Filomat 36:18 (2022), 6129–6138 https://doi.org/10.2298/FIL2218129B

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On Stancu Operators Depending on a Non-Negative Integer

Tuğba Bostancı^{a,b}, Gülen Başcanbaz-Tunca^a

^a Ankara University, Faculty of Science, Department of Mathematics, Str. Dögol 06100, Beşevler, Ankara, Turkey ^bNational Defence University, Naval Petty-Officer Vocational School, Basic Sciences Department, 77730-Altınova, Yalova, Turkey

Abstract. In this paper, we deal with Stancu operators which depend on a non-negative integer parameter. Firstly, we define Kantorovich extension of the operators. For functions belonging to the space L^p [0, 1], $1 \le p < \infty$, we obtain convergence in the norm of L^p by the sequence of Stancu-Kantorovich operators, and we give an estimate for the rate of the convergence via first order averaged modulus of smoothness. Moreover, for the Stancu operators; we search variation detracting property and convergence in the space of functions of bounded variation in the variation seminorm.

1. Introduction

Stancu constructed the following Bernstein type positive linear operators

$$L_{n,r}(f;x) := \sum_{k=0}^{n-r} p_{n-r,k}(x) \left[(1-x) f\left(\frac{k}{n}\right) + x f\left(\frac{k+r}{n}\right) \right]$$
(1)

for $f \in C[0, 1]$, where *r* is a non-negative integer parameter, *n* is a natural number such that n > 2r and

$$p_{n,k}(x) = \begin{cases} \binom{n}{k} x^k (1-x)^{n-k}; & 0 \le k \le n \\ 0; & k < 0 \text{ or } k > n \end{cases}, x \in [0,1],$$
(2)

are the Bernstein basis polynomials satisfying the recurrence

$$p_{n,k}(x) = (1-x) p_{n-1,k}(x) + x p_{n-1,k-1}(x), \quad 0 \le k \le n,$$
(3)

[19]. It is clear that for the cases r = 0 and r = 1, the operators $L_{n,r}$ reduce to the classical Bernstein operators In this paper; Stancu gave uniform convergence $\lim_{n\to\infty} L_{n,r}(f) = f$ on [0, 1] for $f \in C[0, 1]$ and presented an expression for the remainder $R_{n,r}(f;x)$ of the approximation formula $f(x) = L_{n,r}(f;x) + R_{n,r}(f;x)$ by means of the second order divided differences and also obtained an integral representation for the remainder. Moreover, the author obtained an estimate of Voronovskaja-type and computed the order of approximation

²⁰²⁰ Mathematics Subject Classification. Primary 41A36, 41A25, 26A45

Keywords. (Stancu operator depending on a non-negative integer, Kantorovich operators, *L^p*-convergence, Averaged modulus of smoothness, Variation detracting property, Convergence in variation seminorm)

Received: 01 December 2021; Revised: 17 February 2022; Accepted: 03 March 2022

Communicated by Snežana Č. Živković-Zlatanović

Email addresses: tbostanci@ankara.edu.tr; bostanci.tugba@6@gmail.com (Tuğba Bostancı), tunca@science.ankara.edu.tr (Gülen Başcanbaz-Tunca)

by the operators $L_{n,r}(f)$ via modulus of continuity. Finally, investigation of the spectral properties of $L_{n,r}$ was given and it was noticed that each $L_{n,r}$ has the variation diminishing property, in the sense of Schoenberg [17].

Yang et al. extended the Stancu operators $L_{n,r}$ given by (1) to the multivariate case on a simplex and using elementary method, the authors proved the preservation of Lipschitz constant and order of a Lipschitz continuous function by the multivariate Stancu operators [21]. Concerning Voronovskaja-type formula; Bustamante and Quesada establihed an asymptotic property for Stancu operators [6]. In [5], we studied an extension of Stancu operators $L_{n,r}$ by using the fundamental functions of Cheney and Sharma operators. In [9], Çetin and Başcanbaz-Tunca studied approximation properties of complex form of the Stancu operators. In [8], Çetin investigated a generalization of the complex Stancu operators depending on non-negative two real parameters.

It is well-known that Bernstein polynomials are not appropriate for approximation of discontinuous functions (see [13, Section 1.9]). In order to get approximation of any Lebesgue integrable function f on [0, 1], Kantorovich [11] constructed positive linear operators given by

$$K_n(f;x) = \sum_{k=0}^n p_{n,k}(x) (n+1) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} f(t) dt, \ x \in [0,1], \ n \in \mathbb{N}.$$
(4)

Lorentz proved that for $f \in L^p[0,1]$, $1 \le p < \infty$, the sequence of Bernstein-Kantorovich operators satisfies $\lim_{n\to\infty} K_n(f) = f$ in $L^p[0,1]$ (see [13], also [2]). In [7], Campiti and Metafune introduced new Bernstein-Kantorovich-type operators $K_{n,\alpha} : L^p[0,1] \to L^p[0,1]$ given by

$$K_{n,\alpha} := \sum_{k=0}^{n} \alpha_{n,k} x^{k} (1-x)^{n-k} (n+1) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} f(t) dt, \ x \in [0,1], \ n \in \mathbb{N},$$

for $f \in L^p[0, 1]$, where the coefficients $\alpha_{n,k}$ satisfy the following recurrence

$$\alpha_{n+1,k} = \alpha_{n,k} + \alpha_{n,k-1}$$
 for $k = 1, 2, ..., n$,

and for k = 0, n;

$$\alpha_{n,0} = \lambda_n, \ \alpha_{n,n} = \rho_n$$

with $\{\lambda_n\}_{n \in \mathbb{N}}$, $\{\rho_n\}_{n \in \mathbb{N}}$ are fixed bounded sequences of real numbers. And the authors studied the convergence $\{K_{n,\alpha}(f)\}_{n \in \mathbb{N}}$ to $f \in L^p[0,1]$ in the norm of L^p as well as the rate of the convergence via τ -modulus. There are several research papers dealing with multivariable design of Kantorovich operators and their generalizations. Here, we only cite [3].

As far as we have searched, for the Stancu operators $L_{n,r}$; the variation detracting property (see, 4th section) and L^p -approximation by their Kantorovich variants have not been studied yet. These problems motivate us in this study.

In this paper, we construct Kantorovich-type extension of the Stancu operators given by (1) and, similar to that for the Bernstein-Kantorovich operators, we obtain approximation of $f \in L^p[0,1]$ by the sequence of Stancu-Kantorovich operators, which will be denoted by $K_{n,r}(f;x)$, in the norm of $L^p[0,1]$, $1 \le p < \infty$. For the rate of the convergence; using a result of Popov (Theorem 3.4), we present an estimate in terms of averaged modulus of smoothness of first order. Moreover, we show that for all functions of bounded variation on [0, 1], each Stancu operator $L_{n,r}$ has variation detracting property. Finally, using classical technique (see [4]), we present convergence in the variation seminorm of absolutely continuous functions on [0, 1] by the sequence of Stancu operators.

For the *L*^{*p*}-convergence, we recall the following definitions which are reproduced here from the survey article of Altomare [2]:

Definition 1.1. ([2]) Let I be a real interval of \mathbb{R} . A function $\varphi : I \to \mathbb{R}$ is said to be convex if

$$\varphi(\lambda x + (1 - \lambda) y) \le \lambda \varphi(x) + (1 - \lambda) \varphi(y)$$

for every $x, y \in I$ and $0 \le \lambda \le 1$. If I is open and φ is convex, then, for every finite family $(x_k)_{1 \le k \le n}$ in I and $(\lambda_k)_{1 \le k \le n}$ in [0, 1] such that $\sum_{k=1}^{n} \lambda_k = 1$, the Jensen inequality

$$\varphi\left(\sum_{k=1}^{n}\lambda_{k}x_{k}\right)\leq\sum_{k=1}^{n}\lambda_{k}\varphi\left(x_{k}\right)$$

holds.

Definition 1.2. ([2]) Given a probability space $(\Omega, \mathcal{F}, \mu)$, an open interval I of \mathbb{R} and a μ -integrable function $f: \Omega \to I$, then $\int_{\Omega} f d\mu \in I$. Furthermore, if $\varphi: I \to \mathbb{R}$ is convex and $\varphi \circ f: \Omega \to \mathbb{R}$ is μ -integrable, then the integral Jensen's inequality

$$\varphi\left(\int_{\Omega} f d\mu\right) \leq \int_{\Omega} (\varphi \circ f) d\mu$$

holds.

2. Kantorovich-type extension of Stancu operators

Using standard technique in [13, p. 30], we let $f \in L^1[0, 1]$ and consider the indefinite integral of f; $F(x) = \int_0^x f(t) dt + F(0)$. Differentiating $L_{n+1,r}(F; x)$ with respect to x, we get

$$(L_{n+1,r}(F;x))' = \sum_{k=0}^{n-r} p_{n-r,k}(x) (n+1-r) \left[(1-x) \left\{ F\left(\frac{k+1}{n+1}\right) - F\left(\frac{k}{n+1}\right) \right\} + x \left\{ F\left(\frac{k+r+1}{n+1}\right) - F\left(\frac{k+r}{n+1}\right) \right\} \right] + \sum_{k=0}^{n+1-r} p_{n+1-r,k}(x) \left[F\left(\frac{k+r}{n+1}\right) - F\left(\frac{k}{n+1}\right) \right] = K_{n,r}(f;x),$$
(5)

where

$$K_{n,r}(f;x) := \sum_{k=0}^{n-r} p_{n-r,k}(x) (n+1-r) \left((1-x) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} f(t) dt + x \int_{\frac{k+r}{n+1}}^{\frac{k+r+1}{n+1}} f(t) dt \right) + \sum_{k=0}^{n+1-r} p_{n+1-r,k}(x) \int_{\frac{k}{n+1}}^{\frac{k+r}{n+1}} f(t) dt,$$
(6)

with *r* is a non-negative integer parameter and *n* is a natural number such that n > 2r, $f \in L^1[0,1]$ and $x \in [0,1]$. We call the operators $K_{n,r}$ given by (6) as Stancu-Kantorovich operators in the sequel and consider these operators from $L^p[0,1]$ into itself for every $f \in L^p$, $1 \le p < \infty$. Each $K_{n,r}$ is positive and linear operator and the cases r = 0 and r = 1 give the Bernstein-Kantorovich operators given by (4), namely,

$$K_{n,1} = K_{n,0} = K_n$$

holds. Indeed, the case r = 0 is obvious and the case r = 1 readily follows from (2) and (3).

We should note here that a Kantorovich-type extension of the Stancu operators $L_{n,r}$ can be proposed as

$$K_{n,r}^{*}(f;x) = \sum_{k=0}^{n-r} p_{n-r,k}(x)(n+1) \left((1-x) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} f(t) dt + x \int_{\frac{k+r}{n+1}}^{\frac{k+r+1}{n+1}} f(t) dt \right),$$
(7)

where *r* is a non-negative integer parameter, *n* is a natural number such that n > 2r, $f \in L^1[0, 1]$ and $p_{n,k}(x)$ are given by (2). But, for our aims, we prefer to deal with the construction given by (6). For a generalization of the Stancu operator, which depends on two non-negative integer parameters (see [20]); a Kantorovich-type extension for $f \in C[0, 1]$, similar to (7), was constructed and studied in [10] by Kajla, and also a generalization of which was studied in [12] by Kumar.

3. L^p-approximation by Stancu-Kantorovich operators

Firstly, we need to show the uniform convergence of real-valued and continuous functions by the sequence $\{K_{n,r}(f)\}_{n\in\mathbb{N}}$ on [0,1]. Let us denote $e_v(t) := t^v$, $t \in [0,1]$, v = 0, 1, ...

Theorem 3.1. If $f \in C[0, 1]$ and r is a non-negative fixed integer, then $\lim_{n\to\infty} K_{n,r}(f) = f$ uniformly on [0, 1].

Proof. Making use of first three moments of the Stancu operators $L_{n,r}$ given by

$$L_{n,r}(e_0; x) = 1, \ L_{n,r}(e_1; x) = x, \ L_{n,r}(e_2; x) = x^2 + \left[1 + \frac{r(r-1)}{n}\right] \frac{x(1-x)}{n}$$

(see [19]), it readily follows that

$$K_{n,r}(e_0; x) = 1,$$

$$K_{n,r}(e_1; x) = \frac{(n+r)(n-r+1)}{(n+1)^2}x + \frac{n+1+r(r-1)}{2(n+1)^2},$$

$$K_{n,r}(e_2; x) = \frac{(n-r)(n-r+1)(n+2r-1)}{(n+1)^3}x^2 + \frac{2(n-r+1)(n+r^2)}{(n+1)^3}x + \frac{(n-r+1+r^3)}{3(n+1)^3}.$$
(8)

Then, the result is obtained by using the well-known Korovkin theorem. \Box

Remark 3.2. If $f \in C[0,1]$ is a continuously differentiable function on [0,1] and r is a non-negative fixed integer, then, from (5), we get

$$(L_{n+1,r}(f;x))' = K_{n,r}(f';x)$$

for $n \in \mathbb{N}$ such that n > 2r and $x \in [0, 1]$. In view of Theorem 3.1, it readily follows that $\lim_{n\to\infty} (L_{n,r}(f))' = f'$ uniformly on [0, 1].

Below, we present the convergence of $\{K_{n,r}(f)\}_{n \in \mathbb{N}}$ in the norm of the space $L^p[0,1]$, $1 \le p < \infty$.

Theorem 3.3. If $f \in L^p[0,1]$, $1 \le p < \infty$, and r is a non-negative fixed integer, then $\lim_{n\to\infty} K_{n,r}(f) = f$ in $L^p[0,1]$.

Proof. Denoting the operator norm of $K_{n,r}$, acting from $L^p[0, 1]$ into itself, by $||K_{n,r}||$, where r is a non-negative fixed integer and $n \in \mathbb{N}$ such that n > 2r; it is sufficient to show that there exist an M > 0 such that $||K_{n,r}|| \le M$. Now, by setting

$$S_{n,r}(f;x) := \sum_{k=0}^{n-r} p_{n-r,k}(x)(n+1-r) \left((1-x) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} f(t) dt + x \int_{\frac{k+r}{n+1}}^{\frac{k+r+1}{n+1}} f(t) dt \right)$$

and

$$S_{n+1,r}(f;x) := \sum_{k=0}^{n+1-r} p_{n+1-r,k}(x) \int_{\frac{k}{n+1}}^{\frac{k+r}{n+1}} f(t) dt$$

we write each of the Stancu-Kantorovich operator $K_{n,r}(f;x)$ given by (6) as

$$K_{n,r}(f;x) = S_{n,r}(f;x) + S_{n+1,r}(f;x)$$

and therefore, we immediately get

$$\left|K_{n,r}(f;x)\right|^{p} \le 2^{p} \left(\left|S_{n,r}(f;x)\right|^{p} + \left|S_{n+1,r}(f;x)\right|^{p}\right).$$
(9)

Now, taking into accout of the fact that $\varphi(t) = |t|^p$, $1 \le p < \infty$, $t \in [0, 1]$, is convex, we need to estimate each term in (9). For $|S_{n,r}(f;x)|^p$; firstly, by taking $\lambda_1 = 1 - x$ and $\lambda_2 = x$ for $x \in [0, 1]$ such that $\lambda_1, \lambda_2 \ge 0$, $\lambda_1 + \lambda_2 = 1$ and applying the definition of convexity, and secondly, making use of Jensen's inequality for $p_{n-r,k}(x) \ge 0$, where $x \in [0,1]$, k = 0, ..., n-r, such that $\sum_{k=0}^{n-r} p_{n-r,k}(x) = 1$ and finally, using integral form of Jensen's inequality in the result, with the function $\varphi(t) = |t|^p$, $1 \le p < \infty$, $t \in [0,1]$ and the measure (n + 1 - r) dt, we easily get

$$\left|S_{n,r}(f;x)\right|^{p} \leq \sum_{k=0}^{n-r} p_{n-r,k}(x) \left(n+1-r\right) \left(\left(1-x\right) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} \left|f(t)\right|^{p} dt + x \int_{\frac{k+r}{n+1}}^{\frac{k+r+1}{n+1}} \left|f(t)\right|^{p} dt \right).$$
(10)

Now, for $|S_{n+1,r}(f;x)|^p$; for the function $\varphi(t) = |t|^p$, $t \in [0,1]$, $1 \le p < \infty$, applying Jensen's inequality with $p_{n+1-r,k}(x) \ge 0, x \in [0,1], k = 0, ..., n + 1 - r$, such that $\sum_{k=0}^{n+1-r} p_{n+1-r,k}(x) = 1$, and next, using integral Jensen's inequality, we obtain

$$\left|S_{n+1,r}(f;x)\right|^{p} \leq \sum_{k=0}^{n+1-r} p_{n+1-r,k}(x) \int_{\frac{k}{n+1}}^{\frac{k+r}{n+1}} \left|f(t)\right|^{p} dt.$$
(11)

Integrating (10) over [0, 1], using the well-known beta integral, we get

$$\int_{0}^{1} \left| S_{n,r}(f;x) \right|^{p} dx \le \frac{1}{n-r+2} T_{n,r},$$
(12)

where

$$T_{n,r} := \sum_{k=0}^{n-r} \left((n-r-k+1) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} \left| f(t) \right|^p dt + (k+1) \int_{\frac{k+r}{n+1}}^{\frac{k+r+1}{n+1}} \left| f(t) \right|^p dt \right).$$

Since n > 2r, $r \in \mathbb{N} \cup \{0\}$, we have n - r > r. Hence, we can express $T_{n,r}$ as

$$T_{n,r} = \left(\sum_{k=0}^{r-1} + \sum_{k=r}^{n-r}\right)(n-r-k+1)\int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} \left|f(t)\right|^p dt + \left(\sum_{k=0}^{n-2r} + \sum_{k=n-2r+1}^{n-r}\right)(k+1)\int_{\frac{k+r}{n+1}}^{\frac{k+r+1}{n+1}} \left|f(t)\right|^p dt.$$

Replacing k with k - r in the sums located in the second term, the above expression of $T_{n,r}$ reduces to

$$T_{n,r} = \sum_{k=0}^{r-1} (n-r-k+1) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} |f(t)|^p dt + \sum_{k=r}^{n-r} (n-2r+2) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} |f(t)|^p dt + \sum_{k=n-r+1}^{n} (k-r+1) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} |f(t)|^p dt.$$
(13)

On the other hand, integration of (11) over [0, 1] gives

$$\int_{0}^{1} \left| S_{n+1,r}(f;x) \right|^{p} dx \leq \frac{1}{n-r+2} \sum_{k=0}^{n+1-r} \int_{\frac{k}{n+1}}^{\frac{k+r}{n+1}} \left| f(t) \right|^{p} dt.$$
(14)

By collecting like terms, we decompose the sum in (14) into three parts:

$$\sum_{k=0}^{n+1-r} \int_{k=0}^{\frac{k+r}{n+1}} |f(t)|^p dt = \sum_{k=0}^{n+1-r} \left(\int_{k=0}^{\frac{k+1}{n+1}} + \int_{k=1}^{\frac{k+1}{n+1}} + \dots + \int_{\frac{k+r-1}{n+1}}^{\frac{k+r}{n+1}} \right) |f(t)|^p dt$$
$$= \sum_{k=0}^{r-1} (k+1) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} |f(t)|^p dt + r \sum_{k=r}^{n-r} \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} |f(t)|^p dt + \sum_{k=n-r+1}^{n} (n-k+1) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} |f(t)|^p dt.$$
(15)

Making use of (12), (13), (14) and (15); from (9), we arrive at

$$\begin{split} \int_{0}^{1} \left| K_{n,r}\left(f;x\right) \right|^{p} dx &\leq 2^{p} \left(\sum_{k=0}^{r-1} + \sum_{k=r}^{n-r} + \sum_{k=n-r+1}^{n} \right) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} \left| f\left(t\right) \right|^{p} dt \\ &= 2^{p} \sum_{k=0}^{n} \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} \left| f\left(t\right) \right|^{p} dt = 2^{p} \int_{0}^{1} \left| f\left(t\right) \right|^{p} dt. \end{split}$$

Therefore, passing to L^p -norm $\|.\|_p$, we get $\|K_{n,r}(f)\|_p \le 2 \|f\|_p$ for every $f \in L^p[0, 1]$. Namely, for every $n \in \mathbb{N}$ such that n > 2r, $K_{n,r}$ is a bounded operator with $\|K_{n,r}\| \le 2$. Now, let $\epsilon > 0$ be arbitrary given. Then, by the density of C[0, 1] in $L^p[0, 1]$ (with respect to the norm $\|.\|_p$), there is a $g \in C[0, 1]$ such that $\|f - g\|_p < \epsilon$ and, by Theorem 3.1, there exists an $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$ it holds that

$$\left\|K_{n,r}\left(g\right)-g\right\|<\epsilon,$$

where $\|.\|$ is the usual sup-norm in C[0, 1]. Therefore, L^p -convergency is a direct consequence of the above arguments and the inequality

$$\|K_{n,r}(f) - f\|_{p} \le 2 \|f - g\|_{p} + \|K_{n,r}(g) - g\|_{p} + \|g - f\|_{p} < 4\epsilon,$$

which completes the proof. \Box

6134

Concerning rate of the approximation, averaged modulus of smoothness is very useful tool for the error of the convergence in the norm of L^p . Here, we adopt the convention that M[a, b] denotes the space

 $M[a, b] = \{f \mid f \text{ is bounded and measurable on } [a, b]\}.$

Recall that for $f \in M[a, b]$ and $\delta > 0$, averaged modulus of smoothness (or τ -modulus) of the first order for step δ in L^p -norm, $1 \le p < \infty$, is denoted by $\tau_1(f; \delta)_n$ and defined as

$$\tau_1(f;\delta)_p = \left\|\omega_1(f,.;\delta)\right\|_p,$$

where

$$\omega_1(f,x;\delta) = \sup\left\{|f(t+h) - f(t)|: t, t+h \in \left[x - \frac{\delta}{2}, x + \frac{\delta}{2}\right] \cap [0,1]\right\}$$

is the local modulus of smoothness of the first order for the function f at the point $x \in [a, b]$ *and for step* δ (see [16] or, for details, [18]).

For every Borel measurable and bounded function f defined on [0, 1], we already have the following results for the Bernstein-Kantorovich operators K_n , $n \in \mathbb{N}$,

$$\left\|K_{n}\left(f\right)-f\right\|_{p}\leq 748\tau_{1}\left(f;\frac{1}{\sqrt{n+1}}\right)_{p}$$

(see [1, p.335]) and

$$\left\|K_{n}(f) - f\right\|_{p} \le C\tau_{1}\left(f; \sqrt{\frac{3n+1}{12(n+1)^{2}}}\right)_{p},\tag{16}$$

where *C* is a positive constant that does not depend on *f* (see the special case for Proposition 4.2 in [3]). To get an estimate for the approximation error in Theorem 3.3, we shall use the following theorem due to Popov [15], in which averaged modulus of smoothness of the first order is used:

Theorem 3.4. ([15]) Let $L: M[a, b] \rightarrow M[a, b]$ be a positive linear operator, having the properties

$$L(e_0; x) = 1, L(e_1; x) = x + \alpha(x), L(e_2; x) = x^2 + \beta(x), x \in [a, b]$$

Let

$$A := \sup \{ |\beta(x) - 2x\alpha(x)| ; x \in [a, b] \} \le 1.$$

Then for $f \in M[a, b]$ *and* $1 \le p < \infty$ *, the following estimate holds*

$$\left\|L\left(f\right)-f\right\|_{p}\leq C\tau_{1}\left(f;\sqrt{A}\right)_{p},$$

where C is a positive constant which does not depend on the operator L, the function f and the L^{p} -norm.

For the rate of convergence in Theorem 3.3, we present the following estimate:

Theorem 3.5. If $f \in M[0, 1]$, *r* is a non-negative fixed integer, then, for every $n \in \mathbb{N}$ such that n > 2r and $1 \le p < \infty$,

$$\left\|K_{n,r}\left(f\right)-f\right\|_{p}\leq C\tau_{1}\left(f;\sqrt{A_{n,r}}\right)_{p},$$

where

$$A_{n,r} = \frac{3n^2 + 3nr^2 - 3nr + 4n - 2r^3 + 3r^2 - r + 1}{12(n+1)^3} \le 1$$
(17)

and the positive constant C does not depend on f.

Proof. Assume that $f \in M[0, 1]$ and $1 \le p < \infty$. According to Theorem 3.4, it sufficies to show that

$$A_{n,r} := \sup \left\{ K_{n,r} \left((e_1 - xe_0)^2 ; x \right); \ x \in [0,1] \right\} \le 1,$$

where *r* is a non-negative fixed integer and $n \in \mathbb{N}$ such that n > 2r. From the linearity of the operators and (8), we obtain, for $x \in [0, 1]$,

$$K_{n,r}\left((e_1 - xe_0)^2; x\right) = \frac{n^2 + (r^2 - r)n - 2r^3 + r^2 + r - 1}{(n+1)^3} x (1-x) + \frac{n-r+1+r^3}{3(n+1)^3}$$
$$\leq \frac{n^2 + (r^2 - r)n - 2r^3 + r^2 + r - 1}{4(n+1)^3} + \frac{n-r+1+r^3}{3(n+1)^3}$$
$$= \frac{3n^2 + 3nr^2 - 3nr + 4n - 2r^3 + 3r^2 - r + 1}{12(n+1)^3}$$
$$= A_{n,r},$$

which gives (17). Note that, for the cases r = 0, 1 we get

$$A_{n,0} = A_{n,1} = \frac{3n+1}{12(n+1)^2},$$

which is the corresponding result for the Bernstein-Kantorovich operators given by (16). Now, it remains to show that $A_{n,r} \le 1$. Since $r \ge 0$ and n > 2r, we get $n - 1 \ge 2r$. Thus, we can write

$$\begin{aligned} A_{n,r} &= \frac{1}{12 (n+1)^3} \left[3n^2 + 3nr^2 - 3nr + 4n - 2r^3 + 3r^2 - r + 1 \right] \\ &\leq \frac{1}{12 (n+1)^3} \left[3n^2 + 3nr^2 + 4n + 3r^2 + 1 \right] \\ &\leq \frac{1}{12 (n+1)^3} \left[3n^2 + 3n \left(\frac{n-1}{2} \right)^2 + 4n + 3 \left(\frac{n-1}{2} \right)^2 + 1 \right] \\ &= \frac{3n^3 + 9n^2 + 13n + 7}{48 (n+1)^3} \leq 1. \end{aligned}$$

This completes the proof. \Box

4. Variation detracting property

Recall that the class of all functions of bounded variation on [0, 1] is denoted by TV[0, 1], with the seminorm $||f||_{TV[0,1]} := V_{[0,1]}[f]$, where $V_{[0,1]}[f]$ is total variation of f. It is well-known that for $f \in TV[0, 1]$, each Bernstein operator B_n satisfies the inequality $V_{[0,1]}[B_nf] \leq V_{[0,1]}[f]$ (see [13, p.23]) that is called as variation detracting property. Moreover, denoting the class of all absolutely continuous functions on [0, 1] by AC[0, 1], we have the following result for Bernstein polynomials: For $f \in TV[0, 1]$,

$$f \in AC[0,1] \Longleftrightarrow \lim_{n \to \infty} V_{[0,1]} \left[B_n \left(f \right) - f \right] = 0 \tag{18}$$

(see [14] or [4, p.308]). Below, we show that each Stancu operator $L_{n,r}$ satisfies variation detracting property.

Theorem 4.1. If $f \in TV[0,1]$, *r* is a non-negative fixed integer, then, for every $n \in \mathbb{N}$ such that n > 2r,

$$V_{[0,1]}[L_{n,r}(f)] \le V_{[0,1]}[f].$$

Proof. Since the cases for r = 0 and r = 1 give the Bernstein operators, we consider for $0 < r \neq 1$. For $f \in TV[0,1]$, we have $L_{n,r}(f;x)$ is continuous on [0,1] and $(L_{n,r}(f;x))'$ is bounded on (0,1). Therefore, it follows that $L_{n,r}(f) \in AC[0,1]$. Writing the formula $(L_{n,r}(f;x))'$ simply by replacing n with n-1 and F with f in (5) and using beta integral, we obtain the following inequality for the total variation of $L_{n,r}(f)$:

$$V_{[0,1]} \left[L_{n,r} \left(f \right) \right] = \int_{0}^{1} \left| \left(L_{n,r} \left(f; x \right) \right)' \right| dx$$

$$\leq \frac{1}{n-r+1} \sum_{k=0}^{n-1-r} \left[\left(n-r-k \right) \left| f \left(\frac{k+1}{n} \right) - f \left(\frac{k}{n} \right) \right| + (k+1) \left| f \left(\frac{k+r+1}{n} \right) - f \left(\frac{k+r}{n} \right) \right| \right]$$

$$+ \frac{1}{n-r+1} \sum_{k=0}^{n-r} \left| f \left(\frac{k+r}{n} \right) - f \left(\frac{k}{n} \right) \right|.$$
(19)

As in the proof of Theorem 3.3, by using the similar decomposition technique to the first and second sums in (19), we reach to

$$\begin{aligned} V_{[0,1]}\left[L_{n,r}\left(f\right)\right] &\leq \frac{1}{n-r+1} \left\{ \sum_{k=0}^{r-1} \left(n-r-k\right) + \sum_{k=r}^{n-1-r} \left(n-2r+1\right) + \sum_{k=n-r}^{n-1} \left(k-r+1\right) \right. \\ &+ \left. \sum_{k=0}^{r-1} \left(k+1\right) + \sum_{k=r}^{n-1-r} r + \sum_{k=n-r}^{n-1} \left(n-k\right) \right\} \left| f\left(\frac{k+1}{n}\right) - f\left(\frac{k}{n}\right) \right| \\ &= \left. \sum_{k=0}^{n-1} \left| f\left(\frac{k+1}{n}\right) - f\left(\frac{k}{n}\right) \right| \\ &\leq V_{[0,1]}\left[f\right], \end{aligned}$$

which completes the proof. \Box

Now, we present the similar result in (18) for the Stancu polynomials:

Proposition 4.2. If $f \in TV[0, 1]$ and *r* is a non-negative fixed integer, then

$$f \in AC[0,1] \Longleftrightarrow \lim_{n \to \infty} V_{[0,1]} \left[L_{n,r}(f) - f \right] = 0.$$

Proof. Since AC[0,1] is a closed subspace of TV[0,1] according to the seminorm $\|.\|_{TV[0,1]}$ (see [4, Lemma 2.1]), for $f \in TV[0,1]$,

$$\lim_{n \to \infty} V_{[0,1]} \left[L_{n,r}(f) - f \right] = \lim_{n \to \infty} \left\| L_{n,r}(f) - f \right\|_{TV[0,1]} = 0$$

implies that $f \in AC[0, 1]$. Conversely, we let $f \in AC[0, 1]$ (which gives $f' \in L^1[0, 1]$ and $f(x) = \int_0^x f'(t) dt + f(0)$). Since, $L_{n,r}(f) \in AC[0, 1]$, we have $[L_{n,r}(f) - f] \in AC[0, 1]$. Thus, we arrive at

$$\lim_{n \to \infty} V_{[0,1]} \left[L_{n,r}(f) - f \right] = \lim_{n \to \infty} \left\| K_{n-1,r}(f') - f' \right\|_{1} = 0$$

by (5), (6) and Theorem 3.3. This completes the proof. \Box

References

- [1] F. Altomare, M. Campiti, Korovkin-Type Approximation Theory and Its Applications, Walter de Gruyter, Berlin-New York, 1994.
- [2] F. Altomare, Korovkin-type Theorems and Approximation by Positive Linear Operators, Surv. Approx. Theory 5 (2010) 92–164.
- [3] F. Altomare, M. Cappelletti Montano, V. Leonessa, I. Raşa, A generalization of Kantorovich operators for convex compact subsets, Banach J. Math. Anal. 11 (2017) no. 3 591–614.
- [4] C. Bardaro, P. L. Butzer, R.L. Stens, G. Vinti, Convergence in variation and rates of approximation for Bernstein-type polynomials and singular convolution integrals, Analysis 23 (2003) 299–340.
- [5] T. Bostancı, G. Başcanbaz-Tunca, A Stancu type extension of Cheney and Sharma operators, J. Numer. Anal. Approx. Theory 47 (2018) no. 2 124–134.
- [6] J. Bustamante, J. M. Quesada, A property of Ditzian-Totik second order moduli, Appl. Math. Lett. 23 (2010) no. 5 576–580.
- [7] M. Campiti, G. Metafune, L^p-convergence of Bernstein-Kantorovich-type operators, Ann. Polon. Math. 63 (1996) no. 3 273–280.
- [8] N. Çetin, A new generalization of complex Stancu operators, Math. Methods Appl. Sci. 42 (2019) 5582-5594.
- [9] N. Çetin, G. Başcanbaz-Tunca, Approximation by a new complex generalized Bernstein operator, An. Univ. Oradea Fasc. Mat. 26 (2019) no. 2 129–141.
- [10] A. Kajla, The Kantorovich variant of an operator defined by D.D Stancu. Appl. Math. Comput. 316 (2018) 400-408.
- [11] L. V. Kantorovich, Sur certains développements suivant les polynômes de la forme de S. Bernstein, I, II, C. R. Acad. Sci. URSS (1930) 563–568, 595–600.
- [12] A. Kumar, A new kind of variant of the Kantorovich type modification operators introduced by D. D. Stancu, Results Appl. Math. 11 (2021) 100158.
- [13] G. G. Lorentz, Bernstein Polynomials, University of Toronto Press, Toronto, 1953 (2.ed., Chelsea Publishing Co., New York, 1986.
- [14] G. G. Lorentz, Zur Theorie der Polynome von S. Bernstein, Mat. Sb. 2 (1937) 543–556.
- [15] V. A. Popov, On the quantitative Korovkin theorems in *L*_p, Compt. Rend. Acad. Bulg. Sci. 35 (1982) 897–900.
- [16] E. Quak, L_p -error estimates for positive linear operators using the second-order τ -modulus, Anal. Math. 14 (1988) 259–272.
- [17] I. J. Schoenberg, On variation diminishing approximation methods. In: R.E. Langer (ed.) On Numerical Approximation. Univ. of Wisconsin Press, Madison, (1959) pp. 249–274.
- [18] B. Sendov, V. A. Popov, Averaged moduli of smoothness, Bulgarian Mathematical Monographs, vol. 4 Publ. House Bulg. Acad. Sci. Sofia, 1983.
- [19] D. D. Stancu, Approximation of functions by means of a new generalized Bernstein operator, Calcolo 20 (1983) no. 2 211–229.
- [20] D. D. Stancu, A note on a multiparameter Bernstein-type approximating operator, Mathematica (Cluj) 49 (1984) no.2 153-177.
- [21] R. Yang, J. Xiong, F. Cao, Multivariate Stancu operators defined on a simplex, Appl. Math. Comput. 138 (2003) 189–198.