ∈ Cp1×p1×p3 is called the reverse tensor if

R = fold


Rp1

O
...

O

 ,
while Rp1 ∈ C

p1×p1 is a reverse matrix.

Definition 4.8. [23] LetA ∈ Cp1×p2×p3 be centrohermitian (Skew-centrohermitian) ifRp1∗A∗Rp2 = A (Rp1∗A∗Rp2 =

−A).

Theorem 4.9. Suppose A ∈ Cp1×p2×p3 with (M,N) coefficient tensors, if f : C → C, and f ♢
MN

: Cp1×p2×p3 →

Cp1×p2×p3 is corresponding T-WGTF.
(1) IfRp1 ∗A∗Rp2 = A (orRp1 ∗A∗Rp2 = −A), thenRp1 ∗ f ♢

MN
(A) ∗Rp2 = f ♢

MN
(A) (orRp1 ∗A∗Rp2 = − f ♢

MN
(A)),

where Rp1 and Rp2 are reverse tensors,
(2) IfA#

∗ A = A ∗A#, then f ♢
MN

(A#) ∗ f ♢
MN

(A) = f ♢
MN

(A) ∗ f ♢
MN

(A#),
(3) If each frontal slice of A ∈ Cp2×p2×p3 is a circular matrix, then the frontal slices of f ♢

NN
(A) are also circular

matrices,

Proof. (1) It follows from there exist reverse tensorsRp1 ∈ C
p1×p1×p3 andRp2 ∈ C

p2×p2×p3 satisfyingRp1 ∗A∗Rp2 =

A that

R
H
p1
∗ Rp1 = fold(bcirc(RH

p1
)unfold(Rp1 ))

= fold
( 

RH
p1

0 · · · 0
0 RH

p1
· · · 0

...
...
. . .

...
0 0 · · · RH

p1



Rp1

0
...
0


)
= Ip1p1p3 ,

which imply thatRp1 is a unitary tensor, by the same method thatRp2 is also unitary. According to Corollary
3.5,

Rp1 ∗ f ♢
MN

(A) ∗ Rp2 = f ♢
MN

(Rp1 ∗ A ∗ Rp2 ) = f ♢
MN

(A) = f ♢
MN

(A),
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which means f ♢
MN

(A) is also centrohermitian. Skew-centrohermitian can be obtained similarly.
(2) Similar to the matrix case, the result could be achieved if the condition f ♢

MN
(A#)∗ f ♢

MN
(A) = f ♢

MN
(A#
∗

A) holds. Note that

f ♢
MN

(S) ∗ f ♢
MN

(SH) = bcirc−1
(
(Fp3 ⊗ Ip1 )


f (Σ1)

f (Σ2)
. . .

f (Σp3 )

 (FH
p3
⊗ Ip2 )

)

∗ bcirc−1
(
(Fp3 ⊗ Ip2 )


f (Σ1)H

f (Σ2)H

. . .
f (Σp3 )H

 (FH
p3
⊗ Ip1 )

)

= f ♢
MN

(S ∗ SH).

Since the T-MN-SVD ofA,

f ♢
MN

(A) ∗ f ♢
MN

(A#) =U ∗ f ♢
MN

(S) ∗ VH
∗ N

−1
∗ V ∗ f ♢

MN
(SH) ∗ UH

∗M

=U ∗ f ♢
MN

(S ∗ SH) ∗ UH
∗M = f ♢

MN
(A#
∗ A) = f ♢

MN
(A#) ∗ f ♢

MN
(A),

Hence, the second result holds.
(3) IfA ∈ Cp2×p2×p3 , sinceA is an F-circulant tensor, then

bcirc(A) =


A(1) A(p3)

· · · A(2)

A(2) A(1)
· · · A(3)

...
...

. . .
...

A(p3) A(p3−1)
· · · A(1)

 =


Fp2Λ
(1)FH

p2
Fp2Λ

(p3)FH
p2

· · · Fp2Λ
(2)FH

p2

Fp2Λ
(2)FH

p2
Fp2Λ

(1)FH
p2

· · · Fp2Λ
(3)FH

p2

...
...

. . .
...

Fp2Λ
(p3)FH

p2
Fp2Λ

(p3−1)FH
p2
· · · Fp2Λ

(1)FH
p2


= (Ip3 ⊗ Fp2 )(Fp3 ⊗ Ip2 )


Λ1

. . .
Λp3

 (FH
p3
⊗ Ip2 )(Ip3 ⊗ FH

p2
),

where eachΛ(i) is a diagonal matrix composed of eigenvalues of A(i), i = 1, 2, · · · , p3. In this way, the T-WGTF
ofA can be factorized as

f ♢
MN

(A) = bcirc−1

(
(Ip3 ⊗ Fp2 )(Fp3 ⊗ Ip2 )


f ♢MN(Λ1)

. . .
f ♢MN(Λp3 )

 (FH
p3
⊗ Ip2 )(Ip3 ⊗ FH

p2
)
)
,

where f ♢MN(Λi) =


f (λi

1)
. . .

f (λi
ri

)

 and ri = rank(Λi) = rank(A(i)), i = 1, 2, · · · , p3.

The proof is completed.

In order to get the structural invariance of block diagonal tensor under the T-WGTF, the below lemma
is necessary.

Lemma 4.10. Suppose thatA ∈ Cp1×p2×p3 with (M,N) coefficient tensors, if

A =


A1

. . .
Ak

 , (18)
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whereAi ∈ Csi×ti×p3 and

k∑
i=1

si = p1 and
k∑

i=1

ti = p2,

then

f ♢
MN

(A) =


f ♢
MN

(A1)
. . .

f ♢
MN

(Ak)

 .
Proof. According to Lemma 2.15 and the T-MN-CSVD ofAi, then

A =


A1

. . .
Ak

 =

Ur1

. . .
Urk

 ∗

Sr1

. . .
Srk

 ∗

V

H
r1

. . .
V

H
rk

 ,
whereUri ∈ C

si×ri×p3 , Sri ∈ C
ri×ri×p3 andVi ∈ Cti×ri×p3 . For convenience, the three F-block diagonal tensors of

the above equation are denoted as Ûr, D̂r and V̂H
r . It is noticed that bcirc(Sr) is composed of the weighted

singular values of A by the T-MN-CSVD of A, while bcirc(D̂r) is composed of the weighted T-singular
values ofAi. Then there exists permutation tensor P ∈ Rr×r×p3 such that Sr = P ∗ D̂r ∗ P

T. Hence,A could
be expressed by

A =Ur ∗ Sr ∗ V
H
r =Ur ∗ P ∗ D̂r ∗ P

T
∗ V

H
r = Ûr ∗ D̂r ∗ V̂

H
r ,

which means that Ûr =Ur ∗ P and V̂r =Vr ∗ P. Therefore, the T-WGTF could be expressed as followed

f ♢
MN

(A) =Ur ∗ f ♢
MN

(Sr) ∗ VH
r =Ur ∗ P ∗ f ♢

MN
(D̂r) ∗ PT

∗ V
H
r = Ûr ∗ f ♢

MN
(D̂r) ∗ V̂H

r

=


f ♢
MN

(A1)
. . .

f ♢
MN

(Ak)

 .
The proof is completed.

As a consequence, if a third-order tensor could be expressed by the “direct sum” of the other third-order
tensors, then it is invariant under the T-WGTF.

Theorem 4.11. LetA ∈ Cp1×p2×p3 with (M,N) coefficient tensors, f : C→ C, and f ♢
MN

: Cp1×p2×p3 → Cp1×p2×p3 . If
there have two permutation tensors

P = fold


P
O
...

O

 ∈ Rp1×p1×p3 and Q = fold


Q
O
...

O

 ∈ Rp2×p2×p3

make P ∗ A ∗ Q be an F-block diagonal tensor, where P ∈ Rp1×p1 and Q ∈ Rp2×p2 are permutation matrices. Then
P ∗ f ♢

MN
(A) ∗ Q is also F-block diagonal.

Proof. Suppose P ∗ A ∗ Q = B, then B can be factorized as (18). In this case, since P and Q are unitary
tensors,

P ∗ f ♢
MN

(A) ∗ Q = f ♢
MN

(P ∗A ∗ Q) = f ♢
MN

(B).

According to the result of Lemma 4.10, P ∗ f ♢
MN

(A) ∗ Q is also F-block diagonal.



Y. Liu, H. Ma / Filomat 36:18 (2022), 6403–6426 6424

The following theorem states that tensors preserved nonnegativity under the T-WGTF.

Theorem 4.12. IfA ∈ Rp1×p2×p3 is a nonnegative tensor with (M,N) coefficient tensors, f : R→ R is the odd part
of an analytic function, and its Maclaurin expansion is

f (z) =
∞∑

k=0

ckzk

with c2k+1 ≥ 0, suppose that it is convergent for |z| < R. Then the corresponding T-WGTF f ♢
MN

: Cp1×p2×p3 →

Cp1×p2×p3 is nonnegative for |ci
j| < R.

Proof. Assume the complex-value function f is

f (z) =
∞∑

k=0

c2k+1z2k+1,

where c2k+1 ≥ 0. SinceA2k+1 = (A ∗A#)2k
∗ A, it is known that

(A ∗A#)2k
∗ A = (Ur ∗ Sr ∗ V

T
r ∗ N

−1
∗ Vr ∗ S

T
r ∗ U

T
r ∗M)k

∗ Ur ∗ Sr ∗ V
T
r =Ur ∗ S

2k+1
r ∗ V

T
r ,

According toA is nonnegative, we have

f ♢
MN

(A) =Ur ∗ (
∞∑

k=0

c2k+1S
2k+1
r ) ∗ VT

r ≥ 0.

Therefore, f ♢
MN

(A) is also nonnegative.

The following result may transform the calculation of complex tensors into real tensors.

Theorem 4.13. If A ∈ Cp1×p2×p3 with (M,N) coefficient tensors, f : C → C and f (0) = 0, f ♢
MN

: Cp1×p2×p3 →

Cp1×p2×p3 is T-WGTF, and ϕ : Cp1×p2×p3 → R(2p1)×(2p2)×p3 is a mapping satisfies ϕ(A) =
(
B −C

C B

)
with B, C ∈

Cp1×p2×p3 . Then

f ♢(2M)(2N)(ϕ(A)) = ϕ( f ♢
MN

(A)) (19)

Proof. SupposeU = U1 + iU2 and V = (V1 + iV2)H, whereU1, U2 ∈ Rp1×p1×p3 and V1, V2 ∈ Rp2×p2×p3 . It
follows from T-MN-SVD that

A =U ∗ S ∗ VH = (U1 + iU2) ∗ S ∗ (V1 + iV2)H = B + iC,

then B =U1 ∗ S ∗ V
T
1 +U2 ∗ S ∗ V

T
2 and C =U2 ∗ S ∗ V

T
1 −U1 ∗ S ∗ V

T
2 . The T-WGTF is factorized as

f ♢
MN

(A) =U ∗ f ♢
MN

(S) ∗ VH = (U1 + iU2) ∗ f ♢
MN

(S) ∗ (V1 + iV2)H

=U1 ∗ f ♢
MN

(S) ∗ VT
1 +U2 ∗ f ♢

MN
(S) ∗ VT

2 + i(U2 ∗ f ♢
MN

(S) ∗ VT
1 −U1 ∗ f ♢

MN
(S) ∗ VT

2 ).

Then ϕ( f ♢
MN

(A)) may be expressed as

ϕ( f ♢
MN

(A)) =
(
U1 ∗ f ♢

MN
(S) ∗ VT

1 +U2 ∗ f ♢
MN

(S) ∗ VT
2 −U2 ∗ f ♢

MN
(S) ∗ VT

1 +U1 ∗ f ♢
MN

(S) ∗ VT
2

U2 ∗ f ♢
MN

(S) ∗ VT
1 −U1 ∗ f ♢

MN
(S) ∗ VT

2 U1 ∗ f ♢
MN

(S) ∗ VT
1 +U2 ∗ f ♢

MN
(S) ∗ VT

2

)
.

Consider the right side of (19), according to expressions of B and C, we have

ϕ(A) =
(
B −C

C B

)
=

(
U1 −U2
U2 U1

)
∗

(
S O

O S

)
∗

(
V1 −V2
V2 V1

)H

.
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It follows fromUH
∗M ∗U = Ip1p1p3 andVH

∗ N
−1
∗ V = Ip2p2p3 that

U
T
1 ∗M ∗U1 +U

T
2 ∗M ∗U2 = Ip1p1p3 ,U

T
1 ∗M ∗U2 −U

T
2 ∗M ∗U1 = O,

V
T
1 ∗ N

−1
∗ V1 +V

T
2 ∗ N

−1
∗ V2 = Ip2p2p3 ,V

T
2 ∗ N

−1
∗ V1 −V

T
1 ∗ N

−1
∗ V2 = O.

Therefore,(
U1 −U2
U2 U1

)T

∗

(
M O

O M

)
∗

(
U1 −U2
U2 U1

)
= I(2p1)(2p1)p3 ,

(
V1 −V2
V2 V1

)T

∗

(
N
−1

O

O N
−1

)
∗

(
V1 −V2
V2 V1

)
= I(2p2)(2p2)p3 ,

hence,
(
M O

O M

)
and

(
N
−1

O

O N
−1

)
are Hermite positive definite tensors. As a result,

f ♢(2M)(2N)(ϕ(A)) =
(
U1 −U2
U2 U1

)
∗

(
f ♢
MN

(S) O

O f ♢
MN

(S)

)
∗

(
V1 −V2
V2 V1

)T

= ϕ( f ♢
MN

(A)).

The proof is completed.
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