On Stancu Operators Depending on a Non-Negative Integer

Tuğba Bostancı ${ }^{\text {a,b }}$, Gülen Başcanbaz-Tunca ${ }^{\text {a }}$
${ }^{a}$ Ankara University, Faculty of Science, Department of Mathematics, Str. Dögol 06100, Beşevler, Ankara, Turkey
${ }^{b}$ National Defence University, Naval Petty-Officer Vocational School, Basic Sciences Department, 77730-Altmova, Yalova, Turkey

Abstract

In this paper, we deal with Stancu operators which depend on a non-negative integer parameter. Firstly, we define Kantorovich extension of the operators. For functions belonging to the space $L^{p}[0,1], 1 \leq$ $p<\infty$, we obtain convergence in the norm of L^{p} by the sequence of Stancu-Kantorovich operators, and we give an estimate for the rate of the convergence via first order averaged modulus of smoothness. Moreover, for the Stancu operators; we search variation detracting property and convergence in the space of functions of bounded variation in the variation seminorm.

1. Introduction

Stancu constructed the following Bernstein type positive linear operators

$$
\begin{equation*}
L_{n, r}(f ; x):=\sum_{k=0}^{n-r} p_{n-r, k}(x)\left[(1-x) f\left(\frac{k}{n}\right)+x f\left(\frac{k+r}{n}\right)\right] \tag{1}
\end{equation*}
$$

for $f \in C[0,1]$, where r is a non-negative integer parameter, n is a natural number such that $n>2 r$ and

$$
p_{n, k}(x)=\left\{\begin{array}{l}
\binom{n}{k} x^{k}(1-x)^{n-k} ; \quad 0 \leq k \leq n \tag{2}\\
0 ; k<0 \text { or } k>n
\end{array}, x \in[0,1]\right.
$$

are the Bernstein basis polynomials satisfying the recurrence

$$
\begin{equation*}
p_{n, k}(x)=(1-x) p_{n-1, k}(x)+x p_{n-1, k-1}(x), \quad 0 \leq k \leq n, \tag{3}
\end{equation*}
$$

[19]. It is clear that for the cases $r=0$ and $r=1$, the operators $L_{n, r}$ reduce to the classical Bernstein operators In this paper; Stancu gave uniform convergence $\lim _{n \rightarrow \infty} L_{n, r}(f)=f$ on $[0,1]$ for $f \in C[0,1]$ and presented an expression for the remainder $R_{n, r}(f ; x)$ of the approximation formula $f(x)=L_{n, r}(f ; x)+R_{n, r}(f ; x)$ by means of the second order divided differences and also obtained an integral representation for the remainder. Moreover, the author obtained an estimate of Voronovskaja-type and computed the order of approximation

[^0]by the operators $L_{n, r}(f)$ via modulus of continuity. Finally, investigation of the spectral properties of $L_{n, r}$ was given and it was noticed that each $L_{n, r}$ has the variation diminishing property, in the sense of Schoenberg [17].

Yang et al. extended the Stancu operators $L_{n, r}$ given by (1) to the multivariate case on a simplex and using elementary method, the authors proved the preservation of Lipschitz constant and order of a Lipschitz continuous function by the multivariate Stancu operators [21]. Concerning Voronovskaja-type formula; Bustamante and Quesada establihed an asymptotic property for Stancu operators [6]. In [5], we studied an extension of Stancu operators $L_{n, r}$ by using the fundamental functions of Cheney and Sharma operators. In [9], Çetin and Başcanbaz-Tunca studied approximation properties of complex form of the Stancu operators. In [8], Çetin investigated a generalization of the complex Stancu operators depending on non-negative two real parameters.

It is well-known that Bernstein polynomials are not appropriate for approximation of discontinuous functions (see [13, Section 1.9]). In order to get approximation of any Lebesgue integrable function f on [0,1], Kantorovich [11] constructed positive linear operators given by

$$
\begin{equation*}
K_{n}(f ; x)=\sum_{k=0}^{n} p_{n, k}(x)(n+1) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} f(t) d t, x \in[0,1], n \in \mathbb{N} . \tag{4}
\end{equation*}
$$

Lorentz proved that for $f \in L^{p}[0,1], 1 \leq p<\infty$, the sequence of Bernstein-Kantorovich operators satisfies $\lim _{n \rightarrow \infty} K_{n}(f)=f$ in $L^{p}[0,1]$ (see [13], also [2]). In [7], Campiti and Metafune introduced new Bernstein-Kantorovich-type operators $K_{n, \alpha}: L^{p}[0,1] \rightarrow L^{p}[0,1]$ given by

$$
K_{n, \alpha}:=\sum_{k=0}^{n} \alpha_{n, k} x^{k}(1-x)^{n-k}(n+1) \int_{\frac{k}{n+1}}^{\substack{\frac{k+1}{n+1}}} f(t) d t, x \in[0,1], n \in \mathbb{N},
$$

for $f \in L^{p}[0,1]$, where the coefficients $\alpha_{n, k}$ satisfy the following recurrence

$$
\alpha_{n+1, k}=\alpha_{n, k}+\alpha_{n, k-1} \text { for } k=1,2, \ldots, n
$$

and for $k=0, n$;

$$
\alpha_{n, 0}=\lambda_{n}, \alpha_{n, n}=\rho_{n}
$$

with $\left\{\lambda_{n}\right\}_{n \in \mathbb{N}},\left\{\rho_{n}\right\}_{n \in \mathbb{N}}$ are fixed bounded sequences of real numbers. And the authors studied the convergence $\left\{K_{n, \alpha}(f)\right\}_{n \in \mathbb{N}}$ to $f \in L^{p}[0,1]$ in the norm of L^{p} as well as the rate of the convergence via τ-modulus. There are several research papers dealing with multivariable design of Kantorovich operators and their generalizations. Here, we only cite [3].

As far as we have searched, for the Stancu operators $L_{n, r}$; the variation detracting property (see, 4th section) and L^{p}-approximation by their Kantorovich variants have not been studied yet. These problems motivate us in this study.

In this paper, we construct Kantorovich-type extension of the Stancu operators given by (1) and, similar to that for the Bernstein-Kantorovich operators, we obtain approximation of $f \in L^{p}[0,1]$ by the sequence of Stancu-Kantorovich operators, which will be denoted by $K_{n, r}(f ; x)$, in the norm of $L^{p}[0,1], 1 \leq p<\infty$. For the rate of the convergence; using a result of Popov (Theorem 3.4), we present an estimate in terms of averaged modulus of smoothness of first order. Moreover, we show that for all functions of bounded variation on [0,1], each Stancu operator $L_{n, r}$ has variation detracting property. Finally, using classical technique (see [4]), we present convergence in the variation seminorm of absolutely continuous functions on $[0,1]$ by the sequence of Stancu operators.

For the L^{p}-convergence, we recall the following definitions which are reproduced here from the survey article of Altomare [2]:

Definition 1.1. ([2]) Let I be a real interval of \mathbb{R}. A function $\varphi: I \rightarrow \mathbb{R}$ is said to be convex if

$$
\varphi(\lambda x+(1-\lambda) y) \leq \lambda \varphi(x)+(1-\lambda) \varphi(y)
$$

for every $x, y \in$ I and $0 \leq \lambda \leq 1$. If I is open and φ is convex, then, for every finite family $\left(x_{k}\right)_{1 \leq k \leq n}$ in I and $\left(\lambda_{k}\right)_{1 \leq k \leq n}$ in $[0,1]$ such that $\sum_{k=1}^{n} \lambda_{k}=1$, the Jensen inequality

$$
\varphi\left(\sum_{k=1}^{n} \lambda_{k} x_{k}\right) \leq \sum_{k=1}^{n} \lambda_{k} \varphi\left(x_{k}\right)
$$

holds.
Definition 1.2. ([2]) Given a probability space $(\Omega, \mathcal{F}, \mu)$, an open interval I of \mathbb{R} and a μ-integrable function $f: \Omega \rightarrow I$, then $\int_{\Omega} f d \mu \in I$. Furthermore, if $\varphi: I \rightarrow \mathbb{R}$ is convex and $\varphi \circ f: \Omega \rightarrow \mathbb{R}$ is μ-integrable, then the integral Jensen's inequality

$$
\varphi\left(\int_{\Omega} f d \mu\right) \leq \int_{\Omega}(\varphi \circ f) d \mu
$$

holds.

2. Kantorovich-type extension of Stancu operators

Using standard technique in [13, p. 30], we let $f \in L^{1}[0,1]$ and consider the indefinite integral of $f ; F(x)=$ $\int_{0}^{x} f(t) d t+F(0)$. Differentiating $L_{n+1, r}(F ; x)$ with respect to x, we get

$$
\begin{align*}
\left(L_{n+1, r}(F ; x)\right)^{\prime}= & \sum_{k=0}^{n-r} p_{n-r, k}(x)(n+1-r)\left[(1-x)\left\{F\left(\frac{k+1}{n+1}\right)-F\left(\frac{k}{n+1}\right)\right\}+x\left\{F\left(\frac{k+r+1}{n+1}\right)-F\left(\frac{k+r}{n+1}\right)\right\}\right] \\
& +\sum_{k=0}^{n+1-r} p_{n+1-r, k}(x)\left[F\left(\frac{k+r}{n+1}\right)-F\left(\frac{k}{n+1}\right)\right] \\
= & K_{n, r}(f ; x) \tag{5}
\end{align*}
$$

where

$$
\begin{align*}
K_{n, r}(f ; x): & \left.\sum_{k=0}^{n-r} p_{n-r, k}(x)(n+1-r)(1-x) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} f(t) d t+x \int_{\substack{\frac{k+r}{n+1} \\
n+1}}^{\frac{k+t+1}{n+1}} f(t) d t\right) \\
& +\sum_{k=0}^{n+1-r} p_{n+1-r, k}(x) \int_{\frac{k}{n+1}}^{\frac{k+r}{n+1}} f(t) d t, \tag{6}
\end{align*}
$$

with r is a non-negative integer parameter and n is a natural number such that $n>2 r, f \in L^{1}[0,1]$ and $x \in[0,1]$. We call the operators $K_{n, r}$ given by (6) as Stancu-Kantorovich operators in the sequel and consider these operators from $L^{p}[0,1]$ into itself for every $f \in L^{p}, 1 \leq p<\infty$. Each $K_{n, r}$ is positive and linear operator and the cases $r=0$ and $r=1$ give the Bernstein-Kantorovich operators given by (4), namely,

$$
K_{n, 1}=K_{n, 0}=K_{n}
$$

holds. Indeed, the case $r=0$ is obvious and the case $r=1$ readily follows from (2) and (3).
We should note here that a Kantorovich-type extension of the Stancu operators $L_{n, r}$ can be proposed as

$$
\begin{equation*}
K_{n, r}^{*}(f ; x)=\sum_{k=0}^{n-r} p_{n-r, k}(x)(n+1)\left((1-x) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} f(t) d t+x \int_{\frac{k+r}{n+1}}^{\frac{k+r+1}{n+1}} f(t) d t\right) \tag{7}
\end{equation*}
$$

where r is a non-negative integer parameter, n is a natural number such that $n>2 r, f \in L^{1}[0,1]$ and $p_{n, k}(x)$ are given by (2). But, for our aims, we prefer to deal with the construction given by (6). For a generalization of the Stancu operator, which depends on two non-negative integer parameters (see [20]); a Kantorovich-type extension for $f \in C[0,1]$, similar to (7), was constructed and studied in [10] by Kajla, and also a generalization of which was studied in [12] by Kumar.

3. L^{p}-approximation by Stancu-Kantorovich operators

Firstly, we need to show the uniform convergence of real-valued and continuous functions by the sequence $\left\{K_{n, r}(f)\right\}_{n \in \mathbb{N}}$ on $[0,1]$. Let us denote $e_{v}(t):=t^{v}, t \in[0,1], v=0,1, \ldots$
Theorem 3.1. If $f \in C[0,1]$ and r is a non-negative fixed integer, then $\lim _{n \rightarrow \infty} K_{n, r}(f)=f$ uniformly on $[0,1]$.
Proof. Making use of first three moments of the Stancu operators $L_{n, r}$ given by

$$
L_{n, r}\left(e_{0} ; x\right)=1, L_{n, r}\left(e_{1} ; x\right)=x, L_{n, r}\left(e_{2} ; x\right)=x^{2}+\left[1+\frac{r(r-1)}{n}\right] \frac{x(1-x)}{n}
$$

(see [19]), it readily follows that

$$
\begin{align*}
& K_{n, r}\left(e_{0} ; x\right)=1 \\
& K_{n, r}\left(e_{1} ; x\right)=\frac{(n+r)(n-r+1)}{(n+1)^{2}} x+\frac{n+1+r(r-1)}{2(n+1)^{2}} \\
& K_{n, r}\left(e_{2} ; x\right)=\frac{(n-r)(n-r+1)(n+2 r-1)}{(n+1)^{3}} x^{2}+\frac{2(n-r+1)\left(n+r^{2}\right)}{(n+1)^{3}} x+\frac{\left(n-r+1+r^{3}\right)}{3(n+1)^{3}} . \tag{8}
\end{align*}
$$

Then, the result is obtained by using the well-known Korovkin theorem.
Remark 3.2. If $f \in C[0,1]$ is a continuously differentiable function on $[0,1]$ and r is a non-negative fixed integer, then, from (5), we get

$$
\left(L_{n+1, r}(f ; x)\right)^{\prime}=K_{n, r}\left(f^{\prime} ; x\right)
$$

for $n \in \mathbb{N}$ such that $n>2 r$ and $x \in[0,1]$. In view of Theorem 3.1, it readily follows that $\lim _{n \rightarrow \infty}\left(L_{n, r}(f)\right)^{\prime}=f^{\prime}$ uniformly on [0,1].

Below, we present the convergence of $\left\{K_{n, r}(f)\right\}_{n \in \mathbb{N}}$ in the norm of the space $L^{p}[0,1], 1 \leq p<\infty$.
Theorem 3.3. If $f \in L^{p}[0,1], 1 \leq p<\infty$, and r is a non-negative fixed integer, then $\lim _{n \rightarrow \infty} K_{n, r}(f)=f$ in $L^{p}[0,1]$.
Proof. Denoting the operator norm of $K_{n, r}$, acting from $L^{p}[0,1]$ into itself, by $\left\|K_{n, r}\right\|$, where r is a non-negative fixed integer and $n \in \mathbb{N}$ such that $n>2 r$; it is sufficient to show that there exist an $M>0$ such that $\left\|K_{n, r}\right\| \leq M$. Now, by setting

$$
\left.S_{n, r}(f ; x):=\sum_{k=0}^{n-r} p_{n-r, k}(x)(n+1-r)(1-x) \int_{\frac{k}{n+1}}^{\frac{\frac{k+1}{n+1}}{n}} f(t) d t+x \int_{\frac{k+r}{n+1}}^{\frac{k+r+1}{n+1}} f(t) d t\right)
$$

and

$$
S_{n+1, r}(f ; x):=\sum_{k=0}^{n+1-r} p_{n+1-r, k}(x) \int_{\frac{k}{n+1}}^{\frac{k+r}{n+1}} f(t) d t
$$

we write each of the Stancu-Kantorovich operator $K_{n, r}(f ; x)$ given by (6) as

$$
K_{n, r}(f ; x)=S_{n, r}(f ; x)+S_{n+1, r}(f ; x)
$$

and therefore, we immediately get

$$
\begin{equation*}
\left|K_{n, r}(f ; x)\right|^{p} \leq 2^{p}\left(\left|S_{n, r}(f ; x)\right|^{p}+\left|S_{n+1, r}(f ; x)\right|^{p}\right) \tag{9}
\end{equation*}
$$

Now, taking into accout of the fact that $\varphi(t)=|t|^{p}, 1 \leq p<\infty, t \in[0,1]$, is convex, we need to estimate each term in (9). For $\left|S_{n, r}(f ; x)\right|^{p} ;$ firstly, by taking $\lambda_{1}=1-x$ and $\lambda_{2}=x$ for $x \in[0,1]$ such that $\lambda_{1}, \lambda_{2} \geq 0$, $\lambda_{1}+\lambda_{2}=1$ and applying the definition of convexity, and secondly, making use of Jensen's inequality for $p_{n-r, k}(x) \geq 0$, where $x \in[0,1], k=0, \ldots, n-r$, such that $\sum_{k=0}^{n-r} p_{n-r, k}(x)=1$ and finally, using integral form of Jensen's inequality in the result, with the function $\varphi(t)=|t|^{p}, 1 \leq p<\infty, t \in[0,1]$ and the measure $(n+1-r) d t$, we easily get

$$
\begin{equation*}
\left|S_{n, r}(f ; x)\right|^{p} \leq \sum_{k=0}^{n-r} p_{n-r, k}(x)(n+1-r)\left((1-x) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}|f(t)|^{p} d t+x \int_{\frac{k+r}{n+1}}^{\frac{k+r+1}{n+1}}|f(t)|^{p} d t\right) \tag{10}
\end{equation*}
$$

Now, for $\left|S_{n+1, r}(f ; x)\right|^{p}$; for the function $\varphi(t)=|t|^{p}, t \in[0,1], 1 \leq p<\infty$, applying Jensen's inequality with $p_{n+1-r, k}(x) \geq 0, x \in[0,1], k=0, \ldots, n+1-r$, such that $\sum_{k=0}^{n+1-r} p_{n+1-r, k}(x)=1$, and next, using integral Jensen's inequality, we obtain

$$
\begin{equation*}
\left|S_{n+1, r}(f ; x)\right|^{p} \leq \sum_{k=0}^{n+1-r} p_{n+1-r, k}(x) \int_{\frac{k}{n+1}}^{\frac{k+r}{n+1}}|f(t)|^{p} d t \tag{11}
\end{equation*}
$$

Integrating (10) over [0, 1], using the well-known beta integral, we get

$$
\begin{equation*}
\int_{0}^{1}\left|S_{n, r}(f ; x)\right|^{p} d x \leq \frac{1}{n-r+2} T_{n, r} \tag{12}
\end{equation*}
$$

where

$$
T_{n, r}:=\sum_{k=0}^{n-r}\left((n-r-k+1) \int_{\frac{k}{n+1}}^{\frac{\frac{k+1}{n+1}}{n+1}}|f(t)|^{p} d t+(k+1) \int_{\frac{k+r}{n+1}}^{\frac{k+r+1}{n+1}}|f(t)|^{p} d t\right)
$$

Since $n>2 r, r \in \mathbb{N} \cup\{0\}$, we have $n-r>r$. Hence, we can express $T_{n, r}$ as

$$
T_{n, r}=\left(\sum_{k=0}^{r-1}+\sum_{k=r}^{n-r}\right)(n-r-k+1) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}|f(t)|^{p} d t+\left(\sum_{k=0}^{n-2 r}+\sum_{k=n-2 r+1}^{n-r}\right)(k+1) \int_{\frac{k+r}{n+1}}^{\frac{k+r+1}{n+1}}|f(t)|^{p} d t
$$

Replacing k with $k-r$ in the sums located in the second term, the above expression of $T_{n, r}$ reduces to

$$
\begin{align*}
T_{n, r}= & \sum_{k=0}^{r-1}(n-r-k+1) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}|f(t)|^{p} d t+\sum_{k=r}^{n-r}(n-2 r+2) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}|f(t)|^{p} d t \\
& +\sum_{k=n-r+1}^{n}(k-r+1) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}|f(t)|^{p} d t . \tag{13}
\end{align*}
$$

On the other hand, integration of (11) over [0, 1] gives

$$
\begin{equation*}
\int_{0}^{1}\left|S_{n+1, r}(f ; x)\right|^{p} d x \leq \frac{1}{n-r+2} \sum_{k=0}^{n+1-r} \int_{\frac{k}{n+1}}^{\frac{k+r}{n+1}}|f(t)|^{p} d t \tag{14}
\end{equation*}
$$

By collecting like terms, we decompose the sum in (14) into three parts:

$$
\begin{align*}
\sum_{k=0}^{n+1-r} \int_{\frac{k}{n+1}}^{\frac{k+r}{n+1}}|f(t)|^{p} d t & =\sum_{k=0}^{n+1-r} \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}+\int_{\frac{k+1}{n+1}}^{\frac{k+2}{n+1}}+\cdots+\int_{\frac{k+r-1}{n+1}}^{n+1}
\end{align*}|f(t)|^{p} d t . \frac{\frac{k+r}{n+1}}{n+1} \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}|f(t)|^{p} d t+r \sum_{k=r}^{n-1} \int_{\frac{k}{n+1}}^{n-r}|f(t)|^{p} d t+\sum_{k=n-r+1}^{n}(n-k+1) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}|f(t)|^{p} d t . .
$$

Making use of (12), (13), (14) and (15); from (9), we arrive at

$$
\begin{aligned}
\int_{0}^{1}\left|K_{n, r}(f ; x)\right|^{p} d x & \leq 2^{p}\left(\sum_{k=0}^{r-1}+\sum_{k=r}^{n-r}+\sum_{k=n-r+1}^{n}\right) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}|f(t)|^{p} d t \\
& =2^{p} \sum_{k=0}^{n} \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}|f(t)|^{p} d t=2^{p} \int_{0}^{1}|f(t)|^{p} d t .
\end{aligned}
$$

Therefore, passing to L^{p}-norm $\|.\|_{p}$, we get $\left\|K_{n, r}(f)\right\|_{p} \leq 2\|f\|_{p}$ for every $f \in L^{p}[0,1]$. Namely, for every $n \in \mathbb{N}$ such that $n>2 r, K_{n, r}$ is a bounded operator with $\left\|K_{n, r}\right\| \leq 2$. Now, let $\epsilon>0$ be arbitrary given. Then, by the density of $C[0,1]$ in $L^{p}[0,1]$ (with respect to the norm $\|\cdot\|_{p}$), there is a $g \in C[0,1]$ such that $\|f-g\|_{p}<\epsilon$ and, by Theorem 3.1, there exists an $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$ it holds that

$$
\left\|K_{n, r}(g)-g\right\|<\epsilon
$$

where $\|$.$\| is the usual sup-norm in C[0,1]$. Therefore, L^{p}-convergency is a direct consequence of the above arguments and the inequality

$$
\left\|K_{n, r}(f)-f\right\|_{p} \leq 2\|f-g\|_{p}+\left\|K_{n, r}(g)-g\right\|_{p}+\|g-f\|_{p}<4 \epsilon
$$

which completes the proof.

Concerning rate of the approximation, averaged modulus of smoothness is very useful tool for the error of the convergence in the norm of L^{p}. Here, we adopt the convention that $M[a, b]$ denotes the space

$$
M[a, b]=\{f \mid f \text { is bounded and measurable on }[a, b]\} .
$$

Recall that for $f \in M[a, b]$ and $\delta>0$, averaged modulus of smoothness (or τ-modulus) of the first order for step δ in L^{p}-norm, $1 \leq p<\infty$, is denoted by $\tau_{1}(f ; \delta)_{p}$ and defined as

$$
\tau_{1}(f ; \delta)_{p}=\left\|\omega_{1}(f, ; ; \delta)\right\|_{p}
$$

where

$$
\omega_{1}(f, x ; \delta)=\sup \left\{|f(t+h)-f(t)|: t, t+h \in\left[x-\frac{\delta}{2}, x+\frac{\delta}{2}\right] \cap[0,1]\right\}
$$

is the local modulus of smoothness of the first order for the function f at the point $x \in[a, b]$ and for step δ (see [16] or, for details, [18]).

For every Borel measurable and bounded function f defined on $[0,1]$, we already have the following results for the Bernstein-Kantorovich operators $K_{n}, n \in \mathbb{N}$,

$$
\left\|K_{n}(f)-f\right\|_{p} \leq 748 \tau_{1}\left(f ; \frac{1}{\sqrt{n+1}}\right)_{p}
$$

(see [1, p.335]) and

$$
\begin{equation*}
\left\|K_{n}(f)-f\right\|_{p} \leq C \tau_{1}\left(f ; \sqrt{\frac{3 n+1}{12(n+1)^{2}}}\right)_{p} \tag{16}
\end{equation*}
$$

where C is a positive constant that does not depend on f (see the special case for Proposition 4.2 in [3]). To get an estimate for the approximation error in Theorem 3.3, we shall use the following theorem due to Popov [15], in which averaged modulus of smoothness of the first order is used:
Theorem 3.4. ([15]) Let $L: M[a, b] \rightarrow M[a, b]$ be a positive linear operator, having the properties

$$
L\left(e_{0} ; x\right)=1, L\left(e_{1} ; x\right)=x+\alpha(x), L\left(e_{2} ; x\right)=x^{2}+\beta(x), x \in[a, b]
$$

Let

$$
A:=\sup \{|\beta(x)-2 x \alpha(x)| ; x \in[a, b]\} \leq 1
$$

Then for $f \in M[a, b]$ and $1 \leq p<\infty$, the following estimate holds

$$
\|L(f)-f\|_{p} \leq C \tau_{1}(f ; \sqrt{A})_{p}
$$

where C is a positive constant which does not depend on the operator L, the function f and the L^{p}-norm.
For the rate of convergence in Theorem 3.3, we present the following estimate:
Theorem 3.5. If $f \in M[0,1]$, r is a non-negative fixed integer, then, for every $n \in \mathbb{N}$ such that $n>2 r$ and $1 \leq p<\infty$,

$$
\left\|K_{n, r}(f)-f\right\|_{p} \leq C \tau_{1}\left(f ; \sqrt{A_{n, r}}\right)_{p},
$$

where

$$
\begin{equation*}
A_{n, r}=\frac{3 n^{2}+3 n r^{2}-3 n r+4 n-2 r^{3}+3 r^{2}-r+1}{12(n+1)^{3}} \leq 1 \tag{17}
\end{equation*}
$$

and the positive constant C does not depend on f.

Proof. Assume that $f \in M[0,1]$ and $1 \leq p<\infty$. According to Theorem 3.4, it sufficies to show that

$$
A_{n, r}:=\sup \left\{K_{n, r}\left(\left(e_{1}-x e_{0}\right)^{2} ; x\right) ; x \in[0,1]\right\} \leq 1
$$

where r is a non-negative fixed integer and $n \in \mathbb{N}$ such that $n>2 r$. From the linearity of the operators and (8), we obtain, for $x \in[0,1]$,

$$
\begin{aligned}
K_{n, r}\left(\left(e_{1}-x e_{0}\right)^{2} ; x\right) & =\frac{n^{2}+\left(r^{2}-r\right) n-2 r^{3}+r^{2}+r-1}{(n+1)^{3}} x(1-x)+\frac{n-r+1+r^{3}}{3(n+1)^{3}} \\
& \leq \frac{n^{2}+\left(r^{2}-r\right) n-2 r^{3}+r^{2}+r-1}{4(n+1)^{3}}+\frac{n-r+1+r^{3}}{3(n+1)^{3}} \\
& =\frac{3 n^{2}+3 n r^{2}-3 n r+4 n-2 r^{3}+3 r^{2}-r+1}{12(n+1)^{3}} \\
& =A_{n, r},
\end{aligned}
$$

which gives (17). Note that, for the cases $r=0,1$ we get

$$
A_{n, 0}=A_{n, 1}=\frac{3 n+1}{12(n+1)^{2}}
$$

which is the corresponding result for the Bernstein-Kantorovich operators given by (16). Now, it remains to show that $A_{n, r} \leq 1$. Since $r \geq 0$ and $n>2 r$, we get $n-1 \geq 2 r$. Thus, we can write

$$
\begin{aligned}
A_{n, r} & =\frac{1}{12(n+1)^{3}}\left[3 n^{2}+3 n r^{2}-3 n r+4 n-2 r^{3}+3 r^{2}-r+1\right] \\
& \leq \frac{1}{12(n+1)^{3}}\left[3 n^{2}+3 n r^{2}+4 n+3 r^{2}+1\right] \\
& \leq \frac{1}{12(n+1)^{3}}\left[3 n^{2}+3 n\left(\frac{n-1}{2}\right)^{2}+4 n+3\left(\frac{n-1}{2}\right)^{2}+1\right] \\
& =\frac{3 n^{3}+9 n^{2}+13 n+7}{48(n+1)^{3}} \leq 1 .
\end{aligned}
$$

This completes the proof.

4. Variation detracting property

Recall that the class of all functions of bounded variation on $[0,1]$ is denoted by $T V[0,1]$, with the seminorm $\|f\|_{T V[0,1]}:=V_{[0,1]}[f]$, where $V_{[0,1]}[f]$ is total variation of f. It is well-known that for $f \in T V[0,1]$, each Bernstein operator B_{n} satisfies the inequality $V_{[0,1]}\left[B_{n} f\right] \leq V_{[0,1]}[f]$ (see [13, p.23]) that is called as variation detracting property. Moreover, denoting the class of all absolutely continuous functions on $[0,1]$ by $A C[0,1]$, we have the following result for Bernstein polynomials: For $f \in T V[0,1]$,

$$
\begin{equation*}
f \in A C[0,1] \Longleftrightarrow \lim _{n \rightarrow \infty} V_{[0,1]}\left[B_{n}(f)-f\right]=0 \tag{18}
\end{equation*}
$$

(see [14] or [4, p.308]). Below, we show that each Stancu operator $L_{n, r}$ satisfies variation detracting property.
Theorem 4.1. If $f \in T V[0,1], r$ is a non-negative fixed integer, then, for every $n \in \mathbb{N}$ such that $n>2 r$,

$$
V_{[0,1]}\left[L_{n, r}(f)\right] \leq V_{[0,1]}[f] .
$$

Proof. Since the cases for $r=0$ and $r=1$ give the Bernstein operators, we consider for $0<r \neq 1$. For $f \in T V[0,1]$, we have $L_{n, r}(f ; x)$ is continuous on [0,1] and $\left(L_{n, r}(f ; x)\right)^{\prime}$ is bounded on (0,1). Therefore, it follows that $L_{n, r}(f) \in A C[0,1]$. Writing the formula $\left(L_{n, r}(f ; x)\right)^{\prime}$ simply by replacing n with $n-1$ and F with f in (5) and using beta integral, we obtain the following inequality for the total variation of $L_{n, r}(f)$:

$$
\begin{align*}
V_{[0,1]}\left[L_{n, r}(f)\right]= & \int_{0}^{1}\left|\left(L_{n, r}(f ; x)\right)^{\prime}\right| d x \\
\leq & \frac{1}{n-r+1} \sum_{k=0}^{n-1-r}\left[(n-r-k)\left|f\left(\frac{k+1}{n}\right)-f\left(\frac{k}{n}\right)\right|+(k+1)\left|f\left(\frac{k+r+1}{n}\right)-f\left(\frac{k+r}{n}\right)\right|\right] \\
& +\frac{1}{n-r+1} \sum_{k=0}^{n-r}\left|f\left(\frac{k+r}{n}\right)-f\left(\frac{k}{n}\right)\right| \tag{19}
\end{align*}
$$

As in the proof of Theorem 3.3, by using the similar decomposition technique to the first and second sums in (19), we reach to

$$
\begin{aligned}
V_{[0,1]}\left[L_{n, r}(f)\right] \leq & \frac{1}{n-r+1}\left\{\sum_{k=0}^{r-1}(n-r-k)+\sum_{k=r}^{n-1-r}(n-2 r+1)+\sum_{k=n-r}^{n-1}(k-r+1)\right. \\
& \left.+\sum_{k=0}^{r-1}(k+1)+\sum_{k=r}^{n-1-r} r+\sum_{k=n-r}^{n-1}(n-k)\right\}\left|f\left(\frac{k+1}{n}\right)-f\left(\frac{k}{n}\right)\right| \\
= & \sum_{k=0}^{n-1}\left|f\left(\frac{k+1}{n}\right)-f\left(\frac{k}{n}\right)\right| \\
& \leq V_{[0,1]}[f]
\end{aligned}
$$

which completes the proof.

Now, we present the similar result in (18) for the Stancu polynomials:

Proposition 4.2. If $f \in T V[0,1]$ and r is a non-negative fixed integer, then

$$
f \in A C[0,1] \Longleftrightarrow \lim _{n \rightarrow \infty} V_{[0,1]}\left[L_{n, r}(f)-f\right]=0
$$

Proof. Since $A C[0,1]$ is a closed subspace of $T V[0,1]$ according to the seminorm $\|.\|_{T V[0,1]}$ (see [4, Lemma 2.1]), for $f \in T V[0,1]$,

$$
\lim _{n \rightarrow \infty} V_{[0,1]}\left[L_{n, r}(f)-f\right]=\lim _{n \rightarrow \infty}\left\|L_{n, r}(f)-f\right\|_{T V[0,1]}=0
$$

implies that $f \in A C[0,1]$. Conversely, we let $f \in A C[0,1]$ (which gives $f^{\prime} \in L^{1}[0,1]$ and $f(x)=\int_{0}^{x} f^{\prime}(t) d t+$ $f(0))$. Since, $L_{n, r}(f) \in A C[0,1]$, we have $\left[L_{n, r}(f)-f\right] \in A C[0,1]$. Thus, we arrive at

$$
\lim _{n \rightarrow \infty} V_{[0,1]}\left[L_{n, r}(f)-f\right]=\lim _{n \rightarrow \infty}\left\|K_{n-1, r}\left(f^{\prime}\right)-f^{\prime}\right\|_{1}=0
$$

by (5), (6) and Theorem 3.3. This completes the proof.

References

[1] F. Altomare, M. Campiti, Korovkin-Type Approximation Theory and Its Applications, Walter de Gruyter, Berlin-New York, 1994.
[2] F. Altomare, Korovkin-type Theorems and Approximation by Positive Linear Operators, Surv. Approx. Theory 5 (2010) 92-164.
[3] F. Altomare, M. Cappelletti Montano, V. Leonessa, I. Raşa, A generalization of Kantorovich operators for convex compact subsets, Banach J. Math. Anal. 11 (2017) no. 3 591-614.
[4] C. Bardaro, P. L. Butzer, R.L. Stens, G. Vinti, Convergence in variation and rates of approximation for Bernstein-type polynomials and singular convolution integrals, Analysis 23 (2003) 299-340.
[5] T. Bostancı, G. Başcanbaz-Tunca, A Stancu type extension of Cheney and Sharma operators, J. Numer. Anal. Approx. Theory 47 (2018) no. 2 124-134.
[6] J. Bustamante, J. M. Quesada, A property of Ditzian-Totik second order moduli, Appl. Math. Lett. 23 (2010) no. 5 576-580.
[7] M. Campiti, G. Metafune, L^{p}-convergence of Bernstein-Kantorovich-type operators, Ann. Polon. Math. 63 (1996) no. $3273-280$.
[8] N. Çetin, A new generalization of complex Stancu operators, Math. Methods Appl. Sci. 42 (2019) 5582-5594.
[9] N. Çetin, G. Başcanbaz-Tunca, Approximation by a new complex generalized Bernstein operator, An. Univ. Oradea Fasc. Mat. 26 (2019) no. 2 129-141.
[10] A. Kajla, The Kantorovich variant of an operator defined by D.D Stancu. Appl. Math. Comput. 316 (2018) 400-408.
[11] L. V. Kantorovich, Sur certains développements suivant les polynômes de la forme de S. Bernstein, I, II, C. R. Acad. Sci. URSS (1930) 563-568, 595-600.
[12] A. Kumar, A new kind of variant of the Kantorovich type modification operators introduced by D. D. Stancu, Results Appl. Math. 11 (2021) 100158.
[13] G. G. Lorentz, Bernstein Polynomials, University of Toronto Press, Toronto, 1953 (2.ed., Chelsea Publishing Co., New York, 1986.
[14] G. G. Lorentz, Zur Theorie der Polynome von S. Bernstein, Mat. Sb. 2 (1937) 543-556.
[15] V. A. Popov, On the quantitative Korovkin theorems in L_{p}, Compt. Rend. Acad. Bulg. Sci. 35 (1982) 897-900.
[16] E. Quak, L_{p}-error estimates for positive linear operators using the second-order τ-modulus, Anal. Math. 14 (1988) $259-272$.
[17] I. J. Schoenberg, On variation diminishing approximation methods. In: R.E. Langer (ed.) On Numerical Approximation. Univ. of Wisconsin Press, Madison, (1959) pp. 249-274.
[18] B. Sendov, V. A. Popov, Averaged moduli of smoothness, Bulgarian Mathematical Monographs, vol. 4 Publ. House Bulg. Acad. Sci. Sofia, 1983.
[19] D. D. Stancu, Approximation of functions by means of a new generalized Bernstein operator, Calcolo 20 (1983) no. $2211-229$.
[20] D. D. Stancu, A note on a multiparameter Bernstein-type approximating operator, Mathematica (Cluj) 49 (1984) no. 2 153-177.
[21] R. Yang, J. Xiong, F. Cao, Multivariate Stancu operators defined on a simplex, Appl. Math. Comput. 138 (2003) 189-198.

[^0]: 2020 Mathematics Subject Classification. Primary 41A36, 41A25, 26A45
 Keywords. (Stancu operator depending on a non-negative integer, Kantorovich operators, L^{p}-convergence, Averaged modulus of smoothness, Variation detracting property, Convergence in variation seminorm)

 Received: 01 December 2021; Revised: 17 February 2022; Accepted: 03 March 2022
 Communicated by Snežana Č. Živković-Zlatanović
 Email addresses: tbostanci@ankara.edu.tr; bostanci.tugba06@gmail.com (Tuğba Bostancl), tunca@science. ankara.edu.tr (Gülen Başcanbaz-Tunca)

