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Abstract. Metric spaces are generalized by many scholars. Recently, Khatami and Mirzavaziri use a
mapping called t-definer to popularize the triangle inequality and give a generalization of the notion of a
metric, which is called a ⋆-metric. In this paper, we prove that every ⋆-metric space is metrizable. Also,
we study the total boundedness and completeness of ⋆-metric spaces.

1. Introduction

It is well known that metric spaces are widely used in analysis. There are several common metric spaces,
such as the numerical straight lineR, the n-dimensional Euclidean spaceRn, the continuous functions space
and the Hilbert space. Therefore, every metric space is an important kind of topological space. A function
d : X × X→ R+ is called a metric on a set X if d satisfies the following conditions for every x, y, z ∈ X:

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x);
(3) d(x, y) ⩽ d(x, z) + d(z, y).

Then set X with d is called a metric space, denoted by (X, d).
We can obtain the generalizations of metric spaces when we weaken or modify the conditions of metric

axiom. Pseudo-metrics are obtained when we change that condition ‘ρ(x, y) = 0 if and only if x = y’
into ‘ρ(x, y) = 0 if x = y’ [3]. Quasi-metrics are defined by omitting the condition (2) [12]. Symmetrics
are defined by omitting the triangle inequality [1]. The ultrametric is a metric with the strong triangle
inequality d(x, y) ⩽ max{d(x, z), d(z, y)}, for x, y, z ∈ X [10]. There are many generalizations of metric spaces
which have appeared in literatures (e.g. see [4–6, 8, 11, 13])

Recently, Khatami and Mirzavaziri popularized the concept of metric. By extending the famous function
which is called t-conorm, a new operation called t-definer is obtained. It is defined as:

Definition 1.1. ([7, Definition 2.1]) A t-definer is a function⋆ : [0,∞)×[0,∞)→ [0,∞) satisfying the following
conditions for each a, b, c ∈ [0,∞):

(T1) a ⋆ b = b ⋆ a;
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(T2) a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c;
(T3) if a ⩽ b, then a ⋆ c ⩽ b ⋆ c;
(T4) a ⋆ 0 = a;
(T5) ⋆ is continuous in its first component with respect to the Euclidean topology.

When the condition (3) in the metric axiom is extended to the ⋆-triangle inequality, the following
definition of ⋆-metrics can be obtained.

Definition 1.2. ([7, Definition 2.2]) Let X be a nonempty set and ⋆ is a t-definer. If for every x, y, z ∈ X, a
function d⋆ : X × X→ [0,∞) satisfies the following conditions:

(M1) d⋆(x, y) = 0 if and only if x = y;
(M2) d⋆(x, y) = d⋆(y, x);
(M3) d⋆(x, y) ⩽ d⋆(x, z) ⋆ d⋆(z, y),

then d⋆ is called a ⋆-metric on X. The set X with a ⋆-metric is called a ⋆-metric space, denoted by (X, d⋆).

The following example shows that there are ⋆-metrics which are not metrics.

Example 1.3. ([7, Example 2.4.]) Clearly, a⋆b = (
√

a+
√

b)2 is a t-definer. The function d⋆(a, b) = (
√

a−
√

b)2

forms an ⋆-metric which is not a metric. In fact,

d⋆(a, b) = (
√

a −
√

b)2 = (
√

a −
√

c +
√

c −
√

b)2

⩽

[√
(
√

a −
√

c)2 +

√
(
√

c −
√

b)2

]2
=
[√

d⋆(a, c) +
√

d⋆(c, b)
]2

= d⋆(a, c) ⋆ d⋆(c, b)

while d⋆(1, 25) = 16 ⩽̸ d⋆(1, 16) + d⋆(16, 25) = 10.

Remark 1.4. There are two most important t-definers:
• Lukasiewicz t-definer: a ⋆L b = a + b;
•Maximum t-definer: a ⋆m b = max {a, b}.
Obviously, a ⋆L-metric is actually a metric and a ⋆m-metric is an ultrametric.

Assume that (M, d⋆) is a ⋆-metric space. For any a ∈M and r > 0, denote by

Bd⋆ (a, r) = {x ∈M : d⋆(a, x) < r}

and
Td⋆ = {U ⊆M : for each a ∈ U there is an r > 0 such that Bd⋆ (a, r) ⊆ U}.

Let B = {Bd⋆ (x, ϵ) | x ∈ X, ϵ > 0} be a family of open balls on a ⋆-metric space (X, d⋆).
Khatami and Mirzavaziri proved the following results:

Theorem 1.5. ([7, Theorems 3.2, 3.4, 3.5]) For every ⋆-metric space (X, d⋆), the Td⋆ forms a Hausdorff topology
on X and the topological space (X,Td⋆ ) is first countable and satisfies the normal separation axiom.

The following problem is posed naturally.

Problem 1.6. Is the topological space (X,Td⋆ ) metrizable for every ⋆-metric space (X, d⋆)?
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In this paper, we give a positive answer to Problem 1.6. Also, we extend the concepts of the totally
boundedness and completeness in metric spaces into ⋆-metric spaces and discuss their properties.

This paper is organized as follows. Section 2 is given a positive answer to Problem 1.6. We obtain that let
(X, d⋆) be a ⋆-metric space, then the set X with the topology Td⋆ induced by d⋆ is metrizable (see Theorem
2.4). In Section 3, total boundedness of⋆-metric spaces are studied. We prove that: (1) let (X, d⋆) be a totally
bounded ⋆-metric space, then for every subset M of X the ⋆-metric space (M, d⋆) is totally bounded (see
Theorem 3.4); (2) let (X, d⋆) be a ⋆-metric space; then for every subset M of X the space (M, d⋆) is totally
bounded if and only if (M, d⋆) is totally bounded (see Theorem 3.5). We show that the Cartesian product
and disjoint union of finite totally bounded ⋆-metric spaces are totally bounded under specific ⋆-metrics
(see Theorems 3.7 and 3.9). In Section 4, the completeness of ⋆-metric spaces are explored. We obtain that:
(1) a ⋆-metric space (X, d⋆) is compact if and only if (X, d⋆) is complete and totally bounded (see Theorem
4.6); (2) a ⋆-metric space is complete if and only if for every decreasing sequence F1 ⊇ F2 ⊇ F3 ⊇ . . . of
non-empty closed subsets of space X, such that limn→∞ δ(Fn) = 0, the intersection

⋂
∞

n=1 Fn is a one-point set
(see Theorem 4.9); (3) the completeness of the Cartesian product and disjoint union of complete ⋆-metric
spaces are studied under specific ⋆-metrics (see Theorems 4.12 and 4.13); (4) in a complete ⋆-metric space
(X, d⋆) the intersection A =

⋂
∞

n=1 An of a sequence A1,A2, . . . of dense open subsets is a dense set (see
Theorem 4.14).
=

2. Metrizability of⋆-metric spaces

In this section, we shall give a positive answer to Question 1.6. Let (X, d⋆) be a ⋆-metric space. We
shall prove that the set X with the topology Td⋆ induced by d⋆ is metrizable. We need to use some related
symbols, terms, and preliminary facts.

Let U be a cover of a set X. For x ∈ X, denote by st(x,U )=
⋃
{U : U ∈ U , x ∈ U} and st(A,U )=

⋃
x∈A st(x,U )

for A ⊆ X. Let U , V be two covers of a set X. We say that the cover V refines U , if for every V ∈ V , there
exists a U ∈ U such that V ⊂ U, denoted by V < U ; if {st(V,V ) : V ∈ V } refines U , then we said that V star
refines U , denoted by V

∗

<U .

Definition 2.1. ([3, Definition 4.5.1]) Let X be a set and Φ = {Uα : α ∈ A} a non-empty collection of covers
of X which satisfies:

(U1) if U is a cover of X such that Uα < U for some α ∈ A, then U ∈ Φ;
(U2) for any α, β ∈ A, there exists a γ ∈ A such that Uγ < Uα, Uγ < Uβ;

(U3) for every α ∈ A, there exists a β ∈ A such that Uβ
∗

<Uα;

(U4) if x, y are different elements of X, then x < st(y,Uα) for some α ∈ A.

Then X is called a uniform space with the uniformityΦ, denoted by (X,Φ). Let X be a uniform space with
the uniformity Φ = {Uα : α ∈ A} and let Φ′ = {Uβ : β ∈ B} be a subcollection of Φ. If for every α ∈ A, there
exists a β ∈ B such that Uβ < Uα, then the collection Φ′ is called a base of the uniformity.

Let X be a uniform space with the uniformity Φ = {Uα : α ∈ A} and

TΦ = {U : U ⊆ X, for each x ∈ U, there is a α ∈ A such that st(x,Uα) ⊂ U}.

Then TΦ is a topology on the X.

Recalled that a topological space X is said to be metrizable if there exists a metric d on the set X that
induces the topology of X.

Lemma 2.2. ([3, Theorem 4.5.9]) Let (X,Φ) be a uniform space. Then the set with the topology TΦ induced by Φ is
metrizable if and only if there is a base of the uniformity consisting of countably many covers.

The following theorem shows that ⋆ is continuous at the point (0, 0).
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Lemma 2.3. For r > 0, there exists an r1 > 0 such that [0, r1) ⋆ [0, r1) ⊆ [0, r).

Proof. For r > 0, we have 0 ⋆ 1
2 r ∈ [0, r) by [Definition 1.1, (T4)]. According to [Definition 1.1, (T5)], there

exists an r0 > 0 such that [0, r0)⋆ 1
2 r ⊆ [0, r). Without loss of generality, let 0 ⩽ r0 ⩽ r by [Definition1.1, (T3)].

Take r1 =
1
2 r0. Then, we can claim that [0, r1) ⋆ [0, r1) ⊆ [0, r). For every x, y ∈ [0, r1), we have that

x ⋆ y ⩽ x ⋆
1
2

r.

Noting that x⋆ 1
2 r ∈ [0, r1)⋆ 1

2 r ⊆ [0, r0)⋆ 1
2 r ⊆ [0, r), we have that x⋆ 1

2 r ∈ [0, r), which means x⋆ 1
2 r < r.

Since x ⋆ y ⩽ x ⋆ 1
2 r, x ⋆ y < r, we have that x, y ∈ [0, r).

The following theorem gives a positive answer to Question 1.6.

Theorem 2.4. Let (X, d⋆) be a ⋆-metric space. Then the set X with the topology Td⋆ induced by d⋆ is metrizable.

Proof. First we shall show that B = {B 1
n

: n ∈N} is a base of a uniformity on set X, where B 1
n
= {Bd⋆ (x, 1

n ) |
x ∈ X}. Indeed, it is enough to show that B satisfies the conditions (U2)∼(U4) in Definition 2.1.

(U2). For each x ∈ X and arbitrary n1,n2 ∈ N, take an n0 ∈ N such that n0 > n1 and n0 > n2. Take a
y ∈ Bd⋆ (x, 1

n0
). Then we have that d⋆(x, y) < 1

n0
< 1

n1
, which implies that y ∈ Bd⋆ (x, 1

n1
). Thus we have that

Bd⋆ (x, 1
n0

) ⊂ Bd⋆ (x, 1
n1

). Therefore B 1
n0
< B 1

n1
. Similarly, we can prove that B 1

n0
< B 1

n2
. So, B satisfies the

condition (U2).
For (U3). For any n0 ∈ N, by Lemma 2.3, there exists an r1 ∈ N such that r1 ⋆ r1 ⋆ r1 < 1

n0
. Take n1 ∈ N

such that 1
n1
< r1. Now we shall prove that B 1

n1

∗

<B 1
n0

. Hence the proof is completed once we show that

st(Bd⋆ (x, 1
n1

), B 1
n1

)⊆ Bd⋆ (x, 1
n0

), for any x ∈ X. Take any y ∈ X such that Bd⋆ (y, 1
n1

) ∩ Bd⋆ (x, 1
n1

) , ∅. Then, there

exists a z1 ∈ Bd⋆ (y, 1
n1

) ∩ Bd⋆ (x, 1
n1

). For each z2 ∈ Bd⋆ (y, 1
n1

), we have that

d⋆(z2, x) ⩽ d⋆(z2, y) ⋆ d⋆(y, z1) ⋆ d⋆(z1, x)

<
1
n1
⋆

1
n1
⋆

1
n1
< r1 ⋆ r1 ⋆ r1

<
1
n0
.

Therefore, z2 ∈ Bd⋆ (x, 1
n0

). This implies B satisfies the condition (U3).
For (U4). For x, y ∈ X with x , y, put d⋆(x, y) = r. Then r > 0. Take an n1 ∈ N such that 1

n1
< r. Then

we have that y < Bd⋆ (x, 1
n1

). By Lemma 2.3, there exists an n0 ∈ N such that 1
n0
⋆ 1

n0
< 1

n1
. Then, we claim

that for each Bd⋆ (z0, 1
n0

) ∈ B 1
n0

(z0 ∈ X), Bd⋆ (z0, 1
n0

) can not contain both x and y. If not, x, y ∈ Bd⋆ (z0, 1
n0

), then

d⋆(x, y) ⩽ d⋆(x, z0) ⋆ d⋆(z0, y) < 1
n0
⋆ 1

n0
< 1

n1
< r, which is a contradiction with d⋆(x, y) = r. Thus B satisfies

the condition (U4).
Thus we have proved that B is a base of a uniformity on X, denoted by Φd⋆ . According to Lemma 2.2,

the set X with the topology TΦd⋆
induced by the uniformity Φd⋆ is metrizable. Therefore, to complete the

proof, it is enough to prove that the topology Td⋆ induced by d⋆ is the same as the topology TΦd⋆
.

(1) For each U ∈ Td⋆ and x ∈ U, there exists an n ∈ N such that Bd⋆ (x, 1
n ) ⊂ U. By Lemma 2.3, there

exists an n0 ∈ N such that 1
n0
⋆ 1

n0
< 1

n . Then we shall prove that st(x,B 1
n0

) ⊂ Bd⋆ (x, 1
n ) ⊂ U. Take each

z ∈ st(x,B 1
n0

). Then there exists a y ∈ X such that x ∈ st(y,B 1
n0

) and z ∈ st(y,B 1
n0

). From the fact that

d⋆(x, z) ⩽ d⋆(x, y) ⋆ d⋆(y, z) <
1
n0
⋆

1
n0
<

1
n
,

it follows that z ∈ st(x,B 1
n
), i.e. st(x,B 1

n0
) ⊂ U, which implies that U ∈ TΦd⋆

. Therefore Td⋆ ⊆ TΦd⋆
.
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(2) For each U ∈ TΦd⋆
and x ∈ U, there exists an n ∈ N such that st(x,B 1

n
) ⊂ U. Since Bd⋆ (x, 1

n ) ⊂
st(x,B 1

n
) ⊂ U, we have U ∈ Td⋆ , i.e. TΦd⋆

⊆ Td⋆ . Then we get that TΦd⋆
= Td⋆ .

From Theorem 2.4 it follows the following two corollaries.

Corollary 2.5. Let (X, d⋆) be a ⋆-metric space and X with the topology Td⋆ induced by d⋆. Then the following
statements are equivalent:

(1) X has countable base;
(2) X is Lindelöf;
(3) every closed discrete subspace is a countable set;
(4) every discrete subspace is a countable set;
(5) every collection of disjoint open sets in X is countable;
(6) X has a countable dense subset.

Recalled that a topological space X is called pseudo-compact if every real valued continuous function on
X is bounded. X is called countably compact if every countable open cover of X has a finite subcover. X
is called sequentially compact if every sequence of points of X has a convergent subsequence. A point x is
called ω-accumulation point of X if arbitrary neighborhood of the point x contains infinite points of X.

Corollary 2.6. Let (X, d⋆) be a ⋆-metric space and X with the topology Td⋆ induced by d⋆. Then the following
statements are equivalent:

(1) X is pseudo-compact;
(2) every infinite subset of X has a cluster point;
(3) every infinite subset of X has an ω-accumulation point;
(4) every sequence of X has a cluster point;
(5) X is countably compact;
(6) X is sequentially compact;
(7) X is compact.

3. Total boundedness of⋆-metric spaces

Total boundedness is an important property in metric spaces. We generalize the concept of totally
boundedness into⋆-metric spaces and study their properties. Now we need to give some related definitions.

Definition 3.1. A ⋆-metric space (X, d⋆) is totally bounded, if for any ϵ > 0 there exists a finite set F(ϵ) ⊆ X
such that X =

⋃
x∈F(ϵ) Bd⋆ (x, ϵ). We also said that the finite set F(ϵ) is ϵ-dense in X.

Theorem 3.2. Let (X, d⋆) be a ⋆-metric space and every infinite subset of X have an ω-accumulation point in the
topological space X with the topology induced by d⋆. Then (X, d⋆) is totally bounded.

Proof. Suppose the contrary that there exists ϵ0, but there is no finite set F(ϵ0) such that X =
⋃

x∈F(ϵ0) Bd⋆ (x, ϵ0).
Take an x1 ∈ X. Since X , Bd⋆ (x1, ϵ0), we can take an x2 ∈ X − Bd⋆ (x1, ϵ0). Next, since X ,

⋃2
i=1 Bd⋆ (xi, ϵ0), we

can take an x3 ∈ X −
⋃2

i=1 Bd⋆ (xi, ϵ0). Repeat this procedure, and we obtain an infinite set {x1, x2, . . . , xn, . . . }
such that d⋆(xi, x j) ⩾ ϵ0 (i , j). By assumption, this infinite set has an ω-accumulation point x0 ∈ X. Thus,
by Lemma 2.3, take an ϵ1 > 0 such that ϵ1 ⋆ ϵ1 < ϵ0. Then the open-ball Bd⋆ (x0, ϵ1) should contain infinite
points of {x1, x2, . . . , xn, . . . }. Let xn, xm ∈ Bd⋆ (x0, ϵ1), then

d⋆(xm, xn) ⩽ d⋆(xm, x0) ⋆ d⋆(x0, xn) < ϵ1 ⋆ ϵ1 < ϵ0.

This contradicts d⋆(xi, y j) ⩾ ϵ0. Therefore (X, d⋆) is totally bounded.

By Corollary 2.6 and Theorem 3.2, we have the following corollary:
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Corollary 3.3. Let (X, d⋆) be a ⋆-metric space. If X with the topology induced by d⋆ is countably compact, then
(X, d⋆) is a totally bounded ⋆-metric space.

One can easily verify that for every subset M ⊆ X of a ⋆-metric space (X, d⋆), (M, d⋆ |M×M) is a ⋆-metric
space, where d⋆ |M×M is the restriction of the ⋆-metric d⋆ on X to the subset M. The ⋆-metric space
(M, d⋆ |M×M) will also be denoted by (M, d⋆).

Theorem 3.4. Let (X, d⋆) be a totally bounded ⋆-metric space. Then for every subset M of X the ⋆-metric space
(M, d⋆) is totally bounded.

Proof. Let (X, d⋆) be a ⋆-metric space and M ⊂ X. For every ϵ > 0, by Lemma 2.3, take an ϵ1 > 0 such
that ϵ1 ⋆ ϵ1 < ϵ. Take a finite set F(ϵ1) = {x1, x2, . . . , xk} which is ϵ1-dense in X. Let {xm1 , xm2 , . . . , xml } be the
subset of F(ϵ1) consisting of all points which satisfy that d⋆(x, xi) < ϵ1, for each x ∈ M and xi ∈ F(ϵ1). Let
F′ = {x′1, x

′

2, . . . , x
′

l } be a finite set satisfying d⋆(x′j, xm j ) < ϵ1 for j ⩽ l. We shall show that the set F′ is ϵ-dense
in M. Let x ∈ M, there exists an xi ∈ F(ϵ1) such that d⋆(x, xi) < ϵ1. Hence xi = xm j for some j ⩽ l, then we
have

d⋆(x, x′j) ⩽ d⋆(x, xm j ) ⋆ d⋆(xm j , x
′

j) < ϵ1 ⋆ ϵ1 < ϵ.

Theorem 3.5. Let (X, d⋆) be a ⋆-metric space and for every subset M of X the space (M, d⋆) is totally bounded if and
only if (M, d⋆) is totally bounded.

Proof. Assume that (M, d⋆) is totally bounded. For ϵ > 0, by Lemma 2.3, take an ϵ1 > 0 such that ϵ1 ⋆ ϵ1 < ϵ,
and take a finite set F(ϵ1) = {x1, x2, . . . , xk}which is ϵ1-dense in M. For each x ∈M , we have Bd⋆ (x, ϵ1)∩M , ∅.
Take a y ∈ Bd⋆ (x, ϵ1) ∩M. Then there exists an xi ∈ F(ϵ1) such that d⋆(y, xi) < ϵ1. Then we have d⋆(x, xi) ⩽
d⋆(x, y) ⋆ d⋆(y, xi) < ϵ1 ⋆ ϵ1 < ϵ.

On the other hand, assume that (M, d⋆) is totally bounded. One can easily obtain that (M, d⋆) is totally
bounded by Theorem 3.4, because M is a subset of M.

Corollary 3.6. If a ⋆-metric space (X, d⋆) has a dense totally bounded subspace, then the space (X, d⋆) is totally
bounded.

Let {(Xi, d⋆i )}ni=1 be a family of finite nonempty ⋆-metric spaces. Consider the Cartesian product X =∏n
i=1 Xi and for every pair x = (xi)i≤1≤n, y = (yi)i≤1≤n of points of X let

d⋆T (x, y) = d⋆1 (x1, y1) ⋆ d⋆2 (x2, y2) ⋆ · · · ⋆ d⋆n (xn, yn) (3.1)

and
d⋆max(x, y) = max

1⩽i⩽n
d⋆i (xi, yi) (3.2).

In [7, Theorem 4.3], Khatami and Mirzavaziri proved that the formulas (3.1) and (3.2) define two ⋆-
metrics on the Cartesian product X =

∏n
i=1 Xi. Furthermore the topology induced by these two ⋆-metrics

on X is the same as the product topology on X.

Theorem 3.7. Let {(Xi, d⋆i )}ni=1 be a family of finite nonempty ⋆-metric spaces and X =
∏n

i=1 Xi the Cartesian
product. Then:

(1) X with the ⋆-metric d⋆T defined by formula (3.1) is totally bounded if and only if all ⋆-metric spaces (Xi, d⋆i )
are totally bounded;

(2) X with the ⋆-metric d⋆max defined by formula (3.2) is totally bounded if and only if all ⋆-metric spaces (Xi, d⋆i )
are totally bounded.
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Proof. (1) Necessity. Assume that the ⋆-metric space (X, d⋆T ) is totally bounded. The subset X∗m =
∏n

i=1 Ai
of X , where Am = Xm and Ai = {x∗i } is a one-point subset of Xi for i , m. Then the subspace X∗m is totally
bounded by Theorem 3.4. One can easily verify that p∗m = pm |X∗m : X∗m → Xm is a isometric isomorphism and
according to the definition of d⋆T , for x∗, y∗ ∈ X∗m ⊂ X, d⋆T (x∗, y∗) = d⋆m(pm(x∗), pm(y∗)). Therefore, if a finite set
F is ϵ-dense in (X∗m, d⋆T ), then pm(F) is ϵ-dense in (Xm, d⋆T ), and from this it follows further that (Xm, d⋆T ) is
totally bounded.

Sufficiency. Let every (Xi, d⋆i ) be totally bounded. For ϵ > 0, by Lemma 2.3, take an ϵ1 > 0 such that
n times︷               ︸︸               ︷

ϵ1 ⋆ ϵ1 ⋆ · · · ⋆ ϵ1 < ϵ. For every i ⩽ n take a finite set Fi which is ϵ1-dense in Xi. We define that

F =
n∏

i=1

Fi,

then F is a finite set. To conclude the proof it suffices to show that F is ϵ-dense in the space (X, d⋆T ). Let
x = (x1, x2, . . . , xn) be an arbitrary point of X. For every i ⩽ n, since Fi is ϵ-dense in Xi, there exists a yi ∈ Fi
such that d⋆i (xi, yi) < ϵ1 and take a point y = (y1, y2, . . . , yn) ∈ F we have

d⋆T (x, y) = d⋆1 (x1, y1) ⋆ d⋆2 (x2, y2) ⋆ · · · ⋆ d⋆n (xn, yn) <

n times︷               ︸︸               ︷
ϵ1 ⋆ ϵ1 ⋆ · · · ⋆ ϵ1 < ϵ.

By the foregoing, F is ϵ-dense in (X, d⋆T ).
(2) Necessity. Assume that the ⋆-metric space (X, d⋆max) is totally bounded. Then the method of the proof

is the same as that of necessity in (1).
Sufficiency. Let every (Xi, d⋆i ) be totally bounded. For ϵ > 0, take a finite set Fi which is ϵ-dense in Xi,

for every i ⩽ n. We define that

F =
n∏

i=1

Fi.

Clearly, F is a finite set. To conclude the proof it suffices to show that F is ϵ-dense in the space (X, d⋆max). Let
x = (x1, x2, . . . , xn) be an arbitrary point of X. For every i ⩽ n, there exists a yi ∈ Fi such that d⋆i (xi, yi) < ϵ and
take a point y = (y1, y2, . . . , yn) ∈ F. Without loss of generality, choose max1⩽i⩽n d⋆i (xi, yi) = d⋆k (xk, yk), then
we have

d⋆max(x, y) = max
1⩽i⩽n

d⋆i (xi, yi) = d⋆k (xk, yk) < ϵ.

By the foregoing, F is ϵ-dense in (X, d⋆max).
This completes the proof.

Let (X, d) be a metric space. Define d̃(x, y) = min{1, d(x, y)} for each x, y ∈ X. It is well known that d̃ is a
metric on X such that the topology induced by d̃ is the same as induced by d. For ⋆-metric space, we have
the following result.

Proposition 3.8. Let (X, d⋆) be a ⋆-metric space and define d̃⋆(x, y) = min{1, d⋆(x, y)} for each x, y ∈ X. Then
(X, d̃⋆) is also a ⋆-metric space on X. Furthermore the topology induced by d̃⋆ on X is the same as induced by d⋆.

Proof. We shall verify that d̃⋆ is a⋆-metric. Clearly, d̃⋆ satisfies (M1) and (M2) in the definition 1.2. Suppose
the contrary that there exist points x, y, z ∈ X such that

1 ⩾ d̃⋆(x, z) > d̃⋆(x, y) ⋆ d̃⋆(y, z).

Then, d̃⋆(x, y) < 1, d̃⋆(y, z) < 1 (since, if d̃⋆(x, y) ⩾ 1, then d̃⋆(x, y) ⋆ d̃⋆(y, z) ⩾ 1 ⋆ 0 = 1, i.e d̃⋆(x, z) > 1).
Therefore

d̃⋆(x, y) ⋆ d̃⋆(y, z) = d⋆(x, y) ⋆ d⋆(y, z) ⩾ d⋆(x, z).
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This implies that d̃⋆(x, z) > d⋆(x, z), which is a contradiction with d̃⋆(x, z) ⩽ d⋆(x, z). Thus (X, d̃⋆) is a⋆-metric
space.

For any ϵ > 0, x ∈ X we define

Bd⋆ (x, ϵ) = {y ∈ X : d⋆(x, y) < ϵ}

and
Bd̃⋆ (x, ϵ) = {y ∈ X : d⋆(x, y) < ϵ}.

Clearly, Bd⋆ (x, ϵ) = Bd̃⋆ (x, ϵ) whenever 0 < ϵ < 1 for each x ∈ X. Thus the topology induced by d̃⋆ on X is the
same as induced by d⋆. This completes the proof.

Let {(Xα, d⋆α )}α∈A be a family of ⋆-metric spaces and X =
⊕
α∈A Xα be the disjoint union of {Xα}α∈A. By

Proposition 3.8, one can suppose that d⋆α (x, y) ⩽ 1 for x, y ∈ Xα and α ∈ A. For every x, y ∈ X, we define

d⋆q (x, y) =

d⋆α (x, y), if x, y ∈ Xα for some α ∈ A,
1, otherwise. (3.3)

Then (X, d⋆q ) is a ⋆-metric space.
Obviously, d⋆q satisfies conditions (M1) and (M2). It remains to show that condition (M3) d⋆q (x, z) ⩽

d⋆q (x, y) ⋆ d⋆q (y, z) is also satisfied. Otherwise, if there exist points x, y, z ∈ X, such that 1 ⩾ d⋆q (x, z) >
d⋆q (x, y) ⋆ d⋆q (y, z), then d⋆q (x, y) < 1, d⋆q (y, z) < 1. Since, if d⋆q (x, y) ⩾ 1, then d⋆q (x, y) ⋆ d⋆q (y, z) ⩾ 1 ⋆ 0 = 1, i.e.
d⋆q (x, z) > 1. This implies that d⋆q (x, z) > d⋆α (x, z), which is a contradiction with d⋆q (x, z) ⩽ d⋆α (x, z). Thus, there
exists an α ∈ A such that x, y, z ∈ Xα, then we have

d⋆q (x, y) ⋆ d⋆q (y, z) = d⋆α (x, y) ⋆ d⋆α (y, z) ⩾ d⋆α (x, z) = d⋆q (x, z),

which is a contradiction with d⋆q (x, z) > d⋆q (x, y) ⋆ d⋆q (y, z).
One can easily show that for every α ∈ A, the set Xα is open in the space X with the topology induced

by d⋆q . Since d⋆α induces the topology on Xα, d⋆q induces the topology of the disjoint union of topological
spaces {Xα}α∈A on X.

Theorem 3.9. Let {(Xi, d⋆i )}ni=1 be a family of ⋆-metric spaces such that the metric d⋆i is bounded by 1 for 1 ⩽ i ⩽ n,
and X =

⊕
1⩽i⩽n Xi the disjoint union of {Xi}i≤n. Then (X, d⋆q ) is totally bounded if and only if all spaces (Xi, d⋆i ) are

totally bounded, where d⋆q is defined as the formula (3.3).

Proof. Necessity. Assume that (X, d⋆q ) is totally bounded. One can easily show that (Xi, d⋆i ) is a subspace of
(X, d⋆q ). So, all spaces (Xi, d⋆i ) are totally bounded by Theorem 3.4.

Sufficiency. Assume that all spaces (Xi, d⋆i ) are totally bounded. Then, for ϵ > 0, and for each x ∈ Xi,
there exists a y0 ∈ Fi(ϵ) such that d⋆i (x, y0) < ϵ. Put F(ϵ) =

⋃n
i=1 Fi(ϵ) and let x be an arbitrary point of X.

Obviously, x is also a point on some Xi. Thus, we can find a y0 ∈ Fi(ϵ), such that d⋆q (x, y0) = d⋆i (x, y0) < ϵ.
So, (X, d⋆q ) is totally bounded.

4. The completeness of⋆-metric spaces

Completeness is an important property in metric spaces. The completeness of metric spaces depend
on the convergence of Cauchy sequences. Therefore, we extend the definition of Cauchy sequences and
completeness in metric spaces to⋆-metric spaces. Further, we study complete properties of⋆-metric spaces
and give a characterization.

Definition 4.1. Let {xn}n∈N be a sequence of a ⋆-metric space (X, d⋆), and x ∈ X. If for every ϵ > 0, there
exists a k ∈N such that d⋆(x, xn) < ϵwhenever n ⩾ k, then the sequence {xn}n∈N is said to converge to x under

d⋆, and we write xn
d⋆
−→ x.



S.Y. He et al. / Filomat 36:18 (2022), 6173–6185 6181

Proposition 4.2. Let (X, d⋆) be a ⋆-metric space. Then the following statements are equivalent:

(1) {xn}n∈N converges to x0 under Td⋆ ;
(2) {xn}n∈N converges to x0 under d⋆.

Proof. (1) ⇒ (2) For every ϵ > 0, clearly, Bd⋆ (x0, ϵ) is a neighborhood of x0. Since {xn}n∈N converges to x0
under Td⋆ , there exists a k ∈N such that xn ∈ Bd⋆ (x0, ϵ) whenever n ⩾ k, i.e. d⋆(xn, x0) < ϵ. Therefore {xn}n∈N
converges to x0 under d⋆.

(2)⇒ (1) For any neighborhood U of the point x0, there exists ϵ > 0 such that Bd⋆ (x0, ϵ) ⊂ U. Since {xn}n∈N
converges to x0 under d⋆, there exists a k ∈ N such that d⋆(xn, x0) < ϵ whenever n ⩾ k, i.e. xn ∈ Bd⋆ (x0, ϵ).
Thus xn ∈ U whenever n ⩾ k. Therefore {xn}n∈N converges to x0 under Td⋆ .

Definition 4.3. Let (X, d⋆) be a ⋆-metric space, the sequence {xn}n∈N is called Cauchy sequence in (X, d⋆) if
for every ϵ > 0 there exists a k ∈N such that d⋆(xn, xm) < ϵwhenever m,n ⩾ k.

Proposition 4.4. Let {xn}n∈N be a Cauchy sequence in ⋆-metric space (X, d⋆). If {xn}n∈N has an accumulation point

x0, then xn
d⋆
−→ x.

Proof. For every ϵ > 0, by Lemma 2.3, take an ϵ1 > 0 such that ϵ1 ⋆ ϵ1 < ϵ. Since {xn} is a Cauchy sequence,
there exists a k1 ∈ N such that d⋆(xn, xm) < ϵ1 whenever m,n ⩾ k1. Noting that x0 is an accumulation point
of {xn}, there exists a k2 ∈N such that d⋆(x0, xk2 ) < ϵ1 and k2 ≥ k1. Therefore, while m ⩾ k1, we have

d⋆(x0, xm) ⩽ d⋆(x0, xk2 ) ⋆ d⋆(xk2 , xm) < ϵ1 ⋆ ϵ1 < ϵ.

This shows that {xn}n∈N converges to x0.

Definition 4.5. A ⋆-metric space (X, d⋆) is complete if every Cauchy sequence in (X, d⋆) is convergent to a
point of X.

Theorem 4.6. A ⋆-metric space (X, d⋆) is compact if and only if (X, d⋆) is complete and totally bounded.

Proof. Necessity. Let (X, d⋆) be a compact ⋆-metric space. According to Corollary 3.3, (X, d⋆) is totally
bounded. According to Proposition 4.4, if a Cauchy sequence in space (X, d⋆) has convergent subsequences,
then this Cauchy sequence converges. Since compact ⋆-metric space is sequentially compact, which means
that every sequence of points of X has a convergent subsequence. By Corollary 2.6, every Cauchy sequence
in (X, d⋆) is convergent to a point of X. This implies that (X, d⋆) is complete.

Sufficiency. Let (X, d⋆) be a complete and totally bounded ⋆-metric space. To conclude the proof it
suffices to show that X is sequentially compact which implies that X is compact, by Corollary 2.6.

Let {xn} be any sequence in the ⋆-metric space (X, d⋆). From the total boundedness of space X, there
exists finite open-balls cover X with radius 1. At least one of the finite open-ball B1

d⋆ contains infinite points
xn in sequence {xn}. Let the set formed by the subscript n of xn contained in B1

d⋆ be N1. Then N1 is an infinite
set, such that xn ∈ B1

d⋆ whenever n ∈ N1. Then use finite open-balls to cover X with radius 1/2. Among
these finite open-balls, there must be at least one open-ball B2

d⋆ and an infinite subset N2 of N1, such that
xn ∈ B2

d⋆ whenever n ∈ N2. Generally speaking, taking the infinite subset Nk of the positive integer set,
we can select an open-ball Bk+1

d⋆ with radius of 1/(k+1) and an infinite set Nk+1 ⊂ Nk, such that xn ∈ Bk+1
d⋆

whenever n ∈ Nk+1.
Take n1 ∈ N1, n2 ∈ N2, which n2 > n1. Generally speaking, when nk has been taken, we can choose

nk+1 ∈ Nk+1 such that nk+1 > nk. Since for every Nk is an infinite set, the above method can be completed.
For i, j ⩾ k, we have ni,n j ∈ Nk such that xni , xn j ∈ Bk

d⋆ . This implies that {xnk } is a Cauchy sequence, and it is
convergent by completeness of (X, d⋆).

The distance D(x,A) from a point to a set A in a ⋆-metric space (X, d⋆) is defined as

D(A, x) = D(x,A) = inf
y∈A
{d⋆(x, y)}, i f A , ∅, and D(x, ∅) = D(∅, x) = 1.
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Proposition 4.7. Let (X, d⋆) be a ⋆-metric space, and A ⊂ X. Then A = {x : D(A, x) = 0}.

Proof. For any x0 ∈ A there exists a sequence {xn}n∈N ⊂ A such that xn
d⋆
−→ x0. This implies that d⋆(xn, x0)→ 0.

Since 0 ⩽ d⋆(x0,A) ⩽ d⋆(xn, x0) → 0, we have that d⋆(x0,A) = 0, which implies that x0 ∈ {x : D(A, x) = 0}.
Therefore A ⊆ {x : D(A, x) = 0}.

Suppose the contrary that take y ∈ {x : D(A, x) = 0} which satisfies d⋆(y,A) = 0 and y < A. Then there
exists ϵ0 > 0 such that Bd⋆ (y, ϵ0) ∩ A = ∅, which implies that d⋆(y,A) ⩾ ϵ0. This is a contradiction with
d⋆(y,A) = 0. Thus A ⊇ {x : D(A, x) = 0}.

This shows that A = {x : D(A, x) = 0}.

Definition 4.8. Let A be a subset of⋆-metric space (X, d⋆). We define δ(A) = supx,y∈A{d
⋆(x, y)} as the diameter

of the set A; it can be finite or equal to∞. We also define δ(∅) = 0.

Then Cantor theorem is an important characterization of complete metric spaces. Similarly, we extend
the Cantor theorem in metric spaces into ⋆-metric spaces.

Theorem 4.9. A ⋆-metric space is complete if and only if for every decreasing sequence F1 ⊇ F2 ⊇ F3 ⊇ . . . of
non-empty closed subsets of space X, such that limn→∞ δ(Fn) = 0, the intersection

⋂
∞

n=1 Fn is a one-point set.

Proof. Necessity. Let (X, d⋆) be a complete ⋆-metric space, and F1,F2, . . . a sequence of non-empty closed
subsets of X such that

lim
n→∞
δ(Fn) = 0 and Fn+1 ⊂ Fn f or n = 1, 2, . . .

Choose xn ∈ Fn, for every n ∈ N. Now we shall prove that {xn} is a Cauchy sequence. According to
limn→∞ δ(Fn) = 0, for ϵ > 0, there exists a k ∈ N such that δ(Fn) < ϵ when n > k. Whenever n ⩾ m > k, we
have xn ∈ Fn ⊂ Fm, because {Fn} is a decreasing sequence. Furthermore xm ∈ Fm, so that

d⋆(xn, xm) < δ(Fm) < ϵ.

So, {xn} is a Cauchy sequence and thus is convergent to a point x0 ∈ X. Thus, any neighborhood of x0
intersects Fn (n = 1, 2, . . . ). The sets Fn being closed, we have x0 ∈

⋂
∞

n=1 Fn
Now, we need prove

⋂
∞

n=1 Fn = {x0}. Take arbitrary point y ∈
⋂
∞

n=1 Fn. By limn→∞δ(Fn) = 0, we can
choose a k ∈N such that δ(Fn) < ϵwhen n > k, Thus we have

d⋆(x0, y) < δ(Fn) < ϵ, where x0, y ∈ Fn.

This implies that d⋆(x0, y) = 0. Thus we have x0 = y.
Sufficiency. Let {xn} be a Cauchy sequence of (X, d⋆). For every k ∈ N, there exist points lk, rk ∈ N such

that d⋆(xlk , xn) ⩽ 1
rk+1

where n > lk. Let xlk be the smallest positive integer with the above properties, so that
lk ⩽ lk+1, rk ⩽ rk+1(k = 1, 2, . . . ). Construct the following sequence of closed subset {Fn} which defined by
letting

Fk = Bd⋆ (xlk ,
1
rk

), (k = 1, 2, . . . ),

where Bd⋆ (xlk ,
1
rk

) = {y ∈ X : d⋆(xlk , y) ⩽ 1
rk
}. By Proposition 4.7, we can get that d⋆(Fk) ⩽ 2

rk
, which implies

that limn→∞ δ(Fn) = 0.
Now define by induction a subfamily {Hn} of {Fn}. We define H1 = Fk1 , k1 = 1. Then take H2 = Fk2 , by

Lemma 2.3, we can set that k2 = min{ j ⩾ 2 : 1
r j
⋆ 1

r j
< 1

rk1
}. Generally speaking, if we take the positive integer

kn, we can take kn+1 = min{ j ⩾ kn + 1 : 1
r j
⋆ 1

r j
< 1

rkn
}, such that Hn+1 = Fkn+1 . Now we shall show that {Hn}

satisfies the conditions in our theorem.
Let y ∈ Hn+1, then according to the selection method of lk, we have

d⋆(y, xlkn+1
) <

1
rkn+1

, d⋆(xlkn+1
, xlkn

) <
1

rkn+1
,
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thus

d⋆(y, xlkn
) ⩽ d⋆(y, xlkn+1

) ⋆ d⋆(xlkn+1
, xlkn

) <
1

rkn+1

⋆
1

rkn+1
<

1
rkn+1

⋆
1

rkn+1

<
1

rkn

.

This implies that y ∈ Hn, i.e. Hn+1 ⊂ Hn.
According to the assumption

⋂
∞

n=1 Fn = {x0}. Now we shall show that a Cauchy sequence {xn} is
convergent to the point x0. For every ϵ > 0, by Lemma 2.3, take a rk ∈ N such that 1

rk
⋆ 1

rk
< ϵ, and

d⋆(xlk , xn) ⩽ 1
rk+1

. In addition, x0 ∈ Fk, d⋆(xlk , x0) ⩽ 1
rk

, so we have

d⋆(x0, xn) ⩽ d⋆(x0, xlk ) ⋆ d⋆(xlk , xn) <
1
rk
⋆

1
rk+1
<

1
rk
⋆

1
rk
< ϵ.

Thus, limn→∞ xn = x0, this shows that (X, d⋆) is a complete ⋆-metric space.

Theorem 4.10. A ⋆-metric space is complete if and only if every family of closed subsets of X which has the finite
intersection property and for every ϵ > 0 contains a set of diameter less than ϵ has non-empty intersection.

Proof. Sufficiency of the condition in our theorem for completeness of a ⋆-metric space follows from the
Theorem 4.9.

We shall show that the condition holds in every complete ⋆-metric space (X, d⋆). Consider a family
{Fs}s∈S of closed subsets of X which has the finite intersection property and which for every j ∈N contains
a set Fs j , such that δ(Fs j ) <

1
j . Let Fi =

⋂
j⩽i Fs j . One easily sees that the sequence F1,F2, . . . satisfies the

condition of the Cantor theorem, since Fn+1 ⊂ Fn and δ(Fi) ⩽ δ(Fsi ) <
1
i which means limn→∞ δ(Fn) = 0. So

that there exists an x ∈
⋂
∞

i=1 Fi. Clearly, we have
⋂
∞

i=1 Fi = {x}. Now, let us take an arbitrary s0 ∈ S; letting
F′i = Fs0 ∩ Fi for i = 1, 2, . . . we obtain again a sequence F′1,F

′

2, . . . satisfying the conditions of the Theorem
4.9. Since

∅ ,
∞⋂

i=1

F′i = Fs0 ∩

∞⋂
i=1

Fi = Fs0 ∩ {x},

we have x ∈ Fs0 . Hence x ∈
⋂

s∈S Fs.

Theorem 4.11. A subspace (M, d⋆) of a complete ⋆-metric space (X, d⋆) is complete if and only if M is closed in X.

Proof. Necessity. Let x ∈M, and we define Fk =M ∩ Bd⋆ (x, 1
k )(k = 1, 2, . . . ), then sequence {Fk} is non-empty

closed subsets in subspace M, so one can easily check that {Fk} satisfies the conditions (1) and (2) in the
Theorem 4.9. Since subspace (M, d⋆) is complete, by Theorem 4.9, obviously

⋂
∞

k=1 Fk = {x}, it follows that
x ∈M. Therefore M =M.

Sufficiency. Let M be a closed set, every Cauchy sequence of ⋆-metric space (M, d⋆) is also a Cauchy
sequence of complete ⋆-metric space (X, d⋆), so it converges to a certain point x ∈ X. Since M is closed in X,
x ∈M. This completes the proof.

The following theorem shows that in a class of ⋆-metric spaces, the completeness is preserved by finite
products.

Theorem 4.12. Let {(Xi, d⋆i )}ni=1 be a family of finite nonempty ⋆-metric spaces and X =
∏n

i=1 Xi the Cartesian
product. Then

(1) X with the ⋆-metric d⋆T defined by formula (3.1) is complete if and only if all ⋆-metric spaces (Xi, d⋆i ) are
complete;

(2) X with the ⋆-metric d⋆max defined by formula (3.2) is complete if and only if all ⋆-metric spaces (Xi, d⋆i ) are
complete.
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Proof. (1) Assume that the space (X, d⋆T ) is complete. For every subspace X∗m =
∏n

i=1 Ai of X, where Am = Xm
and Ai = {x∗i } is a one-point subset of Xi for i , m, is closed in (X, d⋆T ). Then the subspace X∗m is complete
by Theorem 4.11. One can easily verify that p∗m = pm |X∗m : X∗m → Xm is a isometric isomorphism, since
d⋆T |X∗m (p∗m(x), p∗m(y)) = d⋆2 (x, y). Therefore, for every Cauchy sequence {xn} in (Xm, d⋆m), the sequence {p∗m

−1(xn)}
is a Cauchy sequence in X∗m. Then

p∗m( lim
n→∞

p∗m
−1(xn)) = lim

n→∞
xn,

so that the space (Xm, d⋆m) is complete.
Assume that all spaces (Xi, d⋆i ) are complete. Take any Cauchy sequence {yk}k∈N in (X, d⋆T ), where

yk = (xk
i ), for 1 ⩽ i ⩽ n. Then the sequence {xk

i }k∈N is a Cauchy sequence in (Xi, d⋆i ) and thus converges to a
point x0

i ∈ Xi. Now, we shall show that {yk}k∈N converges to a point x0 = (x0
i ). For ϵ > 0, by Lemma 2.3, take

an ϵ1 > 0 such that

n times︷               ︸︸               ︷
ϵ1 ⋆ ϵ1 ⋆ · · · ⋆ ϵ1 < ϵ. Since {xk

i }k∈N converges to a point x0
i , there exists mi ∈N, such that

d⋆i (xk
i , x

0
i ) < ϵ1, where k ⩾ mi. Thus choose m = max1⩽i⩽n{mi}, such that

d⋆T (yk, x0) = d⋆1 (xk
1, x

0
1) ⋆ d⋆2 (xk

2, x
0
2) ⋆ · · · ⋆ d⋆n (xk

n, x
0
n) <

n times︷               ︸︸               ︷
ϵ1 ⋆ ϵ1 ⋆ · · · ⋆ ϵ1 < ϵ,

whenever k ⩾ m. We have shown that (X, d⋆T ) is complete.
(2) Assume that the space (X, d⋆T ) is complete. The method of proof is the same as (1).
Assume that all spaces (Xi, d⋆i ) are complete. Take any Cauchy sequence {yk}k∈N in (X, d⋆max), where

yk = (xk
i ), for 1 ⩽ i ⩽ n. Then the sequence {xk

i }k∈N is a Cauchy sequence in (Xi, d⋆i ) and thus converges to
a point x0

i ∈ Xi. Now, we shall show that {yk}k∈N converges to a point x0 = (x0
i ). Since {xk

i }k∈N converges
to a point x0

i . For every ϵ > 0 there exists mi ∈ N, such that d⋆i (xk
i , x

0
i ) < ϵ, where k ⩾ mi. Without loss of

generality, let max1⩽i⩽n d⋆i (xk
i , x

0
i ) = d⋆j (xk

j , x
0
j ), then while k ⩾ m = m j, such that

d⋆max(yk, x0) = max
1⩽i⩽n

d⋆i (xk
i , x

0
i ) = d⋆j (xk

j , x
0
j ) < ϵ.

We have shown that (X, d⋆max) is complete.

Theorem 4.13. If {(Xα, d⋆α )}α∈A is a family of ⋆-metric spaces such that the ⋆-metric d⋆α is bounded for each α ∈ A,
and X =

⊕
α∈A Xα be the disjoint union of {Xα}. Then X with the ⋆-metric d⋆q defined by formula (3.3) is complete if

and only if all spaces (Xα, d⋆α ) are complete.

Proof. Necessity. Assume that (X, d⋆q ) is complete. Then it is easy to see that all sets Xα are open-and-closed
in X. So, all spaces (Xα, d⋆α ) are complete by Theorem 4.11.

Sufficiency. Assume that all spaces (Xα, d⋆α ) are complete. Then (X, d⋆q ) is complete, because every
Cauchy sequence of⋆-metric space (Xα, d⋆α ) is also a Cauchy sequence of (X, d⋆q ) and it converges to a certain
point x ∈ Xα ⊆ X.

The Baire theorem is a very important result in complete metric spaces. We shall extend this theorem to
complete ⋆-metric spaces.

Theorem 4.14. In a complete ⋆-metric space (X, d⋆) the intersection A =
⋂
∞

n=1 An of a sequence A1,A2, . . . of dense
open subsets is a dense set.

Proof. Let A =
⋂
∞

n=1 An, for every An an open dense subset of complete ⋆-metric space (X, d⋆). Now,
construct the sequence of closed subset {Fn}which satisfies conditions in Theorem 4.9. Since A1 is dense in
X, and U is a non-empty open set, then A1∩U , ∅. Take x1 ∈ A1∩U, since A1∩U is an open set, there exists
ϵ1 which satisfies 0 < ϵ1 < 1/22, such that Bd⋆ (x1, ϵ1) ⊂ A1 ∩ U. Since A2 is dense in X, and Bd⋆ (x1, ϵ1) is an
open set, then A2 ∩Bd⋆ (x1, ϵ1) , ∅. Take x2 ∈ A2 ∩Bd⋆ (x1, ϵ1), since A2 ∩Bd⋆ (x1, ϵ1) is an open set, there exists
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ϵ2 which satisfies 0 < ϵ2 < ϵ1/2, such that Bd⋆ (x2, ϵ2) ⊂ A2 ∩ Bd⋆ (x1, ϵ1). Obviously, Bd⋆ (x2, ϵ2) ⊂ Bd⋆ (x1, ϵ1)
and Bd⋆ (x2, ϵ2) ⊂ A2 ∩ U. Going on, one can easily obtain the sequence of closed subset {Fn} = {Bd⋆ (xn, ϵn)}
which satisfies Fn+1 ⊂ Fn and δ(Fn) ⩽ 1/2n (n=1,2,. . . ). This implies that {Fn} satisfies conditions in Theorem
4.9. Noting that Fn ⊂ An ∩U, by Theorem 4.9,

⋂
∞

n=1 Fn , ∅, then we have

A ∩U = (
∞⋂

n=1

An) ∩U =
∞⋂

n=1

(An ∩U) ⊃
∞⋂

n=1

Fn , ∅,

this implies that A is dense in X.

Every metric space is isometric to a subspace of a complete metric space. It would be interesting to find
out whether this result remain valid in the class of ⋆-metric spaces:

Problem 4.15. Is every ⋆-metric space isometric to a subspace of a complete ⋆-metric space?
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