On Triangular n-Matrix Rings Having Multiplicative Lie Type Derivations

Aisha Jabeen ${ }^{\text {a }}$, Mohd Arif Raza ${ }^{\text {b }}$, Musheer Ahmad ${ }^{\text {a }}$
${ }^{a}$ Department of Applied Sciences \mathcal{E} Humanities Jamia Millia Islamia, New Delhi-110025, India
${ }^{b}$ College of Sciences \mathcal{E} Arts-Rabigh Department of Mathematics King Abdulaziz University Jeddah, Saudi Arabia

Abstract

Let $1<n \in \mathbb{Z}^{+}$and \mathscr{T} be a triangular n-matrix ring. This manuscript reveals that under a few moderate presumptions, a map $\mathscr{L}: \mathscr{T} \rightarrow \mathscr{T}$ could be a multiplicative Lie N -derivation iff $\mathscr{L}(\mathscr{X})=$ $\mathscr{D}(\mathscr{X})+\zeta(\mathscr{X})$ holds on every $\mathscr{X} \in \mathscr{T}$, where $\mathscr{D}: \mathscr{T} \rightarrow \mathscr{T}$ is an additive derivation and $\zeta: \mathscr{T} \rightarrow \mathscr{Z}(\mathscr{T})$ is a central valued map that disappears on all Lie $\mathrm{N}-$ products.

1. Introduction

Unless otherwise indicated throughout the manuscript \mathscr{R} could be a commutative ring having identity, \mathscr{A} is an \mathscr{R}-algebra and $\mathscr{Z}(\mathscr{A})$ denotes the center of \mathscr{A}. A map $\mathscr{L}: \mathscr{A} \rightarrow \mathscr{A}$ (not necessary linear) is referred to as a multiplicative derivation on \mathscr{A} if $\mathscr{L}(\mathscr{U} \mathscr{V})=\mathscr{L}(\mathscr{U}) \mathscr{V}+\mathscr{U} \mathscr{L}(\mathscr{V})$ holds for all $\mathscr{U}, \mathscr{V} \in \mathscr{A}$. Further, \mathscr{L} is said to be a derivation on \mathscr{A}, if \mathscr{L} is linear on \mathscr{A}. A map $\mathscr{L}: \mathscr{A} \rightarrow \mathscr{A}$ (not essentially linear) is recognized as a multiplicative Lie derivation (resp. multiplicative Lie triple derivation) on \mathscr{A} if $\mathscr{L}([\mathscr{U}, \mathscr{V}])=$ $[\mathscr{L}(\mathscr{U}), \mathscr{V}]+[\mathscr{U}, \mathscr{L}(\mathscr{V})]($ resp. $\mathscr{L}([[\mathscr{U}, \mathscr{V}], \mathscr{W}])=[[\mathscr{L}(\mathscr{U}), \mathscr{V}], \mathscr{W}]+[[\mathscr{U}, \mathscr{L}(\mathscr{V})], \mathscr{W}]+[[\mathscr{U}, \mathscr{V}], \mathscr{L}(\mathscr{W})])$ holds for all $\mathscr{U}, \mathscr{V}, \mathscr{W} \in \mathscr{A}$.

Here we are characterizing a more specific family of maps through the arrangement of polynomials:

$$
\begin{aligned}
& \mathscr{P}_{1}\left(\mathscr{X}_{1}\right)=\mathscr{X}_{1}, \\
& \mathscr{P}_{2}\left(\mathscr{X}_{1}, \mathscr{X}_{2}\right)=\left[\mathscr{P}_{1}\left(\mathscr{X}_{1}\right), \mathscr{X}_{2}\right]=\left[\mathscr{X}_{1}, \mathscr{X}_{2}\right], \\
& \mathscr{P}_{3}\left(\mathscr{X}_{1}, \mathscr{X}_{2}, \mathscr{X}_{3}\right)=\left[\mathscr{P}_{2}\left(\mathscr{X}_{1}, \mathscr{X}_{2}\right), \mathscr{X}_{3}\right]=\left[\left[\mathscr{X}_{1}, \mathscr{X}_{2}\right], \mathscr{X}_{3}\right], \\
& \vdots \vdots \\
& \mathscr{P}_{\mathrm{N}}\left(\mathscr{X}_{1}, \mathscr{X}_{2}, \ldots, \mathscr{X}_{\mathrm{N}}\right)=\left[\mathscr{P}_{\mathrm{N}-1}\left(\mathscr{X}_{1}, \mathscr{X}_{2}, \cdots, \mathscr{X}_{\mathrm{N}-1}\right), \mathscr{X}_{\mathrm{N}}\right] .
\end{aligned}
$$

[^0]For $\mathrm{N} \geqslant 2$, the polynomial $\mathscr{P}_{\mathrm{N}}\left(\mathscr{X}_{1}, \mathscr{X}_{2}, \cdots, \mathscr{X}_{\mathrm{N}}\right)$ is known as $(\mathrm{N}-1)$-th commutator. A map $\mathscr{L}: \mathscr{A} \rightarrow \mathscr{A}$ (not essentially linear) is considered a multiplicative Lie N -derivation on \mathscr{A} if

$$
\mathscr{L}\left(\mathscr{P}_{\mathrm{N}}\left(\mathscr{X}_{1}, \mathscr{X}_{2}, \ldots, \mathscr{X}_{\mathrm{N}}\right)\right)=\sum_{i=1}^{i=\mathrm{N}} \mathscr{P}_{\mathrm{N}}\left(\mathscr{X}_{1}, \mathscr{X}_{2}, \ldots, \mathscr{X}_{\mathrm{i}-1}, \mathscr{L}\left(\mathscr{X}_{\mathrm{i}}\right), \mathscr{X}_{\mathrm{i}+1}, \cdots, \mathscr{X}_{\mathrm{N}}\right)
$$

for all $\mathscr{X}_{1}, \mathscr{X}_{2}, \ldots, \mathscr{X}_{\mathrm{N}} \in \mathscr{A}$. Along these lines, Abdullaev [1] initiated and conceived the idea of Lie N -derivation on von Neumann algebras. Notice that any multiplicative Lie $2-$ derivation is known as multiplicative Lie derivation and multiplicative Lie 3-derivation is said to be multiplicative Lie triple derivation. Therefore, multiplicative Lie/Lie triple/Lie N -derivation are comprehensively recognized as multiplicative Lie type derivations on \mathscr{A}.

Several researchers have investigated the nature of Lie type derivations on various types of rings or algebras $[2-4,11]$. In some of these cases, authors have shown that every Lie type derivation has the standard from on that precise ring/algebra contemporary. In 1964, Martindale [11] obtained the first characterization of Lie derivations and he established that "Every Lie derivation on a primitive ring can be written as a sum of derivation and an additive mapping of a ring to its center that maps commutators into zero, i.e, Lie derivation has the standard form". In addition, several researchers have addressed the multiplicative mappings on rings and algebras over the last few decades. Martindale [12] has developed a condition on a ring such that multiplicative bijective mappings are all additives on this ring. Notably he demonstrated that "Every multiplicative bijective mapping from a prime ring containing a nontrivial idempotent onto an arbitrary ring is additive". Daif [5] examined the additivity of derivable map on a 2 -torsion free prime ring containing a nontrivial idempotent. Besides associative algebras or rings, numerous authors studied multiplicative Lie derivations and multiplicative Lie type derivations on nonassociative rings for example alternative rings see in $[7,9]$ and references therein.

Amongst these, a ring structure named triangular $n-$ matrix ring in [6] was described by Ferreira. In [6], the author studied the additivity of m-multiplicative maps and m-multiplicative derivations on triangular n-matrix rings. Additionally, Ferreira and Guzzo [8] proved the additivity of Lie N -multiplicative mappings on triangular n-matrix rings is almost additive. Using the triangular $n-$ matrix ring concept for $n=3$, Chen and Qi [4] gave, within certain premises, a characterization of multiplicative Lie derivations on triangular n-matrix rings for any $n \geqslant 2$. Subsequently, Jabeen and Ahmad [10] explained the characterization of multiplicative Lie triple derivations on triangular 3-matrix rings.

Motivated by the above literature, our primary aim is characterization of multiplicative Lie type derivation on triangular $n-$ matrix rings and to explain that each multiplicative Lie N -derivation on triangular $n-$ matrix rings could be the sum of an additive derivation and a central mapping annihilating ($\mathrm{N}-1$)-th commutator with some mild condition.

2. Preliminaries

Some conceptual notions are necessarily demonstrated to develop the proof of the key theorems. Roughly, these ideas are well known and written compactly. Let $\mathscr{R}_{1}, \mathscr{R}_{2}, \cdots, \mathscr{R}_{\mathrm{n}}$ be unital rings and $\mathscr{M}_{i j}$ be $\left(\mathscr{R}_{i}, \mathscr{R}_{j}\right)$-bimodules with $\mathscr{M}_{i i}=\mathscr{R}_{i}$ for all $1 \leqslant i \leqslant j \leqslant n$. Let $\mho_{i j k}: \mathscr{M}_{i j} \otimes_{\mathscr{R}_{j}} \mathscr{M}_{j k} \rightarrow \mathscr{M}_{i k}$ be $\left(\mathscr{R}_{i}, \mathscr{R}_{\mathrm{k}}\right)$-bimodules homomorphisms with $\Psi_{i i j}: \mathscr{R}_{\mathrm{i}} \otimes_{\mathscr{R}_{i}} \mathscr{M}_{\mathrm{ij}} \rightarrow \mathscr{M}_{\mathrm{ij}}$ and $\mho_{i j \mathrm{j}}: \mathscr{M}_{\mathrm{ij}} \otimes_{\mathscr{R}_{j}} \mathscr{R}_{j} \rightarrow \mathscr{M}_{\mathrm{ij}}$ the canonical multiplication maps for all $1 \leqslant i \leqslant j \leqslant k \leqslant n$. Write $a b=\widetilde{U}_{i j k}(a \otimes b)$ for all $a \in \mathscr{M}_{i j}$ and $b \in \mathscr{M}_{j k}$. Assume that $\mathscr{M}_{\mathrm{ij}}$ is faithful as a left $\mathscr{R}_{\mathrm{i}}-$ module and faithful as a right $\mathscr{R}_{\mathrm{j}}-$ module for all $1 \leqslant \mathfrak{i}<\mathfrak{j} \leqslant \mathrm{n}$. Let $\mathscr{T}=\mathscr{T}_{n}\left(\mathscr{R}_{i} ; \mathscr{M}_{i j}\right)$ be the set

$$
\mathscr{T}=\left\{\left.\left[\begin{array}{ccccc}
r_{11} & m_{12} & \cdots & m_{1(n-1)} & m_{1 n} \\
0 & r_{22} & \cdots & m_{2(n-1)} & m_{2 n} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & r_{(n-1)(n-1)} & m_{(n-1) n} \\
0 & 0 & \cdots & 0 & r_{n n}
\end{array}\right] \right\rvert\, r_{i i} \in \mathscr{R}_{i}, m_{i j} \in \mathscr{M}_{i j}, 1 \leqslant i<j \leqslant n\right\} .
$$

Alternatively, suppose that $u(v w)=(u v) w$ with all $u \in \mathscr{M}_{\mathrm{ik}}, v \in \mathscr{M}_{\mathrm{kl}}$ including $w \in \mathscr{M}_{\mathrm{lj}}$ with all $1 \leqslant \mathfrak{i} \leqslant k \leqslant l \leqslant j \leqslant n$. Therefore, with the regular matrix operations, \mathscr{T} is termed a $n-$ matrix ring. Undoubtedly, upper triangular matrix rings $\mathscr{T}_{n}(\mathscr{R})$ with $n \geqslant 3$ are triangular n-matrix rings over a unital associative ring \mathscr{R}. Notice the usual triangular $2-$ matrix rings are triangular rings, too. Nonetheless, for $n \geqslant 3$, would not be a triangular $n-$ matrix ring. Contrarily, a $n-$ matrix triangular ring may not be a triangular ring. We get the following observations for the center of the triangular $n-$ matrix rings. For the sake of self contentment of the article, we write the following Proposition from Ferreira's [6] paper as follows:

Proposition 2.1. [6, Proposition 1.1] "Let $\mathscr{T}=\mathscr{T}_{\mathrm{n}}\left(\mathscr{R}_{i} ; \mathscr{M}_{\mathrm{ij}}\right)$ be a triangular n -matrix ring. The centre of \mathscr{T} is

$$
\mathscr{Z}(\mathscr{T})=\left\{\bigoplus_{i=1}^{n} r_{i i} \mid r_{i i} m_{i j}=m_{i j} r_{j j} \text { for all } m_{i j} \in \mathscr{M}_{i j}, i<j\right\}
$$

Furthermore, $\mathscr{Z}(\mathscr{T})_{i i} \cong \psi_{\mathscr{R}_{i}}(\mathscr{Z}(\mathscr{T})) \subseteq \mathscr{Z}\left(\mathscr{R}_{i}\right)$, and there exists a unique ring isomorphism τ_{i}^{j} from $\psi_{\mathscr{R}_{i}}(\mathscr{Z}(\mathscr{T}))$ to $\psi_{\mathscr{R}_{j}}(\mathscr{Z}(\mathscr{T})) \mathfrak{i}=\mathfrak{j}$ such that $\mathrm{r}_{\mathfrak{i}} \mathrm{m}_{\mathrm{ij}}=\mathrm{m}_{\mathfrak{i j}} \tau_{i}^{j}\left(\mathrm{r}_{\mathrm{ii}}\right)$ for all $\mathrm{m}_{\mathfrak{i j}} \in \mathscr{M}_{\mathrm{ij}}$."
Here, $\bigoplus_{i=1}^{n} r_{i i}$ symbolizes the element $\left[\begin{array}{cccc}r_{11} & 0 & \cdots & 0 \\ & r_{22} & \cdots & 0 \\ & & \ddots & \vdots \\ & & & r_{n n}\end{array}\right]$ and $\psi_{\mathscr{R}_{i}}: \mathscr{T} \rightarrow \mathscr{R}_{i}(1 \leqslant i \leqslant n)$ is the natural projection described by $\left[m_{i j}\right] \rightarrow r_{i i}$. Now, assume that $\mathscr{T}=\mathscr{T}_{n}\left(\mathscr{R}_{i} ; \mathscr{M}_{\mathfrak{i j}}\right)$ is a triangular n-matrix ring. Set $\mathscr{T}_{i j}=\left\{\left[m_{k t}\right] \left\lvert\, \mathfrak{m}_{k t}=\left\{\begin{array}{ll}m_{i j}, & \text { if }(k, t)=(i, j) \\ 0, & \text { if }(k, t) \neq(i, j)\end{array}, 1 \leqslant i \leqslant j \leqslant n\right\} \subset \mathscr{T}\right.\right.$. Then we can write $\mathscr{T}=\bigoplus_{1 \leqslant i \leqslant j \leqslant n} \mathscr{T}_{i j}$ Henceforth $a_{i j} \in \mathscr{T}_{i j}$ and by the direct computation $a_{i j} a_{k l}=0$ for $j \neq k$.

Fix any $i \in\{1,2, \cdots, n\}$. Let \mathscr{E}_{i} serve as the non-trivial idempotent of \mathscr{T} whose members were $(i, i)-$ th place 1 and indeed the remaining 0 . Compose $\mathrm{P}_{i}=\mathscr{E}_{1}+\mathscr{E}_{2}+\cdots+\mathscr{E}_{i}$ and $\mathscr{Q}_{i}=\mathrm{I}-\mathrm{P}_{i}$. Denote by $\mathrm{A}_{i}=\mathrm{P}_{\mathrm{i}} \mathscr{T} \mathrm{P}_{\mathrm{i}}, \mathrm{B}_{\mathrm{i}}=\mathscr{Q}_{\mathrm{i}} \mathscr{T} \mathscr{Q}_{\mathrm{i}}$ and $\mathscr{M}_{\mathrm{i}}=\mathrm{P}_{\mathrm{i}} \mathscr{T} \mathscr{Q}_{\mathrm{i}}$. One could also describe \mathscr{T} as $\mathscr{T}=\mathrm{A}_{i}+\mathscr{M}_{i}+\mathrm{B}_{\mathrm{i}}$ for each i. In this article, unless there is no uncertainty, for just any $A_{i} \in A_{i}, \mathscr{H}_{i} \in \mathscr{M}_{i}$ and $B_{i} \in B_{i}$, we frequently classify

$$
\mathrm{A}_{\mathrm{i}} \cong\left[\begin{array}{cccc}
\mathrm{r}_{11} & \mathrm{~m}_{12} & \cdots & \mathrm{~m}_{1 i} \\
0 & \mathrm{r}_{22} & \cdots & \mathrm{~m}_{2 i} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \mathrm{r}_{i i}
\end{array}\right], \mathscr{H}_{i} \cong\left[\begin{array}{cccc}
m_{1, i+1} & m_{1, i+2} & \cdots & m_{1 n} \\
m_{2, i+1} & m_{2, i+2} & \cdots & m_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
m_{i, i+1} & m_{i, i+2} & \cdots & m_{1 n}
\end{array}\right]
$$

and

$$
B_{i} \cong\left[\begin{array}{cccc}
r_{i+1, i+1} & m_{i+1, i+2} & \cdots & m_{i+1, n} \\
0 & r_{i+2, i+2} & \cdots & m_{i+2, n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & r_{n n}
\end{array}\right]
$$

For this depiction, $i t^{\prime}$'s really easy to confirm that A_{i} is a triangular $i-$ matrix ring and B_{i} is a triangular ($n-i$)-matrix ring. Therefore, by Proposition 2.1 , we get

$$
\mathscr{Z}\left(\mathrm{A}_{\mathrm{i}}\right)=\left\{\bigoplus_{\mathrm{k}=1}^{\mathrm{i}} \mathrm{r}_{\mathrm{kk}} \mid \mathrm{r}_{\mathrm{kk}} \in \mathscr{R}_{\mathrm{k}} \text { and } \mathrm{r}_{\mathrm{kk}} \mathrm{~m}_{\mathrm{kl}}=\mathfrak{m}_{\mathrm{k} l} r_{l l} \text { for all } m_{\mathrm{kl}} \in \mathscr{M}_{\mathrm{k} l}, 1 \leqslant \mathrm{k}<l \leqslant \mathrm{i}\right\}
$$

and

$$
\mathscr{Z}\left(B_{i}\right)=\left\{\bigoplus_{k=i+1}^{n} r_{k k} \mid r_{k k} \in \mathscr{R}_{k} \text { and } r_{k k} m_{k l}=m_{k l} r_{l l} \text { for all } m_{k l} \in \mathscr{M}_{k l}, i+1 \leqslant k<l \leqslant n\right\}
$$

Thence, by some premise that $\mathscr{M}_{i j}$ is faithful as a left $\mathscr{R}_{i}-$ module and faithful as a right $\mathscr{R}_{j}-$ module for all $1 \leqslant i<j \leqslant n$, a direct computation gives, for $A_{i}=\bigoplus_{k=1}^{i} r_{k k} \in A_{i}$ and $B_{i}=\bigoplus_{k=i+1}^{n} r_{k k} \in B_{i}$, we see that

$$
\begin{equation*}
\mathrm{A}_{\mathrm{i}} \mathscr{M}_{\mathrm{i}}=\{0\} \Longrightarrow \mathrm{A}_{\mathrm{i}}=0 \text { and } \mathscr{M}_{i} \mathrm{~B}_{\mathrm{i}}=\{0\} \Longrightarrow \mathrm{B}_{\mathrm{i}}=0 . \tag{1}
\end{equation*}
$$

Let's develop natural projections $\psi_{\mathrm{A}_{i}}: \mathscr{T} \rightarrow \mathrm{A}_{i}$ and $\psi_{\mathrm{B}_{i}}: \mathscr{T} \rightarrow \mathrm{B}_{i}$ by $\mathscr{X}=\mathrm{A}_{i}+\mathscr{H} \mathscr{H}_{i}+\mathrm{B}_{i} \rightarrow \mathrm{~A}_{i}$ and $\mathscr{X}=\mathrm{A}_{\mathrm{i}}+\mathscr{H}_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}} \rightarrow \mathrm{B}_{\mathrm{i}}$ respectively. Undoubtedly, $\psi_{\mathrm{A}_{\mathrm{i}}}(\mathscr{Z}(\mathscr{T})) \subseteq \mathscr{Z}\left(\mathrm{A}_{\mathrm{i}}\right)$ and $\psi_{\mathrm{B}_{i}}(\mathscr{Z}(\mathscr{T})) \subseteq \mathscr{Z}\left(\mathrm{B}_{\mathrm{i}}\right)$.

In addition, we pick out the following lemma from Chen and Qi's [4] study as follows:
Lemma 2.2. [4, Lemma 2.2] "Let $\mathscr{T}=\mathscr{T}_{n}\left(\mathscr{R}_{i} ; \mathscr{M}_{\mathrm{ij}}\right)$ be a triangular n-matrix ring. Then there exists a unique ring isomorphism $\psi: \psi_{\mathrm{A}_{\mathrm{i}}}(\mathscr{Z}(\mathscr{T})) \rightarrow \psi_{\mathrm{B}_{\mathrm{i}}}(\mathscr{Z}(\mathscr{T}))$ such that $\mathrm{A}_{\mathrm{i}} \mathscr{H}_{\mathrm{i}}=\mathscr{H}_{\mathrm{i}} \psi\left(A_{\mathrm{i}}\right)$ for all $\mathscr{H}_{\mathrm{i}} \in \mathscr{M}_{\mathrm{i}}$ and $A_{\mathrm{i}} \in \psi_{\mathrm{A}_{\mathrm{i}}}(\mathscr{Z}(\mathscr{T}))$; and moreover, $A_{i} \oplus \psi\left(A_{i}\right) \in \mathscr{Z}(\mathscr{T}) . "$

3. Main Results

In this subdivision, we exhibit the primary result of the manuscript.
Theorem 3.1. Let $1<\mathrm{n} \in \mathbb{Z}^{+}$and \mathscr{T} be a $(N-1)$-torsion free triangular n -matrix ring. Expect that
(\#) $P_{[n / 2]} \mathscr{Z}(\mathscr{T}) P_{[n / 2]}=\mathscr{Z}\left(P_{[n / 2]} \mathscr{T} P_{[n / 2]}\right)$ and $\mathscr{Q}_{[n / 2]} \mathscr{Z}(\mathscr{T}) \mathscr{Q}_{[n / 2]}=\mathscr{Z}\left(\mathscr{Q}_{[n / 2]} \mathscr{T} \mathscr{Q}_{[n / 2]}\right)$;
($\mathfrak{\square}) \mathrm{A}_{[\mathrm{n} / 2]}$ and $\mathrm{B}_{[\mathrm{n} / 2]}$ contains no nonzero central ideal.
Therefore, \mathscr{L} has a standard form iff $\mathscr{L}: \mathscr{T} \rightarrow \mathscr{T}$ would be a multiplicative Lie N-derivation ($N \geqslant 3$) i.e., $\mathscr{L}(\mathscr{X})=\mathscr{D}(\mathscr{X})+\zeta(\mathscr{X})$ holds for all $\mathscr{X} \in \mathscr{T}$, where $\mathscr{D}: \mathscr{T} \rightarrow \mathscr{T}$ is an additive derivation and $\zeta: \mathscr{T} \rightarrow \mathscr{Z}(\mathscr{T})$ is a map that vanishes on all Lie N-products. Here $[\mathrm{n}]$ is the integer part of n.

By carrying out a series of lemmas, we are offering the proof of our key theorem.
Lemma 3.2. On assumption that $\mathscr{L}: \mathscr{T} \rightarrow \mathscr{T}$ is a multiplicative Lie N-derivation and \mathscr{T} is a triangular n-matrix ring. This provides an additive derivation $\mathscr{D}_{i}: \mathscr{T} \rightarrow \mathscr{T}$ and a multiplicative Lie N-derivation $\mathscr{L}_{i}: \mathscr{T} \rightarrow \mathscr{T}$ such that $P_{i} \mathscr{L}_{i}\left(\mathscr{Q}_{i}\right) \mathscr{Q}_{i}=0$ and $\mathscr{L}(\mathscr{X})=\mathscr{L}_{i}(\mathscr{X})+\mathscr{D}_{i}(\mathscr{X})$ for all $\mathscr{X} \in \mathscr{T}(i \in\{1, \cdots, n-1\})$.
Proof. Firstly, we recognize the mappings $\mathscr{D}_{i}, \mathscr{L}_{i}: \mathscr{T} \rightarrow \mathscr{T}$, where $i \in\{1, \cdots, n-1\}$ such that

$$
\mathscr{D}_{i}(\mathscr{X})=\left[\mathscr{L}\left(\mathscr{Q}_{i}\right), \mathscr{X}\right] \text { and } \mathscr{L}_{i}(\mathscr{X})=\mathscr{L}(\mathscr{X})-\mathscr{D}_{i}(\mathscr{X}) \text { for all } \mathscr{X} \in \mathscr{T} .
$$

It becomes easier to analyse \mathscr{D}_{i} to be an additive derivation and \mathscr{L}_{i}, a multiplicative Lie N -derivation. Further, since

$$
\mathscr{L}_{i}\left(\mathscr{Q}_{i}\right)=\mathscr{L}\left(\mathscr{Q}_{i}\right)-\mathscr{D}_{i}\left(\mathscr{Q}_{i}\right)=\mathscr{L}\left(\mathscr{Q}_{i}\right)-\left[\mathscr{L}\left(\mathscr{Q}_{i}\right), \mathscr{Q}_{i}\right]=\mathscr{L}\left(\mathscr{Q}_{i}\right)-\mathrm{P}_{i} \mathscr{L}\left(\mathscr{Q}_{i}\right) \mathscr{Q}_{i}
$$

Multiplying by P_{i} and \mathscr{Q}_{i} from the left and the right, respectively, we get $\mathrm{P}_{\mathrm{i}} \mathscr{L}_{\mathrm{i}}\left(\mathscr{Q}_{i}\right) \mathscr{Q}_{i}=0$.
Lemma 3.3. For each one $\mathscr{H}_{i} \in \mathscr{M}_{\mathrm{i}}, B_{\mathrm{i}} \in \mathrm{B}_{\mathrm{i}}$ and $A_{i} \in \mathrm{~A}_{\mathrm{i}}$ the following statements have always been:

1. $P_{i} \mathscr{L}_{i}\left(A_{i}\right) \mathscr{Q}_{i}=0$,
2. $P_{i} \mathscr{L}_{i}\left(B_{i}\right) \mathscr{Q}_{i}=0$,
3. $P_{i} \mathscr{L}_{i}\left(\mathscr{H}_{i}\right) P_{i}=\mathscr{Q}_{i} \mathscr{L}_{i}\left(\mathscr{H}_{i}\right) \mathscr{Q}_{i}=0$.

Proof. It is noticeable that $\mathscr{L}_{\mathrm{i}}(0)=0$. For each one $\mathscr{X} \in \mathscr{T}$, note that $\mathscr{P}_{\mathrm{N}}\left(\mathscr{X}, \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right)=\mathrm{P}_{\mathrm{i}} \mathscr{X} \mathscr{Q}_{i}$. We have

$$
\begin{align*}
\mathscr{L}_{i}\left(\mathrm{P}_{\mathrm{i}} \mathscr{X} \mathscr{Q}_{\mathrm{i}}\right) & =\mathscr{L}_{i}\left(\mathscr{P}_{\mathrm{N}}\left(\mathscr{X}, \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right)\right) \\
& =\mathscr{P}_{\mathrm{N}}\left(\mathscr{L}_{i}(\mathscr{X}), \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{Q}_{i}\right)+\cdots+\mathscr{P}_{\mathrm{N}}\left(\mathscr{X}, \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{L}_{i}\left(\mathscr{Q}_{i}\right)\right) \\
& =\mathrm{P}_{\mathrm{i}} \mathscr{L}_{i}(\mathscr{X}) \mathscr{Q}_{i}+(\mathrm{N}-1)\left[\mathrm{P}_{i} \mathscr{X} \mathscr{Q}_{i}, \mathscr{L}_{i}\left(\mathscr{Q}_{\mathrm{i}}\right)\right] . \tag{2}
\end{align*}
$$

Especially, if $\mathscr{X}=A_{i} \in A_{i}$ multiplying by P_{i} and \mathscr{Q}_{i} from the left and the right in (2) respectively, we get $P_{i} \mathscr{L}_{i}\left(\mathrm{~A}_{i}\right) \mathscr{Q}_{i}=0$. If $\mathscr{X}=\mathrm{B}_{i} \in \mathrm{~B}_{i}$, we reveal that $\mathrm{P}_{i} \mathscr{L}_{i}\left(\mathrm{~B}_{i}\right) \mathscr{Q}_{i}=0$. Hence, truly justifying the statements (1) and (2).

Forthwith, if $\mathscr{X}=\mathscr{H}_{i} \in \mathscr{M}_{i}$, we have

$$
\begin{align*}
\mathscr{L}_{i}\left(\mathscr{H}_{\mathrm{i}}\right) & =\mathscr{L}_{i}\left(\mathscr{P}_{\mathrm{N}}\left(\mathscr{H}_{i}, \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{\mathrm{i}}\right)\right) \\
& =\mathscr{P}_{\mathrm{N}}\left(\mathscr{L}_{i}\left(\mathscr{H}_{i}\right), \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{Q}_{i}\right)+\cdots+\mathscr{P}_{\mathrm{N}}\left(\mathscr{H}_{i}, \mathscr{Q}_{i}, \cdots, \mathscr{L}_{i}\left(\mathscr{Q}_{i}\right)\right) \\
& =\mathrm{P}_{\mathrm{i}} \mathscr{L}_{i}\left(\mathscr{H}_{i}\right) \mathscr{Q}_{i}+(\mathrm{N}-1)\left[\mathscr{H}_{i}, \mathscr{L}_{i}\left(\mathscr{Q}_{i}\right)\right] . \tag{3}
\end{align*}
$$

Multiplying by P_{i} the left and the \mathscr{Q}_{i} from right in (3), we have $(\mathrm{N}-1)\left[\mathscr{H}_{i}, \mathscr{L}_{i}\left(\mathscr{Q}_{i}\right)\right]=0$ and hence $\left[\mathscr{H}_{i}, \mathscr{L}_{i}\left(\mathscr{Q}_{i}\right)\right]=0$. Then (3) imply $\mathscr{L}_{i}\left(\mathscr{H}_{i}\right)=\mathrm{P}_{i} \mathscr{L}_{i}\left(\mathscr{H}_{i}\right) \mathscr{Q}_{i}$. Hence holding, the statement (3).

Lemma 3.4. $P_{i} \mathscr{L}_{i}\left(\mathrm{~B}_{i}\right) P_{i} \subseteq \mathscr{Z}\left(\mathrm{~A}_{i}\right)$ and $\mathscr{Q}_{i} \mathscr{L}_{i}\left(\mathrm{~A}_{i}\right) \mathscr{Q}_{i} \subseteq \mathscr{Z}\left(\mathrm{~B}_{i}\right)$.
Proof. Consider, for every $A_{i} \in A_{i}$ and $B_{i} \in B_{i}$. Although $\left[A_{i}, B_{i}\right]=0$, by Lemma 3.3 (1)-(2), we've got

$$
\begin{aligned}
0 & =\mathscr{L}_{i}\left(\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{\mathrm{i}}, \mathrm{~B}_{i}, \mathscr{X}, \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right)\right) \\
& =\mathscr{P}_{\mathrm{N}-1}\left(\left[\mathscr{L}_{i}\left(\mathrm{~A}_{i}\right), \mathrm{B}_{i}\right], \mathscr{X}, \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right)+\mathscr{P}_{\mathrm{N}-1}\left(\left[\mathrm{~A}_{i}, \mathscr{L}_{i}\left(\mathrm{~B}_{i}\right)\right], \mathscr{X}, \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right) \\
& =\mathrm{P}_{i}\left[\left[\mathscr{L}_{i}\left(\mathrm{~A}_{i}\right), \mathrm{B}_{i}\right]+\left[\mathrm{A}_{i}, \mathscr{L}_{i}\left(\mathrm{~B}_{i}\right)\right], \mathscr{X}\right] \mathscr{Q}_{i} .
\end{aligned}
$$

Thus, $\left[\left[\mathscr{L}_{i}\left(\mathrm{~A}_{i}\right), \mathrm{B}_{i}\right]+\left[\mathrm{A}_{\mathrm{i}}, \mathscr{L}_{i}\left(\mathrm{~B}_{i}\right)\right], \mathscr{M}_{i}\right]=0$. From Lemma 3, we see that $\left[\mathrm{A}_{\mathrm{i}}, \mathscr{L}_{i}\left(\mathrm{~B}_{i}\right)\right]=\left[\mathrm{A}_{i}, \mathrm{P}_{i} \mathscr{L}_{i}\left(\mathrm{~B}_{i}\right) \mathrm{P}_{i}\right] \in \mathrm{A}_{i}$ and $\left[\mathscr{L}_{i}\left(\mathrm{~A}_{i}\right), \mathrm{B}_{i}\right]=\left[\mathscr{Q}_{i} \mathscr{L}_{i}\left(\mathrm{~A}_{i}\right) \mathscr{Q}_{i}, \mathrm{~B}_{i}\right] \in \mathrm{B}_{i}$. Now, assumption ((q) implies that $\left[\left[\mathscr{L}_{i}\left(\mathrm{~A}_{i}\right), \mathrm{B}_{i}\right]+\left[\mathrm{A}_{i}, \mathscr{L}_{i}\left(\mathrm{~B}_{i}\right)\right], \mathrm{A}_{i}\right]=0$ and $\left[\left[\mathscr{L}_{i}\left(\mathrm{~A}_{\mathrm{i}}\right), \mathrm{B}_{\mathrm{i}}\right]+\left[\mathrm{A}_{i}, \mathscr{L}_{i}\left(\mathrm{~B}_{\mathrm{i}}\right)\right], \mathrm{B}_{\mathrm{i}}\right]=0$. It follows that

$$
\left[\mathrm{A}_{i}, \mathrm{P}_{i} \mathscr{L}_{i}\left(\mathrm{~B}_{i}\right) \mathrm{P}_{i}\right]+\left[\mathscr{Q}_{i} \mathscr{L}_{i}\left(\mathrm{~A}_{i}\right) \mathscr{Q}_{i}, \mathrm{~B}_{i}\right] \in \mathscr{Z}(\mathscr{T}) \text { for all } \mathrm{A}_{i} \in \mathrm{~A}_{i}, \mathrm{~B}_{i} \in \mathrm{~B}_{i}
$$

and hence $\mathrm{P}_{i} \mathscr{L}_{i}\left(\mathrm{~B}_{i}\right) \mathrm{P}_{i} \in \mathscr{Z}\left(\mathrm{~A}_{i}\right)$ and $\mathscr{Q}_{i} \mathscr{L}_{i}\left(\mathrm{~A}_{i}\right) \mathscr{Q}_{i} \in \mathscr{Z}\left(\mathrm{~B}_{i}\right)$ for all $\mathrm{A}_{i} \in \mathrm{~A}_{i}, \mathrm{~B}_{i} \in \mathrm{~B}_{i}$.
Lemma 3.5. $\mathscr{L}_{i}\left(P_{i}\right), \mathscr{L}_{i}\left(\mathscr{Q}_{i}\right) \in \mathscr{Z}(\mathscr{T})$.
Proof. Mark that, for each one $\mathscr{X} \in \mathscr{T}$, we get

$$
\begin{align*}
\mathscr{L}_{i}\left(\mathrm{P}_{i} \mathscr{X} \mathscr{Q}_{i}\right)= & \mathscr{L}_{i}\left(\mathscr{P}_{\mathrm{N}}\left(\mathrm{P}_{i}, \mathscr{X}, \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right)\right) \\
= & \mathscr{P}_{\mathrm{N}-1}\left(\left[\mathscr{L}_{i}\left(\mathrm{P}_{i}\right), \mathscr{X}^{\prime}\right], \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right) \\
& +\mathscr{P}_{\mathrm{N}-1}\left(\left[\mathrm{P}_{i}, \mathscr{L}_{i}(\mathscr{X})\right], \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right)+\cdots+\mathscr{P}_{\mathrm{N}}\left(\mathrm{P}_{i}, \mathscr{X}, \mathscr{Q}_{i}, \cdots, \mathscr{L}_{i}\left(\mathscr{Q}_{i}\right)\right) \\
= & \mathrm{P}_{\mathrm{i}}\left[\mathscr{L}_{i}\left(\mathrm{P}_{\mathrm{i}}\right), \mathscr{X}\right] \mathscr{Q}_{i}+\mathrm{P}_{i} \mathscr{L}_{i}(\mathscr{X}) \mathscr{Q}_{i}+(\mathrm{N}-2)\left[\mathrm{P}_{i} \mathscr{X} \mathscr{Q}_{i}, \mathscr{L}_{i}\left(\mathscr{Q}_{i}\right)\right] . \tag{4}
\end{align*}
$$

From Lemma 3, we can see $\mathrm{P}_{i} \mathscr{L}_{i}\left(\mathrm{P}_{\mathrm{i}}\right) \mathscr{Q}_{i}=0$. Replacing \mathscr{X} by $\mathrm{P}_{i} \mathscr{X} \mathscr{Q}_{i}$ in (4), and by Lemma 3.3(3), we get $\mathscr{L}_{i}\left(\mathrm{P}_{i} \mathscr{X} \mathscr{Q}_{i}\right)=\left[\mathscr{L}_{i}\left(\mathrm{P}_{\mathrm{i}}\right), \mathrm{P}_{i} \mathscr{X} \mathscr{Q}_{i}\right]+\mathscr{L}_{i}\left(\mathrm{P}_{i} \mathscr{X} \mathscr{Q}_{i}\right)$, that is, $\left[\mathscr{L}_{i}\left(\mathrm{P}_{i}\right), \mathrm{P}_{i} \mathscr{X} \mathscr{Q}_{i}\right]=0$. By Lemma 4, we obtain $\left[\mathscr{L}_{i}\left(\mathrm{P}_{\mathrm{i}}\right), \mathrm{P}_{\mathrm{i}} \mathscr{X} \mathrm{P}_{\mathrm{i}}\right]=0$ and $\left[\mathscr{L}_{i}\left(\mathrm{P}_{\mathrm{i}}\right), \mathscr{Q}_{\mathrm{i}} \mathscr{X} \mathscr{Q}_{i}\right]=0$. So $\left[\mathscr{L}_{\mathrm{i}}\left(\mathrm{P}_{\mathrm{i}}\right), \mathscr{X}\right]=0$ for all \mathscr{X}, and hence $\mathscr{L}_{\mathrm{i}}\left(\mathrm{P}_{\mathrm{i}}\right) \in \mathscr{Z}(\mathscr{T})$. Therefore, $\mathscr{L}_{\mathrm{i}}\left(\mathscr{Q}_{\mathrm{i}}\right) \in \mathscr{Z}(\mathscr{T})$ can be shown by a congruent altercation to that of the above.

Lemma 3.6. For any $\mathscr{X} \in \mathscr{T}$, we have $\mathscr{L}_{i}\left(P_{i} \mathscr{X} \mathscr{Q}_{i}\right)=P_{i} \mathscr{L}_{i}(\mathscr{X}) \mathscr{Q}_{i}$.
Proof. By Lemma 3.5, we have

$$
\mathscr{L}_{i}\left(\mathrm{P}_{i} \mathscr{X} \mathscr{Q}_{i}\right)=\mathrm{P}_{i}\left[\mathscr{L}_{i}\left(\mathrm{P}_{i}\right), \mathscr{X}\right] \mathscr{Q}_{i}+\mathrm{P}_{i} \mathscr{L}_{i}(\mathscr{X}) \mathscr{Q}_{i}=\mathrm{P}_{i} \mathscr{L}_{i}(\mathscr{X}) \mathscr{Q}_{i} .
$$

for all $\mathscr{X} \in \mathscr{T}$
Lemma 3.7. \mathscr{L}_{i} is additive on \mathscr{M}_{i}.

Proof. Start taking every $\mathscr{H}_{i}, \mathscr{H}_{i}^{\prime} \in \mathscr{M}_{\mathrm{i}}, \mathrm{A}_{\mathrm{i}}, \mathrm{A}_{\mathrm{i}}^{\prime} \in \mathrm{A}_{i}$ and $\mathrm{B}_{\mathrm{i}}, \mathrm{B}_{\mathrm{i}}^{\prime} \in \mathrm{B}_{i}$. Next, we demonstrate that the following equalities hold:

$$
\begin{align*}
& {\left[\mathscr{L}_{i}\left(\mathrm{~A}_{i}+\mathscr{H}_{i}\right)-\mathscr{L}_{i}\left(\mathrm{~A}_{i}\right)-\mathscr{L}_{i}\left(\mathscr{H}_{i}\right), \mathscr{H}_{i}^{\prime}\right]=0} \tag{5}\\
& {\left[\mathscr{L}_{i}\left(\mathrm{~B}_{i}+\mathscr{H}_{i}\right)-\mathscr{L}_{i}\left(\mathrm{~B}_{i}\right)-\mathscr{L}_{i}\left(\mathscr{H}_{i}\right), \mathscr{H}_{i}^{\prime}\right]=0} \tag{6}
\end{align*}
$$

In point of fact, since

$$
\begin{aligned}
{\left[\mathscr{L}_{i}\left(\mathrm{~A}_{\mathrm{i}}\right), \mathscr{H}_{\mathrm{i}}^{\prime}\right]=} & \mathscr{P}_{\mathrm{N}}\left(\mathscr{L}_{i}\left(\mathrm{~A}_{\mathrm{i}}\right), \mathscr{H}_{i}^{\prime}, \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right) \\
= & \mathscr{L}_{i}\left(\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{i}, \mathscr{H}_{i}^{\prime}, \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right)\right) \\
& -\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{\mathrm{i}}, \mathscr{L}_{\mathrm{i}}\left(\mathscr{H}_{i}^{\prime}\right), \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right)-\cdots-\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{i}, \mathscr{H}_{i}^{\prime}, \mathscr{Q}_{i}, \cdots, \mathscr{L}_{i}\left(\mathscr{Q}_{i}\right)\right) \\
= & \mathscr{L}_{i}\left(\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{i}+\mathscr{H}_{i}, \mathscr{H}_{i}^{\prime}, \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right)\right)-\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{i}+\mathscr{H}_{i}, \mathscr{L}_{i}\left(\mathscr{H}_{i}^{\prime}\right), \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right) \\
& -\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{i}+\mathscr{H}_{i}, \mathscr{H}_{i}^{\prime}, \mathscr{L}_{i}\left(\mathscr{Q}_{i}\right), \cdots, \mathscr{Q}_{i}\right)-\cdots-\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{i}+\mathscr{H}_{i}, \mathscr{H}_{i}^{\prime}, \mathscr{Q}_{i}, \cdots, \mathscr{L}_{i}\left(\mathscr{Q}_{i}\right)\right) \\
= & \mathscr{P}_{\mathrm{N}}\left(\mathscr{L}_{i}\left(\mathrm{~A}_{i}+\mathscr{H}_{i}\right), \mathscr{H}_{i}^{\prime}, \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right) \\
= & {\left[\mathscr{L}_{i}\left(\mathrm{~A}_{i}+\mathscr{H}_{\mathrm{i}}\right), \mathscr{H}_{\mathrm{i}}^{\prime}\right] }
\end{aligned}
$$

It follows that (5) holds. Symmetrically, one can show that (6) holds.

$$
\begin{aligned}
\mathscr{L}_{i}\left(\mathscr{H}_{i}\right)= & \mathscr{L}_{i}\left(\mathscr{P}_{\mathrm{N}}\left(\mathrm{P}_{i}+\mathscr{H}_{i}, \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right)\right) \\
= & \mathscr{P}_{\mathrm{N}}\left(\mathscr{L}_{i}\left(\mathrm{P}_{i}+\mathscr{H}_{i}\right), \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right)+\mathscr{P}_{\mathrm{N}}\left(\mathrm{P}_{i}+\mathscr{H}_{i}, \mathscr{L}_{i}\left(\mathscr{Q}_{i}\right), \cdots, \mathscr{Q}_{i}\right) \\
& +\cdots+\mathscr{P}_{\mathrm{N}}\left(\mathrm{P}_{i}+\mathscr{H}_{i}, \mathscr{Q}_{i}, \cdots, \mathscr{L}_{i}\left(\mathscr{Q}_{i}\right)\right) \\
= & \mathscr{P}_{\mathrm{N}}\left(\mathscr{L}_{i}\left(\mathrm{P}_{i}+\mathscr{H}_{\mathrm{i}}\right), \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right) .
\end{aligned}
$$

Also, we have

$$
\begin{aligned}
\mathscr{L}_{i}\left(\mathscr{H}_{i}^{\prime}\right)= & \mathscr{L}_{i}\left(\mathscr{P}_{\mathrm{N}}\left(\mathrm{P}_{i}+\mathscr{H}_{i}, \mathscr{H}_{i}^{\prime}, \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right)\right) \\
= & \mathscr{P}_{\mathrm{N}}\left(\mathscr{L}_{i}\left(\mathrm{P}_{i}+\mathscr{H}_{i}\right), \mathscr{H}_{i}^{\prime}, \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right)+\mathscr{P}_{\mathrm{N}}\left(\mathrm{P}_{i}+\mathscr{H}_{i}, \mathscr{L}_{i}\left(\mathscr{H}_{\mathrm{i}}^{\prime}\right), \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right) \\
& +\cdots+\mathscr{P}_{\mathrm{N}}\left(\mathrm{P}_{i}+\mathscr{H}_{i}, \mathscr{H}_{i}^{\prime}, \mathscr{Q}_{i}, \cdots, \mathscr{L}_{i}\left(\mathscr{Q}_{i}\right)\right) \\
= & \mathscr{P}_{\mathrm{N}}\left(\mathscr{L}_{i}\left(\mathrm{P}_{i}+\mathscr{H}_{i}\right), \mathscr{H}_{i}^{\prime}, \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right)+\mathscr{L}_{i}\left(\mathscr{H}_{i}^{\prime}\right) \\
0= & \mathscr{P}_{\mathrm{N}}\left(\mathscr{L}_{i}\left(\mathrm{P}_{i}+\mathscr{H}_{i}\right), \mathscr{H}_{i}^{\prime}, \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right) .
\end{aligned}
$$

Likewise, $\mathscr{L}_{i}\left(\mathscr{H}_{i}^{\prime}\right)=\mathscr{P}_{\mathrm{N}}\left(\mathrm{P}_{\mathrm{i}}, \mathscr{L}_{i}\left(\mathscr{H}_{i}^{\prime}+\mathscr{Q}_{i}\right), \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right)$ and $\mathscr{P}_{\mathrm{N}}\left(\mathscr{H}_{i}, \mathscr{L}_{i}\left(\mathscr{H}_{i}^{\prime}+\mathscr{Q}_{i}\right), \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right)=0$. Using $\mathscr{H}_{i}+\mathscr{H}_{i}^{\prime}=\left[\mathrm{P}_{i}+\mathscr{H}_{i}, \mathscr{H}_{i}^{\prime}+\mathscr{Q}_{i}\right]$, the fact $\mathscr{L}_{i}\left(\mathscr{Q}_{i}\right) \in \mathscr{Z}(\mathscr{T})$ we see that

$$
\begin{aligned}
\mathscr{L}_{i}\left(\mathscr{H}_{i}+\mathscr{H}_{i}^{\prime}\right)= & \mathscr{L}_{i}\left(\left[\mathrm{P}_{i}+\mathscr{H}_{i}, \mathscr{H}_{i}^{\prime}+\mathscr{Q}_{i}\right]\right) \\
= & \mathscr{L}_{i}\left(\mathscr{P}_{\mathrm{N}}\left(\mathrm{P}_{i}+\mathscr{H}_{i}, \mathscr{H}_{i}^{\prime}+\mathscr{Q}_{i}, \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right)\right) \\
= & \mathscr{P}_{\mathrm{N}}\left(\mathscr{L}_{i}\left(\mathrm{P}_{i}+\mathscr{H}_{i}\right), \mathscr{H}_{i}^{\prime}+\mathscr{Q}_{i}, \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right) \\
& +\mathscr{P}_{\mathrm{N}}\left(\mathrm{P}_{i}+\mathscr{H}_{i}, \mathscr{L}_{i}\left(\mathscr{H}_{i}^{\prime}+\mathscr{Q}_{i}\right), \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right) \\
& +\mathscr{P}_{\mathrm{N}}\left(\mathrm{P}_{i}+\mathscr{H}_{i}, \mathscr{H}_{i}^{\prime}+\mathscr{Q}_{i}, \mathscr{L}_{i}\left(\mathscr{Q}_{i}\right), \cdots, \mathscr{Q}_{i}\right) \\
& +\cdots+\mathscr{P}_{\mathrm{N}}\left(\mathrm{P}_{i}+\mathscr{H}_{i}, \mathscr{H}_{i}^{\prime}+\mathscr{Q}_{i}, \mathscr{Q}_{i}, \cdots, \mathscr{L}_{i}\left(\mathscr{Q}_{i}\right)\right) \\
= & \mathscr{P}_{\mathrm{N}}\left(\mathscr{L}_{i}\left(\mathrm{P}_{i}+\mathscr{H}_{i}\right), \mathscr{H}_{i}^{\prime}, \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right)+\mathscr{P}_{\mathrm{N}}\left(\mathscr{L}_{i}\left(\mathrm{P}_{i}+\mathscr{H}_{i}\right), \mathscr{Q}_{i}, \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right) \\
& +\mathscr{P}_{\mathrm{N}}\left(\mathrm{P}_{i}, \mathscr{L}_{i}\left(\mathscr{H}_{i}^{\prime}+\mathscr{Q}_{i}\right), \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right)+\mathscr{P}_{\mathrm{N}}\left(\mathscr{H}_{i}, \mathscr{L}_{i}\left(\mathscr{H}_{i}^{\prime}+\mathscr{Q}_{i}\right), \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right) \\
= & \mathscr{L}_{i}\left(\mathscr{H}_{i}\right)+\mathscr{L}_{i}\left(\mathscr{H}_{i}^{\prime}\right) .
\end{aligned}
$$

That is, \mathscr{L}_{i} is additive on \mathscr{M}_{i}.
Lemma 3.8. For every $A_{i} \in \mathrm{~A}_{i}$ and $B_{i} \in \mathrm{~B}_{\mathrm{i}}$, we have $\mathscr{L}_{i}\left(A_{i}+B_{i}\right)-\mathscr{L}_{i}\left(A_{i}\right)-\mathscr{L}_{i}\left(B_{i}\right) \in \mathscr{Z}(\mathscr{T})$.

Proof. With every $\mathscr{H}_{i}^{\prime} \in \mathscr{M}_{i}$, we provide

$$
\begin{aligned}
& \mathscr{L}_{i}\left(\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{i}+\mathrm{B}_{\mathrm{i}}, \mathscr{H}_{i}^{\prime}, \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right)\right) \\
&= \mathscr{P}_{\mathrm{N}-1}\left(\left[\mathscr{L}_{i}\left(\mathrm{~A}_{i}+\mathrm{B}_{\mathrm{i}}\right), \mathscr{H}_{i}^{\prime}\right], \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right)+\mathscr{P}_{\mathrm{N}-1}\left(\left[\mathrm{~A}_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}}, \mathscr{L}_{i}\left(\mathscr{H}_{i}^{\prime}\right)\right], \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right) \\
&+\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{i}+\mathrm{B}_{i}, \mathscr{H}_{i}^{\prime}, \mathscr{L}_{i}\left(\mathscr{Q}_{i}\right), \cdots, \mathscr{Q}_{i}\right)+\cdots+\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{i}+\mathrm{B}_{i}, \mathscr{H}_{i}^{\prime}, \mathscr{Q}_{i}, \cdots, \mathscr{L}_{i}\left(\mathscr{Q}_{i}\right)\right) \\
&= {\left[\mathscr{L}_{\mathrm{i}}\left(\mathrm{~A}_{i}+\mathrm{B}_{\mathrm{i}}\right), \mathscr{H}_{i}^{\prime}\right]+\left[\mathrm{A}_{i}+\mathrm{B}_{i}, \mathscr{L}_{i}\left(\mathscr{H}_{\mathrm{i}}^{\prime}\right)\right] . }
\end{aligned}
$$

On the other way, it follows that

$$
\begin{aligned}
& \mathscr{L}_{i}\left(\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{i}+\mathrm{B}_{i}, \mathscr{H}_{i}^{\prime}, \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right)\right) \\
&= \mathscr{L}_{i}\left(\left[\mathrm{~A}_{i}, \mathscr{H}_{i}^{\prime}\right]\right)+\mathscr{L}_{i}\left(\left[\mathrm{~B}_{\mathrm{i}}, \mathscr{H}_{i}^{\prime}\right]\right) \\
&= \mathscr{L}_{\mathrm{i}}\left(\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{i}, \mathscr{H}_{\mathrm{i}}^{\prime}, \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right)\right)+\mathscr{L}_{i}\left(\mathscr{P}_{\mathrm{N}}\left(\mathrm{~B}_{i}, \mathscr{H}_{i}^{\prime}, \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right)\right) \\
&= \mathscr{P}_{\mathrm{N}-1}\left(\left[\mathscr{L}_{i}\left(\mathrm{~A}_{i}\right), \mathscr{H}_{i}^{\prime}\right], \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right)+\mathscr{P}_{\mathrm{N}-1}\left(\left[\mathrm{~A}_{i}, \mathscr{L}_{i}\left(\mathscr{H}_{i}^{\prime}\right)\right], \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right) \\
&+\cdots+\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{i}, \mathscr{H}_{i}^{\prime}, \mathscr{Q}_{i}, \cdots, \mathscr{L}_{i}\left(\mathscr{Q}_{i}\right)\right)+\mathscr{P}_{\mathrm{N}-1}\left(\left[\mathscr{L}_{i}\left(\mathrm{~B}_{i}\right), \mathscr{H}_{i}^{\prime}\right], \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right) \\
&+\mathscr{P}_{\mathrm{N}-1}\left(\left[\mathrm{~B}_{i}, \mathscr{L}_{i}\left(\mathscr{H}_{i}^{\prime}\right)\right], \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right)+\cdots+\mathscr{P}_{\mathrm{N}}\left(\mathrm{~B}_{i}, \mathscr{H}_{i}^{\prime}, \mathscr{Q}_{i}, \cdots, \mathscr{L}_{i}\left(\mathscr{Q}_{i}\right)\right) \\
&= {\left[\mathscr{L}_{i}\left(\mathrm{~A}_{\mathrm{i}}\right), \mathscr{H}_{i}^{\prime}\right]+\left[\mathrm{A}_{i}, \mathscr{L}_{i}\left(\mathscr{H}_{\mathrm{i}}^{\prime}\right)\right]+\left[\mathscr{L}_{i}\left(\mathrm{~B}_{i}\right), \mathscr{H}_{i}^{\prime}\right]+\left[\mathrm{B}_{i}, \mathscr{L}_{i}\left(\mathscr{H}_{i}^{\prime}\right)\right] . }
\end{aligned}
$$

Now from above two expressions, we arrive at $\left[\mathscr{L}_{i}\left(\mathrm{~A}_{i}+\mathrm{B}_{\mathrm{i}}\right)-\mathscr{L}_{i}\left(\mathrm{~A}_{\mathrm{i}}\right)-\mathscr{L}_{i}\left(\mathrm{~B}_{i}\right), \mathscr{H}_{i}^{\prime}\right]=0$ for all $\mathscr{H}_{i}^{\prime} \in \mathscr{M}_{i}$. With Lemma 3.4, we have $\left[\mathscr{L}_{i}\left(\mathrm{~A}_{i}+\mathrm{B}_{\mathrm{i}}\right)-\mathscr{L}_{i}\left(\mathrm{~A}_{i}\right)-\mathscr{L}_{i}\left(\mathrm{~B}_{\mathrm{i}}\right), \mathrm{B}_{i}^{\prime}\right]=0$ for all and $\left[\mathscr{L}_{i}\left(\mathrm{~A}_{i}+\mathrm{B}_{\mathrm{i}}\right)-\mathscr{L}_{i}\left(\mathrm{~A}_{i}\right)-\mathscr{L}_{i}\left(\mathrm{~B}_{i}\right), \mathrm{A}_{i}^{\prime}\right]=0$ for all $A_{i}^{\prime} \in A_{i}$ and $B_{i}^{\prime} \in B_{i}$. These together implies that

$$
\left[\mathscr{L}_{i}\left(\mathrm{~A}_{i}+\mathrm{B}_{i}\right)-\mathscr{L}_{i}\left(\mathrm{~A}_{i}\right)-\mathscr{L}_{i}\left(\mathrm{~B}_{i}\right), \mathscr{T}\right]=0 \text { and hence } \mathscr{L}_{i}\left(\mathrm{~A}_{i}+\mathrm{B}_{i}\right)-\mathscr{L}_{i}\left(\mathrm{~A}_{i}\right)-\mathscr{L}_{i}\left(\mathrm{~B}_{i}\right) \in \mathscr{Z}(\mathscr{T})
$$

for all $A_{i} \in A_{i}$ and $B_{i} \in B_{i}$.
Lemma 3.9. For every $A_{i} \in A_{i}, \mathscr{H}_{i} \in \mathscr{M}_{i}$ and $B_{i} \in B_{i}$, we get

$$
\left[\mathscr{L}_{i}\left(A_{i}+\mathscr{H}_{i}+B_{i}\right)-\mathscr{L}_{i}\left(A_{i}\right)-\mathscr{L}_{i}\left(\mathscr{H}_{i}\right)-\mathscr{L}_{i}\left(B_{i}\right), \mathscr{M}_{i}\right] \equiv 0 .
$$

Proof. For every $\mathscr{H}_{i}^{\prime} \in \mathscr{M}_{i}$, we can write

$$
\begin{aligned}
& \mathscr{L}_{i}\left(\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{\mathrm{i}}+\mathscr{H}_{i}+\mathrm{B}_{i}, \mathscr{H}_{i}^{\prime}, \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right)\right) \\
&= \mathscr{P}_{\mathrm{N}-1}\left(\left[\mathscr{L}_{i}\left(\mathrm{~A}_{i}+\mathscr{H}_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}}\right), \mathscr{H}_{i}^{\prime}\right], \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right)+\mathscr{P}_{\mathrm{N}-1}\left(\left[\mathrm{~A}_{i}+\mathscr{H}_{i}+\mathrm{B}_{i}, \mathscr{L}_{i}\left(\mathscr{H}_{i}^{\prime}\right)\right], \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right) \\
&+\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{i}+\mathscr{H}_{i}+\mathrm{B}_{i}, \mathscr{H}_{i}^{\prime}, \mathscr{L}_{i}\left(\mathscr{Q}_{i}\right), \cdots, \mathscr{Q}_{i}\right)+\cdots+\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{i}+\mathscr{H}_{i}+\mathrm{B}_{i}, \mathscr{H}_{i}^{\prime}, \mathscr{Q}_{i}, \cdots, \mathscr{L}_{i}\left(\mathscr{Q}_{i}\right)\right) \\
&= {\left[\mathscr{L}_{i}\left(\mathrm{~A}_{i}+\mathscr{H}_{i}+\mathrm{B}_{i}\right), \mathscr{H}_{i}^{\prime}\right]+\left[\mathrm{A}_{i}+\mathscr{H}_{i}+\mathrm{B}_{i}, \mathscr{L}_{i}\left(\mathscr{H}_{\mathrm{i}}^{\prime}\right)\right] . }
\end{aligned}
$$

On the other way, it follows that

$$
\begin{aligned}
\mathscr{L}_{i}(& \left.\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{i}+\mathscr{H}_{i}+\mathrm{B}_{i}, \mathscr{H}_{i}^{\prime}, \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right)\right) \\
= & \mathscr{L}_{i}\left(\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{i}+\mathrm{B}_{i}, \mathscr{H}_{i}^{\prime}, \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right)\right) \\
= & \mathscr{P}_{\mathrm{N}-1}\left(\left[\mathscr{L}_{i}\left(\mathrm{~A}_{i}+\mathrm{B}_{i}\right), \mathscr{H}_{i}^{\prime}\right], \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right)+\mathscr{P}_{\mathrm{N}-1}\left(\left[\mathrm{~A}_{i}+\mathrm{B}_{i}, \mathscr{L}_{i}\left(\mathscr{H}_{\mathrm{i}}^{\prime}\right)\right], \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right) \\
& +\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{i}+\mathrm{B}_{i}, \mathscr{H}_{i}^{\prime}, \mathscr{L}_{i}\left(\mathscr{Q}_{i}\right), \cdots, \mathscr{Q}_{i}\right)+\cdots+\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{i}+\mathrm{B}_{i}, \mathscr{H}_{i}^{\prime}, \mathscr{Q}_{i}, \cdots, \mathscr{L}_{i}\left(\mathscr{Q}_{i}\right)\right) \\
= & {\left[\mathscr{L}_{i}\left(\mathrm{~A}_{i}+\mathrm{B}_{\mathrm{i}}\right), \mathscr{H}_{\mathrm{i}}^{\prime}\right]+\left[\mathrm{A}_{i}+\mathrm{B}_{i}, \mathscr{L}_{i}\left(\mathscr{H}_{i}^{\prime}\right)\right] . }
\end{aligned}
$$

The combination of the aforementioned both equations provides $\left[\mathscr{L}_{i}\left(\mathrm{~A}_{i}+\mathscr{H}_{i}+\mathrm{B}_{i}\right)-\mathscr{L}_{i}\left(\mathrm{~A}_{i}+\mathrm{B}_{i}\right), \mathscr{H}_{i}^{\prime}\right]=0$. It concludes through Lemmas 3.3 and 3.8.

Especially, $\mathscr{T}=\mathrm{A}_{[n / 2]}+\mathscr{M}_{[n / 2]}+\mathrm{B}_{[n / 2]}$ when $\mathfrak{i}=[n / 2]$. Within that scenario, $\mathscr{L}_{[n / 2]}$ is indeed a multiplicative Lie derivation with $\mathrm{P}_{[n / 2]} \mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{[n / 2]}\right) \mathscr{Q}_{[n / 2]}=0$; in comparison, for just about any
$\mathscr{X}=\mathrm{A}_{[n / 2]}+\mathscr{H}_{[n / 2]}+\mathrm{B}_{[n / 2]} \in \mathscr{T}$, through Lemmas 3.3 and 3.8 can be written as,

$$
\begin{align*}
\mathrm{H}_{0} & =\mathscr{L}_{[n / 2]}(\mathscr{X})-\mathscr{L}_{[n / 2]}\left(\mathrm{A}_{[n / 2]}\right)-\mathscr{L}_{[n / 2]}\left(\mathscr{H}_{[n / 2]}\right)-\mathscr{L}_{[n / 2]}\left(\mathrm{B}_{[n / 2]}\right) \\
& =\left[\begin{array}{cccccc}
\mathrm{r}_{11} & \cdots & \mathrm{r}_{1,[\mathrm{n} / 2]} & 0 & \cdots & 0 \\
& \ddots & \vdots & \vdots & \ddots & \vdots \\
& & \mathrm{r}_{[n / 2],[n / 2]} & 0 & \cdots & 0 \\
& & & \mathrm{r}_{[n / 2]+1,[n / 2]+1} & \cdots & \mathrm{r}_{[n / 2]+1, n} \\
& & & & \ddots & \vdots \\
& & & & & \mathrm{r}_{n n}
\end{array}\right] \tag{7}
\end{align*}
$$

Over the next portion, we will illustrate that $\mathrm{H}_{0} \in \mathscr{Z}(\mathscr{T})$ mostly with the subsequent Lemmas 3.10-3.13. For this, we consider $\tau_{i}: \mathscr{T} \rightarrow \mathscr{T}$ and $h_{i}: \mathscr{T} \rightarrow \mathscr{T}$, where $i \in\{1, \cdots,[n / 2]-1,[n / 2]+1, \cdots, n-1\}$, such that

$$
\begin{equation*}
h_{i}(\mathscr{X})=\left[\mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{i}\right), \mathscr{X}\right] \text { and } \tau_{i}(\mathscr{X})=\mathscr{L}_{[n / 2]}(\mathscr{X})-h_{i}(\mathscr{X}) \text { for all } \mathscr{X} \in \mathscr{T} . \tag{8}
\end{equation*}
$$

Hence, by offering the same premises like those of Lemmas 3.2-3.9 for \mathscr{L}_{i}, it can be shown that τ_{i} would also be a multiplicative Lie N -derivation enjoying $\mathrm{P}_{i} \tau_{i}\left(\mathscr{Q}_{i}\right) \mathscr{Q}_{i}=0$ as well as Lemmas 3.3-3.9 even now holds the map τ_{i}.

Lemma 3.10. For any $\mathscr{H}_{i} \in \mathscr{M}_{i}=P_{i} \mathscr{T} \mathscr{Q}_{i}$, we have $\mathscr{L}_{[n / 2]}\left(\mathscr{H}_{i}\right)=P_{i} \mathscr{L}_{[n / 2]}\left(\mathscr{H}_{i}\right) \mathscr{Q}_{i}=\tau_{i}\left(\mathscr{H}_{i}\right) ;$ and moreover, $\mathscr{L}_{[n / 2]}$ is additive on \mathscr{M}_{i}. Here $\mathfrak{i} \in\{1, \cdots,[n / 2]-1,[n / 2]+1, \cdots, n-1\}$.

Proof. Let $\mathfrak{i} \in\{1, \cdots,[n / 2]-1,[n / 2]+1, \cdots, n-1\}$ and take any $\mathscr{H}_{i} \in \mathscr{M}_{i}$. Note that

$$
\begin{aligned}
\mathscr{L}_{[n / 2]}\left(\mathscr{H}_{i}\right)= & \mathscr{L}_{[n / 2]}\left(\mathscr{P}_{\mathrm{N}}\left(\mathscr{H}_{i}, \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{\mathrm{i}}\right)\right) \\
= & \left.\mathscr{P}_{\mathrm{N}}\left(\mathscr{L}_{[n / 2]}\left(\mathscr{H}_{\mathrm{i}}\right), \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{\mathrm{i}}\right)+\mathscr{P}_{\mathrm{N}}\left(\mathscr{H}_{i}, \mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{\mathrm{i}}\right), \ldots, \mathscr{Q}_{\mathrm{i}}\right)\right) \\
& +\cdots+\mathscr{P}_{\mathrm{N}}\left(\mathscr{H}_{i}, \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{i}\right)\right) \\
= & \mathrm{P}_{\mathrm{i}} \mathscr{L}_{[n / 2]}\left(\mathscr{H}_{\mathrm{i}}\right) \mathscr{Q}_{\mathrm{i}}+(\mathrm{N}-1)\left[\mathscr{H}_{i}, \mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{i}\right)\right] \in \mathscr{M}_{\mathrm{i}} .
\end{aligned}
$$

Multiplying by P_{i} from left and \mathscr{Q}_{i} from right side, we find that $(\mathrm{N}-1)\left[\mathscr{H}_{\mathrm{i}}, \mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{Q}_{\mathrm{i}}\right)\right]=0$ and hence $\left[\mathscr{H}_{i}, \mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{i}\right)\right]=0$. It follows that $\mathscr{L}_{[n / 2]}\left(\mathscr{H}_{i}\right)=\mathrm{P}_{i} \mathscr{L}_{[n / 2]}\left(\mathscr{H}_{i}\right) \mathscr{Q}_{i}$. Thus, by (8), we have

$$
\mathscr{L}_{[n / 2]}\left(\mathscr{H}_{i}\right)=\tau_{i}\left(\mathscr{H}_{i}\right)-\left[\mathscr{H}_{i}, \mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{i}\right)\right]=\tau_{i}\left(\mathscr{H}_{i}\right) .
$$

Moreover, the additivity of $\mathscr{L}_{[n / 2]}$ on \mathscr{M}_{i} can be obtained by Lemma 3.7 for τ_{i}.
Henceforth, fix any $\mathscr{X}=\mathrm{A}_{[n / 2]}+\mathscr{H}_{[n / 2]}+\mathrm{B}_{[n / 2]} \in \mathscr{T}$. Then (7) holds. Consider the map $\tau_{i}(i=1, \cdots,[n / 2]-$ $1,[n / 2]+1, \cdots, n-1) . \mathscr{X}$ can also be written as $\mathscr{X}=\mathrm{A}_{\mathrm{i}}+\mathscr{H}_{i}+\mathrm{B}_{\mathrm{i}}$. So we have

$$
\begin{align*}
\mathrm{K}_{\mathrm{i}} & =\tau_{\mathfrak{i}}(\mathscr{X})-\tau_{\mathfrak{i}}\left(\mathrm{A}_{\mathrm{i}}\right)-\tau_{\mathfrak{i}}\left(\mathscr{H}_{i}\right)-\tau_{\mathfrak{i}}\left(\mathrm{B}_{\mathrm{i}}\right) \\
& =\left[\begin{array}{cccccc}
\mathrm{s}_{1,1}^{\mathrm{i}} & \cdots & s_{1, \mathrm{i}}^{i} & 0 & \cdots & 0 \\
& \ddots & \vdots & \vdots & \ddots & \vdots \\
& & s_{i, i}^{i} & 0 & \cdots & 0 \\
& & & s_{i+1, i+1}^{i} & \cdots & s_{i+1, n}^{i} \\
& & & & \ddots & \vdots \\
& & & & & s_{n, n}^{i}
\end{array}\right] . \tag{9}
\end{align*}
$$

Lemma 3.11. For $\mathscr{X}=A_{[n / 2]}+\mathscr{H}_{[n / 2]}+B_{[n / 2]}=A_{i}+\mathscr{H}_{i}+B_{i} \in \mathscr{T}(\mathfrak{i}=1, \cdots,[n / 2]-1,[n / 2]+1, \cdots, n-1)$, the following statements hold.

1. For $i \in\{1, \cdots,[n / 2]-1\}$, we have $\mathscr{E}_{h} \tau_{i}\left(A_{[n / 2]}\right) \mathscr{E}_{j}=\mathscr{E}_{h} \tau_{i}\left(\mathscr{H}_{i}\right) \mathscr{E}_{\mathfrak{j}}$ for $1 \leqslant h \leqslant i$ and $i+1 \leqslant j \leqslant[n / 2]$;
2. For $i \in\{[n / 2]+1, \cdots, n-1\}$, we have $\mathscr{E}_{h} \tau_{i}\left(B_{[n / 2]}\right) \mathscr{E}_{j}=\mathscr{E}_{h} \tau_{i}\left(\mathscr{H}_{i}\right) \mathscr{E}_{j}$ for $[n / 2]+1 \leqslant h \leqslant i$ and $i+1 \leqslant j \leqslant n$.

Proof. For any $\mathscr{X} \in \mathscr{T}$, we have

$$
\begin{aligned}
\mathscr{L}_{[n / 2]}\left(\mathrm{P}_{\mathrm{i}} \mathscr{X} \mathscr{Q}_{\mathrm{i}}\right)= & \mathscr{L}_{[n / 2]}\left(\mathscr{P}_{\mathrm{N}}\left(\mathscr{X}, \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{Q}_{i}\right)\right) \\
= & \mathscr{P}_{\mathrm{N}}\left(\mathscr{L}_{[n / 2]}(\mathscr{X}), \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{Q}_{\mathrm{i}}\right)+\mathscr{P}_{\mathrm{N}}\left(\mathscr{X}, \mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{\mathrm{i}}\right), \cdots, \mathscr{Q}_{\mathrm{i}}\right) \\
& +\cdots+\mathscr{P}_{\mathrm{N}}\left(\mathscr{X}, \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{\mathrm{i}}\right)\right) \\
= & \mathrm{P}_{\mathrm{i}} \mathscr{L}_{[\mathrm{n} / 2]}(\mathscr{X}) \mathscr{Q}_{\mathrm{i}}+\mathrm{P}_{\mathrm{i}}\left[\mathscr{X}, \mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{Q}_{\mathrm{i}}\right)\right] \mathscr{Q}_{i}+(\mathrm{N}-2)\left[\mathrm{P}_{\mathrm{i}} \mathscr{X}_{\mathscr{Q}_{i}}, \mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{Q}_{\mathrm{i}}\right)\right] .
\end{aligned}
$$

Multiplying by P_{i} from left and by \mathscr{Q}_{i} from right and then replacing \mathscr{X} by $\mathrm{P}_{\mathrm{i}} \mathscr{X} \mathscr{Q}_{i}$, find that $(\mathrm{N}-$ 1) $\left[\mathrm{P}_{\mathrm{i}} \mathscr{X} \mathscr{Q}_{\mathrm{i}}, \mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{\mathrm{i}}\right)\right]=0$ it follows that $\left[\mathrm{P}_{\mathrm{i}} \mathscr{X} \mathscr{Q}_{\mathrm{i}}, \mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{\mathrm{i}}\right)\right]=0$. Therefore,

$$
\mathscr{L}_{[n / 2]}\left(\mathrm{P}_{\mathrm{i}} \mathscr{X} \mathscr{Q}_{\mathrm{i}}\right)=\mathrm{P}_{\mathrm{i}} \mathscr{L}_{[n / 2]}(\mathscr{X}) \mathscr{Q}_{\mathrm{i}}+\mathrm{P}_{\mathrm{i}}\left[\mathscr{X}, \mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{\mathrm{i}}\right)\right] \mathscr{Q}_{i} .
$$

First assume that $i \in\{1, \cdots,[n / 2]-1\}$. Since

$$
\begin{aligned}
& \tau_{i}\left(\mathrm{~A}_{[n / 2]}\right)=\mathscr{L}_{[n / 2]}\left(\mathrm{A}_{[n / 2]}\right)+\left[\mathrm{A}_{[n / 2]}, \mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{i}\right)\right] \\
& =\mathrm{P}_{\mathrm{i}} \mathscr{L}_{[\mathrm{n} / 2]}\left(\mathrm{A}_{[n / 2]}\right) \mathrm{P}_{\mathrm{i}}+\mathrm{P}_{\mathrm{i}}\left[\mathrm{~A}_{[n / 2]}, \mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{i}\right)\right] \mathrm{P}_{\mathrm{i}}+\mathrm{P}_{\mathrm{i}} \mathscr{L}_{[n / 2]}\left(\mathrm{A}_{[n / 2]}\right) \mathscr{Q}_{\mathrm{i}} \\
& +\mathrm{P}_{i}\left[\mathrm{~A}_{[n / 2]}, \mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{i}\right)\right] \mathscr{Q}_{i}+\mathscr{Q}_{i} \mathscr{L}_{[n / 2]}\left(\mathrm{A}_{[n / 2]}\right) \mathscr{Q}_{i}+\mathscr{Q}_{i}\left[\mathrm{~A}_{[n / 2]}, \mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{i}\right)\right] \mathscr{Q}_{i} \\
& =\mathrm{P}_{\mathrm{i}} \mathscr{L}_{[\mathrm{n} / 2]}\left(\mathrm{A}_{[n / 2]}\right) \mathrm{P}_{\mathrm{i}}+\mathrm{P}_{\mathrm{i}}\left[\mathrm{~A}_{[n / 2]}, \mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{\mathrm{i}}\right)\right] \mathrm{P}_{\mathrm{i}}+\mathscr{L}_{[n / 2]}\left(\mathrm{P}_{\mathrm{i}} \mathrm{~A}_{[n / 2]} \mathscr{Q}_{\mathrm{i}}\right) \\
& +\mathscr{Q}_{i} \mathscr{L}_{[n / 2]}\left(\mathrm{A}_{[n / 2]}\right) \mathscr{Q}_{i}+\mathscr{Q}_{i}\left[\mathrm{~A}_{[n / 2]}, \mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{i}\right)\right] \mathscr{Q}_{i},
\end{aligned}
$$

then we get

$$
\begin{equation*}
\mathrm{P}_{i} \tau_{i}\left(\mathrm{~A}_{[n / 2]}\right) \mathscr{Q}_{i}=\mathrm{P}_{i} \mathscr{L}_{[n / 2]}\left(\mathrm{P}_{i} \mathrm{~A}_{[n / 2]} \mathscr{Q}_{i}\right) \mathscr{Q}_{i} \tag{10}
\end{equation*}
$$

However, writing $\mathscr{H}_{i}=\mathrm{P}_{\mathrm{i}} \mathrm{A}_{[n / 2]} \mathscr{Q}_{\mathrm{i}}+\mathrm{P}_{\mathrm{i}} \mathscr{H}_{[n / 2]} \mathscr{Q}_{\mathrm{i}} \in \mathscr{M}_{\mathrm{i}}$ by Lemma 3.10, we have
$\mathscr{M}_{i} \ni \tau_{i}\left(\mathscr{H}_{i}\right)=\mathrm{L}_{[n / 2]}\left(\mathrm{P}_{\mathrm{i}} \mathrm{A}_{[n / 2]} \mathscr{Q}_{\mathrm{i}}+\mathrm{P}_{\mathrm{i}} \mathscr{H}_{[n / 2]} \mathscr{Q}_{i}\right)=\mathscr{L}_{[n / 2]}\left(\mathrm{P}_{\mathrm{i}} \mathrm{A}_{[n / 2]} \mathscr{Q}_{\mathrm{i}}\right)+\mathscr{L}_{[n / 2]}\left(\mathrm{P}_{\mathrm{i}} \mathscr{H}_{[n / 2]} \mathscr{Q}_{i}\right)$ which and (10) imply $\mathrm{P}_{\mathrm{i}} \tau_{i}\left(\mathrm{~A}_{[\mathrm{n} / 2]}\right) \mathscr{Q}_{\mathrm{i}}=\tau_{\mathrm{i}}\left(\mathscr{H}_{\mathrm{i}}\right)-\mathrm{P}_{\mathrm{i}} \mathscr{L}_{[n / 2]}\left(\mathrm{P}_{\mathrm{i}} \mathscr{H}_{[n / 2]} \mathscr{Q}_{\mathrm{i}}\right) \mathscr{Q}_{\mathrm{i}}$. Note that $\mathscr{L}_{[n / 2]}\left(\mathrm{P}_{\mathrm{i}} \mathscr{H}_{[\mathrm{n} / 2]} \mathscr{Q}_{\mathrm{i}}\right) \in \mathscr{M}_{[\mathrm{n} / 2]} \cap \mathscr{M}_{\mathrm{i}}$. Hence the last expression yields $\mathscr{E}_{h} \tau_{i}\left(\mathrm{~A}_{[n / 2]}\right) \mathscr{E}_{j}=\mathscr{E}_{h} \tau_{i}\left(\mathscr{H}_{i}\right) \mathscr{E}_{j}$, where $1 \leqslant h \leqslant i$ and $i+1 \leqslant j \leqslant[n / 2]$. For the case $i \in\{[n / 2]+1, \cdots, n-1\}$ the proof being similar is omitted

Lemma 3.12. In (7), $\mathrm{r}_{\mathrm{ij}}=0$ for all $1 \leqslant \mathfrak{i}<\mathfrak{j} \leqslant[n / 2]$ and $[n / 2]+1 \leqslant i<j \leqslant n$.
Proof. Primarily we prove that $\mathrm{r}_{12}=\cdots=\mathrm{r}_{1,[\mathrm{n} / 2]}=0$. Undoubtedly, for $\mathscr{X}=\mathrm{A}_{[n / 2]}+\mathscr{H}_{[n / 2]}+\mathrm{B}_{[n / 2]}=$ $\mathrm{A}_{1}+\mathscr{H}_{1}+\mathrm{B}_{1}$, we have

$$
\begin{align*}
& \mathrm{H}_{1}=\mathrm{H}_{0}-\mathrm{K}_{1} \\
& =\mathscr{L}_{[n / 2]}(\mathscr{X})-\left(\tau_{1}\left(\mathrm{~A}_{[n / 2]}\right)+\left[\mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{1}\right), \mathrm{A}_{[n / 2]}\right]\right)-\left(\tau_{1}\left(\mathscr{H}_{[n / 2]}\right)+\left[\mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{1}\right), \mathscr{H}_{[n / 2]}\right]\right) \\
& -\left(\tau_{1}\left(\mathrm{~B}_{[\mathrm{n} / 2]}\right)+\left[\mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{1}\right), \mathrm{B}_{[\mathrm{n} / 2]}\right]\right)-\left(\mathscr{L}_{[\mathrm{n} / 2]}(\mathscr{X})-\left[\mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{1}\right), \mathscr{X}\right]\right)+\left(\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathrm{A}_{1}\right)\right. \\
& \left.-\left[\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{Q}_{1}\right), \mathrm{A}_{1}\right]\right)+\left(\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{H}_{1}\right)-\left[\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{Q}_{1}\right), \mathscr{H}_{1}\right]\right)+\left(\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathrm{B}_{1}\right)-\left[\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{Q}_{1}\right), \mathrm{B}_{1}\right]\right) \\
& =-\tau_{1}\left(\mathrm{~A}_{[n / 2]}\right)-\tau_{1}\left(\mathscr{H}_{[n / 2]}\right)-\tau_{1}\left(\mathrm{~B}_{[n / 2]}\right)+\mathscr{L}_{[n / 2]}\left(\mathrm{A}_{1}\right)-\left[\mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{1}\right), \mathrm{A}_{1}\right] \\
& +\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{H}_{1}\right)-\left[\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{Q}_{1}\right), \mathscr{H}_{1}\right]+\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathrm{B}_{1}\right)-\left[\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{Q}_{1}\right), \mathrm{B}_{1}\right] \\
& =-\tau_{1}\left(\mathrm{~A}_{[\mathrm{n} / 2]}\right)-\tau_{1}\left(\mathscr{H}_{[\mathrm{n} / 2]}\right)-\tau_{1}\left(\mathrm{~B}_{[\mathrm{n} / 2]}\right)+\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathrm{A}_{1}\right)-\mathrm{P}_{1}\left[\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{Q}_{1}\right), \mathrm{A}_{1}\right] \mathrm{P}_{1} \\
& -\mathrm{P}_{1}\left[\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{Q}_{1}\right), \mathrm{A}_{1}\right] \mathscr{Q}_{1}-\mathscr{Q}_{1}\left[\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{Q}_{1}\right), \mathrm{A}_{1}\right] \mathscr{Q}_{1}+\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{H}_{1}\right)-\mathrm{P}_{1}\left[\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{Q}_{1}\right), \mathscr{H}_{1}\right] \mathrm{P}_{1} \\
& -\mathrm{P}_{1}\left[\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{Q}_{1}\right), \mathscr{H}_{1}\right] \mathscr{Q}_{1}+\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathrm{B}_{1}\right)-\mathscr{Q}_{1}\left[\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{Q}_{1}\right), \mathscr{H}_{1}\right] \mathscr{Q}_{1}-\mathrm{P}_{1}\left[\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{Q}_{1}\right), \mathrm{B}_{1}\right] \mathrm{P}_{1} \\
& -\mathrm{P}_{1}\left[\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{Q}_{1}\right), \mathrm{B}_{1}\right] \mathscr{Q}_{1}-\mathscr{Q}_{1}\left[\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{Q}_{1}\right), \mathrm{B}_{1}\right] \mathscr{Q}_{1} . \tag{11}
\end{align*}
$$

Note that

$$
\begin{aligned}
& \mathrm{P}_{1}\left[\mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{1}\right), \mathrm{A}_{1}\right] \mathscr{Q}_{1}=\mathscr{L}_{[n / 2]}\left(\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{1}, \mathscr{Q}_{1}, \cdots, \mathscr{Q}_{1}\right)\right)+\mathrm{P}_{1}\left[\mathscr{L}_{[n / 2]}\left(\mathrm{A}_{1}\right), \mathscr{Q}_{1}\right] \mathscr{Q}_{1}=\mathrm{P}_{1} \mathscr{L}_{[\mathrm{n} / 2]}\left(\mathrm{A}_{1}\right) \mathscr{Q}_{1} ; \\
& \mathrm{P}_{1}\left[\mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{1}\right), \mathrm{B}_{1}\right] \mathscr{Q}_{1}=\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{P}_{\mathrm{N}}\left(\mathrm{~B}_{1}, \mathscr{Q}_{1}, \cdots, \mathscr{Q}_{1}\right)\right)+\mathrm{P}_{1}\left[\mathscr{L}_{[n / 2]}\left(\mathrm{B}_{1}\right), \mathscr{Q}_{1}\right] \mathscr{Q}_{1}=\mathrm{P}_{1} \mathscr{L}_{[\mathrm{n} / 2]}\left(\mathrm{B}_{1}\right) \mathscr{Q}_{1} ;
\end{aligned}
$$

and by Lemma 3.10 it follows that

$$
\begin{aligned}
\tau_{1}\left(\mathscr{H}_{1}\right)=\mathscr{L}_{[n / 2]}\left(\mathscr{H}_{1}\right) & =\mathrm{P}_{1} \mathscr{L}_{[n / 2]}\left(\mathscr{H}_{1}\right) \mathscr{Q}_{1}+\mathrm{P}_{1}\left[\mathscr{H}_{1}, \mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{1}\right)\right] \mathscr{Q}_{1} \\
& =\mathscr{L}_{[n / 2]}\left(\mathscr{H}_{1}\right)-\mathrm{P}_{1}\left[\mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{1}\right), \mathscr{H}_{1}\right] \mathscr{Q}_{1} .
\end{aligned}
$$

So, (11) changes to

$$
\begin{aligned}
\mathrm{H}_{1}= & -\tau_{1}\left(\mathrm{~A}_{[n / 2]}\right)-\tau_{1}\left(\mathscr{H}_{[n / 2]}\right)-\tau_{1}\left(\mathrm{~B}_{[\mathrm{n} / 2]}\right)+\mathrm{P}_{1} \mathscr{L}_{[\mathrm{n} / 2]}\left(\mathrm{A}_{1}\right) \mathrm{P}_{1}+\mathscr{Q}_{1} \mathscr{L}_{[n / 2]}\left(\mathrm{A}_{1}\right) \mathscr{Q}_{1}+\tau_{1}\left(\mathscr{H}_{1}\right) \\
& +\mathrm{P}_{1} \mathscr{L}_{[n / 2]}\left(\mathrm{B}_{1}\right) \mathrm{P}_{1}+\mathscr{Q}_{1} \mathscr{L}_{[\mathrm{n} / 2]}\left(\mathrm{B}_{1}\right) \mathscr{Q}_{1}-\mathrm{P}_{1}\left[\mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{1}\right), \mathrm{A}_{1}\right] \mathrm{P}_{1}-\mathscr{Q}_{1}\left[\mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{1}\right), \mathrm{A}_{1}\right] \mathscr{Q}_{1} \\
& -\mathrm{P}_{1}\left[\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{Q}_{1}\right), \mathrm{B}_{1}\right] \mathrm{P}_{1}-\mathscr{Q}_{1}\left[\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{Q}_{1}\right), \mathrm{B}_{1}\right] \mathscr{Q}_{1}-\mathrm{P}_{1}\left[\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{Q}_{1}\right), \mathscr{H}_{1}\right] \mathrm{P}_{1}-\mathscr{Q}_{1}\left[\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{Q}_{1}\right), \mathscr{H}_{1}\right] \mathscr{Q}_{1}
\end{aligned}
$$

which and Lemma 3.11 imply

$$
\begin{aligned}
\mathscr{E}_{1} \mathrm{H}_{1} \mathscr{E}_{\mathfrak{j}} & =-\mathscr{E}_{1} \tau_{1}\left(\mathrm{~A}_{[n / 2]}\right) \mathscr{E}_{\mathrm{j}}-\mathscr{E}_{1} \tau_{1}\left(\mathscr{H}_{[n / 2]}\right) \mathscr{E}_{j}-\mathscr{E}_{1} \tau_{1}\left(\mathrm{~B}_{[n / 2]}\right) \mathscr{E}_{\mathrm{j}}+\mathscr{E}_{1} \tau_{1}\left(\mathscr{H}_{1}\right) \mathscr{E}_{\mathrm{j}} \\
& =-\mathscr{E}_{1} \tau_{1}\left(\mathscr{H}_{[n / 2]}\right) \mathscr{E}_{j}-\mathscr{E}_{1} \tau_{1}\left(\mathrm{~B}_{[n / 2]}\right) \mathscr{E}_{\mathfrak{j}},
\end{aligned}
$$

where $j=2, \cdots,[n / 2]$. As $B_{[n / 2]} \in B_{1}$, by Lemma 3.3 for τ_{1}, we get $\mathscr{E}_{1} \tau_{1}\left(\mathrm{~B}_{[n / 2]}\right) \mathscr{E}_{\mathfrak{j}}=0$ for $\mathfrak{j}=2, \cdots, n$. Additionally, $\tau_{1}\left(\mathscr{H}_{[n / 2]}\right)=\mathscr{L}_{[n / 2]}\left(\mathscr{H}_{[n / 2]}\right)-\left[\mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{1}\right), \mathscr{H}_{[n / 2]}\right] \in \mathscr{M}_{[n / 2]}$, which implies $\mathscr{E}_{1} \tau_{1}\left(\mathscr{H}_{[n / 2]}\right) \mathscr{E}_{j}=$ 0 for $j=2, \cdots,[n / 2]$. Hence $\mathscr{E}_{1} \mathrm{H}_{1} \mathscr{E}_{j}=0$ for $j=2, \cdots,[n / 2]$, that is, $r_{12}=\cdots=r_{1,[n / 2]}=0$.

Similarly, by considering the maps τ_{i} for $i=2, \cdots, n-1$, respectively, we can show $r_{i j}=0$ for $2 \leqslant i<j \leqslant[n / 2]$ and $[n / 2]+1 \leqslant i<j \leqslant n$. The lemma holds.

Lemma 3.13. $H_{0}=\bigoplus_{i=1}^{n} r_{i i} \in \mathscr{Z}(\mathscr{T})$.
Proof. By Lemma 3.12, we get $\mathrm{H}_{0}=\bigoplus_{i=1}^{n} \mathrm{r}_{\mathrm{ii}}$ in (7). To prove $\mathrm{H}_{0} \in \mathscr{Z}(\mathscr{T})$, we have to review that

$$
\begin{equation*}
r_{i i} m_{i j}=m_{i j} r_{j j} \text { holds for all } m_{i j} \in \mathscr{M}_{i j}, 1 \leqslant i<j \leqslant n . \tag{12}
\end{equation*}
$$

Primarily, take any $\mathscr{H}_{[n / 2]}^{\prime}=\left[m_{\mathfrak{i j}}\right] \in \mathscr{M}_{[n / 2]}$. By Lemma 3.9 for the map $\mathscr{L}_{[n / 2]}$, we have $\left[\mathrm{H}_{0}, \mathscr{H}_{[n / 2]}^{\prime}\right]=$ $\left[\bigoplus_{i=1}^{n} r_{i i}, \mathscr{H}_{[n / 2]}^{\prime}\right]=0$. A direct calculation provides the following

$$
\begin{equation*}
r_{i i} m_{i j}=m_{i j} r_{j j} \text { for } i=1,2, \cdots,[n / 2] \text { and } j=[n / 2]+1, \cdots, n . \tag{13}
\end{equation*}
$$

Note that, by Lemma 3.9 for $\tau_{i}(i \in\{1, \cdots,[n / 2]-1,[n / 2]+1, \cdots, n-1\})$ and (13), we know that $\left[K_{i}, \mathscr{H}_{i}^{\prime}\right]=0$ holds for all $\mathscr{H}_{i}^{\prime} \in \mathscr{M}_{i}$ implying

$$
\begin{equation*}
s_{i i}^{i} m_{i j}=m_{i j} s_{j j}^{i} \text { for all } m_{i j} \in \mathscr{M}_{i j}, 1 \leqslant \mathfrak{i}<\mathfrak{j} \leqslant n . \tag{14}
\end{equation*}
$$

Our aim is to reveal

$$
\begin{equation*}
\left(r_{i i}-s_{i i}^{i}\right) \mathfrak{m}_{i j}=m_{i j}\left(r_{j j}-s_{j j}^{i}\right) \text { for all } m_{i j} \in \mathscr{M}_{i j}, 1 \leqslant \mathfrak{i}<\mathfrak{j} \leqslant[n / 2],[n / 2]+1 \leqslant \mathfrak{i}<j \leqslant n \text {, } \tag{15}
\end{equation*}
$$

which and (13)-(14) lead to (12). Hence, finding the proof of (15) would be our aim in the upcoming part of this manuscript.

For any $Y \in \mathscr{T}$ and any fixed $i \in\{1, \cdots,[n / 2]-1,[n / 2]+1, \cdots, n-1\}$, by Lemma 3.10, one has

$$
\begin{aligned}
\tau_{i}(\mathrm{Y}) & =\mathscr{L}_{[n / 2]}(\mathrm{Y})-\left[\mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{i}\right), \mathrm{Y}\right] \\
& =\mathscr{L}_{[n / 2]}(\mathrm{Y})-\mathrm{P}_{i}\left[\mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{i}\right), \mathrm{Y}\right] \mathscr{Q}_{i}-\mathrm{P}_{i}\left[\mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{i}\right), \mathrm{Y}\right] \mathrm{P}_{i}-\mathscr{Q}_{i}\left[\mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{i}\right), \mathrm{Y}\right] \mathscr{Q}_{i} \\
& =\mathscr{L}_{[n / 2]}(\mathrm{Y})+\mathscr{L}_{[n / 2]}\left(\mathrm{P}_{i} \mathrm{Y} \mathscr{Q}_{i}\right)-\mathrm{P}_{i} \mathscr{L}_{[n / 2]}(\mathrm{Y}) \mathscr{Q}_{i}-\mathrm{P}_{i}\left[\mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{i}\right), \mathrm{Y}\right] \mathrm{P}_{i}-\mathscr{Q}_{i}\left[\mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{i}\right), \mathrm{Y}\right] \mathscr{Q}_{i} \\
& =\mathscr{L}_{[n / 2]}(\mathrm{Y})+\tau_{i}\left(\mathrm{P}_{i} \mathrm{Y} \mathscr{Q}_{i}\right)-\mathrm{P}_{i} \mathscr{L}_{[n / 2]}(\mathrm{Y}) \mathscr{Q}_{i}-\mathrm{P}_{i}\left[\mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{i}\right), \mathrm{Y}\right] \mathrm{P}_{i}-\mathscr{Q}_{i}\left[\mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{i}\right), \mathrm{Y}\right] \mathscr{Q}_{i} .
\end{aligned}
$$

As $\tau_{i}\left(\mathrm{P}_{\mathrm{i}} \mathrm{Y} \mathscr{Q}_{i}\right)-\mathrm{P}_{\mathrm{i}} \mathscr{L}_{[n / 2]}(\mathrm{Y}) \mathscr{Q}_{\mathrm{i}} \in \mathscr{M}_{\mathrm{i}}$, the above equation implies $\tau_{i}(\mathrm{Y})-\mathscr{L}_{[\mathrm{n} / 2]}(\mathrm{Y})+\mathrm{P}_{\mathrm{i}}\left[\mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{i}\right), \mathrm{Y}\right] \mathrm{P}_{\mathrm{i}}+$ $\mathscr{Q}_{i}\left[\mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{i}\right), \mathrm{Y}\right] \mathscr{Q}_{i} \in \mathscr{M}_{i}$ and hence $\mathrm{P}_{i}\left(\tau_{i}(\mathrm{Y})-\mathscr{L}_{[n / 2]}(\mathrm{Y})\right) \mathscr{Q}_{i} \in \mathscr{M}_{i}$ for all $\mathrm{Y} \in \mathscr{T}$, and so $\mathscr{E}_{k}\left(\tau_{i}(\mathrm{Y})-\right.$
$\left.\mathscr{L}_{[\mathrm{n} / 2]}(\mathrm{Y})\right) \mathscr{E}_{\mathrm{k}}=0$ holds for all $\mathrm{Y} \in \mathscr{T}, \mathrm{k}=1,2, \cdots, \mathrm{n}$. Also noting that $\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{H}_{[\mathrm{n} / 2]}\right) \in \mathscr{M}_{[\mathrm{n} / 2]}$ and $\tau_{i}\left(\mathscr{H}_{i}\right) \in \mathscr{M}_{i}$, we get

$$
\begin{align*}
\mathscr{E}_{k}\left(\mathrm{H}_{0}-\mathrm{K}_{\mathrm{i}}\right) \mathscr{E}_{k}= & \mathscr{E}_{\mathrm{k}}\left(\mathscr{L}_{[n / 2]}(\mathscr{X})-\mathscr{L}_{[n / 2]}\left(\mathrm{A}_{[n / 2]}\right)-\mathscr{L}_{[n / 2]}\left(\mathscr{H}_{[n / 2]}\right)-\mathscr{L}_{[n / 2]}\left(\mathrm{B}_{[n / 2]}\right)\right) \mathscr{E}_{k} \\
& -\mathscr{E}_{k}\left(\tau_{i}(\mathscr{X})-\tau_{i}\left(\mathrm{~A}_{i}\right)-\tau_{i}\left(\mathscr{H}_{i}\right)-\tau_{i}\left(\mathrm{~B}_{i}\right)\right) \mathscr{E}_{\mathrm{k}} \\
= & \mathscr{E}_{k} \mathscr{L}_{[n / 2]}(\mathscr{X}) \mathscr{E}_{k}-\mathscr{E}_{k} \mathscr{L}_{[n / 2]}\left(\mathrm{A}_{[n / 2]}\right) \mathscr{E}_{k}-\mathscr{E}_{k} \mathscr{L}_{[n / 2]}\left(\mathrm{B}_{[n / 2]}\right) \mathscr{E}_{k} \\
& -\mathscr{E}_{k} \tau_{i}(\mathscr{X}) \mathscr{E}_{k}+\mathscr{E}_{k} \tau_{i}\left(\mathrm{~A}_{i}\right) \mathscr{E}_{k}+\mathscr{E}_{k} \tau_{i}\left(\mathrm{~B}_{i}\right) \mathscr{E}_{k} \\
= & \mathscr{E}_{k}\left(\mathscr{L}_{[n / 2]}\left(\mathrm{A}_{i}\right)+\mathscr{L}_{[n / 2]}\left(\mathrm{B}_{i}\right)-\mathscr{L}_{[n / 2]}\left(\mathrm{A}_{[n / 2]}\right)-\mathscr{L}_{[n / 2]}\left(\mathrm{B}_{[n / 2]}\right)\right) \mathscr{E}_{k}, \tag{16}
\end{align*}
$$

where $\mathfrak{i} \in\{1, \cdots,[n / 2]-1,[n / 2]+1, \cdots, n-1\}$ and $k=1,2, \cdots, n$.
Now, we consider two cases.
Case $1.1 \leqslant i<j \leqslant[n / 2]$.
Take any $\mathscr{H}_{i j} \in \mathscr{M}_{i j}$. Since $\mathscr{H}_{i j} \in \mathrm{~A}_{[n / 2]} \cap \mathscr{M}_{i}$, by Lemma 3.10, we get $\mathscr{L}_{[n / 2]}\left(\mathscr{H}_{i j}\right)=\tau_{i}\left(\mathscr{H}_{i j}\right) \in$ $\mathrm{A}_{[n / 2]} \cap \mathscr{M}_{\mathrm{i}}$. Additionally, it can be easily checked that $\left[\mathrm{A}_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}}-\mathrm{A}_{[n / 2]}, \mathscr{H}_{\mathrm{ij}}\right] \in \mathscr{M}_{[n / 2]}$ and $\left[\mathrm{A}_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}}-\right.$ $\left.\mathrm{A}_{[\mathrm{n} / 2]}, \mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{H}_{\mathrm{ij}}\right)\right] \in \mathscr{M}_{[\mathrm{n} / 2]}$. So, by Lemma 3.3 for $\mathfrak{i}=[\mathrm{n} / 2]$, we have

$$
\begin{aligned}
{\left[\mathscr{L}_{[n / 2]}\left(\mathrm{A}_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}}-\mathrm{A}_{[n / 2]}\right), \mathscr{H}_{i j}\right]=} & \mathscr{P}_{\mathrm{N}}\left(\mathscr{L}_{[n / 2]}\left(\mathrm{A}_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}}-\mathrm{A}_{[n / 2]}\right), \mathscr{H}_{i j}, \mathscr{Q}_{j}, \cdots, \mathscr{Q}_{j}\right) \\
= & \mathscr{L}_{[n / 2]}\left(\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}}-\mathrm{A}_{[n / 2]}, \mathscr{H}_{i j}, \mathscr{Q}_{\mathrm{j}}, \cdots, \mathscr{Q}_{\mathrm{j}}\right)\right) \\
& -\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}}-\mathrm{A}_{[n / 2]}, \mathscr{L}_{[n / 2]}\left(\mathscr{H}_{i j}\right), \mathscr{Q}_{j}, \cdots, \mathscr{Q}_{\mathrm{j}}\right) \\
& -\cdots-\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}}-\mathrm{A}_{[n / 2]}, \mathscr{H}_{\mathrm{ij}}, \mathscr{Q}_{\mathrm{j}}, \cdots, \mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{j}\right)\right) \\
= & \mathscr{L}_{[n / 2]}\left(\left[\mathrm{A}_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}}-\mathrm{A}_{[n / 2]}, \mathscr{H}_{i j}\right]\right) \\
& -\left[\mathrm{A}_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}}-\mathrm{A}_{[n / 2]}, \mathscr{L}_{[n / 2]}\left(\mathscr{H}_{i j}\right)\right] \in \mathscr{M}_{[n / 2]} .
\end{aligned}
$$

Implying

$$
\begin{equation*}
\mathrm{P}_{[\mathrm{n} / 2]}\left[\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathrm{A}_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}}-\mathrm{A}_{[n / 2]}\right), \mathscr{H}_{i j}\right] \mathrm{P}_{[\mathrm{n} / 2]}=0 \tag{17}
\end{equation*}
$$

Nevertheless, note that $\left[\mathrm{A}_{\mathrm{i}}, \mathscr{H}_{i j}\right],\left[\mathrm{B}_{\mathrm{i}}, \mathscr{H}_{\mathrm{ij}}\right],\left[\mathrm{A}_{[n / 2]}, \mathscr{H}_{\mathrm{ij}}\right] \in \mathscr{M}_{\mathrm{i}}$. By Lemma 3.10, we acquire

$$
\begin{aligned}
& \mathscr{L}_{[n / 2]}\left(\left[\mathrm{A}_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}}-\mathrm{A}_{[\mathrm{n} / 2]}, \mathscr{H}_{\mathrm{ij}}\right]\right) \\
& =\mathscr{L}_{[n / 2]}\left(\left[\mathrm{A}_{\mathrm{i}}, \mathscr{H}_{i j}\right]\right)+\mathscr{L}_{[n / 2]}\left(\left[\mathrm{B}_{\mathrm{i}}, \mathscr{H}_{i j}\right]\right)-\mathscr{L}_{[n / 2]}\left(\left[\mathrm{A}_{[n / 2]}, \mathscr{H}_{i j}\right]\right) \\
& =\mathscr{L}_{[n / 2]}\left(\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{\mathrm{i}}, \mathscr{H}_{\mathrm{ij}}, \mathscr{Q}_{\mathrm{j}}, \cdots, \mathscr{Q}_{\mathrm{j}}\right)\right)+\mathscr{L}_{[n / 2]}\left(\mathscr{P}_{\mathrm{N}}\left(\mathrm{~B}_{\mathrm{i}}, \mathscr{H}_{\mathrm{ij}}, \mathscr{Q}_{\mathrm{j}}, \cdots, \mathscr{Q}_{\mathrm{j}}\right)\right) \\
& -\mathscr{L}_{[n / 2]}\left(\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[n / 2]}, \mathscr{H}_{\mathrm{ij}}, \mathscr{Q}_{\mathrm{j}}, \cdots, \mathscr{Q}_{\mathrm{j}}\right)\right) \\
& =\mathscr{P}_{\mathrm{N}}\left(\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathrm{A}_{\mathrm{i}}\right), \mathscr{H}_{\mathrm{ij}}, \mathscr{Q}_{\mathrm{j}}, \cdots, \mathscr{Q}_{\mathrm{j}}\right)+\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{\mathrm{i}}, \mathscr{L}_{[n / 2]}\left(\mathscr{H}_{\mathrm{ij}}\right), \mathscr{Q}_{j}, \cdots, \mathscr{Q}_{\mathrm{j}}\right) \\
& +\cdots+\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{\mathrm{i}}, \mathscr{H}_{\mathrm{ij}}, \mathscr{Q}_{\mathrm{j}}, \cdots, \mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{Q}_{\mathrm{j}}\right)\right)+\mathscr{P}_{\mathrm{N}}\left(\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathrm{B}_{\mathrm{i}}\right), \mathscr{H}_{\mathrm{ij}}, \mathscr{Q}_{\mathrm{j}}, \cdots, \mathscr{Q}_{\mathrm{j}}\right) \\
& +\mathscr{P}_{\mathrm{N}}\left(\mathrm{~B}_{\mathrm{i}}, \mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{H}_{\mathrm{ij}}\right), \mathscr{Q}_{\mathrm{j}}, \cdots, \mathscr{Q}_{\mathrm{j}}\right)+\cdots+\mathscr{P}_{\mathrm{N}}\left(\mathrm{~B}_{\mathrm{i}}, \mathscr{H}_{\mathrm{ij}}, \mathscr{Q}_{\mathrm{j}}, \cdots, \mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{Q}_{\mathrm{j}}\right)\right) \\
& -\mathscr{P}_{\mathrm{N}}\left(\mathscr{L}_{[n / 2]}\left(\mathrm{A}_{[\mathrm{n} / 2]}\right), \mathscr{H}_{\mathrm{ij}}, \mathscr{Q}_{\mathrm{j}}, \cdots, \mathscr{Q}_{\mathrm{j}}\right)-\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[\mathrm{n} / 2]}, \mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{H}_{\mathrm{ij}}\right), \mathscr{Q}_{\mathrm{j}}, \cdots, \mathscr{Q}_{\mathrm{j}}\right) \\
& -\cdots-\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[n / 2]}, \mathscr{H}_{\mathrm{i}}, \mathscr{Q}_{\mathrm{j}}, \cdots, \mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{Q}_{\mathrm{j}}\right)\right) \\
& =\left[\mathscr{L}_{[n / 2]}\left(\mathrm{A}_{\mathrm{i}}\right), \mathscr{H}_{\mathrm{i} j}\right]+\left[\mathrm{A}_{\mathrm{i}}, \mathscr{L}_{[n / 2]}\left(\mathscr{H}_{\mathrm{ij}}\right)\right]+\left[\mathscr{L}_{[n / 2]}\left(\mathrm{B}_{\mathrm{i}}\right), \mathscr{H}_{\mathrm{ij}}\right] \\
& +\left[\mathrm{B}_{\mathrm{i}}, \mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{H}_{\mathrm{ij}}\right)\right]-\left[\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathrm{A}_{[\mathrm{n} / 2]}\right), \mathscr{H}_{\mathrm{ij}}\right]-\left[\mathrm{A}_{[\mathrm{n} / 2]}, \mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{H}_{\mathrm{ij}}\right)\right] .
\end{aligned}
$$

So

$$
\begin{aligned}
& {\left[\mathscr{L}_{[n / 2]}\left(\mathrm{A}_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}}-\mathrm{A}_{[n / 2]}\right), \mathscr{H}_{\mathrm{ij}}\right]} \\
& \quad=\mathscr{L}_{[n / 2]}\left(\left[\mathrm{A}_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}}-\mathrm{A}_{[n / 2]}, \mathscr{H}_{\mathrm{ij}}\right]\right)-\left[\mathrm{A}_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}}-\mathrm{A}_{[n / 2]}, \mathscr{L}_{[n / 2]}\left(\mathscr{H}_{i j}\right)\right] \\
& \quad=\left[\mathscr{L}_{[n / 2]}\left(\mathrm{A}_{\mathrm{i}}\right)+\mathscr{L}_{[n / 2]}\left(\mathrm{B}_{\mathrm{i}}\right)-\mathscr{L}_{[n / 2]}\left(\mathrm{A}_{[n / 2]}\right), \mathscr{H}_{i j}\right]
\end{aligned}
$$

which and (17) imply

$$
\mathrm{P}_{[n / 2]}\left[\mathscr{L}_{[n / 2]}\left(\mathrm{A}_{\mathrm{i}}\right)+\mathscr{L}_{[n / 2]}\left(\mathrm{B}_{\mathrm{i}}\right)-\mathscr{L}_{[n / 2]}\left(\mathrm{A}_{[n / 2]}\right), \mathscr{H}_{i j}\right] \mathrm{P}_{[n / 2]}=0 .
$$

It follows that

$$
\begin{equation*}
\mathscr{E}_{i}\left(\mathscr{L}_{[n / 2]}\left(\mathrm{A}_{\mathrm{i}}\right)+\mathscr{L}_{[n / 2]}\left(\mathrm{B}_{\mathrm{i}}\right)-\mathscr{L}_{[n / 2]}\left(\mathrm{A}_{[n / 2]}\right)\right) \mathscr{E}_{i} \mathscr{H}_{i j}=\mathscr{H}_{i j} \mathscr{E}_{j}\left(\mathscr{L}_{[n / 2]}\left(\mathrm{A}_{i}\right)+\mathscr{L}_{[n / 2]}\left(\mathrm{B}_{\mathrm{i}}\right)-\mathscr{L}_{[n / 2]}\left(\mathrm{A}_{[n / 2]}\right)\right) \mathscr{E}_{j} . \tag{18}
\end{equation*}
$$

Combining (16) and (18), keeping in mind that $\mathrm{P}_{[n / 2]} \mathscr{L}_{[n / 2]}\left(\mathrm{B}_{[n / 2]}\right) \mathrm{P}_{[n / 2]} \in \mathscr{Z}\left(\mathrm{A}_{[n / 2]}\right)$ (Lemma 3.4 for $\left.\mathscr{L}_{[n / 2]}\right)$, we have

$$
\begin{aligned}
\mathscr{E}_{i}\left(\mathrm{H}_{0}-\mathrm{K}_{\mathrm{i}}\right) \mathscr{E}_{i} \mathscr{H}_{\mathrm{ij}} & =\mathscr{H}_{i j} \mathscr{E}_{\mathrm{j}}\left(\mathscr{L}_{[n / 2]}\left(\mathrm{A}_{\mathrm{i}}\right)+\mathscr{L}_{[n / 2]}\left(\mathrm{B}_{\mathrm{i}}\right)-\mathscr{L}_{[n / 2]}\left(\mathrm{A}_{[n / 2]}\right)\right) \mathscr{E}_{j}-\mathscr{E}_{i} \mathscr{L}_{[n / 2]}\left(\mathrm{B}_{[n / 2]} \mathscr{E}_{i} \mathscr{H}_{i j}\right. \\
& =\mathscr{H}_{i j} \mathscr{E}_{\mathfrak{j}}\left(\mathrm{H}_{0}-\mathrm{K}_{i}\right) \mathscr{E}_{\mathfrak{j}}+\mathscr{H}_{i j} \mathscr{E}_{j} \mathscr{L}_{[n / 2]}\left(\mathrm{B}_{[n / 2]}\right] \mathscr{E}_{j}-\mathscr{E}_{i} \mathscr{L}_{[n / 2]}\left(\mathrm{B}_{[n / 2]}\right) \mathscr{E}_{i} \mathscr{H}_{i j} \\
& =\mathscr{H}_{i j} \mathscr{E}_{j}\left(\mathrm{H}_{0}-\mathrm{K}_{\mathrm{i}}\right) \mathscr{E}_{\dot{j}},
\end{aligned}
$$

that is, $\left(r_{i i}-s_{i i}^{i}\right) m_{i j}=m_{i j}\left(r_{j j}-s_{j j}^{i}\right)$ for $1 \leqslant i<j \leqslant[n / 2]$.
Case 2. $[n / 2]+1 \leqslant i<j \leqslant n$.
In this case, for any $\mathscr{H}_{i j} \in \mathscr{M}_{i j}$, we have $\mathscr{H}_{i j} \in \mathrm{~B}_{[n / 2]} \cap \mathscr{M}_{\mathrm{i}}$ and so $\mathscr{L}_{[n / 2]}\left(\mathscr{H}_{i j}\right)=\tau_{i}\left(\mathscr{H}_{i j}\right) \in \mathrm{B}_{[n / 2]} \cap \mathscr{M}_{i}$. Moreover, $\left[\mathrm{A}_{i}+\mathrm{B}_{i}-\mathrm{B}_{[n / 2]}, \mathscr{H}_{i j}\right] \in \mathscr{M}_{[n / 2]}$ and $\left[\mathrm{A}_{\mathrm{i}}+\mathrm{B}_{\mathrm{i}}-\mathrm{B}_{[n / 2]}, \mathscr{L}_{[n / 2]}\left(\mathscr{H}_{i \mathrm{i}}\right)\right] \in \mathscr{M}_{[n / 2]}$. Now, for $\mathscr{L}_{[n / 2]}\left[\mathrm{A}_{\mathrm{i}}+\right.$ $\left.\mathrm{B}_{\mathrm{i}}-\mathrm{B}_{[n / 2]}, \mathscr{H}_{i j}\right]$, by a congruent discussion to that of Case 1 , it follows that

$$
\left(r_{i i}-s_{i i}^{i}\right) \mathfrak{m}_{i j}=\mathfrak{m}_{i j}\left(r_{j j}-s_{j j}^{i j}\right) \text { holds for }[n / 2]+1 \leqslant i<j \leqslant n .
$$

Again, the combination of Cases 1 and 2, (15) holds proving the lemma.
Until now, by Lemmas 3.13 and 3.3-3.4, we prove that, for any $\mathscr{X}=\mathrm{A}_{[n / 2]}+\mathscr{H}_{[n / 2]}+\mathrm{B}_{[n / 2]} \in \mathscr{T}$,

$$
\begin{aligned}
& \mathscr{L}_{[n / 2]}(\mathscr{X})-\mathscr{L}_{[n / 2]}\left(\mathrm{A}_{[n / 2]}\right)-\mathscr{L}_{[n / 2]}\left(\mathscr{H}_{[n / 2]}\right)-\mathscr{L}_{[n / 2]}\left(\mathrm{B}_{[\mathrm{n} / 2]}\right)=\mathrm{H}_{0} \in \mathscr{L}(\mathscr{T}), \\
& \mathscr{L}_{[n / 2]}\left(\mathrm{A}_{[n / 2]}\right) \subseteq \mathrm{A}_{[n / 2]}+\mathscr{L}^{\left(\mathrm{B}_{[n / 2]}\right), \mathscr{L}_{[n / 2]}\left(\mathrm{B}_{[n / 2]}\right) \subseteq \mathrm{B}_{[n / 2]}+\mathscr{Z}\left(\mathrm{A}_{[n / 2]}\right),} \\
& \mathscr{L}_{[n / 2]}\left(\mathscr{M}_{[n / 2]}\right) \subseteq \mathscr{M}_{[n / 2]} .
\end{aligned}
$$

Let $\psi: \psi_{\mathrm{A}_{[n / 2]}}(\mathscr{Z}(\mathscr{T})) \rightarrow \psi_{\mathrm{B}_{[n / 2]}}(\mathscr{Z}(\mathscr{T}))$ be the unique ring isomorphism so that $z \oplus \psi(z) \in \mathscr{Z}(\mathscr{T})$ (that is, Lemma 3.3). Following the hypotheses on \mathscr{T} in Theorem 3.1, we have $\psi_{\mathrm{A}_{[n / 2]}}(\mathscr{Z}(\mathscr{T}))=\mathscr{Z}\left(\mathrm{A}_{[n / 2]}\right)$ and $\psi_{\mathrm{B}_{[n / 2]}}(\mathscr{Z}(\mathscr{T}))=\mathscr{Z}\left(\mathrm{B}_{[n / 2]}\right)$. Thus, for each $\mathrm{A} \in \mathscr{Z}\left(\mathrm{A}_{[n / 2]}\right), \mathrm{A} \mathscr{H}=\mathscr{H} \psi(\mathrm{A})$ holds for all $\mathscr{H} \in \mathscr{M}_{[n / 2]}$. Define two maps $\widetilde{\sigma} \zeta: \mathscr{T} \rightarrow \mathscr{T}$ respectively by

$$
\begin{aligned}
\mho(\mathscr{X})= & \mathrm{P}_{[n / 2]} \mathscr{L}_{[n / 2]}\left(\mathrm{A}_{[n / 2]}\right) \mathrm{P}_{[n / 2]}-\psi^{-1}\left(\mathscr{Q}_{[n / 2]} \mathscr{L}_{[n / 2]}\left(\mathrm{A}_{[n / 2]}\right) \mathscr{Q}_{[n / 2]}\right) \\
& +\mathscr{Q}_{[\mathrm{n} / 2]} \mathscr{L}_{[\mathrm{n} / 2]}\left(\mathrm{B}_{[\mathrm{n} / 2]}\right) \mathscr{Q}_{[n / 2]}-\psi\left(\mathrm{P}_{[\mathrm{n} / 2]} \mathscr{L}_{[\mathrm{n} / 2]}\left(\mathrm{B}_{[n / 2]}\right) \mathrm{P}_{[n / 2]}\right)+\mathscr{L}_{[n / 2]}\left(\mathscr{H}_{[n / 2]}\right)
\end{aligned}
$$

and

$$
\zeta(\mathscr{X})=\mathscr{L}_{[n / 2]}(\mathscr{X})-\mathcal{U}(\mathscr{X}), \forall \mathscr{X}=\mathrm{A}_{[n / 2]}+\mathscr{H}_{[n / 2]}+\mathrm{B}_{[n / 2]} \in \mathscr{T} .
$$

It can be inferred that

$$
\begin{align*}
& \Psi\left(\mathrm{A}_{[n / 2]}\right) \subseteq \mathrm{A}_{[n / 2]}, \Psi\left(\mathrm{B}_{[n / 2]}\right) \subseteq \mathrm{B}_{[n / 2]}, \Psi\left(\mathscr{M}_{[n / 2]}\right)=\mathscr{L}_{[n / 2]}\left(\mathscr{M}_{[n / 2]}\right) \subseteq \mathscr{M}_{[n / 2]}, \tag{19}\\
& \Psi(\mathscr{X})=\Psi\left(\mathrm{A}_{[n / 2]}\right)+\Psi\left(\mathrm{B}_{[n / 2]}\right)+\Psi\left(\mathscr{H}_{[n / 2]}\right) . \tag{20}
\end{align*}
$$

Additionally,

$$
\begin{align*}
\zeta(\mathscr{X})= & \left.\mathscr{Q}_{\left[n / 2 \mathscr{L}_{[n / 2]}\right.} \mathscr{A}_{[n / 2]}\right) \mathscr{Q}_{[n / 2]}+\psi^{-1}\left(\mathscr{Q}_{[n / 2]} \mathscr{L}_{[n / 2]}\left(\mathrm{A}_{[n / 2]}\right) \mathscr{Q}_{[n / 22]}\right) \\
& +\mathrm{P}_{[\mathrm{n} / 2]} \mathscr{L}_{[n / 2]}\left(\mathrm{B}_{[\mathrm{n} / 2]}\right) \mathrm{P}_{[n / 2]}+\psi\left(\mathrm{P}_{[\mathrm{n} / 2]} \mathscr{L}_{[n / 2]}\left(\mathrm{B}_{[\mathrm{n} / 2]}\right) \mathrm{P}_{[n / 2]}\right)+\mathrm{H}_{0} \in \mathscr{Z}(\mathscr{T}) . \tag{21}
\end{align*}
$$

Lemma 3.14. For any $\mathscr{H}_{i} \in \mathscr{M}_{i}=P_{i} \mathscr{T}_{\mathscr{Q}_{i}}$, we have $\mho\left(\mathscr{H}_{i}\right)=\mathscr{L}_{[n / 2]}\left(\mathscr{K}_{i}\right) \in \mathscr{M}_{i}$; and therefore, \mho is additive on $\mathscr{M}_{i}(i=1, \cdots, n-1)$.

Proof. If $\mathfrak{i}=[n / 2]$, it is evidently true. Assume that $\mathfrak{i} \in\{1, \cdots,[n / 2]-1\}$. Keep in mind that

$$
\begin{equation*}
\mathrm{P}_{\mathrm{i}} \mathscr{X} \mathscr{Q}_{\mathrm{i}}=\mathrm{P}_{[n / 2]} \mathrm{P}_{\mathrm{i}} \mathscr{X} \mathscr{Q}_{\mathrm{i}} \mathrm{P}_{[n / 2]}+\mathrm{P}_{[n / 2]} \mathrm{P}_{\mathrm{i}} \mathscr{X} \mathscr{Q}_{\mathrm{i}} \mathscr{Q}_{[n / 2]} . \tag{22}
\end{equation*}
$$

Since $\mathscr{L}_{[n / 2]}\left(\mathscr{H}_{\mathrm{i}}\right) \in \mathscr{M}_{\text {i }}$ (Lemma 3.10), we have

$$
\begin{equation*}
\mathscr{Q}_{[n / 2]} \mathscr{L}_{[n / 2]}\left(\mathrm{P}_{[n / 2]} \mathrm{P}_{\mathrm{i}} \mathscr{X} \mathscr{Q}_{\mathrm{i}} \mathrm{P}_{[n / 2]}\right) \mathscr{Q}_{[n / 2]}=0 \tag{23}
\end{equation*}
$$

However, by the definition of \mathcal{U} and (22)-(23), we get

$$
\begin{align*}
\mathscr{U}\left(\mathrm{P}_{\mathrm{i}} \mathscr{X} \mathscr{Q}_{\mathrm{i}}\right)= & \mathrm{P}_{[\mathrm{n} / 2]} \mathscr{L}_{[\mathrm{n} / 2]}\left(\mathrm{P}_{[n / 2]} \mathrm{P}_{i} \mathscr{X} \mathscr{Q}_{\mathrm{i}} \mathrm{P}_{[n / 2]}\right) \mathrm{P}_{[n / 2]} \\
& -\psi^{-1}\left(\mathscr{Q}_{[n / 2]} \mathscr{L}_{[n / 2]}\left(\mathrm{P}_{[n / 2]} \mathrm{P}_{\mathrm{i}} \mathscr{X}_{\mathscr{Q}_{i}} \mathrm{P}_{[\mathrm{n} / 2]}\right) \mathscr{Q}_{[n / 2]}\right)+\mathscr{L}_{[n / 2]}\left(\mathrm{P}_{[n / 2]} \mathrm{P}_{i} \mathscr{X} \mathscr{Q}_{i} \mathscr{Q}_{[n / 2]}\right) \\
= & \mathrm{P}_{[n / 2]} \mathscr{L}_{[n / 2]}\left(\mathrm{P}_{[n / 2]} \mathrm{P}_{\mathrm{i}} \mathscr{X} \mathscr{Q}_{i} \mathrm{P}_{[n / 2]}\right) \mathrm{P}_{[n / 2]}+\mathscr{L}_{[n / 2]}\left(\mathrm{P}_{[n / 2]} \mathrm{P}_{\mathrm{i}} \mathscr{X} \mathscr{Q}_{i} \mathscr{Q}_{[n / 2]}\right) . \tag{24}
\end{align*}
$$

While, by (23) and the additivity of $\mathscr{L}_{[n / 2]}$ on $\mathscr{M}_{\text {i }}$ (Lemma 3.10), we have

$$
\begin{align*}
\mathscr{L}_{[n / 2]}\left(\mathrm{P}_{\mathrm{i}} \mathscr{X} \mathscr{Q}_{i}\right)= & \mathscr{L}_{[n / 2]}\left(\mathrm{P}_{[n / 2]} \mathrm{P}_{\mathrm{i}} \mathscr{X} \mathscr{Q}_{i} \mathrm{P}_{[n / 2]}\right)+\mathscr{L}_{[n / 2]}\left(\mathrm{P}_{[n / 2]} \mathrm{P}_{i} \mathscr{X} \mathscr{Q}_{i} \mathscr{Q}_{[n / 2]}\right) \\
= & \mathrm{P}_{[n / 2]} \mathscr{L}_{[n / 2]}\left(\mathrm{P}_{[n / 2]} \mathrm{P}_{\mathrm{i}} \mathscr{X} \mathscr{Q}_{\mathrm{i}} \mathrm{P}_{[n / 2]}\right) \mathrm{P}_{[n / 2]}+\mathscr{Q}_{[n / 2]} \mathscr{L}_{[n / 2]}\left(\mathrm{P}_{[n / 2]} \mathrm{P}_{\mathrm{i}} \mathscr{X}_{\left.\mathscr{Q}_{i} \mathrm{P}_{[n / 2]}\right)} \mathscr{Q}_{[n / 2]}\right. \\
& +\mathscr{L}_{[n / 2]}\left(\mathrm{P}_{[n / 2]} \mathrm{P}_{\mathrm{i}} \mathscr{X} \mathscr{Q}_{i} \mathscr{Q}_{[n / 2]}\right) \\
= & \mathrm{P}_{[n / 2]} \mathscr{L}_{[n / 2]}\left(\mathrm{P}_{[n / 2]} \mathrm{P}_{\mathrm{i}} \mathscr{X} \mathscr{Q}_{\mathrm{i}} \mathrm{P}_{[n / 2]}\right) \mathrm{P}_{[n / 2]}+\mathscr{L}_{[n / 2]}\left(\mathrm{P}_{[n / 2]} \mathrm{P}_{\mathrm{i}} \mathscr{X} \mathscr{Q}_{i} \mathscr{Q}_{[n / 2]}\right) . \tag{25}
\end{align*}
$$

Combining (24)-(25) yields $\mathbb{U}\left(\mathrm{P}_{\mathrm{i}} \mathscr{X} \mathscr{Q}_{\mathrm{i}}\right)=\mathscr{L}_{[n / 2]}\left(\mathrm{P}_{\mathrm{i}} \mathscr{X} \mathscr{Q}_{\mathrm{i}}\right)$ for $\mathrm{i} \in\{1, \ldots,[\mathrm{n} / 2]-1\}$.
If $\mathfrak{i} \in\{[n / 2]+1, \cdots, n\}$, noting that $\mathrm{P}_{\mathrm{i}} \mathscr{X} \mathscr{Q}_{\mathrm{i}}=\mathrm{P}_{[n / 2]} \mathrm{P}_{\mathrm{i}} \mathscr{X} \mathscr{Q}_{i} \mathscr{Q}_{[n / 2]}+\mathscr{Q}_{[n / 2]} \mathrm{P}_{i} \mathscr{X} \mathscr{Q}_{i} \mathscr{Q}_{[n / 2]}$, by a congruent discussion to the above, one can also prove that $\Psi\left(\mathrm{P}_{i} \mathscr{X} \mathscr{Q}_{i}\right)=\mathscr{L}_{[n / 2]}\left(\mathrm{P}_{\mathrm{i}} \mathscr{X} \mathscr{Q}_{i}\right)$, and so $\mathbb{U}\left(\mathscr{H}_{i}\right) \in \mathscr{M}_{i}$ by Lemma 3.10. Lastly, the additivity of \mho on \mathscr{M}_{i} can be obtained by the one of $\mathscr{L}_{[n / 2]}$.

Lemma 3.15. \mathbb{U} is additive on \mathscr{T}.

Proof. We will now show this lemma by various steps.

Step 1. \mathbb{U} is additive on $\mathscr{M}_{[n / 2]}$. By Lemma 3.14, this is true.
$\underline{\text { Step 2. }} \because$ is additive on $\mathrm{A}_{[n / 2]}$. Take any $\mathrm{A}_{[n / 2]}, \mathrm{A}_{[n / 2]}^{\prime} \in \mathrm{A}_{[n / 2]}$ and any $\mathscr{H}_{[n / 2]} \in \mathscr{M}_{[n / 2]}$. By the definition
of \mho and (19)-(21), we get

$$
\begin{aligned}
& \widetilde{\Psi}\left(\left(\mathrm{A}_{[n / 2]}+\mathrm{A}_{[n / 2]}^{\prime}\right) \mathscr{H}_{[n / 2]}\right)=\mathscr{L}_{[n / 2]}\left(\mathrm{A}_{[n / 2]} \mathscr{H}_{[n / 2]}\right)+\mathscr{L}_{[n / 2]}\left(\mathrm{A}_{[n / 2]}^{\prime} \mathscr{H}_{[n / 2]}\right) \\
& =\mathscr{L}_{[n / 2]}\left(\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[n / 2]}, \mathscr{H}_{[n / 2]}, \mathscr{Q}_{[n / 2]}, \cdots, \mathscr{Q}_{[n / 2]}\right)\right) \\
& +\mathscr{L}_{[n / 2]}\left(\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[n / 2]}^{\prime}, \mathscr{H}_{[\mathrm{n} / 2]}, \mathscr{Q}_{[\mathrm{n} / 2]}, \cdots, \mathscr{Q}_{[\mathrm{n} / 2]}\right)\right) \\
& =\mathscr{P}_{\mathrm{N}}\left(\mathscr{L}_{[n / 2]}\left(\mathrm{A}_{[n / 2]}\right), \mathscr{H}_{[n / 2]}, \mathscr{Q}_{[n / 2]}, \cdots, \mathscr{Q}_{[n / 2]}\right) \\
& +\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[n / 2]}, \mathscr{L}_{[n / 2]}\left(\mathscr{H}_{[n / 2]}\right), \mathscr{Q}_{[n / 2]}, \cdots, \mathscr{Q}_{[n / 2]}\right) \\
& +\cdots+\mathscr{P}_{\mathrm{n}}\left(\mathrm{~A}_{[\mathrm{n} / 2]}, \mathscr{H}_{[\mathrm{n} / 2]}, \mathscr{Q}_{[\mathrm{n} / 2]}, \cdots, \mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{Q}_{[\mathrm{n} / 2]}\right)\right) \\
& +\mathscr{P}_{\mathrm{N}}\left(\mathscr{L}_{[n / 2]}\left(\mathrm{A}_{[n / 2]}^{\prime}\right), \mathscr{H}_{[n / 2]}, \mathscr{Q}_{[n / 2]}, \cdots, \mathscr{Q}_{[n / 2]}\right) \\
& +\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[n / 2]}^{\prime}, \mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{H}_{[\mathrm{n} / 2]}\right), \mathscr{Q}_{[\mathrm{n} / 2]}, \cdots, \mathscr{Q}_{[\mathrm{n} / 2]}\right) \\
& +\cdots+\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[\mathrm{n} / 2]}^{\prime}, \mathscr{H}_{[\mathrm{n} / 2]}, \mathscr{Q}_{[\mathrm{n} / 2]}, \cdots, \mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{Q}_{[\mathrm{n} / 2]}\right)\right) \\
& =\mathscr{P}_{\mathrm{N}}\left(\Psi\left(\mathrm{~A}_{[n / 2]}\right)+\zeta\left(\mathrm{A}_{[\mathrm{n} / 2]}\right), \mathscr{H}_{[\mathrm{n} / 2]}, \mathscr{Q}_{[\mathrm{n} / 2]}, \cdots, \mathscr{Q}_{[\mathrm{n} / 2]}\right) \\
& +\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[n / 2]}, \mathbb{\Psi}\left(\mathscr{H}_{[n / 2]}\right)+\zeta\left(\mathscr{H}_{[n / 2]}\right), \mathscr{Q}_{[n / 2]}, \cdots, \mathscr{Q}_{[n / 2]}\right) \\
& +\cdots+\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[n / 2]}, \mathscr{H}_{[\mathrm{n} / 2]}, \mathscr{Q}_{[\mathrm{n} / 2]}, \cdots, \mho\left(\mathscr{Q}_{[n / 2]}\right)+\zeta\left(\mathscr{Q}_{[\mathrm{n} / 2]}\right)\right) \\
& \left.+\mathscr{P}_{\mathrm{N}}\left(\mathrm{U}_{\left(\mathrm{A}_{[n / 2]}^{\prime}\right)}^{\prime}\right) \zeta\left(\mathscr{H}_{[n / 2]}\right), \mathscr{H}_{[n / 2]}, \mathscr{Q}_{[n / 2]}, \cdots, \mathscr{Q}_{[n / 2]}\right) \\
& +\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[n / 2]}^{\prime}, \mho\left(\mathscr{H}_{[n / 2]}\right)+\zeta\left(\mathscr{H}_{[n / 2]}\right) \mathscr{Q}_{[n / 2]}, \cdots, \mathscr{Q}_{[n / 2]}\right) \\
& +\cdots+\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[n / 2]}^{\prime}, \mathscr{H}_{[\mathrm{n} / 2]}, \mathscr{Q}_{[\mathrm{n} / 2]}, \cdots, \mho\left(\mathscr{Q}_{[n / 2]}\right)+\zeta\left(\mathscr{Q}_{[n / 2]}\right)\right) \\
& =\mathscr{P}_{\mathrm{N}}\left(\widetilde{\left(\mathrm{~A}_{[n / 2]}\right)}, \mathscr{H}_{[n / 2]}, \mathscr{Q}_{[n / 2]}, \cdots, \mathscr{Q}_{[n / 2]}\right) \\
& +\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[\mathrm{n} / 2]}, \mho\left(\mathscr{H}_{[\mathrm{n} / 2]}\right), \mathscr{Q}_{[n / 2]}, \cdots, \mathscr{Q}_{[n / 2]}\right) \\
& +\cdots+\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[\mathrm{n} / 2]}, \mathscr{H}_{[\mathrm{n} / 2]}, \mathscr{Q}_{[\mathrm{n} / 2]}, \cdots, \widetilde{(}\left(\mathscr{Q}_{[\mathrm{n} / 2]}\right)\right) \\
& +\mathscr{P}_{\mathrm{N}}\left(\Psi\left(\mathrm{~A}_{[n / 2]}^{\prime}\right), \mathscr{H}_{[n / 2]}, \mathscr{Q}_{[n / 2]}, \cdots, \mathscr{Q}_{[n / 2]}\right) \\
& +\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[n / 2]}^{\prime}, \mho\left(\mathscr{H}_{[n / 2]}\right), \mathscr{Q}_{[n / 2]}, \cdots, \mathscr{Q}_{[n / 2]}\right) \\
& +\cdots+\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[n / 2]}^{\prime}, \mathscr{H}_{[n / 2]}, \mathscr{Q}_{[n / 2]}, \cdots, \widetilde{U}\left(\mathscr{Q}_{[n / 2]}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \widetilde{\Psi}\left(\left(\mathrm{A}_{[n / 2]}+\mathrm{A}_{[n / 2]}^{\prime}\right) \mathscr{H}_{[n / 2]}\right) \\
& =\mathscr{L}_{[n / 2]}\left(\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[n / 2]}+\mathrm{A}_{[n / 2]}^{\prime}, \mathscr{H}_{[n / 2]}, \mathscr{Q}_{[n / 2]}, \cdots, \mathscr{Q}_{[n / 2]}\right)\right) \\
& =\mathscr{P}_{\mathrm{N}}\left(\mathscr{L}_{[n / 2]}\left(\mathrm{A}_{[n / 2]}+\mathrm{A}_{[n / 2]}^{\prime}\right), \mathscr{H}_{[n / 2]}, \mathscr{Q}_{[n / 2]}, \cdots, \mathscr{Q}_{[n / 2]}\right) \\
& +\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[\mathrm{n} / 2]}+\mathrm{A}_{[\mathrm{n} / 2]}^{\prime}, \mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{H}_{[\mathrm{n} / 2]}\right), \mathscr{Q}_{[\mathrm{n} / 2]}, \cdots, \mathscr{Q}_{[\mathrm{n} / 2]}\right) \\
& +\cdots+\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[n / 2]}+\mathrm{A}_{[n / 2]}^{\prime}, \mathscr{H}_{[n / 2]}, \mathscr{Q}_{[n / 2]}, \cdots, \mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{[n / 2]}\right)\right) \\
& =\mathscr{P}_{\mathrm{N}}\left(\Psi\left(\mathrm{~A}_{[\mathrm{n} / 2]}+\mathrm{A}_{[\mathrm{n} / 2]}^{\prime}\right)+\zeta\left(\mathrm{A}_{[\mathrm{n} / 2]}+\mathrm{A}_{[\mathrm{n} / 2]}^{\prime}\right), \mathscr{H}_{[\mathrm{n} / 2]}, \mathscr{Q}_{[\mathrm{n} / 2]}, \cdots, \mathscr{Q}_{[\mathrm{n} / 2]}\right) \\
& +\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[\mathrm{n} / 2]}+\mathrm{A}_{[\mathrm{n} / 2]}^{\prime}, \mho\left(\mathscr{H}_{[\mathrm{n} / 2]}\right)+\zeta\left(\mathscr{H}_{[n / 2]}\right), \mathscr{Q}_{[\mathrm{n} / 2]}, \cdots, \mathscr{Q}_{[\mathrm{n} / 2]}\right) \\
& +\cdots+\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[\mathrm{n} / 2]}+\mathrm{A}_{[\mathrm{n} / 2]}^{\prime}, \mathscr{H}_{[\mathrm{n} / 2]}, \mathscr{Q}_{[\mathrm{n} / 2]}, \cdots, \widetilde{(}\left(\mathscr{Q}_{[\mathrm{n} / 2]}\right)+\zeta\left(\mathscr{Q}_{[\mathrm{n} / 2]}\right)\right) \\
& \left.=\mathscr{P}_{\mathrm{N}}\left(\widetilde{\left(\mathrm{~A}_{[n / 2]}\right.}+\mathrm{A}_{[n / 2]}^{\prime}\right), \mathscr{H}_{[n / 2]}, \mathscr{Q}_{[n / 2]}, \cdots, \mathscr{Q}_{[n / 2]}\right) \\
& +\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[\mathrm{n} / 2]}+\mathrm{A}_{[\mathrm{n} / 2]}^{\prime}, \mho\left(\mathscr{H}_{[\mathrm{n} / 2]}\right), \mathscr{Q}_{[\mathrm{n} / 2]}, \cdots, \mathscr{Q}_{[\mathrm{n} / 2]}\right) \\
& +\cdots+\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[n / 2]}+\mathrm{A}_{[n / 2]}^{\prime}, \mathscr{H}_{[n / 2]}, \mathscr{Q}_{[n / 2]}, \cdots, \mho\left(\mathscr{Q}_{[n / 2]}\right)\right) .
\end{aligned}
$$

From the above two equations, we get $\left.\left(\widetilde{\left(\mathrm{A}_{[n / 2]}\right.}+\mathrm{A}_{[n / 2]}^{\prime}\right)-\mho\left(\mathrm{A}_{[n / 2]}\right)-\mho\left(\mathrm{A}_{[n / 2]}^{\prime}\right)\right) \mathscr{H}_{[n / 2]}=0$ for all $\mathscr{H}_{[n / 2]} \in$ $\mathscr{M}_{[n / 2]}$. Since $\mathscr{M}_{\mathrm{ij}}$ is a faithful left \mathscr{R}_{i}-module, the above equation implies

$$
\begin{equation*}
\mathscr{E}_{i}\left(\widetilde{ }\left(\mathrm{~A}_{[n / 2]}+\mathrm{A}_{[n / 2]}^{\prime}\right)-\mathbb{J}\left(\mathrm{A}_{[n / 2]}\right)-\widetilde{\left(A_{[n / 2]}^{\prime}\right)}\right) \mathscr{E}_{i}=0 \text { for } i=1, \cdots,[n / 2] . \tag{26}
\end{equation*}
$$

Contrarily, let $i \in\{1,2, \cdots,[n / 2]-1\}$. Note that, for any $\mathscr{X} \in \mathscr{T}$, by Lemma 3.14, it is true that

$$
\begin{aligned}
& \widetilde{\Psi}\left(\left(\mathrm{A}_{[n / 2]}+\mathrm{A}_{[n / 2]}^{\prime}\right) \mathscr{Q}_{\mathrm{i}}\right) \\
& =\mathscr{L}_{[n / 2]}\left(\mathrm{A}_{[n / 2]} \mathscr{Q}_{i}\right)+\mathscr{L}_{[n / 2]}\left(\mathrm{A}_{[n / 2]}^{\prime} \mathscr{Q}_{i}\right) \\
& =\mathscr{L}_{[n / 2]}\left(\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[\mathrm{n} / 2]}, \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{Q}_{\mathrm{i}}\right)\right)+\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[n / 2]}^{\prime}, \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{\mathrm{i}}\right)\right) \\
& =\mathscr{P}_{\mathrm{N}}\left(\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathrm{A}_{[\mathrm{n} / 2]}\right), \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{Q}_{\mathrm{i}}\right)+\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[\mathrm{n} / 2]}, \mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{Q}_{\mathrm{i}}\right), \cdots, \mathscr{Q}_{\mathrm{i}}\right) \\
& +\cdots+\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[n / 2]}, \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{\mathrm{i}}\right)\right)+\mathscr{P}_{\mathrm{N}}\left(\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathrm{A}_{[n / 2]}^{\prime}\right), \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{Q}_{\mathrm{i}}\right) \\
& +\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[n / 2]}^{\prime}, \mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{\mathrm{i}}\right), \cdots, \mathscr{Q}_{\mathrm{i}}\right)+\cdots+\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[n / 2]}^{\prime}, \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{\mathrm{i}}\right)\right) \\
& =\mathscr{P}_{\mathrm{N}}\left(\Psi\left(\mathrm{~A}_{[n / 2]}\right)+\zeta\left(\mathrm{A}_{[n / 2]}\right), \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{Q}_{\mathrm{i}}\right)+\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[n / 2]}, \mho\left(\mathscr{Q}_{\mathrm{i}}\right)+\zeta\left(\mathscr{Q}_{\mathrm{i}}\right), \cdots, \mathscr{Q}_{\mathrm{i}}\right) \\
& +\cdots+\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[\mathrm{n} / 2]}, \mathscr{Q}_{\mathrm{i}}, \cdots, \widetilde{(}\left(\mathscr{Q}_{i}\right)+\zeta\left(\mathscr{Q}_{i}\right)\right)+\mathscr{P}_{\mathrm{N}}\left(\mho\left(\mathrm{~A}_{[n / 2]}^{\prime}\right)+\zeta\left(\mathrm{A}_{[n / 2]}^{\prime}\right), \cdots, \mathscr{Q}_{i}\right) \\
& +\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[n / 2]}^{\prime}, \mho\left(\mathscr{Q}_{\mathrm{i}}\right)+\zeta\left(\mathscr{Q}_{\mathrm{i}}\right), \cdots, \mathscr{Q}_{\mathrm{i}}\right)+\cdots+\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[n / 2]}^{\prime}, \mathscr{Q}_{\mathrm{i}}, \cdots, \mho\left(\mathscr{Q}_{\mathrm{i}}\right)+\zeta\left(\mathscr{Q}_{\mathrm{i}}\right)\right) \\
& =\mathscr{P}_{\mathrm{N}}\left(\mho\left(\mathrm{~A}_{[n / 2]}\right), \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{Q}_{\mathrm{i}}\right)+\mathscr{P}_{\mathrm{n}}\left(\mathrm{~A}_{[n / 2]}, \mho\left(\mathscr{Q}_{\mathrm{i}}\right), \cdots, \mathscr{Q}_{\mathrm{i}}\right)+\cdots+\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[n / 2]}, \mathscr{Q}_{\mathrm{i}}, \cdots, \mho\left(\mathscr{Q}_{\mathrm{i}}\right)\right) \\
& +\mathscr{P}_{\mathrm{N}}\left(\widetilde{\left.\left(\mathrm{~A}_{[n / 2]}^{\prime}\right), \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{Q}_{\mathrm{i}}\right)+\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[n / 2]}^{\prime}, \mho\left(\mathscr{Q}_{\mathrm{i}}\right), \cdots, \mathscr{Q}_{\mathrm{i}}\right)+\cdots+\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[\mathrm{n} / 2]}^{\prime}, \mathscr{Q}_{\mathrm{i}}, \cdots, \mho\left(\mathscr{Q}_{\mathrm{i}}\right)\right), ~\left(\mathscr{P}^{\prime}\right)}\right.
\end{aligned}
$$

and

$$
\begin{aligned}
& \widetilde{\Psi}\left(\left(\mathrm{A}_{[n / 2]}+\mathrm{A}_{[n / 2]}^{\prime}\right) \mathscr{Q}_{\mathrm{i}}\right) \\
& =\mathscr{L}_{[n / 2]}\left(\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[n / 2]}+\mathrm{A}_{[\mathrm{n} / 2]}^{\prime}, \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{Q}_{\mathrm{i}}\right)\right) \\
& =\mathscr{P}_{\mathrm{N}}\left(\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathrm{A}_{[n / 2]}+\mathrm{A}_{[\mathrm{n} / 2]}^{\prime}\right), \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{Q}_{\mathrm{i}}\right)+\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[\mathrm{n} / 2]}+\mathrm{A}_{[n / 2]}^{\prime}, \mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{\mathrm{i}}\right), \cdots, \mathscr{Q}_{\mathrm{i}}\right) \\
& +\cdots+\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[n / 2]}+\mathrm{A}_{[n / 2]}^{\prime}, \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{i}\right)\right) \\
& \left.=\mathscr{P}_{\mathrm{N}}\left(\widetilde{\left(\mathrm{~A}_{[n / 2]}\right.}+\mathrm{A}_{[n / 2]}^{\prime}\right)+\zeta\left(\mathrm{A}_{[n / 2]}+\mathrm{A}_{[n / 2]}^{\prime}\right), \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{\mathrm{i}}\right)+\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[n / 2]}+\mathrm{A}_{[n / 2]}^{\prime}, \widetilde{(}\left(\mathscr{Q}_{i}\right)+\zeta\left(\mathscr{Q}_{i}\right), \cdots, \mathscr{Q}_{i}\right) \\
& +\cdots+\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[n / 2]}+\mathrm{A}_{[n / 2]}^{\prime}, \mathscr{Q}_{\mathrm{i}}, \cdots, \mho\left(\mathscr{Q}_{\mathrm{i}}\right)+\zeta\left(\mathscr{Q}_{\mathrm{i}}\right)\right) \\
& =\mathscr{P}_{\mathrm{N}}\left(\widetilde{(}\left(\mathrm{A}_{[n / 2]}+\mathrm{A}_{[n / 2]}^{\prime}\right), \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right)+\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[n / 2]}+\mathrm{A}_{[n / 2]}^{\prime}, \mho\left(\mathscr{Q}_{i}\right), \cdots, \mathscr{Q}_{i}\right) \\
& +\cdots+\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{[\mathrm{n} / 2]}+\mathrm{A}_{[\mathrm{n} / 2]}^{\prime}, \mathscr{Q}_{\mathrm{i}}, \cdots, \mho\left(\mathscr{Q}_{\mathrm{i}}\right)\right)
\end{aligned}
$$

implying that

$$
\begin{equation*}
P_{i}\left(\mho\left(A_{[n / 2]}+A_{[n / 2]}^{\prime}\right)-\mho\left(A_{[n / 2]}\right)-\mho\left(A_{[n / 2]}^{\prime}\right)\right) \mathscr{Q}_{i}=0 \text { for } i=1, \cdots,[n / 2]-1 . \tag{27}
\end{equation*}
$$

Now, combining (26)-(27) yields $\left.\widetilde{(}\left(\mathrm{A}_{[n / 2]}+\mathrm{A}_{[n / 2]}^{\prime}\right)-\widetilde{(} \mathrm{A}_{[n / 2]}\right)-\widetilde{(}\left(\mathrm{A}_{[n / 2]}^{\prime}\right)=0$, that is, \mathbb{U} is additive on $\mathrm{A}_{[n / 2]}$.
Step 3. \mho is additive on $B_{[n / 2]}$. The proof being similar to that of Step 2 is omitted here.
Step 4. \mho is additive on \mathscr{T}. For any $\mathscr{X}_{1}=\mathrm{A}_{[n / 2]}+\mathscr{H}_{[n / 2]}+\mathrm{B}_{[n / 2]}, \mathscr{X}_{2}=\mathrm{A}_{[n / 2]}^{\prime}+\mathscr{H}_{[n / 2]}^{\prime}+\mathrm{B}_{[n / 2]}^{\prime} \in \mathscr{T}$, by (20) and Steps 1-3, we get

$$
\begin{aligned}
& \left.\Psi\left(\mathscr{X}_{1}+\mathscr{X}_{2}\right)=\widetilde{\left(\mathrm{A}_{[n / 2]}\right.}+\mathrm{A}_{[n / 2]}^{\prime}+\mathrm{B}_{[\mathrm{n} / 2]}+\mathrm{B}_{[\mathrm{n} / 2]}^{\prime}+\mathscr{H}_{[n / 2]}+\mathscr{H}_{[\mathrm{n} / 2]}^{\prime}\right) \\
& =\Psi\left(\mathrm{A}_{[\mathrm{n} / 2]}+\mathrm{A}_{[\mathrm{n} / 2]}^{\prime}\right)+\widetilde{\left.\left(\mathscr{H}_{[n / 2]}+\mathscr{H}_{[n / 2]}^{\prime}\right)+\widetilde{\left(\mathrm{B}_{[n / 2]}\right.}+\mathrm{B}_{[\mathrm{n} / 2]}^{\prime}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\mho\left(\mathscr{X}_{1}\right)+\mho\left(\mathscr{X}_{2}\right) .
\end{aligned}
$$

That is, \mathbb{U} is additive on \mathscr{T}.
Lemma 3.16. \mho is a derivation on \mathscr{T}.
Proof. We will prove it by various steps.
Step 1. For any $\mathscr{H}_{[n / 2]}, \mathscr{H}_{[n / 2]}^{\prime} \in \mathscr{M}_{[n / 2]}$, we have

$$
\mho\left(\mathscr{H}_{[n / 2]} \mathscr{H}_{[n / 2]}^{\prime}\right)=\mho\left(\mathscr{H}_{[n / 2]}\right) \mathscr{H}_{[n / 2]}^{\prime}+\mathscr{H}_{[n / 2]} \mho\left(\mathscr{H}_{[n / 2]}^{\prime}\right)=0 .
$$

Note that $\mho\left(\mathscr{H}_{[n / 2]}\right) \subseteq \mathscr{M}_{[n / 2]}$ by (19). This step is obvious.
Step 2. For any $\mathrm{A}_{[n / 2]}, \mathrm{A}_{[n / 2]}^{\prime} \in \mathrm{A}_{[n / 2]}$ and any $\mathscr{H}_{[n / 2]} \in \mathscr{M}_{[n / 2]}$, we have

$$
\begin{aligned}
& \widetilde{(}\left(\mathrm{A}_{[n / 2]} \mathscr{H}_{[n / 2]}\right)=\widetilde{\left(\mathrm{A}_{[n / 2]}\right)} \mathscr{H}_{[n / 2]}+\mathrm{A}_{[n / 2]} \widetilde{ }\left(\mathscr{H}_{[n / 2]}\right) \text {, } \\
& \mho\left(\mathrm{A}_{[n / 2]} \mathrm{A}_{[n / 2]}^{\prime}\right)=\widetilde{\left(A_{[n / 2]}\right)} \mathrm{A}_{[n / 2]}^{\prime}+\mathrm{A}_{[n / 2]} \widetilde{\left(A_{[n / 2]}^{\prime}\right)} .
\end{aligned}
$$

Take any $\mathrm{A}_{[n / 2]}, \mathrm{A}_{[n / 2]}^{\prime} \in \mathrm{A}_{[n / 2]}$ and any $\mathscr{H}_{[n / 2]} \in \mathscr{M}_{[n / 2]}$. By the definition of \mathbb{J} and (19)-(21), we have

$$
\begin{align*}
\mho\left(\mathrm{A}_{[n / 2]} \mathrm{A}_{[\mathrm{n} / 2]}^{\prime} \mathscr{H}_{[\mathrm{n} / 2]}\right)= & \mathscr{L}_{[n / 2]}\left(\mathscr{P}_{\mathrm{N}-1}\left(\left[\mathrm{~A}_{[n / 2]} \mathrm{A}_{[n / 2]}^{\prime}, \mathscr{H}_{[n / 2]}\right], \mathscr{Q}_{[n / 2]}, \cdots, \mathscr{Q}_{[n / 2]}\right)\right) \\
= & \mathscr{P}_{\mathrm{N}-1}\left(\left[\mho\left(\mathrm{~A}_{[n / 2]} \mathrm{A}_{[n / 2]}^{\prime}\right), \mathscr{H}_{[n / 2]}\right], \mathscr{Q}_{[n / 2]}, \cdots, \mathscr{Q}_{[n / 2]}\right) \\
& +\mathscr{P}_{\mathrm{N}-1}\left(\left[\mathrm{~A}_{[\mathrm{n} / 2]} \mathrm{A}_{[n / 2]}^{\prime}, \mho\left(\mathscr{H}_{[\mathrm{n} / 2]}\right)\right], \mathscr{Q}_{[n / 2]}, \cdots, \mathscr{Q}_{[n / 2]}\right) \\
& +\cdots+\mathscr{P}_{\mathrm{N}-1}\left(\left[\mathrm{~A}_{[n / 2]} \mathrm{A}_{[n / 2]}^{\prime}, \mathscr{H}_{[n / 2]}\right], \mathscr{Q}_{[n / 2]}, \cdots, \mho\left(\mathscr{Q}_{[\mathrm{n} / 2]}\right)\right), \tag{28}
\end{align*}
$$

implying to $\mho\left(\mathrm{A}_{[n / 2]} \mathscr{H}_{[n / 2]}\right)=\mho\left(\mathrm{A}_{[n / 2]}\right) \mathscr{H}_{[n / 2]}+\mathrm{A}_{[n / 2]} \mho\left(\mathscr{H}_{[n / 2]}\right)$ for all $\mathrm{A}_{[n / 2]} \in \mathrm{A}_{[n / 2]}, \mathscr{H}_{[n / 2]} \in \mathscr{M}_{[n / 2]}$. Moreover,

$$
\begin{align*}
\mho\left(\mathrm{A}_{[\mathrm{n} / 2]} \mathrm{A}_{[\mathrm{n} / 2]}^{\prime} \mathscr{H}_{[\mathrm{n} / 2]}\right)= & \mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{P}_{\mathrm{N}-1}\left(\left[\mathrm{~A}_{[\mathrm{n} / 2]}, \mathrm{A}_{[n / 2]}^{\prime} \mathscr{H}_{[\mathrm{n} / 2]}\right], \mathscr{Q}_{[\mathrm{n} / 2]}, \cdots, \mathscr{Q}_{[\mathrm{n} / 2]}\right)\right) \\
= & \mathscr{P}_{\mathrm{N}-1}\left(\left[\mho\left(\mathrm{~A}_{[\mathrm{n} / 2]}\right), \mathrm{A}_{[\mathrm{n} / 2]}^{\prime} \mathscr{H}_{[\mathrm{n} / 2]}\right], \mathscr{Q}_{[\mathrm{n} / 2]}, \cdots, \mathscr{Q}_{[\mathrm{n} / 2]}\right) \\
& +\mathscr{P}_{\mathrm{N}-1}\left(\left[\mathrm{~A}_{[\mathrm{n} / 2]},{\widetilde{U}\left(\mathrm{~A}_{[n / 2]}^{\prime}\right.}^{\left.\left.\left.\mathscr{H}_{[\mathrm{n} / 2]}\right)\right], \mathscr{Q}_{[n / 2]}, \cdots, \mathscr{Q}_{[\mathrm{n} / 2]}\right)}\right.\right. \\
& +\cdots+\mathscr{P}_{\mathrm{N}-1}\left(\left[\mathrm{~A}_{[n / 2]}, \mathrm{A}_{[\mathrm{n} / 2]}^{\prime} \mathscr{H}_{[\mathrm{n} / 2]}\right], \mathscr{Q}_{[\mathrm{n} / 2]}, \cdots, \mho\left(\mathscr{Q}_{[\mathrm{n} / 2]}\right)\right) . \tag{29}
\end{align*}
$$

Comparing (28)-(29) yields $\left.\left(\widetilde{\left(A_{[n / 2]}\right.} \mathrm{A}_{[n / 2]}^{\prime}\right)-\widetilde{\left(A_{[n / 2]}\right)} \mathrm{A}_{[n / 2]}^{\prime}-\mathrm{A}_{[n / 2]} \widetilde{\left(\mathrm{A}_{[n / 2]}^{\prime}\right)}\right) \mathscr{H}_{[n / 2]}=0$ for all $\mathscr{H}_{[n / 2]} \in$ $\mathscr{M}_{[n / 2]}$, implying

$$
\begin{equation*}
\mathscr{E}_{i}\left(\mho\left(A_{[n / 2]} A_{[n / 2]}^{\prime}\right)-\mho\left(A_{[n / 2]}\right) A_{[n / 2]}^{\prime}-A_{[n / 2]} \mho\left(A_{[n / 2]}^{\prime}\right)\right) \mathscr{E}_{i}=0 \text { for } \mathfrak{i}=1, \cdots,[n / 2] \tag{30}
\end{equation*}
$$

Especially, by taking $\mathrm{A}_{[\mathrm{n} / 2]}=\mathrm{A}_{\mathrm{kk}}$ and $\mathrm{A}_{[n / 2]}^{\prime}=\mathscr{E}_{\mathrm{k}}$ with $\mathrm{k}=\mathrm{i}$ in Equation (30) and by Lemma 3.14, we get

$$
0=\mathscr{E}_{i}\left(\mho\left(\mathrm{~A}_{k k} \mathscr{E}_{\mathrm{k}}\right)-\mho\left(\mathrm{A}_{k k}\right) \mathscr{E}_{k}-\mathrm{A}_{k k} \mho\left(\mathscr{E}_{k}\right)\right) \mathscr{E}_{i}=\mathscr{E}_{i} \mho\left(\mathrm{~A}_{k k}\right) \mathscr{E}_{i}-\mathscr{E}_{i} \mathrm{~A}_{k k} \mho\left(\mathscr{E}_{\mathrm{k}}\right) \mathscr{E}_{i}=\mathscr{E}_{i} \mho\left(\mathrm{~A}_{k k}\right) \mathscr{E}_{i}
$$

that is,

$$
\begin{equation*}
\mathscr{E}_{i} \mho\left(\mathrm{~A}_{\mathrm{kk}}\right) \mathscr{E}_{i}=0, i=1, \cdots,[\mathrm{n} / 2] \text { with } i=k \leqslant[n / 2] . \tag{31}
\end{equation*}
$$

In the conclusion, let $i \in\{1, \cdots,[n / 2]\}, A_{[n / 2]}=\left(a_{k l}\right)_{[n / 2] \times[n / 2]}$ and $A_{[n / 2]}^{\prime}=\left(a_{s t}^{\prime}\right)_{[n / 2] \times[n / 2]}$, then

$$
A_{[n / 2]} A_{[n / 2]}^{\prime}=\sum_{1 \leqslant k \leqslant l \leqslant s \leqslant t \leqslant[n / 2]} A_{k l} A_{s t}^{\prime}=\sum_{1 \leqslant k \leqslant l \leqslant t \leqslant[n / 2]} A_{k l} A_{l t}^{\prime},
$$

where $A_{k l}$ is the matrix with (k, l) position $a_{k, l}$ and other positions 0 .
To show that \mho is a derivation on $A_{[n / 2]}$, that is, $\mho\left(A_{[n / 2]} A_{[n / 2]}^{\prime}\right)=\mho\left(A_{[n / 2]}\right) A_{[n / 2]}^{\prime}+A_{[n / 2]} \widetilde{\left(A_{[n / 2]}^{\prime}\right)}$, as Ψ is additive by Lemma 3.15 , one only needs to check that U satisfies the derivable condition on every element of $\mathrm{A}_{[n / 2]}$, that is, to analyse that

$$
\begin{align*}
& \Psi\left(A_{k l} A_{l t}^{\prime}\right)=\mho\left(A_{k l}\right) A_{l t}^{\prime}+A_{k l} \Psi\left(A_{l t}^{\prime}\right) \text { for all } 1 \leqslant k \leqslant l \leqslant t \leqslant[n / 2] \\
& \Psi\left(A_{k l}\right) A_{s t}^{\prime}+A_{k l} \Psi\left(A_{s t}^{\prime}\right)=0 \text { for all } 1 \leqslant k \leqslant l \leqslant[n / 2], 1 \leqslant s \leqslant t \leqslant[n / 2] \text { with } l=s . \tag{32}
\end{align*}
$$

We will prove this by the following steps.
Step 2.1. For any $A_{k k}, A_{s s}^{\prime} \in A_{[n / 2]}$ with $k<s$, we have

$$
0=\Psi\left(A_{k k}\right) A_{s s}^{\prime}+A_{k k} \mho\left(A_{s s}^{\prime}\right) \text { and } \mathbb{U}\left(A_{s s}^{\prime}\right) A_{k k}=A_{s s}^{\prime} \widetilde{J}\left(A_{k k}\right)=0
$$

For $A_{k k}$ and $A_{s s}^{\prime}$ with $k<l$, by the definition of \mathcal{U} and the fact $\zeta(\cdot) \in \mathscr{Z}(\mathscr{T})$, we have

$$
\begin{align*}
& 0=\mathbb{U}\left(\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{\mathrm{kk}}, \mathrm{~A}_{\mathrm{ss}}^{\prime}, \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{Q}_{\mathrm{i}}\right)\right) \\
& =\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{\mathrm{kk}}, \mathrm{~A}_{\mathrm{ss}}^{\prime}, \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{Q}_{\mathrm{i}}\right)\right) \\
& =\mathscr{P}_{\mathrm{N}-1}\left(\left[\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathrm{A}_{\mathrm{kk}}\right), \mathrm{A}_{\mathrm{ss}}^{\prime}\right], \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{Q}_{\mathrm{i}}\right)+\mathscr{P}_{\mathrm{N}-1}\left(\left[\mathrm{~A}_{\mathrm{kk}}, \mathscr{L}_{[\mathrm{n} / 2]}\left(\mathrm{A}_{\mathrm{ss}}^{\prime}\right)\right], \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{Q}_{\mathrm{i}}\right) \\
& =\mathscr{P}_{\mathrm{N}-1}\left(\left[\Psi\left(\mathrm{~A}_{\mathrm{kk}}\right)+\zeta\left(\mathrm{A}_{\mathrm{kk}}\right), \mathrm{A}_{\mathrm{ss}}^{\prime}\right], \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right)+\mathscr{P}_{\mathrm{N}-1}\left(\left[\mathrm{~A}_{\mathrm{kk}}, \mho\left(\mathrm{~A}_{\mathrm{ss}}^{\prime}\right)+\zeta\left(\mathrm{A}_{\mathrm{ss}}^{\prime}\right)\right], \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{i}\right) \\
& =\mathscr{P}_{\mathrm{N}-1}\left(\left[\Psi\left(\mathrm{~A}_{\mathrm{kk}}\right), \mathrm{A}_{\mathrm{ss}}^{\prime}\right]+\left[\mathrm{A}_{\mathrm{kk}}, \mho\left(\mathrm{~A}_{\mathrm{ss}}^{\prime}\right)\right], \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{\mathrm{i}}\right) \\
& =P_{i}\left(\mho\left(A_{k k}\right) A_{s s}^{\prime}-A_{s s}^{\prime} \mho\left(A_{k k}\right)+A_{k k} \mho\left(A_{s s}^{\prime}\right)-\mho\left(A_{s s}^{\prime}\right) A_{k k}\right) \mathscr{Q}_{i} . \tag{33}
\end{align*}
$$

Note that, by (31), we have

$$
\begin{aligned}
& \Psi\left(A_{k k}\right) A_{s s}^{\prime} \in \sum_{j=1}^{s-1} T_{j s}, A_{s s}^{\prime} \mho\left(A_{k k}\right) \in \sum_{j=s+1}^{[n / 2]} T_{s j}, \\
& A_{k k} \mho\left(A_{s s}^{\prime}\right) \in \sum_{j=k+1}^{[n / 2]} T_{k j}, \mho\left(A_{s s}^{\prime}\right) A_{k k} \in \sum_{j=1}^{k-1} T_{j k} .
\end{aligned}
$$

These and (30),(31),(33) imply to $\widetilde{(}\left(A_{k k}\right) A_{s s}^{\prime}+A_{k k} \mho\left(A_{s s}^{\prime}\right)=0=\mho\left(A_{k k} A_{s s}^{\prime}\right)$ and $A_{s s}^{\prime} \mho\left(A_{k k}\right)=\mho\left(A_{s s}^{\prime}\right) A_{k k}=0$, completing the proof. Note that, by Step 2.1, we can easily check that

$$
\begin{equation*}
\widetilde{U}\left(\mathrm{~A}_{\mathrm{kk}}\right) \in \mathscr{T}_{1 \mathrm{k}}+\cdots+\mathscr{T}_{(\mathrm{k}-1) \mathrm{k}}+\mathscr{T}_{\mathrm{kk}}+\mathscr{T}_{\mathrm{k}(\mathrm{k}+1)}+\cdots+\mathscr{T}_{\mathrm{k}[\mathrm{n} / 2]}, \mathrm{k}=1,2, \cdots,[\mathrm{n} / 2] . \tag{34}
\end{equation*}
$$

Step 2.2. For any $A_{k l}, A_{s t}^{\prime} \in A_{[n / 2]}$ for $s \leqslant t$ and $k \leqslant l$, we have $\Psi\left(A_{k k}\right) A_{s t}^{\prime}=0$ for $k>s ; A_{k l} \mho\left(A_{s s}^{\prime}\right)=0$ for $\bar{l}>s$. It is obvious by (34).

Step 2.3. For any $A_{k l}, A_{s t}^{\prime} \in A_{[n / 2]}$ with $k \leqslant l$ and $s \leqslant t$, we have
(i) $\widetilde{U}\left(A_{k l}\right) A_{s t}^{\prime}=A_{k l} \mho\left(A_{s t}^{\prime}\right)=0$ if $k>s$ or $k=s, k<l$;
(ii) $A_{s t}^{\prime} \mho\left(A_{k l}\right)=\mho\left(A_{s t}^{\prime}\right) A_{k l}=0$ if $k<s$ or $k=s, s<t$.

Note that, by Lemma 3.14, we know that $\mho\left(\mathrm{S}_{\mathrm{kl}}\right) \subseteq \mathscr{M}_{\mathrm{k}} \cap \mathrm{A}_{[n / 2]}$ holds for all $\mathrm{S}_{\mathrm{kl}} \in \mathrm{A}_{[n / 2]}$ with $k<l$. So, the step is true.

Step 2.4. For any $A_{k k}, A_{k k}^{\prime} \in A_{[n / 2]}$, we have $\widetilde{U}\left(A_{k k} A_{k k}^{\prime}\right)=\widetilde{U}\left(A_{k k}\right) A_{k k}^{\prime}+A_{k k} \widetilde{J}\left(A_{k k}^{\prime}\right)$. For $A_{k k} \in A_{[n / 2]}$, by Lemma 3.15, we get

$$
\begin{aligned}
& 0=\mho\left(A_{k k} \mathscr{E}_{\mathrm{k}}\right)-\mho\left(\mathscr{E}_{\mathrm{k}} \mathrm{~A}_{\mathrm{kk}}\right) \\
& =\mho\left(\mathscr{P}_{\mathrm{N}-1}\left(\left[\mathrm{~A}_{\mathrm{kk}}, \mathscr{E}_{\mathrm{k}}\right], \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{Q}_{\mathrm{i}}\right)\right) \\
& =\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{P}_{\mathrm{N}-1}\left(\left[\mathrm{~A}_{\mathrm{kk}}, \mathscr{E}_{\mathrm{k}}\right], \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{Q}_{\mathrm{i}}\right)\right)-\zeta\left(\mathscr{P}_{\mathrm{N}-1}\left(\left[\mathrm{~A}_{\mathrm{kk}}, \mathscr{E}_{\mathrm{k}}\right], \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{\mathrm{i}}\right)\right) \\
& =\mathscr{P}_{\mathrm{N}-1}\left(\left[\mathscr{L}_{[n / 2]}\left(\mathrm{A}_{\mathrm{kk}}\right), \mathscr{E}_{\mathrm{K}}\right], \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{Q}_{\mathrm{i}}\right)+\mathscr{P}_{\mathrm{N}-1}\left(\left[\mathrm{~A}_{\mathrm{kk}}, \mathscr{L}_{[n / 2]}\left(\mathscr{E}_{\mathrm{k}}\right)\right], \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{\mathrm{i}}\right) \\
& =\mathscr{P}_{\mathrm{N}-1}\left(\left[\mho\left(\mathrm{~A}_{\mathrm{kk}}\right), \mathscr{E}_{\mathrm{k}}\right], \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{Q}_{\mathrm{i}}\right)+\mathscr{P}_{\mathrm{N}-1}\left(\left[\mathrm{~A}_{\mathrm{kk}}, \mho\left(\mathscr{E}_{\mathrm{k}}\right)\right], \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{Q}_{\mathrm{i}}\right) \\
& =\mathrm{P}_{\mathrm{i}}\left(\mho\left(\mathrm{~A}_{\mathrm{kk}}\right) \mathscr{E}_{\mathrm{k}}-\mathscr{E}_{\mathrm{k}} \mho\left(\mathrm{~A}_{\mathrm{kk}}\right)+\mathrm{A}_{\mathrm{kk}} \mho\left(\mathscr{E}_{\mathrm{k}}\right)-\mho\left(\mathscr{E}_{\mathrm{k}}\right) \mathrm{A}_{\mathrm{kk}}\right) \mathscr{Q}_{i} .
\end{aligned}
$$

Hence by (34), we obtain
(a) $\mathrm{P}_{i} \mho\left(\mathrm{~A}_{k k}\right) \mathscr{Q}_{i}=\mathrm{P}_{i} \mho\left(\mathrm{~A}_{k k}\right) \mathscr{E}_{\mathrm{k}} \mathscr{Q}_{i}=\mathrm{P}_{i} \mho\left(\mathscr{E}_{k}\right) \mathrm{A}_{\mathrm{kk}} \mathscr{Q}_{i}$ for $1 \leqslant i<k$;
(b) $\mathrm{P}_{\mathrm{i}} \mho\left(\mathrm{A}_{\mathrm{kk}}\right) \mathscr{Q}_{i}=\mathrm{P}_{\mathrm{i}} \mathscr{E}_{\mathrm{k}} \mho\left(\mathrm{A}_{k k}\right) \mathscr{Q}_{i}=\mathrm{P}_{\mathrm{i}} \mathrm{A}_{\mathrm{kk}} \mho\left(\mathscr{E}_{\mathrm{k}}\right) \mathscr{Q}_{\mathrm{i}}$ for $k \leqslant i \leqslant[n / 2]$.

Therefore, for any $A_{k k}^{\prime} \in A_{[n / 2]}$, if $1 \leqslant i<k$, (35)(a) implies

$$
\begin{aligned}
& P_{i}\left(\mho\left(A_{k k} A_{k k}^{\prime}\right)-\mho\left(A_{k k}\right) A_{k k}^{\prime}-A_{k k} \mho\left(A_{k k}^{\prime}\right)\right) \mathscr{Q}_{i} \\
& \quad=P_{i} \mho\left(A_{k k} A_{k k}^{\prime}\right) \mathscr{Q}_{i}-P_{i} \mho\left(A_{k k}\right) A_{k k}^{\prime} \mathscr{Q}_{i}=P_{i} \mho\left(A_{k k} A_{k k}^{\prime}\right) \mathscr{Q}_{i}-P_{i} \mho\left(A_{k k}\right) \mathscr{Q}_{i} A_{k k}^{\prime} \mathscr{Q}_{i} \\
& \quad=P_{i} \mho\left(\mathscr{E}_{k}\right) A_{k k} A_{k k}^{\prime} \mathscr{Q}_{i}-P_{i} \Psi\left(\mathscr{E}_{k}\right) A_{k k} \mathscr{Q}_{i} A_{k k}^{\prime} \mathscr{Q}_{i}=0 ;
\end{aligned}
$$

if $k \leqslant i \leqslant[n / 2],(35) b)$ also implies $P_{i}\left(\widetilde{ }\left(A_{k k} A_{k k}^{\prime}\right)-\widetilde{U}\left(A_{k k}\right) A_{k k}^{\prime}-A_{k k} \widetilde{(}\left(A_{k k}^{\prime}\right)\right) \mathscr{Q}_{i}=0$. So until now we prove that

$$
P_{i}\left(\mho\left(A_{k k} A_{k k}^{\prime}\right)-\mho\left(A_{k k}\right) A_{k k}^{\prime}-A_{k k} \mho\left(A_{k k}^{\prime}\right)\right) \mathscr{Q}_{i}=0 \text { for } i \in\{1, \cdots,[n / 2]\} .
$$

Combining the above equation and (30) gives $\widetilde{\Psi}\left(A_{k k} A_{k k}^{\prime}\right)-\widetilde{(}\left(A_{k k}\right) A_{k k}^{\prime}-A_{k k} \widetilde{(}\left(A_{k k}^{\prime}\right)=0$.
Step 2.5. For any $A_{k k}, A_{k l}^{\prime} \in A_{[n / 2]}$ with $k<l$, we have $\widetilde{(}\left(A_{k k} A_{k l}^{\prime}\right)=\widetilde{\mho}\left(A_{k k}\right) A_{k l}^{\prime}+A_{k k} \mho\left(A_{k l}^{\prime}\right)$. Let $k<l$. Then, by Lemma 3.14 and Steps 2.2-2.3, we have

$$
\begin{aligned}
& \mho\left(A_{k k} A_{\mathrm{kl}}^{\prime}\right)=\mho\left(\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{\mathrm{kk}}, \mathrm{~A}_{\mathrm{kl}}^{\prime}, \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{Q}_{\mathrm{i}}\right)\right) \\
& =\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{\mathrm{kk}}, \mathrm{~A}_{\mathrm{kl}}^{\prime}, \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{Q}_{\mathrm{i}}\right)\right) \\
& =\mathscr{P}_{\mathrm{N}-1}\left(\left[\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathrm{A}_{\mathrm{kk}}\right), \mathrm{A}_{\mathrm{kl}}^{\prime}\right], \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{Q}_{\mathrm{i}}\right)+\mathscr{P}_{\mathrm{N}-1}\left(\left[\mathrm{~A}_{\mathrm{kk}}, \mathscr{L}_{[\mathrm{n} / 2]}\left(\mathrm{A}_{\mathrm{kl}}^{\prime}\right)\right], \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{Q}_{\mathrm{i}}\right) \\
& +\cdots+\mathscr{P}_{\mathrm{N}-1}\left(\left[\mathrm{~A}_{\mathrm{kk}}, \mathrm{~A}_{\mathrm{kl}}^{\prime}\right], \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{L}_{[n / 2]}\left(\mathscr{Q}_{i}\right)\right) \\
& =\mathscr{P}_{\mathrm{N}-1}\left(\left[\mathcal{O}\left(\mathrm{~A}_{\mathrm{kk}}\right)+\zeta\left(\mathrm{A}_{\mathrm{kk}}\right), \mathrm{A}_{\mathrm{kl}}^{\prime}\right]+\left[\mathrm{A}_{\mathrm{kk}}, \mathbb{O}\left(\mathrm{~A}_{\mathrm{kl}}^{\prime}\right)\right], \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{Q}_{\mathrm{i}}\right) \\
& +\cdots+\mathscr{P}_{\mathrm{N}-1}\left(\left[\mathrm{~A}_{\mathrm{kk}}, \mathrm{~A}_{\mathrm{kl}}^{\prime}\right], \mathscr{Q}_{\mathrm{i}}, \cdots, \widetilde{\mathrm{U}}\left(\mathscr{Q}_{\mathrm{i}}\right)\right) \\
& =\mathscr{P}_{\mathrm{N}-1}\left(\left[\Psi\left(\mathrm{~A}_{\mathrm{kk}}\right), \mathrm{A}_{\mathrm{kl}}^{\prime}\right]+\left[\mathrm{A}_{\mathrm{kk}}, \mho\left(\mathrm{~A}_{\mathrm{kl}}^{\prime}\right)\right], \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{Q}_{\mathrm{i}}\right) \\
& \left.\left.\left.=P_{i}\left(\widetilde{(} A_{k k}\right) A_{k l}^{\prime}-A_{k l}^{\prime} \Psi\left(A_{k k}\right)+A_{k k} \widetilde{(} A_{k l}^{\prime}\right)-\widetilde{(} A_{k l}^{\prime}\right) A_{k k}\right) \mathscr{Q}_{i} \\
& \left.=P_{i}\left(\widetilde{(} A_{k k}\right) A_{k l}^{\prime}+A_{k k} \mho\left(A_{k l}^{\prime}\right)\right) \mathscr{Q}_{i} .
\end{aligned}
$$

Multiplying by P_{i} and \mathscr{Q}_{i} from left and right respectively, we have $\mathrm{P}_{\mathrm{i}}\left(\widetilde{(}\left(\mathrm{A}_{k k} \mathrm{~A}_{\mathrm{kl}}^{\prime}\right)-\mho\left(\mathrm{A}_{k k}\right) \mathrm{A}_{\mathrm{kl}}^{\prime}-\mathrm{A}_{k k} \mho\left(\mathrm{~A}_{\mathrm{kl}}^{\prime}\right)\right) \mathscr{Q}_{i}=$ 0 which together with (30) leads to the required outcome.

By a similar argument to that of Step 2.5 and by using Steps 2.2-2.3 again, we can show the following Steps 2.6-2.7.

Step 2.6. For any $A_{k l}, A_{l l}^{\prime} \in A_{[n / 2]}$ with $k<l$, we have $\widetilde{(}\left(A_{k l} A_{l l}^{\prime}\right)=\mho\left(A_{k l}\right) A_{l l}^{\prime}+A_{k l} \mho\left(A_{l l}^{\prime}\right)$.
Step 2.7. For any $A_{k l}, A_{l t}^{\prime} \in A_{[n / 2]}$ with $k<l<t$, we have $\Psi\left(A_{k l} A_{l t}^{\prime}\right)=\widetilde{J}\left(A_{k l}\right) A_{l t}^{\prime}+A_{k l} \widetilde{(}\left(A_{l t}^{\prime}\right)$.
Step 2.8. For any $A_{k l}, A_{s t}^{\prime} \in A_{[n / 2]}$ with $k \leqslant l, s \leqslant t$ and $l \neq s$, we have $\Psi\left(A_{k l}\right) A_{s t}^{\prime}+A_{k l} \mho\left(A_{s t}^{\prime}\right)=0$. If $\mathrm{k} \leqslant \mathrm{l}<\mathrm{s} \leqslant \mathrm{t}$, by Step 2.1, (34) and Step 2.3(ii), we have

$$
\begin{align*}
& 0=\mathscr{L}_{[n / 2]}\left(\mathscr{P}_{\mathrm{N}}\left(\mathrm{~A}_{\mathrm{kl}}, \mathrm{~A}_{\mathrm{st}}^{\prime}, \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{Q}_{\mathrm{i}}\right)\right) \\
& =\mathscr{P}_{\mathrm{N}-1}\left(\left[\mathscr{L}_{[\mathrm{n} / 2]}\left(\mathrm{A}_{\mathrm{kl}}\right), \mathrm{A}_{\mathrm{st}}^{\prime}\right], \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{Q}_{\mathrm{i}}\right)+\mathscr{P}_{\mathrm{N}-1}\left(\left[\mathrm{~A}_{\mathrm{kl}}, \mathscr{L}_{[n / 2]}\left(\mathrm{A}_{\mathrm{st}}^{\prime}\right)\right], \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{Q}_{\mathrm{i}}\right) \\
& =\mathscr{P}_{\mathrm{N}-1}\left(\left[\Psi\left(\mathrm{~A}_{\mathrm{kl}}\right), \mathrm{A}_{\mathrm{st}}^{\prime}\right], \mathscr{Q}_{i}, \cdots, \mathscr{Q}_{\mathrm{i}}\right)+\mathscr{P}_{\mathrm{N}-1}\left(\left[\mathrm{~A}_{\mathrm{kl}}, \mho\left(\mathrm{~A}_{\mathrm{st}}^{\prime}\right)\right], \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{Q}_{\mathrm{i}}\right) \\
& =P_{i}\left(\mho\left(A_{k l}\right) A_{s t}^{\prime}-A_{s t}^{\prime} \mho\left(A_{k l}\right)+A_{k l} \mho\left(A_{s t}^{\prime}\right)-\mho\left(A_{s t}^{\prime}\right) A_{k l}\right) \mathscr{Q}_{i} \\
& =P_{i}\left(\mho\left(A_{k l}\right) A_{s t}^{\prime}+A_{k l} \mho\left(A_{s t}^{\prime}\right)\right) \mathscr{Q}_{i} . \tag{36}
\end{align*}
$$

This with (30) gives $\mho\left(A_{k l}\right) A_{s t}^{\prime}+A_{k l} \mho\left(A_{s t}^{\prime}\right)=0$.
If $k \leqslant s<l \leqslant t, k \leqslant s<t \leqslant l$ or $k<s \leqslant t<l$, the by similar argument as above gives

$$
\Psi\left(A_{k l}\right) A_{s t}^{\prime}+A_{k l} \mho\left(A_{s t}^{\prime}\right)=A_{s t}^{\prime} \mho\left(A_{k l}\right)=\widetilde{ }\left(A_{s t}^{\prime}\right) A_{k l}=0 ;
$$

if $\mathrm{k}=\mathrm{s}=\mathrm{t}<\mathrm{l}$, we have

$$
\begin{aligned}
& -\widetilde{(}\left(\mathrm{A}_{\mathrm{kk}}^{\prime} \mathrm{A}_{\mathrm{kl}}\right)=\bigcup_{[\mathrm{n} / 2]}\left(\mathscr{P}_{\mathrm{N}-1}\left(\left[\mathrm{~A}_{\mathrm{kl}}, \mathrm{~A}_{\mathrm{kk}}^{\prime}\right], \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{Q}_{i}\right)\right) \\
& =\mathscr{L}_{[n / 2]}\left(\mathscr{P}_{\mathrm{N}-1}\left(\left[\mathrm{~A}_{\mathrm{kl}}, \mathrm{~A}_{\mathrm{kk}}^{\prime}\right], \mathscr{Q}_{\mathrm{i}}, \cdots, \mathscr{Q}_{\mathrm{i}}\right)\right) \\
& \left.=\mathrm{P}_{\mathrm{i}}\left(\widetilde{(}\left(\mathrm{A}_{\mathrm{kl}}\right) \mathrm{A}_{\mathrm{kk}}^{\prime}-\mathrm{A}_{\mathrm{kk}}^{\prime} \Psi\left(\mathrm{A}_{\mathrm{kl}}\right)+\mathrm{A}_{\mathrm{kl}} \mho\left(\mathrm{~A}_{\mathrm{kk}}^{\prime}\right)-\widetilde{\left(A_{k k}^{\prime}\right.}\right) \mathrm{A}_{\mathrm{kl}}\right) \mathscr{Q}_{\mathrm{i}}
\end{aligned}
$$

Multiplying by P_{i} and \mathscr{Q}_{i} from left and right respectively, we have $P_{i}\left(\widetilde{ }\left(A_{k k}^{\prime} A_{k l}\right)-\mho\left(A_{k l}\right) A_{k k}^{\prime}+A_{k k}^{\prime} \mho\left(A_{k l}\right)-\right.$ $\left.A_{k l} \mho\left(A_{k k}^{\prime}\right)+\mho\left(A_{k k}^{\prime}\right) A_{k l}\right) \mathscr{Q}_{i}=0$ which together with (30) and Step 2.5 gives $\mho\left(A_{k l}\right) A_{k k}^{\prime}+A_{k l} \mho\left(A_{k k}^{\prime}\right)=0$.

Similarly, if $s<k$, by considering subcases $s<k<t<l, s<k<l<t$, and $s<t<k<l$, one can give $\mho\left(A_{k l}\right) A_{s t}^{\prime}+A_{k l} \mho\left(A_{s t}^{\prime}\right)=0$. The substep is true. Now, combining Steps 2.1-2.8, and by an easy and direct calculation, we can show that

$$
\begin{aligned}
\mho\left(A_{[n / 2]} A_{[n / 2]}^{\prime}\right) & =\sum_{1 \leqslant k \leqslant l \leqslant t \leqslant[n / 2]} \Psi\left(A_{k l} A_{l t}^{\prime}\right) \\
& =\sum_{1 \leqslant k \leqslant l \leqslant t \leqslant[n / 2]}\left(\mho\left(A_{k l}\right) A_{l t}^{\prime}+A_{k l} \mho\left(A_{l t}^{\prime}\right)\right) \\
& =\mho\left(A_{[n / 2]}\right) A_{[n / 2]}^{\prime}+A_{[n / 2]} \Psi\left(A_{[n / 2]}^{\prime}\right) .
\end{aligned}
$$

Hence, the step holds.
Step 3. For any $B_{[n / 2]}, B_{[n / 2]}^{\prime} \in B_{[n / 2]}$ and any $\mathscr{H}_{[n / 2]} \in \mathscr{M}_{[n / 2]}$, we have

$$
\begin{aligned}
\Psi\left(\mathscr{H}_{[n / 2]} \mathrm{B}_{[\mathrm{n} / 2]}\right) & =\mho\left(\mathscr{H}_{[n / 2]}\right) \mathrm{B}_{[n / 2]}+\mathscr{H}_{[n / 2]} \mho\left(\mathrm{B}_{[n / 2]}\right), \\
\Psi\left(\mathrm{B}_{[\mathrm{n} / 2]} \mathrm{B}_{[\mathrm{n} / 2]}^{\prime}\right) & =\mho\left(\mathrm{B}_{[n / 2]}\right) \mathrm{B}_{[n / 2]}^{\prime}+\mathrm{B}_{[n / 2]} \mho\left(\mathrm{B}_{[n / 2]}^{\prime}\right) .
\end{aligned}
$$

The proof is similar to that of Step 2. Now, combining Lemma 3.15 and Steps $1-3$, one can prove that \mathbb{U} is a derivation.

Lemma 3.17. $\zeta\left(\mathscr{P}_{N-1}\left(\mathscr{X}_{1}, \mathscr{X}_{2}, \cdots, \mathscr{X}_{n}\right)\right)=0$ holds for all $\mathscr{X}_{1}, \mathscr{X}_{2}, \cdots, \mathscr{X}_{\mathrm{n}} \in \mathscr{T}$.
Proof. Note that $\zeta=\mathscr{L}_{[n / 2]}-\mathbb{U}$. Since $\mathscr{L}_{[n / 2]}$ is a multiplicative Lie type derivation, \mathbb{U} is an additive derivation and ζ is a central-valued map, it is a direct calculation that $\zeta\left(\mathscr{P}_{\mathrm{N}-1}\left(\mathscr{X}_{1}, \mathscr{X}_{2}, \cdots, \mathscr{X}_{\mathrm{n}}\right)\right)=0$ holds for all $\mathscr{X}_{1}, \mathscr{X}_{2}, \cdots, \mathscr{X}_{n} \in \mathscr{T}$.

Proof. [Proof of Theorem 3.1] Note that $\mathscr{L}=\mathscr{L}_{[n / 2]}+\mathscr{D}_{[n / 2]}=\mathscr{L}_{[n / 2]}+\left[\mathscr{L}\left(\mathscr{Q}_{[n / 2]}\right), \cdot\right]$ and $\mathscr{L}_{[n / 2]}=\widetilde{U}+\zeta$. Let $\mathscr{D}=\mathscr{D}[n / 2]+\mathscr{U}$. Then $\mathscr{L}=\mathscr{D}+\zeta$; moreover, \mathscr{D} is an additive derivation as Lemmas 3.15-3.17 and the definition of $\mathscr{D}_{[n / 2]}$, and ζ is a central-valued map annihilating all commutators. Thereby, finishing the proof of the theorem.

4. Acknowledgments

The author would like to thank the anonymous referees for careful reading and the helpful comments improving this paper.

References

[1] Z. Abdullaev, n-Lie derivations on von Neumann algebra, Uzbek. Mat. Zh. 5(6) (1992), 3-9.
[2] M. Ashraf, M. S. Akhtar, and A. Jabeen, Characterizations of Lie triple higher derivations of triangular algebras by local actions, Kyungpook Math. J. 60 (2020), no. 4, 683-710.
[3] M. Ashraf, S. Ali, and B. A. Wani, Nonlinear *-Lie higher derivations of standard operator algebras, Commun. Math. 26(1) (2018) 15-29.
[4] H. Chen and X. Qi, Multiplicative Lie derivations on triangular n-matrix rings, Linear and Multilinear Algebra 70(7) (2020) 1230-1251.
[5] M. Daif, When is a multiplicative derivation additive?, Internat. J. Math. Sci. 14 (1991) 615-618.
[6] B. L. M. Ferreira, Multiplicative maps on triangular n-matrix rings, International Journal of Mathematics, Game Theory and Algebra 23(2) (2014) 1-14.
[7] B. L. M. Ferreira and H. G. Jr, Characterization of Lie multiplicative derivation on alternative rings, Rocky Mountain J. Math. 49(3) (2019) 761-772.
 9-20.
[9] B. L. M. Ferreira, H. G. Jr, and F. Wei, Multiplicative Lie-type derivations on alternative rings, Comm. Algebra 40(12) (2020) 5396-5411.
[10] A. Jabeen and M. Ahmad, Multiplicative Lie triple derivation of triangular 3-matrix rings, Annali dell Universita di Ferrara 67 (2021) 293-308.
[11] W. S. Martindale III, Lie derivations of primitive rings, Michigan Math. J. 11 (1964) 183-187.
[12] W. S. Martindale III, When are multiplicative mappings additive?, Proc. Amer. Math. 21 (1969), 695-698.

[^0]: 2020 Mathematics Subject Classification. Primary 16W25 ; Secondary 47L35, 15A78
 Keywords. Lie derivation, derivation, matrix ring
 Received: 01 December 2021; Revised: 25 June 2022; Accepted: 12 July 2022
 Communicated by Dijana Mosić
 Corresponding author: Aisha Jabeen
 This research is supported by Dr. D. S. Kothari Postdoctoral Fellowship under University Grants Commission (Grant No. F.4-2/2006 (BSR)/MA/18-19/0014), awarded to first author.

 Email addresses: ajabeen329@gmail.com (Aisha Jabeen*), arifraza03@gmail.com (Mohd Arif Raza), mahmad@jmi.ac.in (Musheer Ahmad)

